Language selection

Search

Patent 1178138 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent: (11) CA 1178138
(21) Application Number: 385081
(54) English Title: IMPREGNATED NON-WOVEN SHEET MATERIAL AND PRODUCTS PRODUCED THEREWITH
(54) French Title: FEUILLES NON TISSEES IMPREGNEES, ET ARTICLES FAITS DESDITES FEUILLES
Status: Expired
Bibliographic Data
(52) Canadian Patent Classification (CPC):
  • 117/183
  • 117/43
  • 28/9
(51) International Patent Classification (IPC):
  • D06M 15/00 (2006.01)
  • D04H 1/587 (2012.01)
  • C08G 18/08 (2006.01)
  • D04H 1/48 (2012.01)
  • D04H 1/64 (2012.01)
  • D06N 3/00 (2006.01)
(72) Inventors :
  • MCCARTNEY, JOHN R. (United States of America)
(73) Owners :
  • NORWOOD INDUSTRIES, INC. (Not Available)
(71) Applicants :
(74) Agent: SMART & BIGGAR LLP
(74) Associate agent:
(45) Issued: 1984-11-20
(22) Filed Date: 1981-09-02
Availability of licence: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): No

(30) Application Priority Data:
Application No. Country/Territory Date
188,330 United States of America 1980-09-18
188,329 United States of America 1980-09-18

Abstracts

English Abstract



ABSTRACT
A resin impregnated fibrous web is comprised of a needled
fibrous batt and a polymeric resin distributed throughout the batt.
The density of the impregnated web is uniform throughout with the bulk
density of the web being less than the actual density of the web where-
by the web is porous. The impregnated web has filaments which are
both coated and uncoated with the polymeric resin. A method of form-
ing the impregnated fibrous web is also disclosed.
A simulated leather sheet material is produced from the
impregnated web. The simulated leather sheet material is comprised
of a polymer impregnated fibrous mass with a grain layer forming one
surface and a split layer forming the opposing surface. The grain
layer has an actual density equal to its bulk density and the split
layer has a bulk density less than its actual density. The sheet
material has a density decreasing from the grain layer to the split
layer.


Claims

Note: Claims are shown in the official language in which they were submitted.


THE EMBODIMENTS OF TEE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A resin impregnated fibrous web comprised of:
a needled fibrous batt;
a polymeric resin distributed throughout said batt forming a resin imp-
regnated fibrous web;
the density of said impregnated fibrous web being uniform throughout;
the bulk density of said web being less than the actual density of said
web, whereby the web is porous; and
said impregnated web having filaments which are both coated and uncoa-
ted with polymeric resin and concentrations of polymeric resin.

2. The resin impregnated fibrous web of claim 1 wherein said needled fib-
rous batt has a bulk density of less than 0.5 grams/cm .

3. The resin impregnated fibrous web of claim 2 wherein said needled fib-
rous batt has a bulk density of less than 0.25 qrams/cm3.

4. The resin impregnated fibrous web of claim 2 wherein said needled fib-
rous batt has a bulk density of between 0.12 to about 0.4 grams/cm3.

5. The resin impregnated fibrous web of claim 1 wherein said needled fib-
rous batt has a thickness of at least 30 mils.

6. The resin impregnated fibrous web of claim 1 wherein said needled fib-
rous batt is composed of substantially non-fusible fibers.
7. The resin impregnated fibrous web of claim 1 wherein said polymeric
resin is a polyurethane.

-20-

-21-

8. The resin impregnated fibrous web of Claim 7
wherein said polyurethane is water dispersible polyurethane.

9. The resin impregnated fibrous web of Claim 7
wherein said polyurethane is a crosslinked polyurethane.

10. The resin impregnated fibrous web of Claim 1
wherein said polymeric resin is a polyacrylate.

11. The resin impregnated fibrous web of Claim 1
wherein said polymeric resin is present at a level of at least 70
percent by weight add on based upon the weight of the fibrous batt.

12. The resin impregnated fibrous web of Claim 11
wherein said polymeric resin is present at a level of less than about
400 percent by weight add on based upon the weight of the fibrous
batt.

13. The resin impregnated fibrous web of Claim 12
wherein said polymeric resin is present at a level of about 200 to
300 percent by weight add on based upon the weight of the fibrous
batt.

14. The resin impregnated fibrous web of Claim 1
having a density of up to about 0.75 grams/cc.

15. The resin impregnated fibrous web of Claim 14
having a density of between about 0.4 to about 0.75 grams/cc.

16. A method of forming an impregnated fibrous web
comprising:
fully saturating a needled fibrous batt with an
aqueous dispersion or emulsion of ionically solubilized polymeric
resin;

-26-


-22-


contacting the fully saturated needled batt with
an ionic coagulating agent to coagulate the polymeric resin from the
aqueous dispersion and deposit the polymeric resin within said needled
batt; and,
drying the needled batt and polymeric resin to
form an impregnated fibrous web having a uniform density throughout.


17. The method of Claim 16 wherein said needled batt
has a bulk density of less than 0.5 grams/cc.


18. The method of Claim 17 wherein said needled fibrous
batt has a bulk density of less than 0.25 grams/cm3.


19. The method of Claim 17 wherein said needled fibrous
batt has a bulk density of between 0.12 and 0.4 grams/cm3.


20. The method of Claim 16 wherein said needled fibrous
batt has a thickness of at least 30 mils.


21. The method of Claim 16 wherein said needled fibrous
batt is composed of substantially non-fusible fibers.


22. The method of Claim 16 wherein said polymeric resin
is a polyurethane.


23. The method of Claim 16 wherein said aqueous dis-
persion or emulsion has a solids content of about 5 to 60 percent by
weight.


