Language selection

Search

Patent 2259464 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent Application: (11) CA 2259464
(54) English Title: COMPOSITIONS FOR COSMETIC APPLICATIONS
(54) French Title: COMPOSITIONS UTILISABLES EN COSMETOLOGIE
Status: Dead
Bibliographic Data
(51) International Patent Classification (IPC):
  • A61K 8/90 (2006.01)
  • A61K 8/02 (2006.01)
  • A61Q 17/04 (2006.01)
  • A61Q 19/00 (2006.01)
  • A61Q 19/10 (2006.01)
  • A61K 47/34 (2006.01)
(72) Inventors :
  • RON, EYAL S. (United States of America)
  • HAND, BARRY J. (United States of America)
  • BROMBERG, LEV S. (United States of America)
  • KEARNEY, MARIE (United States of America)
  • SCHILLER, MATTHEW E. (United States of America)
  • AHEARN, PETER M. (United States of America)
  • LUCZAK, SCOTT (United States of America)
  • MENDUM, THOMAS H. E. (United States of America)
(73) Owners :
  • RON, EYAL S. (Not Available)
  • HAND, BARRY J. (Not Available)
  • BROMBERG, LEV S. (Not Available)
  • KEARNEY, MARIE (Not Available)
  • SCHILLER, MATTHEW E. (Not Available)
  • AHEARN, PETER M. (Not Available)
  • LUCZAK, SCOTT (Not Available)
  • MENDUM, THOMAS H. E. (Not Available)
(71) Applicants :
  • MEDLOGIC GLOBAL CORPORATION (United States of America)
(74) Agent: DEETH WILLIAMS WALL LLP
(74) Associate agent:
(45) Issued:
(86) PCT Filing Date: 1998-05-01
(87) Open to Public Inspection: 1998-11-05
Availability of licence: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): Yes
(86) PCT Filing Number: PCT/US1998/008931
(87) International Publication Number: WO1998/048768
(85) National Entry: 1998-12-30

(30) Application Priority Data:
Application No. Country/Territory Date
08/846,883 United States of America 1997-05-01

Abstracts

English Abstract




A cosmetic composition is described having a cosmetically acceptable carrier,
comprising a reverse thermal viscosifying polymer network comprising at least
one poloxamer component capable of aggregation in response to a change in
temperature randomly bonded to at least one poly(acrylic acid) component; and
a cosmetically active agent which imparts a preselected cosmetic effect, said
carrier and said agent disposed within an aqueous-based medium.


French Abstract

L'invention porte sur une composition cosmétique dans un excipient cosmétologique comprenant un réseau de polymères renforçateurs de viscosité par inversion thermique comprenant au moins un composant de poloxamer capable de s'agréger en réponse à une variation de température et fixé aléatoirement à au moins un composant de poly(acide acrylique), et un agent à efficacité cosmétique produisant un effet cosmétique présélectionné, ledit excipient et ledit agent étant placés dans un milieu à base aqueuse.

Claims

Note: Claims are shown in the official language in which they were submitted.


84
Claims:
1. A cosmetic composition, comprising:
a cosmetically acceptable carrier, comprising a reverse thermal viscosifying
polymer network comprising at least one poloxamer component randomly bonded to
at least one poly(acrylic acid) component said polymer network capable of aggregation
in response to a change in temperature; and
a cosmetically active agent which imparts a preselected cosmetic effect, said
carrier and said agent disposed within an aqueous-based medium.

2. A cosmetic composition for topical application, comprising:
a cosmetically acceptable carrier, comprising a reverse thermal viscosifying
polymer network comprising at least one poloxamer component capable of
aggregation in response to a change in temperature randomly bonded to at least one
poly(acrylic acid) component; and
a cosmetically active agent selected to treat imperfections or disorders of the
skim said carrier and said agent disposed within an aqueous-based medium.

3. The cosmetic composition of claim 1, wherein the cosmetic
composition is a shampoo and the cosmetically active agent comprises a cleansingsurfactant.

4. The cosmetic composition of claim 1, wherein the cosmetic
composition is a moisturizer and the cosmetically active agent comprises a
moisturizer.

5. The cosmetic composition of claim 1, wherein the cosmetic
composition is a sunscreen and the cosmetically active agent comprises a uv-absorbing
agent.



6. The cosmetic composition of claim 1, wherein the cosmetic
composition is an acne cream and the cosmetically active agent comprises an antiacne
agent.

7. The cosmetic composition of claim 1, wherein the cosmetic
composition is a hair straightener and the cosmetic agent comprises a base for
increasing the pH.

8. The cosmetic composition of claim 1, wherein the cosmetic
composition is a sunless tanning lotion and the cosmetically active agent comprises
skin tinting agent.

9. The cosmetic composition of claim 1, wherein the cosmetic
composition is an antiperspirant and the cosmetically active agent comprises aluminum
chlorhydrate.

10. The cosmetic composition of claim 1, wherein the cosmetic
composition is a shaving cream and the cosmetically active agent comprises an
emollient and a foaming surfactant.

11. The cosmetic composition of claim 1, wherein the cosmetic
composition is a face cosmetic and the cosmetically active agent comprises a pigment.

12. The cosmetic composition of claim 1 or 2, wherein the cosmetic agent
comprises a hydrophobic material, wherein the cosmetically acceptable carrier
stabilizes the hydrophobic material in the aqueous medium.


86
13. The cosmetic composition of claim 2, wherein said cosmetic agent
selected to treat imperfections or disorders of the skin is selected from the group
consisting of acidulents, antiacne agents, anti-aging agents, anti-inflammatories,
anti-irritants, antioxidants, depilatories, detergents, disinfectants, emollients, exfoliants,
humectants, lubricants, moisturizers, skin conditioners, skin protectants, skin
lightening agents, skin soothing agents sunscreening agents and tanning accelerators
and mixtures thereof.

14. The composition of claim 4, wherein said composition further
comprises a cosmetic agent selected from the group consisting of humectants and
emollients

15. The composition of claim 1 or 2. further comprising one or more
additives selected from the group consisting of preservatives. abrasives, acidulents.
antiacne agents. anti-aging agents. antibacterials anticaking, anticaries agents,
anticellulites. antidandruff, antifungal, anti-inflammatories, anti-irritants, antimicrobials.
antioxidants, astringents. anitperspirants, antiseptics, antistatic agents, antringents.
binders. buffers, additional carriers, chelators, cell stimulants. cleansing agents.
conditioners. deodorants, dipilatories, detergents. dispersants. emollients. emulsifiers.
enzymes. essential oils, exfoliants, fibers. film forming agents. fixatives, foaming
agents, foam stabilizers, foam boosters, fungicides, gellants, glosser. hair conditioner.
hair set resins. hair sheen agents, hair waving agents, humectants, lubricants, moisture
barrier agents, moisturizers. ointment bases, opacifier. plasticizer, polish, polymers,
powders, propellant, protein, refatting agents, sequestrant. silicones, skin calming
agents, skin cleansers, skin conditioners, skin healing, skin lightening agents, skin
protectants, skin smoothing agents, skin softening agents, skin soothing agents,stabilizers, sunscreen agents, surfactants, suspending agents, tanning accelerators,
thickeners, vitamins. waxes. wetting agents, liquefiers, colors, flavors and/or fragrances


87

16. The composition of claim 1, wherein the cosmetic composition takes a
form selected from the group consisting of lotions, creams, sticks, roll-on
formulations, mousses, sprays, aerosols, pad-applied formulations and masks.

17. The composition of claim 1, wherein the viscosification occurs at a
temperature in the range of about 27 to 40°C.

18. The composition of claim 1, wherein the viscosification occurs at a
temperature in the range of about 30 to 37°C.

19. The composition of claim 1. wherein said composition is formulated as
a product selected from the group consisting of baby products. baby shampoos,
lotions. powders and creams: bath preparations. bath oils, tablets and salts, bubble
baths. bath fragrances bath capsules; eye makeup preparations. eyebrow pencil.
eyeliner. eye shadow, eye lotion, eye makeup remover, mascara: fragrance
preparations, colognes, toilet waters, powders and sachets: noncoloring hair
preparations. hair conditioner, hair spray, hair straighteners. permanent waves, rinses.
shampoos, tonics, dressings and other grooming aids: color cosmetics: hair coloring
preparations, hair dye, hair tints, hair color sprays, hair lighteners and hair bleaches;
makeup preparations, face powders, foundations, leg and body paints, lipstick makeup
bases, rouges and makeup fixatives; manicuring preparations. basecoats, undercoats,
cuticle softeners, nail creams, nail extenders, nail polish and enamel, and remover; oral
hygiene products. dentrifices, mouthwashes; personal cleanliness, bath soaps,
detergents, deodorants, douches and feminine hygiene product; shaving preparations,
aftershave lotion, beard softeners, men's talcum, shaving cream, shaving soap,
preshave lotions; skin care preparations, skin cleansing preparations, skin antiseptics,
depilatories, face and neck cleansers, body and hand cleansers. foot powders;
moisturizers, night preparations, paste masks, skin fresheners; and suntan preparations,
suntan creams, gels and lotions, and indoor tanning preparations.


88

20. The cosmetic composition of claim 1 or 2, wherein the poloxamer
component is present in an amount in the range of about 0.01 to 20 wt% and the
poly(acrylic acid component) is present in the amount of about 0.01 to 20 wt%.

21. The cosmetic composition of claim 1, wherein the polymer network
comprises a plurality of poloxamers.

22. The cosmetic composition of claim 1, wherein the polymer network
comprises a plurality of poloxamer components randomly bonded to a poly(acrylic
acid) backbone.

23. The cosmetic composition of claim 1, wherein the reversibly
viscosifying polymer composition comprises a plurality of poly(acrylic acid)
components randomly bonded to a poloxamer component.

24. The cosmetic composition of claim 1, wherein the aqueous-based
medium is selected from the group consisting of water, salt solutions and water with
water-miscible organic compound(s).

25. The cosmetic composition of claim 1, further comprising an additive
selected to increase transition temperature and increase viscosity of the reversible
viscosifying polymer network.

26. The cosmetic composition of claim 1, further comprising an additive
selected to increase transition temperature and decrease viscosity of the reversible
viscosifying polymer network.


89
27. The cosmetic composition of claim 1, further comprising
an additive selected to increase transition temperature without affecting
viscosity of the reversible viscosifying polymer network..

28. The cosmetic composition of claim 1, further comprising
an additive selected to decrease transition temperature and increase viscosity of
the reversible viscosifying polymer network.

29. The cosmetic composition of claim 1, further comprising
an additive selected to decrease transition temperature and decrease viscosity
of the reversible viscosifying polymer network.

30. The cosmetic composition of claim 1, further comprising
an additive selected to decrease transition temperature without affecting
viscosity of the reversible viscosifying polymer network.

31. The cosmetic composition of claim 1, further comprising
an additive selected to increase viscosity without affecting transition
temperature of the reversible viscosifying polymer network.

32. The cosmetic composition of claim 1, further comprising
an additive selected to decrease viscosity without affecting transition
temperature of the reversible viscosifying polymer network.

33. The cosmetic composition of claim 1 or 2, characterized in that the gel
remains translucent to light before and after response to the environmental stimulus.



34. The cosmetic composition of claim 1, wherein the poly(acrylic acid) is
branched.

35. Method of making an cosmetic composition, comprising:
dissolving a poloxamer capable of aggregation in response to a change in
temperature in acrylic acid monomer;
initiating polymerization of the monomer to form a poly(acrylic acid) randomly
bonded to the poloxamer, so as to form a reversibly viscosifying polymer
composition;
mixing the reversibly gelling polymer compositions with a cosmetic agent
which imparts a desired cosmetic effect to the composition.

36. The method of claim 36, wherein a polymerization initiator is selected
to provide the polymer network having a selected temperature of viscosification.

37. The method of claim 36, wherein one or more poloxamers are added.

38. The cosmetic composition of claim 1, wherein the reversibly
viscosifying polymer network is present in an amount in the range of 0.01% 10%.

Description

Note: Descriptions are shown in the official language in which they were submitted.


CA 02259464 1998-12-30

WO 98/48768 PCT~US98/08931


COMPOSmONS FOR COSMEl'IC APPLICATIONS

l his application is a cQ~ n-in-part ~rplirqtion of copf n~in~ appli~nr~n
U.S.S.N. 60/034,805 filed January 2, 1997, and e~ltitled "Responsive Polymer
Networks and Methods of Their Use", which is a co.,l;n.~l;on-in-part application of
cop~on.lin~ applic~*on PCT/US96/10376 filed June 14, 1996, dloci~n~ting the United
States, and entitled "Real,o~.sive Polymer Networks and Methods of Their Use", which
is a continuation-in-part application of copending application U.S.S.N. 08/580,986 filed
10 January 3, 1996, and entitled "Responsive Polymer ~etworks and Methods of Their
Use", each of which is incorporated entirely bv reference.

Field of the In~ention
The present invention relates to a cosme2ic composition useful in a varie~y of
15 topical and pelsonal care products. including tre~trnenr~ of disorders and imperfections
of the skin or other areas of the bodv. More particularlv. the present invention is
directed IO a cosmetic composition comprising a polo:~amer:poly(acrvlic acid)
polvmer network that can be designed to reversiblv gel over ~ wide range of
conditions to provide a composition having a controllable range of viscosities. m~king
~0 i~ userul in a varietv of cosmetic and personal care ~ppiic~tions.