24. The method of Claim 22 wherein said polyurethane
is crosslinked.

25. The method of Claim 16 wherein said polymeric
resin is present in said web at a level of at least 70 percent by
weight add on based upon the weight of the fibrous batt.

-22-

26. The method of claim 25 wherein said polymeric resin is
present at a level of less than about 400 percent by weight add
on based upon the weight of said fibers.

27. The method of claim 26 wherein said polymeric resin is
present at a level of about 200 to 300 percent by weight add on
based upon the weight of said fibrous batt.

28. The method of claim 16 wherein said impregnated fibrous
web has a density of up to about 0.75 grams/cc.

29. The method of claim 28 wherein said impregnated fibrous
web has a density of between about 0.4 to about 0.75 grams/cc.

-23-

Description

Note: Descriptions are shown in the official language in which they were submitted.


~7~3~L3~3

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates -to resin impregnated fibrou-s we~s
and more particularly to resin impregnated fibrous webs having a
uniform density throughout and products produced therefrom.
A copending application which relates to a simulated
leather sheet material and a process for making same has been
divided out of this application.
2 Description of the Prior Art
Resin impregnated sheet materials such as cloth, batts,
waterleaves, and the like are well known in the art. These resin
impregnated sheet materials are useful for a plurality of purposes
including imitation leather in the form of vinyls and the like,
structural sheet materials such as conveyor belts and similar
products.
Prior art methods of impregnating a particular web in-
volve the impregnation or coating of a porous material with a poly-
meric resin such as a polyurethane, vinyl or a similar material.
Polyurethanes have met with wide acceptance as a coating or impreg-

nating composition due to their capability of wide variation inchemical and physical properties, particularly their flexibility
and chemical resistance. In impregnating the porous sheet material
with a polymeric resin several techniques have been employed. One
such prior art method involves the use of the polymeric resin in an
organic solvent system wherein the sheet material is dipped in the
solution and the solvent is removed therefrom. These solvent
systems are undesirable since the solvent, in many cases, is toxic
and must either be recovered for reuse or discarded. These solvent


L3~

systems are expensive and do not necessarily provide a desirable
product since upon evaporation of the solvent from the impregnated
porous sheet material the resin tends to migrate to provide a non-
homogeneous impregnation of the porous sheet material resulting
in resin richness toward the surface of the sheet material rather
than uniform impregnation.
In order to alleviate the problems with solvent systems,
certain aqueous polymeric systems have been proposed. In forming
impregnated sheet materials by impregnation with aqueous polymers
the aqueous portion must be removed. Again heat is required and
migration of the polymer to the surfaces of the impregnated sheet
material is encountered.
In one method of combining polyurethane solutions with
porous substrates the polymer is applied in an organic solvent to
a substrate, such as a needle punched polyester batt. The polymer-
substrate composite is subsequently bathed with a mixture of
organic solvent for the polymer and a non-solvent for the polymer
that is at least partially miscible with the solvent until the
layer is coagulated into a cellular structure of interconnected
micropores. The solvent is removed from the coating layer along
with the non-solvent to produce a solvent free microporous layer.
Although this process yields acceptable properties for a poly-
urethane impregnated fabric, it has the disadvantage of an organic
solvent system partially when high performance polyurethanes are
utilized which require relatively toxic and high boiling solvents.
An ex~mple of this method is disclosed in United States Patent No.
3,208,87~.




- 2 -

In another method, polyurethane dispersions in organic
vehicles have been proposed and used to coat porous substrates such
as is disclosed in United States Patent ~o. 3,100,721. In this
system, a dispersion is applied to a substrate, and coagulated by
further addition of a non-solvent. Although this approach has been
used with some success, it involves two major limitations: (1) the
vehicle of the dispersion is substantially organic since relatively
small amounts of non-solvent, preferably water, are needed to form
a dispersion; and (2) there is a narrow useful range of added non-
solvent so that reproducible results are difficult to obtain.
One particularly useful method of preparing composite sheet
material by impregnating a porous substrate is disclosed in United
States Patent No. 4,171,391. In this system a porous sheet
material is impregnated with an aqueous ionic dispersion of a
polyurethane and the impregnant is coagulated therein. The com-
posite is then dried to form a composite sheet material. The
present invention and that of the above mentioned divisional
application is an improvement over this basic pracess and in some
instances is broader in scope.
Impregnated porous substrates and similar materials




- 2a -


have been proposed as leather substitutes with the goal of preparing
a product having the same characteristics as natural leather.
Natural leather, appropriately finished, is valued for
its durability and aesthetic characteristics for a p'lurality of uses.
5 Due to the scarcity of leather and the increased cost of processing
leather for particu'lar applications, economics have dictated that
synthetic materials be substituted in certain applications where
leather goods had been used. Such synthetic materials have been pro-
posed and used in the areas of shoe uppers, upholstery, clothing,
10 luggage making, book binding and similar applications. Because these
various applications require diF~ering physical, chemical, and aesthe-
tic qualities, different procesces using different materials must be
used to obtain an acceptable product which is comparable to natura1
leather; although in most instances these synthetics are readily dis-
15 tinguishable from natural leather.
Natural leather from animal hides is composed of two
surfaces: one surface defining the grain layer, which in most instances
is the most aesthetically desirable and the opposing surface defining
the split layer. The grain layer is the epidermis of the animal and
20 is very smooth whereas the split layer in most instances is rough and t
fibrous.
One method of preparing a synthetic as a substitute for
leather involves impregnating and/or coating of porous material9 for
example, cloth, with a polyurethane, vinyl or a similar material.
25 Polyurethanes have met with wide acceptance as a coating or impregnating
composition due to their capability of wide variation in chemical and
physical properties, particularly their flexibility and chemical resist-
ance.
Objectives in preparing the synthetic substitutes for
30 leather are that they provide: (1) sheets especially suitable for
leather-like and upholstery uses; (2) sheets of uniform width as com-
monly used in the textile industry' (unlike natural products which
sustain substantial weight and area losses in cutting and finishing);
(3) end use versatility, for example, under a variety of exposure
35 conditions where certain chemical treatments will assist maintenance
and useful l'ifetime of properties; and most importantly, (4) a product