Barknround of the Invention
~Ianv e:camples are known of cosmetic CO~llpOaiLiOnS intenfl~d for L~ t of
the skin or elsewhere on the body, where it is desired to have certain p,op~llies of
25 viscosity. Hydrogels, such as cellulosics, have been included ils thir ken~rs in cosmetic
compositiosLs. A hydrogel is a polymer net~,vork which absorbs a large quantity of
water without the polymer dissolving in water. The hydrophilic are~s of the polymer
chain absorb water and form a gel region. The e~ctent of gelation ~Pp~n~1S upon the
volume of the solution which the gel region occupies.
Reversibly gelling solutions are known in which the solution viscosit,v inc~cases

CA 02259464 1998-12-30

WO 98/48768 PCTAJS98/08931


and dec.~ases with an increase and decrease in t.,.llp~,.ature, r~J~,c~;Li~ely. Such
reversibly gelling systems are useful wherever it is desirable to handle a material in a
fluid state, but performance is preferably in a gelled or more viscous state.
A known material with these properties is a therrnal setting gel using block
S copolymer polyols, available co~ ,r~;ially as Pluronic~ polyols (BASF,
Ludwigshafen, Germany), which is described in U.S. Patent No. 4,188,373. Adjusting
t'ne conc~ tion of the polymer gives the desired liquid-gel transition. However,concentrations of the polyol polymer of at least 18-20 % by weight are needed toproduce a composition which exhibits such a transition at commercially or
physiologicaily useful temperatures. Also. solutions containing 18-20 % bv wei~ht of
responsive polymer are tvpicallv very viscous e~en in the liquid" phase. so that these
solutions can not function under conditions where low viscosit!. free-flowing isrequired prior to transition. In addition, these polymer concentrations are so high that
the material itself may cause unfa-orable inter~ctions during use.
Another known svstem which is liquid ~t room temperature~ but forms a semi-
solid when warmed to ~bout bodv temperature is forrned from tetrafunctional block
polymers of polyoxyethylene and polyo:cypropvlene condensed with ethylene~i~mine.
cornmercially, available as Tetronic~ polyols. These compositions are formed from
approximatelv 10% to ~0% by weight of the polvol in an a~ueous medium. See~ U.S.Patent No. 5,'5~.318.
Joshi et al. in U.S. Patent No. 5.'52.318 reports reversible gelling compositions
which ~re made up of a physical blend of a pH-sensitive gelling polymer (such as a
cross-linked poly(acrylic acid) and a tc.n~c.~ re-sensitive _elling polymer (such as
methyl cellulose or block copolymers of poly(ethylene glycol) and poly(propyleneglycol)). In compositions including methylcellulose, 5- to ~-fold mcreases in viscositv
are observed upon a simultaneous change in lc.~ .d~ 3nd pH for very low
methylcellulose levels (1-4% by weight). See, Figs. 1 and 2 of Josni et al. In
compositions including Pluronic(~ and Tetronic~ polyols. commercially available
forms of poly(ethylene glycol)/poly(propylene glycol) block copolymers, significant
30 increases in viscosity (5- to 8-fold) upon a simultaneous change in tt~ c.~.lure and pH

CA 022~9464 1998-12-30

W 098/48768 PCT~US98/08931




are observed only at much higher polymer levels. See, Figs. 3-6 of Joshi e~ al.
Hoffman e~ al. in WO 95/24430 disclose block and graft copolymers
comprising a pH-sensitive polymer component and a te.llpc.lLLIre-sensitive polymer
component. The block and graft copolymers are well-ordered and contain regularly~pe~.lit1g units of the pH-sensitive and ~ e.aLu~-sensitive polymer colnpo,l.,,lls.
The copolymers are described as having a lower critical solution ~.llp~la~ (LCST),
at which both solution-to-gel transition and ~r~cip;L~lion phase transition occur. Thus.
the transition to a gel is accompanied by the clouding and opacification of the solution.
Light tr~ncmiccion is reduced, which may be undesirable in many applications, where
the aesthetic characteristics of the composition are of some concern.
Thus, the known systems which echibit reversible gelation ar~ limited in that
they require large solids content and/or in that the increase in viscosity less than 10-
fold. In addition. some known systems e~hibit an increase in viscosity which is
accompanied with the undesirable opacification of the composite.
Summ~rv of the Invention
It is an object of the present invention to provide a cosmetic composition whichis includes a component capable of reversible gelation or viscosification.
It is a further object of the invention to provide a cosmetic composition which
includes an ingredient capable of gelation or viscosification at very low solids contem.
It is ~nother object of the present invention to provide a cosmetic composition
which possPssPs improved flow and gelation characteristics as compared to pl~e~ies
poscPcsed by conventional reversible gelation compositions.
It is a further object of the invention to provide a polymer network compositionfor use in cosmetic compositions useful as a surfact~nt or emulsifier in the
solubilization of additives and, in particular, hydrophobic additives.
It is a further object of the invention to provide a cosmetic composition which
posc~cPs the approl.liate thickness. emolliency and cosmetic effect with a minimum of
solids content.
It is a further object of the invention to provide a polymer network for use in

CA 022~9464 l998-l2-30

WO 98/48768 PCTrUS98/08931


cosmetic compositions useful as a s~1cpen-lin~ agent for otherwise insoluble additives.
It is yet a further object of the present invention to provide a composition
capable of solubilizing emulsions at elevated tC.~ .aLu~
It is yet a further object of the invention to provide new and useful cosmetic
S compositions incorporating the reversibly gelling polymer net~,vork composition of the
present invention, which take advantage of its unique advantageous properties.
It is yet another object of the present invention to provide reversibly gelling
polymer network compositions which are coI~lposcd of biocompatible polymers.
These and other objects of the invention are achieved with a cosmetic
10 composition which incorporates a polo~a~ ,.polv(acrylic acid) polymer network as a
cosmetically acceptable carrier. The polymer netuork comprises a poloxamer
component randomly bonded to a polv(acrylic acid). or P.~. component in an
aqueous-based medium. the polymer network being capable of aggregating in
response to an increase in temperature. The reverse thermal viscosify.ng
15 poloxamer:poly(acrylic acid) polymer network includes random covalent bondingbetween the poly(acrylic acid) component and the poloxamer component of the
network. The polymer netuork may also include some unbound or free' poloxamer
or other additives which contribute to or modifv the characteristic properties of the
polymer composition.
In addition. the cosme~ic composition includes a cosmetic agent selected to
provide a preselected cosmetic effect. By "cosmetic agent'. as that term is usedherein~ it is meant that the additive imparts a cosme~ic effect. A cosmetic effect is
distinguishable from a pharmaceutical effect in that a cosmetic effect relates to the
promoting bodily attr~ctiveness or masking the phvsical manifestations of a disorder or
25 disease. In contrast, a pharmaceutic seeks to treat the source or symptom of a disease
or physical disorder. It is noted however, that the same additives may have either a
cosmetic or pharmaceutical effect, depending upon the amounts used and the mar~ner
Of ~ minictration~
By "cosmetic'' as that term is used herein. it is meant the cosmetic and

CA 02259464 1998-12-30

W O 98/48768 PCT~US98/08931

personai-care applications intPn(l~d to promote bodily attractiveness or to cover or mask
the physical m~nif~st~tionc of a disorder or disease. Co~m~tirs include those products
subject to regulation under the FDA co~mçtic guidPlin~s, as well as ~ s~ products,
acne products, skin protectant products, anti-dandruff products, and deodorant and
5 ~~ .a~ild,lt products.
By "gel~tion" or vi~co~ific ~tion as that term is used herein, it is meant a drastic
increase in the viscosity of the polymer n~lwu~l~ solution. Gelation is ~lepton~ nt on
the initiai viscosity of the solution, but typically a viscosity increase in the range of
preferably 2- to 100-fold, and preferably 5- to ~0-fold, and more preferably 10- to 20-
10 fold is observed in the polymer network which is used in the prcpdldlion of thecosmetic compositions of the invention. Such effects are obser-ed in a simple
polvmer network solution and the effect may ~e modified by the presence of othercomponents in the cosmetic composition.
By reversibly gelling'' as that term is used herein. it is meant that the process
15 of gelation takes place upon an increase in temperature rather than a decrease in
temperature. This is counter-intuitive. since it is generally known that solution
viscositv decreases with an increase in temperature.
As used herein. ''poloxamer" is a triblock copolymer derived from
poiy(ethvlene glvcol)-poly(propylene glycol)-polv(ethylene glycol) blocks. The
~0 polo:camer is capable of responding to a change in te.~.pd~llre by aitering itS degree
of association ~nd/or agglomeration. The aggregation mav be in the form of micelle
formation~ precipitation, labile cro~linking or other factors. The poloxamer ha-s the
general formula of a triad ABA block copolymer, (Pl)a(P~)b(P L)a where P, =
poly(ethylene glycol) and P~ = poly(propylene glycol) blocks, where a is in the range
'75 of 10-50 and where b is in the range of ~0-70.
The poly(acrylic acid) component includes poly(acrylic acid) and its salts. The
poly(acrvlic acid) supports and interacts with the poloxamer component so that amulti-material, r~a~onaive polymer network is formed. The interaction of the
poloxarner and poly(acrylic acid) exhibits a synergistic effect, which magnifies the
effect of the poloxamer component in viscosifying and/or gelling the solution.




~ .. _ ,

CA 02259464 1998-12-30

W O 98/48768 PCTrUS98/08931


The novel interaction between the cons~ Pnt polymers components of the
polymer network permits formation of gels at very low solids content. Gelation and/or
visco~ifi~tion is observed in aqueous solutions having about 0.01 to 20 wt% of the
poloxamer co.ll,uon~,nt and about 0.01 to 2() wt% of the poly(acrylic acid) component.
S A typical reversibly gelling polymer network may be comprised of less than about 4
wt% of total polymer solids (e.g., poloxamer and poly(acrylic acid))and even less than
lwt% total polymer solids w~ile still exhibiting reverse therrnal viscosification. Of
course, the total solids content including additives of a reversibly gelling polymer
network composition may be much higher. The viscosity of the gel increases at least
10 ten-fold with an increase in te.ll!,e.~nlre of about 5~C at pH 7 and I wt% polymer.
Viscosity increases may be e-~en greater over ~ larger temperature range at pH 7 and
1% polymer network content.
The relative proportion of poloxamer and poly(acrylic acid) may vary
dependent upon the desired properties of the polymer composition. In one
15 embodiment. the poloxamer is present in a range of about I to 70 wt% and the
poly(acrylic acid) is presenl in a range about of 99 to 80 ~t%. In another
embodiment. the polo:camer component is present in a range of about 21 to 40 wt~/o
and the poly(acrylic acid) component is present in a range of about 79 to 60 wt%. In
another embodiment. the polo:camer component is present in a range of about 41 to 50
20 wt% and the poly(acrylic acid) component ~s present in a range of about 59 to 50
wt%. ~n another embodiment, the poloxarner component is present in a range of about
51 to 60 wt% and the poly(acrylic acid) component is present in a range of about ~9
to 40 wt~'o. In yet another embodiment. the poloxarner component is present in arange of about 61 to 90 wt% and the poly(acrylic acid) component is present in a25 range of about 39 to 20 wt%. In another embodimen~, the poloxamer co.llponcllt is
present in a range of about 81 to 99 wt% and the poly(acrylic acid) component ispresent in a range of about 19 to I wt%.
The poloxamer:poly(acrylic acid) polymer network described above is included
in a cosmetic composition to improve the flow characteristics, thickness and other
30 properties of the composition. The composition includes additional cosmetic agents~

CA 02259464 1998-12-30

WO 98/48768 PCT~US98/08931


such as are needed for the cosmetic purpose of the composition. Additives also may
be included to modify the polymer network perfonn~n~e, such as to increase or
decrease the t~ .alule of the liquid-to-gel transition and/or to increase or decrease
the viscosity of the re~ori~ive polymer colll~oailion.
In one aspect of the invention, the poloxalll~ .oly(acrylic acid) polymer
network is incol~uldl~d into a cosmetic colllpo~ilions to impart thickening pro,~c~lies to
the cosmetic colllpo~ilion at the use and/or application te.~ .dlllre. Such thirl~oning
properties include erlh~nred overall viscosity, as well as a desirable viscosity re;~l~onse
with ten,pc.dl~re. The polymer network may be useful as a thickener in pH rangeswhere other thickeners are not effective.
In another aspect of the invention. the polo~amer:pol-(acrylic acid) polymer
network is incorporated into a cosme~ic composition to stabilize and solubilize
hydrophobic agents in the cosmetic composition, The polymer network ma,v be
included to increase emulsion stability~ an~ emulsions. i.e.. suspension of small
15 droplets or particles of .~ firsl material in a second material. Iose viscosity upon
he~ting. As will be demonstrated herein. the poloxamer:poly(acrvlic acid) polymer
network retains its emulsifving properties even with temperature increase.
In addition. it ma,v be included in the composition to impart emolliency to the
composition. The composition ma,v also act as a film-forming agent after it has been
20 applied to the skin. This ~ilm-forming agent may be used as a barrier to prevent water
loss from the skin which contributes to the moisturization of the skin.
In another aspect of the invention. the poloxarner:poly(acrylic acid) poiymer
network may be included as an additive in cosmetic applications to prevent viscosity
loss at elevated temperatures.
Brief Des.. ;~,lion of the D~ ..-. i..~
The invention is described with reference to the Drawing, which is presellted
for the purpose of illustration and is in no way jnt~ od to be limiting, and in which:
Figure I is a graph of viscosity vs. te~l~p~ldlllre for a I wt~,/o, 2 wt% and 3 wt%
30 responsive polymer network aqueous composition of a polo:camer/poly(acrylic acid)

CA 02259464 1998-12-30

W 098/48768 PCTAJS98/08931


(1 1) at pH 7 0 Illcas-lle~ at a shear rate of 0 44 sec-';
Figure 2 is a graph of viscosity vs ~ p~.a~LIre for a 1 wt% poloxamer:
poly(acrylic acid) polymer network co-llposi~ion dernonstrating reversibility of the
viscosity rc~onse;
Figure 3 shows the viscosity re~Jol~se of a Z wt% polox~.c.,l)oly(acrylic acid)
polymer composition at various shear rates;
Figure 4 shows a viscosity l~;",ol~se curve for a 2 wt% poloxamer: poly(acrylic
acid) polymer network composition prepared with nominal rnixing and stirring andp~ a,ed using high shear homogenization (8000 rpm, 30 min);
Figure S is a graph of viscosity vs telllp.i~.Lure for a I wt% poloxamer:
poly(acrvlic acid) polymer network composition ~t various pHs:
Figure 6 is a graph of viscosity vs temperature for a I wt% poloxarner
poly(acr,vlic acid) polymer network composition with and wilhout addition ot 0 25
wt% KCI;
Figure 7 is a graph of viscosity vs temperature for a I wt% polo:camer
poly(acrylic acid) polymer network composition with and ~vithout addition of 0,5 wt%
acet~nide MEA;
Figure 8 is a graph of viscositv vs tel-lp~ ure t'or a I wt% polox~ner
polv(acrvlic acid) polymer network composition without and with S wt%, 10 wt% and
20 wt% added ethanol, respectively;
Figure 9 is an illustration of a reversibly gelling polymer network used as an
emulsifier and stabilizer for a hydrophobic agent;
Figure 10 is a srh~ tic illustra~ion of the poloxamer poly(acrylic acid)
polymer network below and above the transition tel~ e illustrating the
ag~aLion of the hydrophobic poloxamer regions;
Figure 11 is a graph of viscosity vs pH for a I wt% responsive polymer
network aqueous col..po~i~ion of a polox~i.c~/poly(acrylic acid) (1 1) measured at a
shear rate of 0 44 sec~';
Figure 12 is a plot of viscosity vs t~nlpe.~ re for (a) a 1 wt% responsive
30 polymer network aqueous composition of Pluronic~ F127 poloxamer/poly(acrylic acid)