3~3



with the strength, hand, drape and softness comparable to natural
leather.
Further, a simulated leather sheet material when used
for shoe uppers should be characteri7ed by a leather appearance, with
no undesirable fabric show through, good water vapor permeation into
the uncoated side of the upper, and a leather grain break (minimal
gross wrinkling~. "Leather-like grain break", as recognized in leather
and upholstery industries, is manifested in the behavior of well
finished leather when folded or crumpled. The leather fold is char-
acterized by a smooth curved contour, frequently with numerous finewrinkles in the compressed region of the fold area. This is contrasted
with sharp creases or gross wrinkles formed when papers or films are
folded; this kind of undesirable appearance is known as "pin wrinkling."
The "hand" of leather is highly distinctive and synthetics
normally have a rubbery feel which is contrasted with leather.
Polyurethane polymers as coatings or impregnants for fab-
ric to provide substitutes for leather have long been recognized.
For example, polyurethanes can be made which are highly resistant to
solvents and abrasion, conferring dry cleanability and outstanding
durability to coated fabrics. The basic chemistry of polyurethanes,
involving reactions between the isocyanate groups and molecules with
multiply reactive hydrogen, such as polyols and polyamines, afford
great versatility and variability in final chemical and physical
properties by the selection of intermediates to achieve processibility
~5 and the desired balance of end use performance requirements.
There are various methods for applying polyurethane
solutions or other post curable liquid polymers to porous substrates
which are well known to those skilled in the art. An article in
Journal of Coated Fabrics, Vol. 7 (July 1977~, pages 43 through 57
describe some of the commercial coating systems, e.g. reverse roll
coating, pan fed coater, gravure and the like. Brushing and spraying
may also be used to coat polyurethanes on porous substrates. These
polyurethane solutions, after impregnation or coating on the porous
substrate, are dried or cured by a method such as heated air, infra-
red radiation and the like. Characteristic of these processes isthe deposition of a polyrner and a film-like layer which tends to

~7~31~

produce a coated fabric which folds in undesirable sharp creases
rather than leather-like grain break. Other methods of combining
polymeric solutions and particularly polyurethane solutions with
porous substrates are exemplified by United States Patent No.
3,208,875 and United States Patent No. 3,100,721.
~ n improved process for impregnating fabrics is disclosed
in United States Patent No. ~,171,391 which includes certain steps
which are necessary in forming simulated leather sheet material
in accordance with the invention.
In accordance with the present invention, a method of
impregnating porous sheet materials and particularly needled batts
is disclosed wherein uniform impregnation is provided in an aqueous
system forming a product with high tear strength and integrity.
Further, an impregnated fibrous web is provided which has
a novel and unusual useful structure adapted to be used as formed
or subsequently processed to provide further advantage.
In accordance with the invention of the divisional appli-
cation, a simulated leather sheet material is formed which has the
appearance and properties of natural leather and further has certain
physical similarities therewith.
~ ccording to one aspect of the present invention there is
provided a resin impregnated fibrous web comprised of: a needled
fibrous batt; a polymeric resin distributed throughout said batt
forming a resin impregnated fibrous web; the density of said impreg-
nated fibrous web being uniform throughout; the bulk density of said
web being less than the actual density of said web, whereby the web
is porous; and said impregnated web having filaments which are both
coated and uncoated with polymeric resin and concentrations of




- 5 -

.

.
/

~78~3~

polymeric resin.
According to a further aspect of the present invention
there is provided a method of forming an inpregnated fibrous web
comprising: fu:Lly saturating a needled fibrous batt with an aqueous
dispersion or emulslon of ionically solubilized polymeric resin;
contacting the fully saturated needled batt with an ionic coagulat-
ing agent to coagulate the polymeric resin from the aqueous dis-
persion and deposit the polymeric resin within said needled batt,
and drying the needled batt and polymeric resin to form an impreg-

nated fibrous web having a uniform density throughout.
According to one aspect of the invention of the divisionalapplication there is provided a simulated leather sheet material
comprising- a polymer impregnated fibrous mass with a grain layer
forming one surface, the grain layer having an actual density equal
to its bulk density and a split layer forming the opposing surface,
the grain layer being a composite of fibers in a continuous resin
matrix, the split layer having a bulk density less than its actual
density, the split layer having coated and uncoated fibers, masses
of polymer and voids, said sheet material having a density decreas-

ing from the grain layer to the split layer, wherein the ratio offiber to polymer is uniform throughout said sheet materialO
According to a further aspect of the invention of the
divisional application there is provided a method of forming a
simulated leather sheet material comprising: uniformly impregnating
a fibrous mass with a polymer to form a porous sheet material;
heating the porous sheet material under heat and pressure, said
heat and pressure being applied to at least one surface thereof,




- 5a -

3~

to develop a simulated leather sheet material having a grain layer
on the surface to which the heat has been applied, the grain layer
having a bulk density equal to the actual density, said grain layer
being a composite of fibers in a continuous resin matrix, a split
layer having a bulk density less than its actual density, said
split layer having coated and uncoated fibers, masses of polymer
and voids, the sheet material having a density from the grain to
layer to the split layer and wherein the ratio of fiber to polymer
is uniform throughout said sheet material.




- 5b -

--6--
3~

DETAILED DESCRIPTION OF TIIE INVENTION
"~ulk density" as used herein means and refers to the density of the
material including air space. "Actual density" as used herein means and refers
to the density of the material not including air space i.e. specific gravity.
The fibrous mass include woven and knit fabrics, felt and non-wovens,
such as spun bonded sheets, needled batts and waterleaves. Suitable substrate
fibers are the natural fibers, particularly cotton and wool; synthetic fibers
such as polyester, nylon, acrylics, modacrylics, and rayon. Most preferably, the
fibrous mass is needled fibrous batts formed of such natural and synthetic fibers.
Preferably, the fibers have a denier of 1 to 5 and a length which is suitable
for carding which is typically one to six inches and more preferably one and
one-half to three inches.
The needled fibrous batts can be either of high, intermediate or low
density. The high density batts have a maximum density of 0.5 grams/cc. These
high density batts are typically composed of wool. When synthetic fibers are
used in forming the batts, the high density bàtts are up to 0.25 grams/cc.
Preferably, the fibrous batts have a density of 0.08 grams/cc to 0.5 grams/cc.
The thickness of the batts may be up to 0.5 inch and preferably between 0.12
inch and 0.4 inch with a minimum thickness of 0.030 inch. Additionally, the
batts are characterized as "saturating batts" which have high integrity due to
the needle punching operation as opposed to lightly bonded batts having few
needle punches with little or no integrity.
The polymeric resins useful in the practice of the invention are
preferably those polymeric resins which are capable of solubilization, disper-
sion, or emulsification in water and subsequent coagulation from the water
system with an ionic coagulating agent.



''~;.



, . . . .

3~

A preferred polymer system is one which is synthesized from acrylic
monomers such as the alkyl acrylates and methylacrylates~ acrylorli.trile, methyl-
acrylonitrile and other well known acrylic monomers. These acrylic monomers
may be polymerized by emulsion polymerization to form a latex or by other free
radical polymerization mechanisms and subsequently solubilized or emulsified in
water. The emulsification or solubilizing system must be such that when the
emulsion is contacted with concentrated acid or base the polymer coagulates from
the aqueous system and is rendered substantially insoluble.
Most preferably, emulsified or aqueously dispersed polyurethanes are
utilized. Exemplary of the emulsified polyurethanes are those disclosed in
United States Patent No. 2,968,575 prepared and dispersed in water with the aid
of detergents under the action of powerful shearing forces. When these poly-
urethane emulsions are formed, the emulsifying agent or detergent must be one
which is ionic in nature so that a counter ion may be added to the aqueous
system to coagulate the polymer. Most preferably, the polyurethanes are those
recognized in the art as ionically water dispersible.
The preferred system for preparing ionic aqueous polyurethane disper-
sions is to prepare polymers that have free acid groups, preferably carboxylic
acid groups covalently bonded to the polymer backbone. Neutralization of these
carboxyl groups with an amine, preferably a water soluble mono-amine, affords
water dilutability. Careful selection of the compound bearing the carboxylic
group must be made because isocyanates, necessary components in any polyurethane
system, are generally reactive with carboxylic groups. However, as disclosed in
United States Patent No. 3,412,05~, 2,2-hydroxymethyl-substituted carboxylic
acids can be reacted with organic polyisocyanates without significant reaction
between the acid and isocyante groups due to the stearic hinderance of the car-

-7a- ~7~3~

boxyl by the adjacent alkyl groups. This approach provides the desired carboxyl
containing polymer with the carboxylic groups being neutralized with the ter-
tiary mono-amine to provide an in~ernal quaternary ammonium salt and hence,
water dilutability.
Suitable carboxylic acids and preferably the stearically hindered
carboxylic acids, are well known and readily available. For exampleJ they may
be prepared from an aldehyde that contains at least two hydrogens in the alpha
position which are reacted in the presence of a base with two equivalents of
formaldehyde to form a 2,2-hydroxymethyl aldehyde. The aldehyde is then
oxidized to the acid by


3~


procedures known to those skilled in the art. Such acids are

represented by the structural formula,
,CH20H
R- C - COOH

CH2H
wherein R represents hydrogen, or alkyl of up to 20 carbon atoms,
and preferably, up to eight carbon atoms. A preferred acid is
2,2-di-(hydrozymethyl) propionic acid. The polymers with the
pendant carboxyl groups are characterized as anionic polyurethane
polymers.
Further, an alternate route to confer water dilutability
is to use a cationic polyurethane having pendant amino groups.
Such cationic polyurethanes are disclosed in United States Patent
NoO 4,066,591, and particularly, in Example XVII. It is preferred
that the anionic polyurethane be used.
The polyurethanes more particularly involve the reaction
of di-or polyisocyanates and compounds with multiple reactive
hydrogens suitable for the preparation of polyurethanes. Such
diisocyanates and reactive hydrogen compounds are more fully
disclosed in ~nited States Patent Nos. 3~412,034 and 4,046,729.
Further, the processes to prepare such polyurethanes are well
recognized as exemplified by the aforementioned patents. Aromatic,
aliphatic and cycloaliphatic diisocyanates or mixtures thereof
can be used in forming the polymer. Such diisocyanates, for
example, are tolylene-2,4-diisocyanate; tolylene-2,6-diisocyanate;
meta phenylene diisocyanate; biphenylene-4,4'-diisocyanate;
methylene-bis(4-phenyl isocyanate); 4-chloro-1,3,-phenylene