CA 02259464 1998-12-30

W O 98/48768 PCT~US98/08931

(1:1) and (b) a I wt% physical blend of Pluronic~ F127 poloxamer/poly(acrylic acid)
(1:1) at pH 7.0 measured at a shear rate 0.22 sec~';
Figure 13 is a plot of viscosity vs. te~ a~ for a I wt% responsive polymer
network aqueous composition of Pluronic~ F88 poloxarner/poly(acrylic acid) (1:1) at
5 pH 7.0 measured at a shear rate 2.64 sec ';
Figure 14 is a graph of the viscosity vs. t~ ..pF..~ e effect for a responsive
polymer network con.posilion of 2 wt% Pluronic~ P104 poloA~lle./l,oly(acrylic acid)
(1:1) in deionized water at pH 7.0 measured at shear rate of 22 sec~';
Figure 15 is plot of viscosity vs. te.llp~ for a responsive polymer network
composition of ' wt% Pluronic~ F123 poloxamerlpoly(acrylic acid) (1:1) at pH 7.0measured ata she r rate of 2' sec ':
Figure 16 is a plot of viscosity vs. temperature for I wt% made of series of
polo~c~mers and poly(acrylic acid) (1:1) in deionized water at a shear rate of 1,2 sec-';
Figure 17 is a plot showing release of hemoglobin from a
polo~camer/poly(acrylic acid) polymer network of the invention:
Figure 18 is a plot showing the release of Iysozyme from the
polo~carner/poly(acrylic acid) polymer comple~c of the invention:
Figure 19 is a plot showing release of insulin from a polo:~amer/poly(acrylic
acid) polymer network composition of the invention:
'O Figure '0 is a plot of viscosity vs. temperature for a polo~cameripoly(acrylic
acid) polymer network composition (a) before and (b) after sterilization by autoclave:
Figure 'I is a plot of viscosity vs. te.~ e for an oil-free moisturizing
forrnulation prepared from (a) a responsive polymer network composition of the
invention and (b) a conventional oil-in-water forrnulation;
Figure 2' is a plot of equilibriurn solubility of estradiol (A, B) and
proge~l~rone (C, D) in aqueous solutions (pH 7) of Pluronic~ F127 (A, C) and
responsive polymer network (B, D) vs. t~ pc.dl~lre;
Figure 23 is a plot of the ratio of equilibriurn solubilities of estradiol in
r~OnSiVe polymer network and water vs. polymer concentration in the responsive
polvmer network solutions;

CA 02259464 1998-12-30

WO 98/48768 PCT~US98/08931


Figure 24 is a plot of the effect of loading fluofe:jce;ll on the onset of gelation
of ~ onsive polymer network vs. total polymer co~ r~llion in ~c~olL,ive polymer
network solution (pH 7.0);
Figure 25 is a plot of the pe~ct~ age of a) estradiol and b) proge~,one release
5 from rea,.,ol~ive polymer network vs. time;
Figure 26 is a plot of the rate of pro~ L~one release and macroscopic viscosity
vs. polymer col~c~ lion;
Figure 27 is a plot of the pe~ct:"~ge of progesterone release vs. polymer
concentration in responsive polymer network and,
Figure 28 is a plot of the relative diffusivity of polv(styrene) late,Y particles in
water and responsive polymer network.

Det~iled DescriPtion of the Invention
The present invention is directed to a cosmetic composition comprising a
cosmetically acceptable carrier comprising a novel poloxamer:poly(acrvlic acid)
polymer network. The polvmer network func~ions as a te~ ,e~ ure sensitive
thickening agent. and in addition pocsec~es surfactant ~nd emulsifying capabilities
which may be beneficial to the cosmetic composition. The polvmer network
composition according to the invention includes a poloxamer component randomly
bonded to a poly(acrylic acid) component. The two polymer components mav interact
with one another on a molecular level. The polvmer network contains about 0.01-20
wt4/o each of poloxamer and poly(acrylic acid). Exemplar,v polymer network-
compositions range from about 1:10 ~o about 10:1 poloxamer:poly(acrylic acid).
Polymer network gel compositions which e~chibit a reversible gelation at body
tem~ re (25-40~C) and/or at physiological pH (ca. pH 3.0-9 0) and even in basic
environments up to pH 13 (hair care) are particularly prefe..ed for cosmetic
applications.
In one embodiment of the invention, a 1:1 poloxamer:poly(acrylic acid)
polymer network at ap~v,vp~iate pH e~hibits flow properties of a liquid at about room
30 temperature, yet rapidly thickens into a gel consistency of at least about five times




*rB

CA 02259464 1998-12-30

WO 98/48768 PCT~US98/08931


11
greater, preferably at least about 10 times greater, and even more preferably at least
about 30 times and up to 100 times greater, viscosity upon il~e.case in te..~ dL~lre of
about 10 ~C and preferably about 5 ~C. The reversibly gelling polymer network of the
present invention exhibit gelation even at very low polymer con~e~"ldlions. For
S example, polymer network co-.lposilions at pH 7 comprising about 0.5 wt% poloxarner
co,ll~onc.lL and about 0.5 wt% PAA exhibits a ~ fic~nt increase in viscosity from a
free-flowing liquid (50 cps) to a gel (6000 cps). The observed gelation takes place at
low solids COI~t~.lL5, such as less than 20 wt% or preferably less than about 10 wt%, or
more preferably less than about 2.5 wt% or most preferably less than about 0.1 wt%.
Thus, only a small amount by weight of the polymer network need be incorporated
into a cosmetic composition in order to provide tne desired thickening or viscosifying
effect.
The reverse viscosification effect at low polymer concentrations provides clear,colorless gels which are particula.ly well-suited to cosmetic applications. For example.
very little residue is formed upon dehydration ~hich may be important in some
applications~ such as in topically applied cosmetics. An additional advantage of the
polymer network of the invention is that it remains clear and translucent above and
below the critical temperature or pH. These chalacL~,istics of the reversibly gelling
polymer network make it well suited for use in cosmetic compositions.
The polymer network of the pre ent inven~ion technologv may be added to
cosmetic for.nulations to increase the thickness and viscosity of ~he composition. The
polox~mer:poly(acrylic acid) polymer network poc~ es hydrophobic regions capableof aggregation. Unlike conventional thick~rlers, the aggregation of the polymer
network of the present invention is te...p~ ure sensitive. Thus, the inventive polymer
25 network of the present invention may have a transition t~."~e.~ e (i.e. tellly~lalu~e of
aggregation) above room tell~pela~lre so that the cosmetic co~..posiLion is of low
viscosity at or below room t~ ature and is of high viscosity at or around body
t~.up~.alure (body te.l,p~ re includes both surface and internal body t~ ulc;).
Thus, a composition may be prepared at low telllp~la~lres while the polymer network
30 is in a low viscosity state. Mixing of ingredients under low viscosity is ~ected to be

CA 022S9464 1998-12-30

W 098/48768 PCT~US98/08931


easier, thus simplifying the m~nllf~rtllring process. Yet, the resultant mixture would
be of incre~ed viscosity at use tt~l,pe.d~ s. As a further advantage, a cosmeticcomposition comprising poloxamer:poly(acrylic acid) polymer network may be spread
thinly to allow for even application, due to its low viscosity at room l-,.,.,u~,.~L~lre, but
5 will thicken and "fill" the skin contours upon warming up to body surface tt;lll~"d1ULC.
In another aspect of the invention, the composition may be applied through a
nozzle that provides high shear to reduce viscosity, yet the composition regains its
viscosity after application to the skin. This COr~ with conventional formulations
which perm~nPntly lose viscosity after being subjected to high shear.
In another aspect of the invention, the composition may be formulated and
applied as a liquid, spray, semi-solid gel, cream. oimment. lotion. stick. roll-on
formulalion. mousse, pad-applied formulation, 3nd film-forming formulation.
The poloxamer:poly(acrylic acid) polymer network mav also be included in a
cosmetic composition for use as a stabilizing, solubilizing or ~mulsifying agent for a
hydrophobic component of the cosmetic formulalion. The slrong hvdrophilic regions
of the poloxamer resulting from agoregation and micelle formation create hydrophobic
domains which m~v be used to solubilize and control release of hydrophobic agents.
Similar micelle-based systems have been shown to protect trapped peptides against
enzymatic degradation from surface enzymes.
The reversibly gelling polymer network of the presenl invenlion is a unique
polymer composilion designed to abruptly chan e its physic31 characterislics or the
characteristics and properties of materials mixed therewith wilh a change in
t~,~,pcldture. Without intPn~ing to be bound by any particular mech~nicm or chemical
structure, it is believed that the stru~ture of Ihe polymer network involves a random
bonding of the poloxamer onto the backbone of the poly(acrylic acid). A por~.ion of
the polo:camer which is present during the polymerization reac~ion which forms the
poly(acrylic acid) is bonded to the backbone of the forrning poly(acrylic acid) through
hydrogen abstraction and subsequent reaction. See detailed discussion of the
ml ch~ni.cm, below. The combination of the poly(acrylic acid) and randomly bonded
poloxamer gives the composition its unique properties. Any free polo~camer rPm~ining

CA 022F,9464 1998-12-30

WO 98/48768 PCT/US98/08931


after polyll-e.i~lion of PAA remains associated with the random co-polymer, resulting
in a miscible composition. Free poloxamer may also be present in the polymer
network composition; however, its presence is not required in order to observe reverse
therrnal viscosification.
The poly(acrylic acid) may be linear, branched and/or cros~linkP~ Poly(acrylic
acid) is capable of ionization with a change in pH of the solution. By ionization, as
that term is used with respect to poly(acrylic acid), it is meant the formation of the
conjugate base of the acrylic acid, narnely acrylate. As used herein, poly(acrylic acid)
includes both ionized and non-ionized versions of the polymer. Changes in ionic
10 strength m:~y be accomplished by a change in pH or by a change in salt concentration.
The viscosifying effect of the polymer network is partly a t~unc~ion of the ionization of
the poly(acrylic acid); however, reverse thermal elling mav occur without ioniz~tion.
Changes to the ionic state of the polymer causes Ihe polymer ~o e~cperience attractive
(collapsing) or repulsive (e:~p~n~ing) t'orces. ~hhere there is no need or desire for the
15 composition to be applied in a hi_h viscositv state. it mav be possible to prepare the
composition as non-ionized polv(acrylic acid). The body s natural buffering ability
will adiust ~he pH of Ihe applied composition to ionize the poly(acrylic acid) and
thereby develop its characteristic viscosity
The polo:carner possesses regions of hydrophobic character. e.g.. polv(propyleneglycol) blocks. and hvdrophilic character~ e.g.~ polv(ethylene glycol) blocks. The
poloxamer may be linear or branched. Suitable poloxamers include triad block
copolymers of poly(ethylene glycol) and poly(propylene glycol) having the general
formula (P,),(P.)b(P,)I, where P, = poly(ethylene glycol) and P~= poly(propyleneglycol) blocks, where a is in the range of 10-50 and where b is in the range of S0-70
where poly(propylene glycol) le~l~sellls the hydrophobic portion of the polymer and
poly(ethylene glycol) represents the hydrophilic portion of the polymer. Pluronic(l~
polymers (BASF) are commercially available for a in the range of 16 to 48 and b
ranging from 54-62. One or more poloxamers may be used in the reversibly gellingpolymer network composition of the present invention.
The reversibly gelling responsive polymer networks compositions of the present

CA 02259464 l998-l2-30

W 098/48768 PCTrUS98/08931
14
invention are highly stable and do not exhibit any phase separation upon stqnr~in~ or
upon repeated cycling bet~,veen a liquid and a gel state. Samples have stood at room
L~ .pc~dl~lre for more than three months without any noticeable decomposition,
clouding, phase separation or degradation ot gelation properties. This is in direct
5 contrast to polymer blends and aqueous mixed polyrner solutions, where phase stability
and phase separation is a problem, particularly where the con~ .,e..~ polymers are
immicoible in one another.
An example of the dramatic increase in viscosity and of the gelation of the
reversibly gelling polymer network compositions of the invention is shown in Figure 1.
Figure I is a graph of viscosity vs. te",~ela~ure for 1 wt%~ ~ wt% and 3 wt% polymer
network compositions comprising 1:1 polox~mer:poly(~cr lic acid). hvdrated and
neutralized. The viscosity measuremems were taken on a Brookfield viscometer at a
shear rate of 0 il4 sec-' at pH 7Ø .~11 solutions had an initial viscosity of about 1080
cP and exhibited a dramatic increase in viscositv to gel point at about 35~C. This is
not typical of all polymer networl; compositions since polvmerization condition will
affect initial viscosity. Final viscosities were qpproximately 33,000 cP, 100,000 cP
and 155,000 cP for the I wt%, ' wt~,'O and 3 w~ O compositions. respectivelv. This
represems viscosity increases of about 30-. 90- and 140-fold. respectivel~;. This effect
is entirelv reversible. Upon cooling, the composition regains its initial viscosity. This
is demonstrated in Figure ~. where .q I wt% poloxamer:pol~(acrvlic acid) composition
is warmed through the transition temperarure up to 35 'C (simple curve). cooled to
room telllp~.d~ure (24 'C. ticked curve) and then warmed again to up above the
transition t~lllpe.~ re (open box cur~/e). The viscosity response was virrually identical
in all three inct~n~es.
As would be expected with a non-Newtonian system. the solution viscosity
differs with different shear rates. Figure 3 shows the viscosity response of a ~ wt%
poloxamer:poly(acrylic acid) polymer composition at various shear rates. The
viscosity response is consistent between ~4 C and 34 C; however. the final viscosity
is reduced with increasing shear rate.
However. unlike many prior ~rt hydrogels~ e.g.. c~rbomers, the

CA 02259464 1998-12-30

W098/48768 PCT~US98/08931

poloxamer:poly(acrylic acid) polymer network composition does not perm~nPrltly loose
viscosity after being subjected to high shear conditions. The poloxarner:poly(acrylic
acid) polymer network composition remains unaffected by such shear conditions ashomogeni7~tion. ~igure 4 compares the viscosity ~e~onse curve of a 2 wt%
5 poloxarner:poly(acrylic acid) polymer composition prepared with nnmin~l mixing(simple lirne) and stilTing with that of a polymer composition of similar composition
p,e~a ed using high shear homogenization decig~t~d by a ticked line (8000 rpm, 30
min). No ~ignifi~ ~nt decrease in viscosity is observed.
A number of factors influence the viscosity and transition t~ p~,dLure of the
10 composition. The more il.lpoitaht factors include polymer concentration. pH and
presence and nature of additives.
The effect of pH on the viscositv of reversibly gelling poiymer networks is
shown in Figure 5. Incre sing pH from the starting pH has a lesser e~'fect on the
viscosity than decreasiny the pH. This may relale to the exten~ of ionization of the
15 poly(acrylic acid) componenl of the polymer network as discussed above. This may
be clearly seen in Figure ~ when comparing the viscositv response of d I wt%
poloxamer:poly(acrylic ~cid) polymer composition at pH 5 and pH 11. Satisfactoryviscosities can be obtained at high pHs indicatin the poteMial ~alue of the reversibly
gelling polvmer network in products such as depilatories. hair straighteners and hair
~0 relaYers.
The responsive polvmer network may also include additi~,es for influencing the
p..ro~ ance of the polymer composition, such as the transition t~,npe.dlllre an~ the
viscosity of the polymer composition above the transition t~.lly~,ature. The following
list is not int~n~ed to be exhaustive but rather illustrative of the broad variety of
25 additives which can be used.
These materials include solvents (e.g., 2-propanol, ethanol, acetone, 1,2-
pyrrolidinone, N-methylpyrrolidinone), salts (e.g., calcium chloride. sodium chloride,
potassium chloride, sodium or potassium phosphates, borate buffers, sodium citrate),
preservatives (benzalkonium chloride. phenoxyethanol, sodium
30 hydroxymethylglycinate. ethylparaben. benzoyl alcohol, methylparaben. propylparaben.