- 8 -



j , , ; ,:

3~

diisocyanate; naphthylene-1,5-diisocyanate; tetramethylene-1,4-
diisocyanate; hexamethylene-1,6-diisocyanate; decamethylene-l,
10-diiscoyanate; cyclohexylene-1,4-diisocyanate; methylene-bis
(4-cyclohexyl isocyanate); tetrahydronaphthylene diisocyanate;
isophorone diisocyanate and the like. Preferably, the arylene
and cyclo-aliphatic diisocyanates are used most advantageously.
Characteristically, the arylene diisocyanates encompass




~;''~'
~ - 8a -

3L3~

those in which the isocyanate group is attached to the aromatic ring. The most
preferred isocyanates are the 2,4 and 2J6 isomers of tolylene diisocyanate and
mixtures thereof, due to their ready availability and tlleir reactivity. Further,
the cyclo-aliphatic diisocyanates used most advantageously are 4,4'-methylene-
bis~cyclohexyl isocyanate) and isophorone diisocyanate.
Selection of the aromatic or aliphatic diisocyanàtes is predicated
upon the final end use of the particular material. As is well recognized by
those skilled in the art, the aromatic isocyanates may be used where the final
product is not excessively exposed to ultraviolet radiation which tends to
yellow such polymeric compositions; whereas the aliphatic diisocyanates may be
more advantageously used in exterior applications and have less tendency to
yellow upon exposure to ultraviolet radiation. Although these principles orm a
general basis for the selection of the particular isocyanate to be used, the
aromatic diisocyanates may be further stabilized by well known ultraviolet
stabilizers to enhance the final properties of the polyurethane impregnated
sheet material. In addition, antioxidants may be added in art recognized levels
to improve the characteristics of the final product. Typical antioxidants are
the thioethers and phenolic antioxidants such as 4,4'-butylidine bis-meta-cresol
and 2,6-ditert-butyl-para-cresol.
The isocyanate is reacted with the multiple reactive hydrogen com-
pounds such as diols, diamines, or triols. In the case of diols or triols, they
are typically either polyalkylene ether or polyester polyols. A polyalkylene
ether polyol is the preferred active hydrogen containing polymeric material for
formulation of the polyurethane. The most useful polyglycols have a molecular
weight of 50 to lO,000 and the most preerred is from about 400 to 7,000.
Further, the polyether polyols improve flexibility proportionally with the


1~ ~

-10- ~ ~ 7~3~53

increase in their molecular weight.
Examples of the polyether polyols are, but not limited to, polyethylene
ether glycol, polypropylene-e~her glycol, polytetramethylene ether glycol,
polyhexamethylene ether glycol, polyoctamethylene ether glycol, polydecamethylene
ether glycol~ polydodecamethylene ether glycol and mixtures thereof. Polyglycols
containing several different radicals in the molecular chain, such as, for
example, the compound HO(CH20C2H~O)nll wherein n is an integer greater than one,
can also be used.
The polyol may also be hydroxy terminated or hydroxy pendant polyester
which can be used instead or in combination with the polyalkylene ether glycols.
Exemplary of such polyesters are thus formed by reacting acids, esters or acid
halides with glycols. Suitable glycols are polymethylene glycols such as ethy-
lene, propylene, tetramethylene or decamethylene glycol; substituted methylene
glycols such as 2,2-dimethyl-1,3,-propane diolJ cyclic glycols such as cyclo-
hexanediol and aromatic glycols. Aliphatic glycols are generally preferred when
flexibility is desired. These glycols are reacted with aliphatic, cyclo-ali-
phatic or aromatic dicarboxylic acids or lower alkyl esters or ester forming
deriva-tives to produce relatively low molecular weight polymers, preferably hav-
ing a melting point of less than about 70C, and a molecular weight like those
indicated for the polyalkylene ether glycols. Acids for preparing such poly-
esters are, for example, phthalic, maleic, succinic, adipic, suberic, sebacic,
terephthalic and hexahydrophthalic acids and the alkyl and halogen substituted `
derivatives of these acids. In addition, polycaprolactone terminated with
hydroxyl groups may also be used.
One particularly useful polyurethane system is the crosslinked poly-
urethane system which is more fully disclosed in Canadian Patent No. 1,154,191




..

-11-
3~

of AndTea Russiello entitled "Crosslinked Polyurethane Dispersions".
When used herein, "ionic dispersing agent" means an ionizable acid or
base capable of forming a salt ~ith the solubilizing agent. These "ionic dis-
persing agents" are amines and preferably water so]uble amines such as triethyl-
amine, tripropylamine, N-ethyl piperidine, and the like; also, acid and prefer-
ably water soluble acids such as acetic, propionic, lactic, and the like.
Naturally, an acid or amine will be selected contingent on the solubilizing
group pendant on the polymer chain.
The desired elastomeric behavior would generally require about 25-80~
by weight of long chain polyol (i.e. 700 to 2,000 eq~ wt.) in the polymer. The
degree of elongation and elasticity may vary widely from product to produ~t
depending upon the desired properties of the final product.
In forming the polyurethanes, the polyol and a molar excess of
diisocyanate are reacted to form isocyanate terminated polymer. Although suit-
able reaction conditions and reaction times and temperatures are variable within

the context of the particular isocyanate and polyol utilized, those skilled in
the art well recognize these variations. Such skilled artisans recognize that
reactivity of the ingredients involved requires the balance o:E reaction ra~e
with undesirable secondary reactions leading to color and molecular weight
degradation. Typically, the reaction is carried out with stirring at about 50C.
to about 120C. for about one to four hours. To provide pendant carboxyl groups
the isocyanate terminated polymer is reacted with a molar deficiency of dihydroxy
acid~ for one to four hours at 50C. to 120C. to form isocyanate terminated
prepolymer. The acid is desirably added as a solution, for e~ample, in N-methyl-
1, 2-pyrrolidone or N-N-dimethylformamide. The solvent for the acid will
typically be no more than about 5% of the total charge in order to minimize the

'~.

-12- ~L~ 3~

organic solvent concentration in the polyurethane composition. After the di-
hydroxy acid is reacted into the polymer chain, the pendant carboxyl groups are
neutralized with an amine at about 5~~75C. for about twenty minutes and chain
extension and dispersion are accomplished by addition to water with stirring.
A water soluble diamine may be added to the water as an additional chain ex-
tender. The chain extension involves the reaction of the remaining isocyanate
groups with water to form urea groups and further polymerize the polymeric
material with the result that all the isocyanate groups are reacted by virtue
of the addition to a large stoichiometric excess of water. It is to be noted
that the polyurethanes are thermoplastic in nature, i.e. not capable of exten-
sive further curing after formation except by the addition of an external curing
agent Preferably, no such curing agent is added to form the composite sheet
material.
Sufficient water is used to disperse the polyurethane at a concentra-
tion of about 10-~0% by weight solids and a dispersion viscosity in the range of
10-1,000 centipoise. Viscosity may be adjustèd in accordance with the parti-
cular impregnation properties desired and by the particular dispersion composi-
tion which are all dictated by the final product characteristics. It should be
noted that no emulsifiers or thickeners are required for the stability of the
dispersions.
Those of ordinary skill in the art recognize ways to modify the pri-
mary polyurethane dispersion according to end product uses, for example, by
the addition of coloring agents, compatible vinyl polymer dispersions, ultra-
violet filtering compounds, stabilizers against oxidation and the like.
The characterization of the dispersions is done by measurements of
non-volatile content, particle size, viscosity measurements and by stress strain
properties on strips of cast film.

,~

-12a~ 3~

The concentration range useful in practice is governed by the desir-
able percent add on of polymer into the needled batt.
The dispersion viscosity is generally in the range from 10-1,000
centipoise. The low viscosity, relative to that of identical polymers at the
same solids level in organic solvent polymer solutions, assists rapid and com-
plete penetration of the aqueous dispersion and subsequent penetration of the
coagulant. Useful solutions of polyurethanes will9 in contrast, generally
have viscosities of several thousand centipoise, ranging as high as 50,000
centipoise at concentrations of 20-30%.
The polymers should be impregnated into the fibrous batt at a level of
at least 70 percent by weight add on based upon the weight of the fibrous batt
and up to about ~00 percent by weight. Preferably, the polymeric resin is
impregnated at a level of about 200 to 300 percent by weight add on based upon
the weight of the fibrous batt.
Coagulation is accomplished by contacting the impregnated substrate
with an aqueous solution of an ionic media designed to




~%;.

-13-

ionically replace the solubili~ing ion In theory, although not
intended to be bound by such theory, in the case of an anionically
solubilized polymer, the amine which neutralizes the carboxyl con-
taining polyurethane is replaced with a hydrogen ion which reverts
the anionic carboxyl i~n thus reY~rting ~he po7ym~ ts original,
"non-dilutable" condition. This causes coagulation of the polymer
within the substrate structure.
In the case of the anionic polymer, aqueous acetic acid
solutions at concentrations of 0.5% to about 75% are suitable ionic
coagulant for the anionic dispersions and are preferred over stronger
acids because of the relative ease of handling, low corrosion potential
and disposability.
"Salting out" to coagulate the dispersion by the addition
of the neutral salt is feasible but is not favored because of the
large amounts of salt needed, about 10 times the concentration oF
acid, and attendant problems of product contamination.
In impregnating the needled batt with the polymeric resin
as contemplated herein, the batt is immersed in an aqueous ionic emul-
sion or dispersion at a concentration level sufficient to provide an
add on of at least 70% by weight. Upon immersion of the batt in the
aqueous emulsion or dispersion, the batt may be squeezed to remove
air to provide full impregnation of the emulsion or dispersion within
the batt. The batt, now fully impregnated with the aqueous dispersion
or emulsion, is passed through wiping rolls or the like t~ remove ex-
cess dispersion or emulsion on the surface of the impregnated batt.The batt is then immersed in a bath containing the counter ion to
provide coagulation with the counter ion containing material permeat-
ing the batt through diffusion and providing coagulation of the resin
within the fibrous structure. After coagulation, the batt is squee~ed
to remove excess water and dried to form the impregnated web.
This process is a further improvement over the process
described in U.S. Patent No. ~,171,391 in respect of providing par-
ticular products. The differences between the referenced patent and
the present process is that the batt is fully saturated, i.e. no
retained air space with the aqueous dispersion or emulsion providing
an ultimate add on of at least 70 percent by weight of polymeric