CA 02259464 l998-l2-30

WO 98/48768 PCT~US98/08931

16
butylparaben, Gerrnaben II), hurnectant/moi~ ,a (acet~mide MEA, l~rtimide MEA,
hydrolyzed collagen, marmitol, p~nth~nol, glycerin), lubricants (hyalurorlic acid,
mineral oil, PEG-60-lanolin, PPG-12-PEG-50-lanolin~ PPG-2 myristyl ether
propionate) and surfact~ntc
Surfactants may be divided into three classes: cationic, anionic"and nonionics.
An example of a cationic surfactant used is ricinoleamidopropyl ethyldimoniurn
eth~slllf~te (Lipoquat R). Anionic surfactants include sodium dodecyl sulfate and ether
sulfates such as Rhodapex C0-436. Nonionic surfactants include Surfynol CT-I 11,TG, polyoxyethylene sorbitan fatty acid esters such as Tween 65 and ~0, sorbitan fatty
10 acid esters such as Span 6~ alkylphenol ethoxylates such as Igepal CO-110 ~nd 430,
dimethicone copolyols such as Dow Corning 190~ 193, and Silwet L7001.
The addition of polvmers has been studied including xan1han ~um. cellulosics
such as hvdroxyethylcellulose (HEC). carbomethoxycellulose (C~C), lauryldimoniumhydroxypropvl oxyethyl cellulose (Crodacel QL)~ hydroxypropvlcellul~,se (HPC), and
l5 hydroxypropylmethylcellulose (HP~IC). poly(acrvlic acid), cvclodextrins. methyl
acrylarnido propyl triarnmonium chloride (~IAPTAC), polyeth,vlene oxide.
polyvinylpvroliddone, polyvinyl alcohol, and propylene oxidelethylene oxide random
copolymers. Poloxarners may also be used as ~dditives. Ex,~nples include both the
Pluronic~ polyols having an (P,)a(P.)b(P,)3 structure such as Pluronicl~ Fi8. L44. P65,
F68. F88. L9~. P103. P104. P105. F108. Ll~' and F127, as well as the reverse
Pluronic~) R series (P~)a(PI)b(P~)~ structure such as Pluronic~9 17R~ and '5R8. Other
mi;cell~lleous materials include propylene glycol. urea, triethanolamine. alkylphenol
ethoxylates (Iconol series), and linear alcohol alkoxylates (Plurafac series).
Additives affect the viscosir of the compositions differently depending upon
the nature of the additive and its concenll,lLion. Some additives will affect the initial
or final viscosity, whereas others will affect the te~l~p~ e range of the viscosity
response, or both.
Potassium chloride and ~cet~ e MEA are ,wo e~camples of additives which
decrease the final viscosity of the col,lpo~ilion (see, Example 30). KCI (0.25%) added
to a I wt% reversibly gelling polymer composition reduces the viscosit,v bv about 3000

CA 02259464 1998-12-30

W O 98/48768 PCT~US98/08931
17
cps. See, Figure 6. The hnm~ct~nt ~cet~mirle MEA, lowers the viscosity of a I wt%
solution by ~loxil..ately 1,500 cps (see, Figure 7).
Glycerin, ethanol and ~imPthi~one copolymer have been shown to affect the
t~,~llp~ldL lre range over which the viscosity lea~onse occurs. Glycerin shifts the
S transition tel~ to a slightly lower range from an initial 24-34 ~C to about 24-
30 C, but does not affect the final viscosity (see, Example 44). The effect of ethanol
on the viscosity is different at different conce~ Lion levels. At S wt% and 10 wP/0
added ethanol, the transition temp~.dLu~e is shifted to lower ranges, e.g., 24-29 C and
20-29 C, re~ ely. At 20 wt% added ethanol, the composition not only exhibits a
10 lowering of the transition temperature~ but also a marked incre~se in initial .~nd final
viscosity. See. Figure 8. Dimethicone copolymer (I wt%) also changed the transition
tcnlpe.ature, but in this instance the transition ~emperature range was raised to ~-
41 'C. Thus. proper selection of additives permits the formulator to adjust the
transition temperature to various ranges.
1~ Those skilled in the ~rt will ~ppreciate that the polymer network compositions
of the present invention may be utilized for a wide variety of cosmetic and personal
care applications. To prepare a cosmetic composition, an effective amount of
cosmetically active agent(s) which imparts the desirable cosmetic effect is incorporated
into the reversibly gelling polymer nerwork composition of the present invention.
20 Preferably the selected agent is water soluble. which will readilv lend itself to a
homogeneous dispersion ~hrough out the reversibly gelling polymer network
composition; however~ the polymer network has been demonstrated to signific~nt1ysolubilize or suspend hydrophilic agents in order to improve formulation homogeneitv
(see, Example 36). It is also preferred that the agent(s) is nonreactive with the
25 polymer network composition. For materials which are not water soluble, it is also
within the scope of the invention to disperse or suspend powders or oil (lipophilic
materials) throughout the polymer nen,vork composition. It will also be appreciated
that some applications may require a sterile environment. It is co~ lated as within
the scope of the invention that the reversibly gelling polymer net~,vork compositions of
30 the present invention may be prepared under sterile conditions. An additional feature

CA 02259464 1998-12-30

WO 98/48768 PCT~US98/08931

18
of the reversibly gelling polymer composition is that is prepared from con~tit~ nt
polymers that have known accepted toxicological profiles,
The polox&,.c..l.oly(acrylic acid) polymer network has been evaluated under
Good Laboratory Practice (GLP) standard protocols known in the art for toxicity in
S an~rnal models and found to exhibit no toxic effects. The results of the toxicity study
are s~ ndlizcd in the following Table 1. The non-toxicity of the polymer networkmakes it an ideal f~n~ te for use in cosmPtic co,l,~os;tions.
Table 1. Toxicity data for 6% polo2~amer:poly(acrylic acid) solution at pH 7.
Reaclion testes mode of testing results
Skin sensitization guinea pig - topic31 not a sensitizer
eye irritation rabbil eve instillalion negative
primary derrnal irritation rabbit - topical verv slight edema (I on a
scale of 1-8)
acute derrnal to,Yicity, rat - single dose ('g!kg) no toxicity
acule oral ~oxicity rat - single dose (~gikg) no toxicity
AMES test ne~ative

E.Yemplary cosmetic and personal care applications. for which the reversibly
gelling polymer network composition may be used include. but ~re not limited to.babv
products~ such ~s baby shampoos. Iotions, po-~,ders and crearns: bath preparations. such
20 as bath oils, tablet and salts, bubble baths, bath fragrances and bath capsules;-eye
makeup preparations, such as eyebro~v pencil, eyeliner, eye shadow, eye lotion, eye
makeup remover and mascara; fragrance plep~aLions, such as colognes and toilet
waters, powders and sachets; noncoloring hair preparations, such s hair conditioner,
hair spray, hair straip~ L ~a~ permanent waves, rinses shampoos, tonics, dressings and
25 other grooming aids; color cosmetics; hair coloring ~ aldLions such as hair dye, hair
tints, hair shampoos, hair color sprays, hair li~l~t~ and hair ble~ches; makeup
preparations such as face powders, foundations, leg and body paints, lipstick, makeup
bases, rouges and makeup fi,Yatives; manicuring pl~l~alions such as ~c~co~t~ and

CA 02259464 1998-12-30

WO 98/48768 PCT~US98/08931

19
undercoats, cuticle softeners, nail crearns and lotions~ nail eYtPn~s, nail polish and
enarnel, and nail polish and enarnel remover; oral hygiene products such as dentnfices
and mouthwashes; personal cltq~nlin~sc such as bath soaps and det~.g~ s, deodorants.
douches and femininP hygiene product; shaving ~ ions such as aftershave lotion,
5 beard softeners, men's talcum, shaving cream, shaving soap and preshave lotions; skin
care ~lep~1lions such as cl~ncing ple~ a~ions, skin antiseptics, depilatories, face and
neck cleansers, body and hand cleansers, foot powders and sprays, moisturizers, night
JaldliOnS, paste masks, and skin L~sh~ "s, and suntan plepd~aLions such as suntan
creams. gels and lotions, indoor tanning pl~;l,alaLions.
Plct~d~ion of the above-named cosmetic compositions and others mav be
accomplished with reference to any of the cosmetic formulation guid~books and
industy journals which are available in the cosme~ic indus~ry, These references supply
standard formulations which may be modified bv the addi~ion or subsIiIution of the
reversible viscosifyino polymer nehvork of the present invention into the formulation.
15 Suitable guidebooks include Cosmetics and Toiletries Ma~azine. Vol. 111 (March~
1996); Formularv: Ideas for Personal Care: Croda Inc~ Parsippanv. NJ (1993); andCosmeticon: Cosmetic Forrnularv~ BASF. which ~re hereby incorpora~ed in their
entirety bv reference.
The cosmetic composition mav be in anv forrn. Suitable forms include but are
20 not limi~ed to lotions. creams. sticks. r.~ ons formulations. mousses. aerosol sprays.
pad-applied formulations. and film-t'orming formulations.
As those skilled in the art will appreciate, the foregoing list is e:cemplary only
Because the reversibly gelling polymer network composition of the present invention is
suited for application under a variety of physiological conditions. ~ wide variety of
25 cosmetically active agents may be incorporated into ~nd ~rninictered from thepolymer network composition. In addition to the poloxamer:poly(acrylic acid)
polymer network. additional cosmetically acceptable carriers mav be included in the
composition, such as by way of example only, emollients~ surfactants, humectants,
powders and other solvents. By way of e:cample only, the cosmetic composition also
30 may include additional components. which serve to provide additional aspects of the

CA 022~9464 1998-12-30

WO 98/48768 PCTAJS98/08931


cosmetic affect or to improve the stability and/or a~mini~tration of the cosmetic. Such
additional coll.pon~l.t~ include, but are not limited to, preservatives, abrasives,
aridl-lPntc~ ~nti~nP agents, anti-aging agents, ~ntihart~rial5 ~nti~king, an~icaries
agents, anticellulites, ~ntitl~n~ruff, antifungal, anti-infli1..,...~rolies, anti-irritants,
5 antimicrobials, antio~ ntc~ astringents, a~ , antiseptics, antistatic agents,
as~ringents, binders, buffers, additional carriers, chelators, cell stimulants, cleansing
agents, conditioners, deodorants, dipilatories, d~ , di~yc.so~, emollients,
mul~ifiers, enzymes, e~c~nti~l oils, e~foliants, fibers, film forrning agents. fixatives~
foarning agents, foarn stabilizers, foam boosters, fungicides. gellants. glosser. hair
10 conditioner. hair set resins, hair sheen agents. hair waving a ents. humectants.
Iubricants. moisture barrier agents. mois~urizers. ointment bases. opacifier. plasticizer.
polish~ polvmers, powders, propellant. protein, refatting agents. sequestrant. silicones.
skin c~lming agents~ skin cleansers. skin condilioners~ skin healing, skin lightening
agents~ skin protectants~ skin smoothing agents. skin softening agents. skin soothing
15 agents, stabilizers. sunscreen agents, surfactants. suspending agents, tanning
accelerators. thickeners, vitamins. waxes, wetting a ents. Iiquefiers. colors. flavors
and/or fragrances . Suitable materials which serve the additive functions lisled here
~;re well known in the cosmetic industrv A listing of the additive function and
materials suitable for incorpora~ion into the cosme~ic composition may be found in
~0 Appendi~ which is appended hereto ~t the end of Ihe speciric~tion. Further
information may be obtained by reference to The Cosmetic Bench Handbook~
Cosmetics & Toiletries; C.C. Urbano, editor, Allured Publ. Corp.~ 1996~ which ishereby incol~,orated in its entirety by reference.
A brief description of some preferred additives and cosmetic311y active agents
~5 follows. The compositions of the invention include a safe and effective amount of a
cosmetically active agent. i'Safe and effective'', as it is used herein, means an amount
high enough to significantly positively modify the condition to be treated or the
cosmPtiC effect to be obtained, but low enough to avoid serious side effects.
Preservatives can be desirably incorporated into the cosmetic compositions of
30 the invention to protect against the growth of potentially harmful microorganicm~

CA 02259464 1998-12-30

WO 98/48768 PCTAUS98/08931


Suitable preservatives include, but are not limited to, alkyl esters of para-
hydroxybenzoic acid. hydantoin derivatives, p~ra~en~, propioniate salts, triclosan
tricarbanilide, tea tree oil, alcohols, farnesol, farnesol acetate, hexachlorophene and
411dLelll~,y arnmonium salts, such as benzolconjure, and a variety of zinc and
S ~ rnin~m salts. Cosmetic ch.omi~t~ are farniliar with ay~)lo~";ate preservatives and
may selects that which provides the required product stability Preservatives arepreferably employed in amounts ranging from about 0.0001% to 2% by weight of the
composltlon.
Emollients can be desirably incorporated into the cosmetic compositions of the
invention to provide lubricity to the formulation. Suitable emollients may be in the
form of volatile and nonvolatile silicone oil. hiehly branched hydrocarbons and
synthetic esters. Amounts of emollients may be in the range ot' ~bout 0.1-~0 wt%, and
preferably ~bout 1-~0 wt%. By way of example onlv~ suitable silicones include cyclic
or line r polydime~hylsiloxanes, polyalkylsilo,Yanes~ polyalkylarylsiloxanes andpolyether siloxanes. Bv wa~ of example only. suitable es~er emollients include alkenyl
esters of fatty acids, polyhydric alcohols. such ~s ethylene glycol mono and di-fatty
acid esters. polyethylene glycol and ~he like. ether-esters. such as fatty acid esters of
ethoxylated fatty alcohols. wax esters. such as beeswax. sperrnaceti. mysristyl myristate
and stearyl stearate. and sterol esters. such as cholesterol fartv acids.
A variety of oily emollients may be employed in the compositions ot this
invention. These emollients may be selected from one or more of the following
classes: 1. Triglyceride esters such dS vegetable and animal fats and oils. Examples
include c~stor oil. cocoa butter, safflower oil, cottonseed oil, com oil. olive oil, cod
liver oil, almond oil, avocado oil, palm oil, sesarne oil. squalene. Kikui oil and
soybean oil; 7. Acetoglyceride esters, such as acetylated monoglycerides; 3.
Ethoxylated glycerides, such as ethoxylated glyceryl mono~dLe: ~. Alkyl esters of
fatty acids having 10 to 20 carbon atoms, such as, methyl. isopropyl, and butyl esters
of fatty acids, and including hexyl laurate, isohexyl laurate, isohexyl p~lmit~te,
isopropyl palmitate, decyl oleate, isodecyl oleate. h~oy~ cyl stearate decyl stearate,
isopropyl isostearate. diisopropyl adipate. diisohexvl adipate. dihexyldecyl adipate,

CA 022~9464 l998-l2-30

WO 98/48768 PCT~US98/08931

22
diisopropyl seb~r!~tP, lauryl lactate, myristyl lactate, and cetyl lactate; 5 alkenyl esters
of fatty acids having 10 to 20 carbon atoms, such as oleyl myristate, oleyl stearate, and
oleyl oleate and the like; 6. fatty acids having 10 to 20 carbon atoms, such as
pelargonic, ;auric, myristic, palmitic, stearic, isostearic, hydluxy~l~a"c, oleic, linoleic,
S ricinoleic, arachidic, behenic, and erucic acids and the like; 7. fatty alcohols having
10 to 20 carbon atoms, such as, lauryl, myristyl, cetyl, hexadecyl, stearyl, isostearyl,
hydroxystearyl, oleyl, ricinoleyl, behenyl, erucyl, and 2-octyl dodecanyl alcohols are
examples of ~ticfactory fatty alcohols and the like, 8. fatty alcohol ethers, such as
ethoxylated fatty alcohols of 10 to ~0 carbon atoms including the lauryL cetvl. stearyl,
10 isostearvl, oleyl. and cholesterol alcohols. having art~r~led thereto from I to 50
ethvlene ûxide groups or I to 50 propylene oYide oroups: 9 ether-esters such as fatty
acid esters of ethoYylated fatty alcohols: 10. Lanolin and derivatives~ such as lanolin.
Ianolin oil. Ianolin wax. lanolin alcûhols, lanolin fatty ~cids. isopropyl lanolate.
ethoxylated lanolin. ethoxylated lanolin alcohols. ethoxylated cholesterol. propoxylated
15 lanolin alcohols, acetylated lanolin alcohols. Ianolin alcohols iinoleate. Ianolin alcohols
ricinoleate. aceta~e of lanolin alcohols ricinoleate. acetate of ethoxylated alcohols-
esters. hvdrogenolysis of lanolin, ethoxylated hydrogenated lanolin. ethoxylatedsorbitol lanolin. and liquid and semisolid lanolin absorption b~es~nrl the like: 11.
polyhydric alcohol esters, such as. eth~lene ,lycol mono and di-fattv acid esters.
20 diethylene glycol mono-and di-fatty acid eslers. polyethvlene olycol (200-6000) mono-
and di-fatty acid esters. propvlene glycol mono- and di-fatty acid esters. polypropylene
glycol 2000 monooleate. polypropvlene glycol ~000 monostearate, ethoxylated
propvlene glycol monostearate, glyceryl mono- and di-fatty acid esters, polyglycerol
polyfatty esters, ethoxylated glyceryl monostearate, 1,2-butylene glycol monostearate,
1,2-butylene glycol distearate. polyoxyethylene polyol fatty acid ester, sorbitan fatty
acid esters, and polyoxyethylene sorbitan fatty acid esters are satisfactory polyhydric
alcohol esters; 12. wax esters such as beeswax. spermaceti. myristyl myristate, stearyl
stearate: 13. beeswax derivatives, e.g. polyoxyethylene sorbitol beeswax; 14.
vegetable waYes including carnauba and c~ waYes; 15. phospholipids such as
lecithin and derivatives: 16. sterol including cholesterol and cholesterol fatty acid

CA 02259464 1998-12-30

W 098/48768 PCT~US98/08931


esters; 17. amides such as fatty acid arnides, ethoxylated fatty acid arnides, solid fatty
acid alkanol~rnid~c
Humect~nt~ may be added to the composition to increase the effectiveness of
the emollient, to reduce scaling, to stimnl~t~ removal of built-up scale and improve
S skin feel. By way of exarnple only, suitable h~ ; include polyhydric alcohols,
such as glycerol, polyalkylene glycols, alkylene polyols their derivatives, propylene
glycol, dipropylene glycol, polypropylene glycol, polyethylene glycol, sorbitol,hydroxypropyl sorbitol, hexylene glycol, 1,3-butylene glycol, 1,~,6-he:l~anetriol,
ethoxylated glycerol, propoxylated glycerol and the like. The arnount of hurnectant
may be in the range of about O.j-30 wt% and preferably between 1-15 wt%.
ln topical skin care applications. a variety of active substances rnay be
advantageously employed. Bv way of example only suitable ~ctive agents which maybe incorporated into the cosmetic composition include anti-aging active substances~
anti-wrinkle active substances. hydrating or moisturizing or slimming active
substances. depigm~nti~g active substances. substances acti-e .~gainst free radicals.
anti-irritation active s-lbst~nces. sun protective ac~ive subs~ances. anti-acne ~ctive
s-lhst~nrec firrning-up acti-e substances, e:cfoliating active substances. emollient active
suhst~nces. and :~ctive substances for the treating of skin disorders such as dermatitis
and the like.
Bv wav of example only. in the ~ase vr hvdration. one or more moisturizers
may be used, such as glycerin or urea. in combination with one or more precursoragents for the biosythesis of structural proteins. such as hydroxyproline, collagen
peptides and the like.
By the way of e~cample only, in case of 51imminsg, at least one ketolytic agent
or an alpha-hydroxyacid such a salicylic acid or S-r.-octanoicsalicylic acid mav be used
in combination with at least on liporegulating agent such as caffeine.
By way of example only, in the case of depigm~nt~tion, at least one keratolytic
agen~ is used in combination with a depigmPntin~ agent such as hydroquinone,
tyrosinasee inhibitor (kosic acid), ascorbic acid, kojic acid and sodium metabisulfite an
the like.

CA 02259464 1998-12-30

WO 98/48768 PCT~US98/08931

24
By way of example only, in the case of protection against free radical agents,
vitarnin E (against COO radicals), superoxide riicmllr~c~ (against O, free radicals)
and sugar and caffeine (against OH free radicals).
By way of exarnple only, in the case of anti-aging, moisturizers, suns~re~,ls,
S alpha-hydroxyacids, salicylic acid or surface restructuring agents may be used in
combination with enzymes for the repair of DNA, vascular protective agents or
phosphnlipids rich in oligoelements and poly~ rd fatty acids.
By way of exarnple only, in the case of anti-acne agents, keratolytics, such as
salicylic acid, sulfur, lactic acid, glycolic~ pyruvic acid. urea. resorcinol and N-
10 acetylcysteine, and retinoids. such as retinoic acid and its derivatives may be used.
By way of example only, in the case of anti-infl~mm~rion. non-steroidal anti-
infl~mm~tr,ry agents (NS~IDS) mav be used. such as propionic acid derivatives. acetic
acid, fenamic acid derivatives. biphenvic~rboxylic acid deri-atives~ oxic ms. including
but not limited to aspirin. acetaminophen, ibuprofen. napro:cen. benoxa~rofen,
15 flurbiprofen, fenbufen, ketoprofen. indoprofen. pirprofen, carporfen. and bucloxic acid
and the like.
By way of e:cample only, in the case of antibiotics and antimicrobials may be
included in the composition of the invention ~ntimicrobial drugs preferred for
inclusion in compositions of the present inven~ion include salts of ~-lactam drugs.
20 quinolone drugs, ciprofloxacin, norfloxacin. tetracycline, er~,~hromycin. ~mik:lrin
triclosan. doxycycline, capreomycin. chlorhe:cidine, chlortetracycline, o:cytetracycline.
çlin~l~mycin, ethambutol. he:camidine isethionate. metronidazole. pent~rnidine,
gentamicin, Icanamycin. Iineomycin. methacycline. meth~n~mine minocycline,
neomycin, netilmicin. paromomycin. streptomycin~ tobramvcin. miconazole and
25 ~m~nf~(1ine and the like.
By way of example only, in the case of sunscreen pro~ection, suitable agents
include 2-ethylhexyl p-methoxycinn~m~te~ 2-ethylhe:cyl N.~l-dimethyl-p-
aminob~n70at.o, p-aminobenzoic acid, 2-phenyl p-methoxycinn~m~te, 2-ethylhexyl
octocrylene, oxybenzone, homomenthyl salicylate. octyl salicylate, 4,4'-methoxy-t-
30 butyldibenzoylmethen. 4-isopropyl dibenzoylmethane, 3-benzylidene carnphor, 3-(4-


CA 02259464 1998-12-30

WO 98/48768 PCT~US98/08931


methylbenzylidene) carnphor, titaniurn dioxide, zinc oxide, silica, iron oxide, and
rnixtures thereof and the like. The sulls~,eel~ng agents disclosed therein have, in a
single molecule, two distinct chromophore moieties which exhibit different ultra-violet
radiation absorption spectra. One of the chromophore moieties absorbs predon~ ly5 in the WB radiation range and the other absorbs strongly in the UVA radiation range.
These alms~lc~nil g agents provide higher efficacy, broader W absorption, lower skin
p~n~ dl.on and longer lasting efficacy relative to conventional SUnscl-,el-s. Generally,
the suns~ ns can comprise from about 0.5% to about 70% of the compositions useful
herein. Exact amounts will vary depending upon the sunscreen chosen and the desired
10 Sun Protection Factor (SPF). SPF is a commonlv used measure of photoprotection or a
sunscreen q~ainst ervthema.
By way of example only, in the case of sunless tanning agents include.
dihydroxyacetone, glyceraldehyde. indoles and their derivatives, and the like.
The composition mav include cleqnsin_ surf~ctants. Cleansing surfactants are
15 cationic~ anionic. amphoteric or non-ionic surfactan~s ~hich are water-soluble and
produce a consumer-acceptable amount of foam. ~onionic surfactants are well-known
materials and have been used in cleansing composi~ions. Therefore~ suitable nonionic
surfactan~s include. but are not limited to, compounds in the classes kno-vn as
alkanolamides. block copolymers of ethylene and propylene. ethoxylated alcohols,20 etho:cylaled alkylphenols~ alkyl polyglycosides qnd mixtures thereof. In particular~ the
nonionic surfact~nt can be an ethoxylated alkylphenol. i.e., a cond~nc~rion product of
an alkylphenol having an alkyl group conr~ininP from about 6 to about 1~ carbon
atoms in either a straight chain or branched chain configuration with ethylene oxide.
the ethylene oxide being present in an arnount equal to at le st about 8 moles ethylene
25 oxide per mole of alkylphenol. Examples of compounds of this type include
nonylphenol con-l~n~ed with about 9.5 moles of ethylene oxide per mole of phenol;
dodecylphenol condenced with about 1~ moles of ethylene oxide per mole of phenol;
dinonylphenol con~l~once~l with about 15 moles of ethylene oxide per mole of phenol;
octylphenol con~enced with about ten moles of ethylene oxide per mole of phenol; and
30 diisooctyl phenol condensed with about 15 moles of ethylene oxide per mole of

CA 02259464 l998-l2-30

W 098148768 PCTAJS98/08931


26
phenol.
A wide variety of acids, bases, buffers, and sequc~Ll~lt~ can be utilized to
adjust and/or m~int~in the pH and ionic strength of the compositions useful in the
i.~ant invention. Materials useful for adjusting and/or ~,.~;..I;.;..i~-e the pH and/or the
S ionic strength include sodiurn carbonate, sodium hydroxide, hydrochloric acid,phosphoric acid, sulfuric acid, acetic acid, sodium acetate, sodiurn hydrogen phosph~t~,
sodiurn dihydrogen phosphate, citric acid, sodiurn citrate, sodiurn bica,l,onate,
triethanolamine, EDTA, disodium EDTA, tetrasodium EDTA, and the like.
The polymer network may be useful as a solubilization agent in cosmetic and
10 personal care applications. A self-assembling svstem comprising the reversibly gelling
polymer network e:chibits thermogelation. pH sensitivitv. and the .~bility to solubilize
hydrophobic agents in aqueous media. When polox~mer is copolymerized with
poly(acrylic acid) (PAA) according to the invention. the resulting copolymer network
is bioadhesive and can be applied in a number of therapies. The materials described in
15 this invention combine "reverse" thermoviscosific.~tion m~lco~h~cion. solubilization of
hydrophobic and difficult to manage moieties. easy formulation. and protection of
agents from degradation to provide a superior medium for cosmetic and personal care
products.
The reversible viscosification of the polvmer net~,vork at elevated tempc.~SLLIles
20 makes the materials ideal for use as thickening agents in cosmetic and personal c,~re
products a~ any temperamre above the transition. Another use of the "thickening" of
solutions con~ining the polymer network as a thick~n~r supplement in emulsions.
Currentlv emul~ifiers are often negatively effected b,v increased t~ ,d~ures. Anadditive with reverse thermal viscosification properties. however, would react in
~5 exactly the opposite way, increasing its ability to emulsify as it gained three-
dimensional structure upon heating above its transition t~ .dnJre.
In the applications where the reversibly gelling polymer composition can act as
a surfactant, the polymer network will have the ability to act as a primary e~~ ifier
without any (or with very little) addition of traditional surfactant. The responsive
30 polymer network will also act as a stabilizer for oil-soluble ingredients that would

CA 02259464 1998-12-30

W 098/48768 PCT~US98/08931
.