-14-



resin based upon the weight of the batt. Because of these differences, a novel
structure is obtained wherein the batt has a uniform density throughout and the
bulk density of the web is less than the actual density of the web.
After the impregnated web has been formed, a density gradient is im-
ported hereto to form a simulated leather sheet material. When forming the
simulated leather sheet material the impregnant for the web is preferably poly-
mers which in particulate form are capable of fusion with themselves under
conditions of heat and pressure. Normally, these polymers are thermoplastic;
however, some crosslinked polymers capable of coalescense may also be used.
More particularly, polyurethanes described in Canadian Patent No. 1,154,191
by Andrea Russiello entitled "Crosslinked Polyurethane Dispersions" have been
found to be particularly useful to develop the desired density gradient through
the thickness of the material.
The characterizing features of the simulated sheet material are pri-
marily physical features wherein a density gradient is provided from one side of
the sheet material to the opposing side of the sheet material. Preferably, the
density gradient is uniform. One surface of the impregnated fibrous mass defines
a grain layer with this grain layer having an actual density equal to its bulk
density.
This grain layer closely simulates the grain layer of natural leather.
On the opposing side of the sheet material, there is a surface which defines the
split layer which has a bulk density less than its actual density with there
being a preferably uniform density gradient throughout the material. The split
layer is somewhat fibrous and simulates the split layer of natural leather.
The polymer is present in the simulated leather sheet material at a
level of at least 70% by weight add on based upon the weight of the fibrous mass.

-15- ~ 3~

Typically, the split layer is up to about 75% of the density of the
grain layer to provide a porous grain layer simulating the grain layer of
leather. Also it must be noted that the polymer is uniformly distributed
throughout the fibrous mass in a manner wherein the ratio of fiber to polymer
is uniform throughout.
The simulated leather sheet material is produced by processing the
impregnated fibrous mass and preferably an impregnated non-woven sheet material
as previously described.
Most preferably, the polymer used as the impregnant is one of those
or of the type disclosed in Canadian Patent No. 1,15~,191 previously cited.
In one method of processing, the impregnated non-woven sheet material
to form the simulated leather sheet, the impregnated non-woven sheet material is
placed in a press and heat and pressure are applied to both sides thereof. The
heat and pressure is sufficient to fuse the polymer to itself within the impreg-
nant at the surfaces of the material, but yet insufficient to completely fuse
the polymer at the interior of the sheet material. This process develops a
density gradient from the interior of the non-woven sheet material to the two
exterior surfaces. The dimensions of the gauge of the heated and pressed sheet
material can be regulated by the pressure applied during the heating and pres-
sing operations or by the insertion of spacers between the press plates or by
use of a dead load press.
Purther, the plates of the press can be embossed to provide a specific
surface finish design to the material. After pressing, the sheet material is
split down the middle to provide two simulated leather sheets each having a
grain layer and a split layer.
In another process for forming the simulated leather sheet material,

3~

the impregnated non-woven starting material previously discussed can be placed
in a press with only one of the plates heated to form the grain layer while
having the opposing side on the cool plate forming the split layer.
In yet another process for forming the simulated leather sheet
material, two pieces of the impreganted non-woven startiilg material previously
discussed can be mounted upon each other in a press and heat and pressure
applied sufficient to fuse the polymer to itself within the irapregnant at the
outer surface of each piece. After pressing, the individual pieces are separ-
ated resulting in two sheets of simulated leather.
Subsequent to formation, the simulated leather may be buffed, coated
or further processed in accordance with known leather finishing techniques.
In still another process, grain layer development may be accomplished
on unwound strips of impregnated non-woven starting material unwound from
packages and passed through a pair of rolls in a calendering operation. Pre-
ferably one of the rolls is metal, heated to 300 to 400F., smooth or suitably
embossed; and the other roll is softer, resilient material, such as rubber. The
grain layer will be developed on the metal roll side of the sheet. Effective
calendering may be accomplished generally with a load of 5-15 tons/yard width
of the sheet passing through the rolls. Wetting the sheet, prior to calender-
ing, to 50 to 100 percent by weight added water may assist calendering.
The structures of the impregnated web and simulated leather sheet
material are more fully shown in the accompanying drawings which are photo-
micrographs of cross sections of an impregnated web and simulated leather sheet
material prepared in accordance with the present invention, and that of the
divisional application.

3~3
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a plan view of the resin impregnated web prepared in
accordance with Example 1 prior to splitting;
Fig. 2 is a photomicrograph taken through the thickness o the web
of Fig. 1 through the II-II line;
Fig. 3 is a lOOx photomicrograph of the III section of Fig. 2,
Fig. 4 is a lOOx photomicrograph of the IV section of Fig. 2;
Fig. 5 is a lOOx photomicrograph of the V section of Fig. 2;
Fig. 6 is a lOOx photomicrograph of a resin impregnated batt prepared
in accordance with Example I after splitting; and
Fig. 7 is a lOOx photomicrograph of a cross section through the thick-
ness of a simulated leather sheet material produced from the batt of Fig. 6.
DETAILED DES~RIPTION OF THE DRAWINGS
Referring now to Figs. 1 through 5, wherein like reference numerals
refer to like parts there is shown a resin impregnated web 10 prepared in
accordance with Example 1. More particularly, Figs. 2-5 show a cross section
through the thickness of the web 10. The web 10 is composed of a top surface 12
and a bottom surface 1~. Throughout the web 10 there are a substantial number
of uncoated fibers 16, concentrations of resin 20, voids 18 and resin coated
fibers 22. The structure and hence its bulk density is substantially uniform
throughout the thickness of the material, although on a microscopic scale, the
structure is non-homogeneous.
The structure shown in Figs. 2-5 is believed to be attributable to the
full impregnation of the needled batt with the aqueous emulsion or dispersion
with subsequent coagulation of the polymer while the batt is fully impregnated
with the aqueous resin system.