2~
conventionally need to be solubilized by oils in forrnulation. The hydrophobic portion
of the polymer network (PPO) forms domains which act as reservoirs for an oil-
soluble or hydrophobic additive, such as an oil droplet, as is illustrated in Figure 9.
rhese two features of the material of the invention would enable it to be used as a
S base in a cosmetic formulation that would be non-greasy due to lack of oils, such as
petrolaturn and mineral oil. The U~ c in viscosity above the transition te.~ aLllre
adds structure and yield value to the water ph~e and results in a highly stable
emulsion.
Thus. polo~..c..~oly(acrylic acid) polymer network compositions are valuable
10 materials in the formulation of cosmetic and personal care products. In particular, thev
may be useful as rheology modifiers. provide a cushionine effect on .ne skin. otfer
barrier properties and controlled rele~se of actives. In addition. the polymer
composition may serve as a surfactant and is compatible ~ith most ingredients used in
the cosmetic industrv.
The above properties of the polo.Yamer:polv(acrylic acid) polymer network
provides a cosmetic composition that spreads evenly and smoothly and which leaves a
lubricious feel to the skin. .~ sensorv evaluation was conducted with seven random
volunteers in order to determine the sensory effect of a cream formulation on the skin.
An oil-free cosmetic formulation was prepared substantiall- as set forth in Example
~0 3,(b) and was compared to ~ive~ Oil Free. ~ produc~ of Beiersdorf of Gerrnany.
Volunteers placed unmarked samples on the skin and evaluated the formulation based
upon its feel and texture. The sarnples were rated on a scale of I (bad) to 5 (good).
The oil-free cosmetic formulation of the present invention scored equally to the Nivea
Oil Free moisturizing product. Both samples scored a 3.5 on the rating scale.
The observed thermal behavior of the reversibly gelling polymer network
suggests that the increase in viscosity is due to aggregation of the hydrophobic portion
of the poloxamer at the transition ~ lpc,dL lre which, because of bonding with the
poly(acrylic acid) component, serve as ~cl~ y cross-links which physically bridge
adjacent chains of poly(acrylic acid) to provide a viscous gel-like e~ctended polymer
structure. The aggregation process mav be understood as occurring as shown in Figure

CA 02259464 1998-12-30

WO 98/48768 PCTAJS98/08931

28
10, in which a backbone 20 r~ el~t poly(acrylic acid), a thin band 24 le~v~esellt~ the
hydrophobic poly(propylene) glycol region of the poloxamer and a thick band 26
r~eS~ the hydrophilic poly(ethylene glycol) region of the poloxamer. Below the
transition ~ ,aLLlre, the polymer network is randomly arranged, as is shown in
S Figure lO(a). At or above the transition Le.ny~,.dlu,e, the hydrophobic regions 24
associate to form aggregations or micelles 28, as is shown in Figure lO(b). The
association in--eases the effective molecular weight of the polymer network
composition with the corresponding incre~se in viscosity,
A general method of making the poloxarner PAA polymer network
compositions of the present invention comprises solubiliza~ion of the poloxamer in
acrylic ~cid monomer~ followed by poly;nerization of Ihe monomer to P.d~A.
Polymerization may be accomplished by ~ddition of a pol~merization initiator or b,v
irradiation ~echniques. The initiator mav be a free r,~dical initiator. such ~s chemical
free radical initiators and u~, or gamma radiation initiators. Conventional free radical
1~ initiators ma,v be used according to the invention. including but in no way limited to
ammonium persulfate. benzoin ethyl e~her, benz-l pero:~ide. I.~'-azobis(2.~-
dimethylpentanitrile) (Vazo S') and azobisisobu~ronitrile (AIB~). Ini~iation may also
be accomplished using cationic or ionic initiators. ~lanv variations of this methods
will be apparenl to one skilled in the art and are contemplated ~s within the scope of
the inven~ion. For e.Yample, the polo:camer componenl may be dissolved in an acrylic
acid/water mixture instead of pure monomer. It mav be desirable to remove unreacted
monomer ~nd/or t'ree poloxamer from the resultan~ polvmer network. This ma-y be
accomplished using conventional techniques, such as. by u~ay of e~ample. dialysis or
sohxle~ e~c~raction.
Without inten~inP to be bound by a particular m,oc~nicm or structure, the
following scheme t~,preSC~ s a possible chemical mech~ni~m for the formation of the
system here described. These mech~nicm~ are presented by way of explanation and
are no wav limiting of the invention. rt is contemplated that these or other
mechanistic routes may in &ct occur in the formation of the polymer network of the
present invention.




*rB

CA 02259464 1998-12-30

PCT~US98/08931
W 098/48768

29
I ~nitiation
2R-
R- + CH,=CHCOOH ---> RCH2CH-COOH (2)
II Hvdro~en Abstraction
S R- + -OCHRCH,O- ---> RH + -OCR-CH,O-
(3)
R- + -CH~CH,COOH ---> R~I + -CH,CH-COOH
(4)
III Chain Transfer
-CH,CH-COOH + -OCH.CRH- ---> -CH,CH,COOH + -OCH~CR-- (5)
-OCH,CR-O- + -CH,CHCOOH ---> -OCH,CRHO- - -CH,CH-COOH (7)
IV Pror)a~ation
RCH,CH-COOH - CH.=CHCOOH --> RCH~CHCOOHCH,CH-COOH (8)
V Side Chai:l Branchina Off AA Backbone
15 -CH,CH-COOH- ~ CH.=CHCOOH --> -CH~CH(CH.CH-COOH)COOH (9)
VI ~ Branchine off Poloxarner Backbone
-OCH~CR-O- - CH,=CHCOOH --> -OCH,CR(CH~CH-COOH)O- ( 10)
VII HomoYenous Termination
-CH~CH-COOH --> -CH,CHCOOHCHCOOHCH.-

~0 (Il)
VIII Hetero~enous Termination with bondin~ of Pluronic to P~A
-CH,CH-COOH + -OCH,C-RO- --> -CH,CH(-OCRCH,O-)COOH
(I 'a)
The scheme for bonding of poloxarner to acrylic acid may involve initiation (eq
25 1), hydrogen abstraction from the propylene or ethylene moietv of the poloxamer (eq
3), and attachment to acrylic acid via addition across the unsaturated bond (eq 10)
Propagation (eq 8) leads to the final PAA
Alternatively, the mee~l~ni~m may proceed by initiation according to eqs. (1)
and (~) propagation to form PAA (eq 8), a chain transfer reaction to g~,~.c~te a30 reactive poloxamer moiety (eq 5), followed by addition of the reactive poloxarner

CA 02259464 1998-12-30

WO 98/48768 PCTrUS98/08931

moiety to the unsaturated bond of acrylic acid (eq. 10) and subsequent propagation of
the PAA chain.
Thus the polymer nerwork may include a plurality of poly(acrylic acid)) units
bonded to a iingle poloxarner unit or, qltern~qtively~ a plurality of poloxarner units
5 bound to a single PAA backbone. Combinations of these alternatives are also a
possibility.
Reverse phase polymerization may be used to prepare polymer net~vork beads
by dispersion of the poloxamer and acrylic acid monomer mixture in a nonpolar
solvent such as hexane or heptane. The aggregating polymer/monomer solution is
10 dispersed with agitation in the nonpolar solvent in order to suspend droplets of the
solution. Polymerization of the monomer is initiated bv conventional means (i.e..
addition of a ini~iator or irradiation) in order to pol,vmerize the monomer and t'orm
responsive polymer network beads. See~ U.S.S.~I. 08/'76.~32 &led July 18~ 1995 and
entitled "Useful Responsive Polymer Gel Be,qds" for further information on the
15 preparation of polymer gel beads. herein incorporated bv reference. Such a method
may be particularly desirable to provide a heat sink for the heat generated in the
e~<othermic pol,vmerization reaction.
The pol,vmer network comple:ces and aqueous gelling solutions of the present
invention may be understood with reference to the following e:~mples. which are
20 provided for the purposes of illustration ~nd which are in no wav limiting of the
invention.
E~arn~le I This e~ample describes the synthesis of a polymer networK and an
aqueous responsive polymer network solution t,lep.~cd using a triblock polymer of
poly(ethylene glycol) and poly(propylene glycol), Pluronic~ F27 polyo!, and
25 poly(acrylic acid). This e~ample also characterizes the gelation and the physical
properties of the resultant polymer network.
Svnthesis. Block copolymer of poly(propylene glycol) (PPG) and
poly(ethylene glycol) (PEG) having triad ABA structure (PEG)A(PPG)~(PEG)A
(Pluronictg Fl'7 NF polyol, Polo~arner ~07 NF polyol, where 'F" means Flakes, "12"
means 12X300=3600 - MW of the PPG section of the block copolymer~ '7" PEG in

CA 02259464 lsss-l2-30

W O 98/48768 PCTrUS98/08931

the copolymer is 70 wt%, and nominal molecular weight is 12,600) from BASF (3.0
g) was dissolved in 3.0 g acrylic acid (Aldrich). This leples~.lL~ a S~lbSt:~nti~ y 1:
weight ratio of Pluronic(l~ F127 polyol and poly(acrylic acid). The solution wasdeac.aLed by N, bubbling for 0.5 h and following addition of 100 rnl of freshly
5 prepared saturated solution of arnmoniurn persulfate (Kodak) in deionized water was
kept at 70 ~C for 16 h resulting in a L~ t polymer.
Viscosit~ mea~ . A known arnount of the resultant polymer was
suspended in 100 ml deionized water into which NaOH was added. Following
swelling for 3 days while stirring, the pH of the resulting fine suspension was adjusted
10 to 7. Samples of 15 ml each were taken~ and pH in each vial was adjusted to desired
value b,v addition of I M HCl or NaOH. Sarnples ~vere then kept o~ernight ,~nd their
viscosities were measured at different temperatures usin Brookt;eld viscometer using
either an SCl-18 or an SC~-~5 spindle.
A control e~cperiment w:~s done with a phvsical blend of Pluronic~ F1~7 pol,vol
and pol,v(acr,vlic acid) (~IW ~50.000) available ~'rom .~ldrich. Pluronic~ F1~7 polyol
and pol,v(acrylic acid) were dissolved together in deionized wa~er at I wt% total
polvmer concentration and the resultant solution ~vas adjusted to pH 7. stirred and
kept in refri~erator. The responsiveness of the polvmer nervork composition and the
physical blend to temperature and pH is illustrated in Figs. l. 11 and 1'. Figs. I and
20 2 clearly demonstrate that the synthetic route ou~lined above resulted in ,~ polymer
net~,vork sys~em that is sensitive to pH and tempera~ure of the environmenl. Note th~t
the liquid-gel transition is very sharp, occurring over a very small tc~ turè change
or pH (see. Figure 11). Figure 12 is a viscositv vs. tell~ tllre graph colll~ g the
gelling characIeristics of the responsive polymer network composition and the physical
25 blend. The blend prepared by physically mixing of the triblock PEG/PPG/PEG
polymer and poly(acrylic acid) did not echibit viscosifying effect either as a function
of t~ c~aLL~re or pH.
It was generally observed that 0.5-j wt% polymer network compositions made
of Pluronic~) F127 polyol nd poly(acr,vlic acid) viscosify at tc~ ,c..~ cs of around
30 30 ~C and higher if pH is adjusted to 6 or higher, The gelling effect was observed in




*rB

CA 02259464 1998-12-30

WO 98/48768 ~ PCT~US98/08931


polymer network compositions St~ ing 3 months or longer. Repeated heating and
cooling of responsive polymer network compositions did not cause deterioration of the
polymer r,elwulk or the gelling effect. Solutions of either Pluronic~ F127 polyol or
poly(acrylic acid) (1-5 w% in water, adjusted to pH 6 or higher) or physical blends of
5 the two lacked the reverse thermal gelling effects found for polymer network
compositions.
ExamPle 2. This e.~ lc describes a standard operating procedure for the
m~nufi3rlllre of the reversible gelling polymer network.
The procedure is based upon a 50 liter production. A NaOH solution was
prepared by dissolving 131.8 g NaOH pellets in 131.~ mL DI water (50% solution).The NaOH was allowed to dissolve completel~. The ~'aOH solueion will be used to
convert a percentage of the acr,vlic acid to sodium acrylate in situ. Acrylic acid
monomer ( ~ kg) is charged into 3 monomer feed tank and agitated at 250 rpm.
NaOH is added slowlv. The precipitate formed as the acr,vlic acid is neutralized to
sodiurn acrvlate is allowed lo dissol~,e. Pluronic~ F127 (,.5 kg) is slowly added to
the monomer feed tank. Pluronic~ Fl27 is dissolved under continued agitation.
Norpar l~ (a refined C-l' alk~ne) is added to the reaction vessel (37 L). The mixture
is aeitated at 100 rpm. Stabilizer solution of Ganex V-1~6 is prepared in 'L Norpar
12 and added to the reactor under agitation.
A reaction vessel was degassed usine a ni~rogen sparge introduced from the
bottom of reactor and was continued throughout the reaction. Initiator (13.63 g Laurvl
peroYide and ~.23 g Vazo 52 in 0.7 kg acr,vlic acid monomer) is introduced irno the
monomer solution. The monomer solution was transferred to the reaction vessel.
Agitation was increased to 150 rprr.. ~itrogen sparging continued for an additional 20
minutt-s and then heating began. Heating began at a rate of 0.5-1.0 ~C/min up to75 C. The reaction began to e~cotherrn at about ~5-50 ~C and is allowed to continue
without cooling until a maximurn is reached. It is then cooled to 75 C using forced
cooling. The reaction continued for 12 hours and ~as then cooled to 35 ~C. The
slur~v was transferred into pails nd the polymer beads were allowed to settle.
The slurry was filtered through Buchner Funnels with filter paper (11 ~Lm pore
.

CA 02259464 1998-12-30

WO 98/48768 PCTAJS98/08931


size) until the bulk of the Norpar had been removed from the beads. The beads were
washed three times with heptane. The filtered beads were transferred to a Pyrex
drying tray and spread on the tray in a uniform layer. The beads were dried under
vacuum for 4 hours at 40-50 ~C. The dried beads were analyzed as follows.
Elemental analYsis. The elemental analysis was performed by Qll:3ntit~tive
Technologies, Inc., Whitehouse, NJ using a Perkin Elmer 2400 CHN Elemental
Analyzer. Analysis provided C (52.49%), H (7.50%), ~ (< 0.05%), the balance
~ccllme(l to be oxygen (39.96%).
Therrnal Gravimetric Analvsis (TGA). The TGA method was perforrned by
Massachusetts Material Research, Inc., West Boylston, .~ using a Dupont TGA
model '95. The assay was run using a temperature rarnp trom 30 to 500 'C,'min. The
resolution for the system was set to ~ (1.0 ~C'min for all slope changes). The data
was analyzed using the first derivalive of the curve and using maYima and minima to
mark transitions. The moisture content was also c~lculated in this manner. The first
derivative yielded three maYima. The first transition (mois~ure) was 3.0% bv weight.
the second transition was 14.0% by weight and the third was 67.02% by weight.
Residue ( I ~ .98% rem~ined).
Molecular weieht deterrnination bv ~el perrneation chromato~raPhv (GPC).
The molecular weight was determined by GPC on a Hewlet P~ckard 1-100 Liquid
Chroma~ography system wilh a Viscotech T60 Triple Deleclor system. Three Waters
Ultrahydrogel colurnns~ 1000. 500 and 50 A. were used for the separation. The
mobile phase was O.IM NaNO, and O.OIM K,HPO, salt solution, pH adjusted with
phosphoric acid to a pH of 8.0 i 0.1. The flow rate for the separation was 0.9
mL!min. The column temperature was m~int~in~d at 15 ~C. The injection volume forthe assav was 50 ,uL~ A PEG molecular wei~ht standard of '3~000 Daltons was usedto align the delectors. The result for the assay were:
Mn: 341,700 Daltons
Mp: 1,607,000 Daltons
Mw: 2,996.000 Daltons
Free poloxarner deterrnination bv GPC. The arnount of free (unbound)

CA 02259464 1998-12-30

W O 98148768 PCT~US98/08931

34
poloxamer in the polymer matrix was determined using the above GPC method and
co...p ~ ;n~ the poloxarner peaks to that of a standard poloxarner solution. The typical
result is appro,d.l,ately 18-22% free poloxamer by weight.
The effect of both the bonded and non-bonded poloxamer on the gelation
S ~opc.Lies of the l~ onsive polymer network has been ~terminP~ by extraction of
the non-bonded poloxamer from the material. Such extraction studies have
established that the graft co-polymer alone exhibits the r~ c~i~lic reverse thermal
gelation of the composition; however, the presence of non-bonded poloxamer
co"lponent modtll~t~s the gelation process. The non-bonded poloxamer component
can affecl the ~clllye~drulc of transition (from liquid to gel) and the degree of
transi~ion and assists in a more controlled and reproducible Ir~nsition.
Bound poloxamer deterrnina~ion bv ethvlene oxide ~EO~ titration. The EO
titration was performed as follows. A 5 gm sample of the product polymer was
extracted in dichloroethane for three hours at reflux ~emperatures. The solid isremo~ed and dried under ~ v~cuum tor 1~ hours at room temperature. The dry
material is then analvzed using AST~I method D 2959-95, Standard Test ~lethod for
Ethylene Oxide Conten~ . The amount of EO in the sample is related to the amount of
poloxamer bound lo the polymer. The typical result is approximately 15 % bv weight
of EO.
The rela~ive amount of free poloxamer may be varied dependent upon the
relative proporlions of starting materials and Ihe method of poly;nerization. Although
the residual solids presumably contain only poloxamer which is bonded to the
poly(acrylic acid), i.e., a graft co-polymer, the material still shows strong
viscosification when it is neutralized and dissolved in water. However, the
~lllpe.dture of viscosification is inclcased s~lbs~ y and the degree of
viscosification per gram of total solids is increased by removal of free poloxamer.
Thus, the free poloxamer plays a role in modifying the exteM and ~ c.dture of
viscosification. The poloxamer undergoes co,~.ll,a~,onal changes and changes to the
critical micelle concelll.dtion as a function of temperature. The poloxarner will
30 change from an open, non-aggr~gdted form to a mire~ r~ agv~c~at~d form with

CA 02259464 1998-12-30

W 098/48768 PCTrUS98/08931

changes in L. ..I~c,~.~...e.
Residual acr~lic monomer rietennin~tion bv eas chromato~ra~h~v (GC). The
residu~l acrylic acid monomer was detPrrnine~l by GC analysis using a Hewlet Packard
GC 5890A, using a HP-FFDAP-TPA 10 m x 0.53 mm x Illm column. The sarnple
S was ~A~,acled and run in m~th~nl l. Using an internal standard ratio, the sample was
co,ll~a~d to a one point calibration. The typical results for this assay were below 70
ppm acrylic acid monf)m-or.
Residual Nor~ar solvent bv GC. The residual Norpar in the sample was
determined by GC using the above method and comparing the ~orpar peaks to that of
10 a standard. The typical results were below 1.5 ~vt%.
W-vis sPectrurn. Optical clarily data of UV-vis spectrophotome~er was
obtained. A 1.0% solution in water was prepared and measured at 420 nm.
Transmitt~nce (%) was typically gre~ter than 90%.
Differen~ial sc~nnin~ calorimetrv (DSC~. The DSC was performed by
15 Massachusetts ~vlaterial Research. Inc.. West Boylston. ~vlA using a temperature ramp
from 30 to 350 ~C at S Clmin. The resolution for the system was set to ~ (1.0~C/min
for all slope changes). The assay yielded one endothermic event at ~65 ~C. typic~lly
270 J/g.
Examples 3-9. This example describes the svnthesis of a several reversible
20 thermal ~elling polymer ne~-vork prepared using a variety of poloxamers and
poly(acrylic acid). The gelation and the physical properties ot the resultant polymer
network compositions are reported in Table 2.

CA 02259464 1998-12-30

WO 98/48768 PCTrUS98/08931

36
Table2.

exarnple poloxamerpoloxatner Cu~ pO~;I;v~, pOlOX- trans. ~o
amer- temp.
PAA
3 PluronicÇ9 F88 2400 MW PPG; 80 wP/0 1:1 48 Cviscosity response
Prill polyol PEG; nominal MW curve shown in
11~400 Figure 13
4 Pluronic(l9 F127 3600 MW PPG; 70 wP/O 1:1 30 C pentaerythritol
NF polyol PEG; nominal MW 12,600 triallyl ether
crosslink ngent
used
Pluronic~9 P104 3000 MW PPG; 40 wt% 1:1 ~8 C viscosity response
polyol PEG; nominal MW 5.900 curve shown in
Figure i4
6 Pluronic~ P123 3600 MW PPG; 30 wt% 1:1 ~5 Cviscositv response
polyol PEG; nominnl MW 5,750 curve shown in
Fi ,ure 15
7 Pluronicl9 as above 1:1.1 ~2 C polymer solid
F127/Pluronic~ formed. dried:
F108 polyol resolubilized in
blend (1: 1) neutralizing
solution
8 Pluronic~) F88 as above 1:1.7 80 C polymer solid
polyol formed~ dried;
resolubilized in
neu~ralizmg
solution
9 Pluronicl9 as above 1:1.7 85 C polymer solid
F 127/Pluronic~ formed. dried:
F88 polyol blend resolubilized in
soiution
Example 10. The followin e:cample demon~ilates the effect of
hydrophiliclhydrophobic ratio on the gelling temperature. Polymer network
compositions were prepared from the following poloxamers shown in Table 3.

CA 022~9464 1998-12-30

W098/48768 PCTAUS98/08931


Table 3. Composition of poloxamers invPsti~t~d
triblock polyol polymer MW of PPG block wt% o~' PEG block
composition
P103 3250 50
(PEG)3,(PPG)56(pEG)3~
P1~4 3250 40
(PEG)25(PPG)56(PEG)25
P105 3250 30
(PEG),6(PPG)56(PEG)l6
Table 3 shows that in this series, the fraction of PEG is reduced when the
molecular weight of the PPG block is kept constant. Linse (Macromol. 26:4437-4449
(1993)) report phase diagrams for these copolymers in water were c~lrul~ted and it
was shown that two-phase boundaries corresponding to the beginning of aggregation
lS are almost unaffected by the molecular mass, given a constant PEG/PPG ratio,
whereas these boundaries shifted to lower temperature as the PEG content of the
polymer is reduced at constant mass. The strong depent1Pnre of the PEG/PPG ratio is
a consequence of the differing solubili~ies of PEG and PPG in water at the elevated
temperatures. Thus one would suppose that aggregation that causes viscosification in
20 the responsive polymer network composition should shift to lower temperature as
PEG fraction decreases.
The poloxamer (3.0 g) was dissolved in 3.0 g acrvlic acid. The solution was
deaerated by N. bubbling for 20 min. and following addition of the 100 :l of freshly
prepared saturated solution of ammonium persulfate in deionized water was kept at
25 70~C for 16 h resulting in a strong whitish polymer. A sample of the polymer
obtained (0.4 g) was suspended in 40 ml deionized water into which NaOH was
added. Suspended Ic~yohsive polymer network particles were allowed to dissolve
under constant stirring. The resulting 1 wt% polymer network solutions were
subjected to the viscosity measurement at shear rate of 132 or 13.2 sec-l using a SC4-
18 spindle. It can be seen from Figure 16 that, firstly, viscosity of the 1 wt%

CA 022~9464 1998-12-30

W098/48768 PCT~US98/08931

38
l~al,onsive polymer network solutions before viscosification (at 20-24~C) decreases in
the series (PEG)37(PPG)56(PEG)37(Fl03) > (PEG)?5(PPG)s6(PEG)~5(Fl04) >
(PEG)16(PPG)s6(PEG)l6(F105) and, secondly, the ttl--p~ u~ at which gelation shifts
from about 15~C for (PEG)37(PPG)s6(PEG)37 to about 35~C for
S (PEG)~5(PPG)s6(PEG)25 and (PEG)16(PPG)s6(PEG)16. Both results are in excellent
a~ nt with the theory set forth in Linse.
Example 11. The following example is related to release of and active agent
from a poloxamer:poly(acrylic acid) polymer network. Drug loading and kinetics of
release of the protein hemoglobin from poloxamer:poly(acrylic acid) polymer network
is described.
Svnthesis. Pluronic~ F127 (3.0 g) was dissolved in 3.0 g acrylic acid. The
solution was deaerated by N~ bubbling for 0.5 h and following addition of 100 Fl of
freshly prepared saturated solution of amrnonium persulfate (Kodak) in deionizedwater was kept at 70~C for 16 h resulting in a transparent polymer. The resultant
responsive polymer network obtained (5 g) was suspended in 95 ml deionized waterinto which NaOH was added. The resulting suspension was allowed to swell for 7
days.
Hemoglobin loading and release. A 5 wt% respon~ive polymer network
composition (3 g) was allowed to swell for 16 h in 10 ml of 0.25 mg/ml solution of
human hemoglobin (Sigma) in deionized water adjusted to pH 8. The resulting
mixture was well shaken and placed into the feed chambers of customized vertical,
static, Franz-like diffusion cells made of Teflon. The feed and receiver chambers of
the diffusion cells were separated by mesh screens (# 2063). The receiver chamber
was continuously stirred by a m~gnrtir bar. The cells were allowed to equilibrate to
either 25 or 37~C (in an oven). The feed and receiver phases consisted of 1 g of the
hemoglobin-loaded responsive polymer network and 6 ml of phosphate-buffered saline
(pH 7.4), respectively. In the control expe~u-l~"t, the feed phase was made of 1 g of
0.25 mg/ml hemoglobin solution. After the feed solution had been loaded into thecell, the kinetic time commrnred. Samples of the receiver phase was withdrawn from
time to time and their absorbance was ll.casul~d ~ecllophotoll.cllically at 400 nm.




*rB

CA 022~9464 1998-12-30

W O 98/48768 PCTAJS98/08931

39
To c~ tç hemoglobin concenIl~.lions, corresponding calibration curves (absoll.allce
in PBS versus hemoglobin concentration) were g~.1e.dted. The results of the kinetic
eA~ nl are prese.lted in Pigure 17. It can be seen that the rate of hemoglobin
release from the polymer network was substantially lowered at 37~C when co,ll~cd5 to that at 25~C, because of viscosity increase in the polymer network at elevated
hlllp~at~ S (see Figure 1). The protein released from the polymer network
colllposiLion still retained its native structure, as was del~ led by comparison of uv-
vis spectra of release hemoglobin and natural hemoglobin.
Example 12. The following example is related to release of an active agent
10 from a poloxamer:poly(acrylic acid) polymer ne~work. Drug loading and kinelics of
release of the protein Iysozyme from a polymer network is reported
Lysozyme loading and release. A 5 wt% responsive polymer network
composition (3 g) was allowed to swell for 16 h in 10 ml of 1 mg/ml solution of
chicken egg-white Iysozyme (Sigma) and 1.5 mg/ml sodium dodecyl sulfate (Aldrich)
15 in deionized water adjusted to pH 8.5. The resulting mixture was well shaken and
placed into the feed chambers of customized ver~ical, static, Franz-like diffusion cells
made of Teflon. The feed and receiver c~nhers of the diffusion cells were separated
by mesh screens (# 2063). The receiver chamber was continuously stirred by a
m~gnP~ic bar. The cells were allowed to equilibrate tO ei~her 25 or 37~C (in an
20 oven). The feed and receiver phases consisted of 1 g of the Iysozyme-loaded
responsive polymer network and 6 ml of phosphate-buffered saline (pH 7.4),
respectively. In the control experiment, the feed phase was made of 1 g of 1 mg/ml
Iysozyme solution. After the feed solution had been loaded into the cell, the kinetic
time comm~nre~l. Samples were withdrawn and their absolbance measured
25 speclluphotometrically at 280 nm. A calibration curve was prepared for Iysozyme
concentration ranging from 0 mg/ml to 0.5 mg/ml in phûsphate buffered saline. The
results of the kinetic experiment are pl~,sellI~d in Figure 18. It can be seen that the
rate of Iysozyme release from the I~ JI onsi~e pûlymer n~.wolk composition was
sllbst~nti~lly lowered at 37~C when compared to that at 25~C, because of viscosity
30 increase in responsive polymer network at elevated temperatures (see Figure 1).

CA 022~9464 1998-12-30

WO 98/48768 PCT~US98/08931


In order to demonstrate the retention of the enzymatic activity of Iysozyme,
the Iysozyme released from the r~,S~uOnsi~e polymer network co,llposition was assayed
using Micrococcus Iyso~leik~ir~l~ cells and collll.aled to that of original Iysozyme. The
enzymatic activity of Iy~uL~lllc was the same, within the error of the assay (15%), as
5 that of the original Iysozyme. Control without Iysozyme in pl~:sence of sodium dodecyl sulfate did not show any a~ ciable Iysis of the cells.
Example 13. The following example is related to release of an active agent
from a poloxamer:poly(acrylic acid) polymer network. Drug loading and kinetics of
release of insulin from a responsive polymer network composition is reported.
Insulin loadin~ and release. A 5 wt% responsive pûlymer network
composition (3 g) was allowed to swell for 16 h in lO ml of 5 mglml solution of
bovine Zn2+-insulin (Sigma) in deionized water adjusted to pH 7. The resulting
mixture was well shaken and placed into the feed chambers of customized vertical,
static, Franz-like diffusion cells made of Teflon. The feed and receiver chambers of
15 the diffusion cells were separated by mesh screens (~ 2063). The receiver chamber
was continuously stirred by a m~gnPti~ bar. The cells were allowed to equilibrate to
either 25 or 37~C (in an oven). The feed and receiver phases consisted of 1 g of the
insulin-loaded responsive polymer network and 6 ml of phosphate-buffered saline (pH
7.4), respectively. In the control experiment, the feed phase was made of l g of 5
20 mg/ml insulin solution. After the feed solution had been loaded into the cell, the
timing comm~r~e(l. Samples were withdrawn and their absorbance was measured
spectrophotometrically at 280 nm. A calibration curve was prepared for insulin
concentration ranging from 0 mg/ml to 1.25 mg/ml in phosphate buffered saline. The
results of the kinetic experiment are prese.l~ed in Figure 19. The rate of insulin
25 release from responsive polymer network was substantially lowered at 37~C when
compared to that at 25~C, because of viscosity increase in responsive polymer
network at elevated temperatures (see Figure 1).
Example 14. This example demo~ aL~s the ~ ?alaLion of a sterile reversibly
gelling polymer network aqueous composition and the stability of the composition to
30 sterilization. The polymer network is prepared as described in Example 1, except that

CA 02259464 1998-12-30

-
wo 98/48768 PCT/US98/08931


the composition is prepared at 2 wt% Pluronic~ F127 polyol/poly(acrylic acid). After
dissolution of the 2 wt% polymer network in water, the viscosity is measured. The
co.lll.osilion then is sterili_ed by autoclaving at 121~C, 16 psi for 30 minutes.
Viscosity is d~ ...in~ after sterili7~tion The col.~,sl,onding curves for viscosity (a)
5 before and (b) after sterilization are shown in Figure 20 and establish that minim~l
change in the viscosity profile of the material has occurred with sterilization.Examples 15-30. These examples show additives which may be used to affect
the transition L~ .atule overall vi~rosifir~tion of the polymer network composition.
A 1 wt% polymer network was prepared in deionized water at pH 7 in which
10 a variety of additives were included in the composition. The effect of the additive
was determined by generation of a Brookfield viscosification curve. Results are
reported in Table 4.