-18~ 3~

Referring now to Fig. 6 which is a lOOx photomicrograph, there is
shown a spli~ impregnated needled batt 2~ having a uniform density throughout
such as is shown in Figs. 1-5. The impregnated batt 24 has a substantial amount
of uncoa-ted fibers 26, masses of polymer 28, coated fibers 32, and voids 30.
It is to be noted that although the impregnated batt is non-homogeneous on a
microscopic scale it has a uniform bulk density throughout.
Referring now to Fig. 7 which is a lOOx photomicrograph, there is
shown the simulated leather sheet material 32 in accordance with Example IV.
The material 32 has a grain layer 34 which has minimal void space and the bulk
density at the grain layer 34 is equal to the actual density. At the grain
layer 34, there is formed a composite 36 of fibers in a continuous resin matrix
as a result of the application of heat and pressure. Moving along the A direc-
tion, it is shown that the voids 30 increase along the direction approaching
the split layer 38. At the split layer 38J there are a substantial number of
voids 30, uncoated fibers 26, and masses of polymer 28. The structure a~ the
split layer 38 approximates the structure shown in Fig. 6.
The following examples are illustrative of the products prepared in
accordance with the present invention and that of the divisional application.
EX~MPLE I
A needled batt which was heat set and had a density of 1,200 grams/sq.
meter composed of polyester, polypropylene and rayon fibers and a thickness of
0.3 inch with a bulk density of 0.16 grams/cm3 was immersed in a polyurethane
prepared in accordance with Example III of Canadian Patent No. 1,154,1~1 of
Andrea Russiello previously cited herein. The polymeric dispersion had a 22%
total solids content to provide an add on of 120 percent based upon the weight
of the batt. The batt was ;mmersed in the polyurethane dispersion for 10


~

-l~a- ~ 3~

minutes at room temperature until all of the air was expelled from within the
batt and the batt was fully impregnated. The surface of the batt was wiped
with a straight edge on both sides to remove excess aqueous dispersion and
immersed in a 10 percent acetic acid bath for 10 minutes at room temperature.
Immersion in the acid completely coagulated the polyurethane within the fiber
structure. The excess acetic acid was washed from the batt and the resin impreg-
nated batt was squeezed to remove excess water. The resin impregnated batt was
split into four slices through its thickness and each split was dried at 300 to
350F. in a circulating air oven to form four resin impregnated webs having a
bulk density of 0.41 g/cc. The final product had a photomicrograph as shown in
the drawings.
EXAMPLE II
Example I was repeated except that a 100 percent polyester batt
having a density of 0.13 grams/cc and 0.2 inch thick was impregnated with 22
percent solids dispersion of Example I. The resulting impregnated web had a
uniform density throughout, high integrity ana a bulk density of 0.38 grams/cm3.
EX~MP E LII
Example I was repeated except that a 100% polyester needled batt of
0.22 inch thickness and a density of 0.23 grams/cc was impregnated with 32 per-
cent solids dispersion to form a needled impregnated resin fibrous web having a
bulk density of 0.56 grams/cm3. The product in accordance with Example III was
used as a polishing pad and had toughness, high tear strength, resilience and
complete recovery upon compression.
Thus the process and product

~:~7~

-19-

~wre~bt3~ provides an impregnated fibrous web of high integrity and
useful as a product in and of itself and useful in forming other
products. Further, the impregnated fibrous web may be buffed to pro-
vide a desirable finish.
EXAMPLE IV
Two 0.07 inch thick splits of the non-woven impregnated
web prepared in accordance with Example I were superposed upon each
other and placed between plates of a press heated to 300~F. at a
pressure of 500 psi for 30 seconds. The two splits were then peeled
apart, thus obtaining two sheets of simulated leather sheet material.
The grain layer of the sheets correspond to the surfaces which were
in contact with the hot press plates. The interior sides of the
sheets retained their fibrous texture similar to the unpressed sheet.
Microscopic examination showed that the simulated leather sheet mate-
rial had a density gradient from the grain layer to the split layer
as is sho~n in Fig~ 7.
The simulated leather sheet material, subsequent to
formation can be post treated with other polymers for surface finish-
ing in accordance with known techniques.
Although the invention has been described with reference
to particular materials and particular processes, the invention is
only to be limited so far as is set forth in the accompanying claims.

Representative Drawing

Sorry, the representative drawing for patent document number 1178138 was not found.

Administrative Status

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Administrative Status , Maintenance Fee  and Payment History  should be consulted.

Administrative Status

Title Date
Forecasted Issue Date 1984-11-20
(22) Filed 1981-09-02
(45) Issued 1984-11-20
Expired 2001-11-20

Abandonment History

There is no abandonment history.

Payment History

Fee Type Anniversary Year Due Date Amount Paid Paid Date
Application Fee $0.00 1981-09-02
Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
NORWOOD INDUSTRIES, INC.
Past Owners on Record
None
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Description 1993-12-15 26 999
Drawings 1993-12-15 6 555
Claims 1993-12-15 4 110
Abstract 1993-12-15 1 22
Cover Page 1993-12-15 1 20