CA 02259464 l998-l2-30

WO 98/48768 PCTAJS98/08931

42
Table 4.

Exarnple No. Additive (wt%) Effect of additive on:
transition temp. final viscosity
( C) (% change)
1,2-methyl I (1.8) N
pyrrolidone (S)
16 Rhodapex C0-436 I (1.6) N
(2)
17 Dow Corning 190 I (5) I (150)
(2)
18 isopropyl alcoholI (3 1) I (45)
(0.5)
19 Pluronic0 Ll22 (1)D (4.4) D (13)
Pluronic3 F88 (1) N I (41)
21 Tween 80 (0.5) N I (18)
22 Germaben0 II (1) D (9) I (100)
23 Iconol NP-6 (1) D (9) I (500)
24 Plurafac C-17 I (5.2) D (36)
(0.5)
Dow Corning 193 1 (4.1) D (12)
(0.75)
lS 26 glycerin (5) D (2) N
27 UC 50-HB- N N
170/EO/PO
random copolymer
(0.5)
28 PVP K15 (1) N N
29 MAPTAC (1) N D (8)
potassium chloride N D (34)
(0.25)
20 = increase; D = decrease; and N = no change

CA 02259464 1998-12-30

W098/48768 PCT~US98/08931

43
Example 31. RPc~llce of the surfactant nature of the polymer network
composition coupled with the gelation effect of the polymer r,etv~ol~ composition, it is
possible to prepare formulation which are 100% water-based, but which are lubricous
and thick.
Formulations includin~ a nonionic surfactant formulation: An O/W (oil-in-
water) emulsion was made by colllbin~ng the following ingredients utili7in~
conventional mixing techniques:
Table ~.
Ingredient % w/w
10 % wt. l:l responsive 20.0
polymer network as prepared
in Example 1
mulsifying Wax N~' 2.5
Mineral Oil 5 0
' Polowax available t'rom Croda
Into a vessel equipped with a high efficiency homogenizer, the formula amount
of all ingredients is added, water is added to 100% w/w and allowed to mix to
homogeneity. This formulation contains a nonionic surfactant and gives an emulsion
that is fluid at room temperature but viscosifies above 32~C.
Formulations includin a cationic surfactant forrnulation: An O/W (oil-in-
water) emulsion was made by combining the following ingredients l~tili7ing
conventional mixing techniques:
Table 6.
% w/w
l0 % wt. 1:1 responsive 20.0
polymer network as prepared
in Example 1
Behentrimonium Methosulfate 2.5
(and) Cetearyl alcohol'
Mineral Oil 5.0
l Incroquat Behenyl TMS availa~le trom Croda
Into a vessel equipped with a high efficiency homogenizer, the formula amount

CA 02259464 1998-12-30

W O 98/48768 PCT~US98/08931

44
of all ingredients is added and allowed to mix to homogeneity. This form~ tion
contains a cationic surfactant and gives an emulsion that is fluid at room ~ y~ture
but vi.cwsifiPs above 32~C.
Forrnulations includin~ an anionic surfactant formulation: An O/W (oil-in-
5 water) emulsion was made by co.llbh)illg the following ingredients lltili7ingconventional mixing techni~lues:
Table 7.
~ngredient % w/w
10 % wt. 1:1 responsive 20.0
polymer network as prepared
in Example 1
Cetearyl Phosphate (and) 2.5
Cetearyl alcohol'
Mineral Oil 5 0
' Crodafos CES available ~rom Sroda
Into a vessel equipped with a high efficiency homogenizer, the forrnula amount
of all ingredients is added, water is added to 100% w/w and allowed to mix to
homogeneity. This formulation contains a anionic surfactant and gives an emulsion
that is fluid at room temperature but viscosifies above 32~C.
Example 32. Acne Medication. An oil-free, clear, anti-acne tre~tmPnt is
made by combining the following ingredients utilizing conventional mixing
techniques:
Table 8.
t % w/w
25 10 % wt. 1 1 responsive 20.0
polymer networlc prepared as in
Exarnple 1
Glycerin USP 5 0
Salicylic Acid 2.0
30 DL-Panthenol 0,5
Gerrnaben~ 11' 0.1
Di~o~ m V~lA 0.2
US~ Purified Water 72.2
' Gerrnabe.l-ll available from Sut.on Laboratories
To one vessel, equipped with a T.ightnin' Mixer with a 3 blade paddle prop,

CA 02259464 1998-12-30

WO 98/48768 PCT/USg8/0893


the full amount of USP Purified Water to 100% w/w is added. While m~int~ining the
lpe~ture, with moderate to vigorous mixing, the formula amount of Disodium
EDTA, Citric Acid, DL-Panthenol, Glycerin, Salicylic Acid, and Ge~m~ben~D II is
added. These materials are allowed to dissolve at 50~C. After dissolution, the vessel
5 is then cooled to 20~C. To another vessel, equipped with a high efficiency
homogc.~ r, the formula amount of ~ onsive polymer n~.wu~ is added. The
responsive polymer network vessel is then cooled to 4~C. After cooling, while
vigorously homogenizing, the contents of the first vessel is added to the secondvessel, and allowed to mix to homogeneity.
The composition displays a flowable clear jelly appearance with excellent
spreadability and absorption characteristics at room temperanlre, and after heating the
formulation to 32~C, the composition thirL-rnc ~o a gel-like consistency.
Example 33. (a) Oil-free Moislllri~er (forrnulation I): An oil-free, lubricous
moisnlrizer was made by combing the following ingredients nrili7ing conventional15 mixing techniques:

CA 022~9464 1998-12-30

W 098/48768 PCT~US98/08931

46
Table 9.
In~redient % w/w
105~ wt 1:1 responsive polymer 20.0
network as prepared in Example
Glycerin USP 5.0
PPG-2 Myristyl Ether 3.0
Propioniate
DL-Panthenol 0.S
Germaben~ 0.1
Disodium EDTA 0.2
Citric Acid 0.01
USP Purified Water 71.19
' Gerrnaben~ lI availa~le ~rom Sutton Laboratories
The above ingredients were added and processed as described above for the
acne composition. The composition displayed a flowable creamy lotion appearance
with excellent emolliency, spreadability and absorption characteristics at room
te"lp~ldrure. After heating the formulation to above 26~C, the composition thir~en~d
to a gel-like consistency. The viscosity vs. temperature curve is shown in Figure 21
and demonstrates that addition of adjuvants ,o the composition significantly enh~nres
the responsive polymer network m~im~lm viscosity ( > 900,000 cps). The use of the
poloxamer:poly(acrylic acid) polymer network in the formulation also imparts a
unique viscosification effect after application to the skin, which is not evident in
typical cornmercial O/W emulsion formulations (See, Figure 21b).
(b) Oil-free Moisturizer (formulation Il): An oil-free, lubricious moisturizer
was made by combing the following ingredients l)tili7in~ conventional mixing
technillues:




CA 02259464 1998-12-30

WO 98/48768 PCT~S98/08931

47
Table 10.
I.. ~di~.~l % w/w
1:1 polymer nelwu,k as prepared 2.0
in Example 1
Glycerin USP 5.0
Carbopol 980 1.0
D-pan-h~l, propylene glycol 1.0
Preservative 1.0
Hydrolyzed protein (and) 0.5
hyaluronic acid
Sodium hydroxide 0.2
USP Purified Water 90

The above ingredients were added and processed as described above for the
acne composition. The composition displayed a flowable creamy lotion appearance
with excellent emolliency, spreadability and absorption characteristics at room
temperature. After heating the formulation to 26~C, the composition thickens to a
gel-like consistency. The addition of adjuvants to the composition significantlyenh~nres the polymer network maximum viscosity.
ExamPle 34. Sunscreen Lotion. An oil-free, lubricious sullsc~ lotion was
made by combining the following ingredients utili7ing conventional mixing
techniques-

CA 02259464 l998-l2-30

WO 98/48768 PCTAJS98/08931

48
Table 11.
,.. l % w/w
1:1 polymer network as p,~l,ared 2.0
in Example 1
S Glycerin USP 8.0
Carbopol 980 1.0
Parsol MCX 7.0
Myristyl Ether Propionate 5 0
Preservative 1.0
Cyclomethicone 1.0
Sodium hydroxide 0.2
USP Purified Water 74

The above ingredients were added and processed as described above for the
acne composition. The composition displayed a flowable creamy lotion appearance
with excellent emolliency, spreadability and absorption characteristics at room
temperature. After heating the formulation to above 26~C. the composition ~hi~k~nPd
to a gel-like consistency. The addition of adjuvants to the composition signifir~ntly
enh~nres ~he polymer network maximum viscosity.
~xample 35. Facial mask. A face mask was made by combing the following
ingredients ~Itili7in~ conventional mixing techniques:

CA 022~9464 1998-12-30

W O 98/48768 PCT~US98/08931

49
Table 12.
~ngredient % w/w
1:1 polymer network as piet)ar~d 1.0
in Example 1
Polyvinyl alcohol 6.0
Polyvinylpyrollidone (20%) S.0
D-panthPnnl, propylene glycol 1.25
Propylene glycol 1.25
USP Purified Water 85.5

The above ingredients were added and processed as described above for the
acne composition. The composition displayed a flowable creamy lotion appearance
with excellent emolliency, spreadability and absorption characteristics at room
temperature. After heating the formulation lo above 26~C, the composition thickPn~d
15 to a gel-like consistency. The addition of adjuvants ~o the composition .signifir~ntly
e~h~nres the polymer network maximum viscosity.
Example 36. Facial toner. A face mask was made by combing the following
ingredients ~ltili7ine conventional mixing techniques:
Table 13.
I"~.~ul,e-~l % w/w
1:1 polymer network as prepared 0.01
in Example 1
Hydroxyethyl cetyldimonium 1.00
phosphate
PEG-40 hydrogenated caster oil2.00
D-panrh~n~ l, propylene glycol0.50
Glycerin 2.00
Witch hazel extract 5.00
USP Purif1ed Water 88.49


CA 022~9464 l998-l2-30

WO 98/48768 PCTAJS98/08931



The above ingredients were added and ~.-,cessed as described above for the
acne composition. The composition displayed a flowable appearance with excellentemolliency, spreadability and absorption charac~..islics at room temperature. After
heating the ~ormulation to above 26~C, the composition thirl~PrtPd to a gel-likecon~i~t-~nry. The addition of adjuvants to the composition si~nific~ntly enh~nres the
polymer network m~xim-lm viscosity.
Example 36. Solubilization studies of model hydrophobic a~eents in the
poloxamer: polv(acrYlic acid) Dolvmer network: estradiol and ~ ne~ This
example is ~lese.l~d to demonstrate the solubilization of a hydrophobic ageM in the
10 polymeric network. Progesterone and estradiol were used as the hydrophobic agents
in this model solubilization study.
Acrylic acid (99%), fluorescein (98%), ~-estradiol (98%), and progesterone
(98%) were all obtained from Aldrich and used as received. Pluronic0 F127 NF wasobtained from BASF. Poly(oxyethylene-b-oxypropylene-b-oxyethylene)-g-poly(acrylic
acid) copolymers (responsive polymer network ) were synthesized by free-radical
polymerization of acrylic acid in the presence of poloxamer as described above. The
polymer network copolymers (liccllc$ed here were composed of about 1:1 ratio of
PAA to poloxamer. The rheological properties of polymer network were ~c.ce5.ced
using LVDV-II+ and RVDV-II+ Brookfield viscometers. The microscopic light
20 scattering of 21 nm poly(styrene) lalex particles in deionized water and 1 w%reversibly gelling polymer network was measured using He-Ne ;aser as described
previously (See, Matsuo, E.S., Orkisz, M., Sun, S.-T., Li, Y., Tanaka, T.,
Macromolecules, 1994, 27, 6791). The solubili~y of fluorescein and hormones in
aqueous solutions was measured by the equilibration of excess solubilizate with the
25 corresponding solution following removal of undissolved species by centrifugation and
filtration. Hydrophobic agents were assayed s~e~lophotometrically at 240
(progesterone) or 280 rlm (estradiol), or by using 70/30 w/w H,SO4/MeOH
(Tsilifonis-Chafetz reagent). In vitro hormone release studies were con~-lct~d using
thermostatted, vertical Franz cells. Spunbonded polypropylene microfilters (micron
30 relention, 15-20) were used as a membrane separating feed and receiver phases in

CA 022~9464 1998-12-30

WO 98/48768 PCT~US98/08931


Franz cells. The .~ ol~ive polymer network, water, ethanol, and 20% PEG in waterwere observed to wet the membrane. The l~,ce;~r solutions consisted of 20 w% PEGin water (pH 7) and were stirred by m~gn~tir bars. The feed phases composed of
responsive polymer network were loaded with either estradiol or proge~Le,one. Each
hormone was dissolved in ethanol and the resulting solution was added into the
responsive polymer n~,wolk.
Equilibrium solubility vs. te.llpeldLurc plots for estradiol and proge~ ro-le
(partition coefficient octanol/water (P) 7200 and 5888, respectively, in aqueoussolutions of Pluronic0 F127 polyol and responsive polymer network are presented in
Figure 22. It can be seen that increasing t~llpeldlul~ and concentration (C) of
polymers in the solution raises the amount of the hormone dissolved. In Figure 22a,
vertical lines ~ se"l critical micellar temperatures (CMT) for corresponding
Pluronic F127 polyol solutions. It is interesting to note that the slope of the
solubility-temperature plots increased as te",yc~ature reached CMT, indic~ting that
solubilization in the Pluronic solutions was predominantly due to the formation of
micelles. Similar trend was observed in the ~a~onsive polymer network solutions.The S values in 5% aqueous solutions of branched PAA did not exceed 15 and 40
~g/mL at 60 ~C for estradiol and progesterone, respectively. The solubility values
found for responsive polymer network were the same as S in parent Pluronic solutions
of equivalent concentrations. Therefore, it may be suggested that solubilizationbehaviors of the responsive polymer network are governed by the p~up~.Lies of the
poloxamer incorporated into it. Thermodynamic parameters of the solubilization
process with ,~sl-onsi~e polymer network were c~lr~ Pd using the same
approximations as in the micellar solubilization with Pluronic polyols. See, Saito,Y.,
Kondo, Y., Abe, M., Sato, T., Chem.Pharm.Bull., 1994, 42, 1348. Namely,
partition coefficient P was estimated from equilibrium solubilities of estradiol in
responsive polymer network and water:
P=SSH/SW (13)
by extrapolating the solubility plots of the steroid in Figure 22 to 100 % responsive
polymer network. Using P values obtained from data in Figure 23, we c~lc~ tPd the

CA 02259464 1998-12-30

W O 98/48768 PCTAJS98/08931


standard free energy change (~G), standard enthalpy of solubilization (~H), and stan-
dard entropy of solubilization (AS) using the following ~ ;,sions:
AG = -RTlnP; ~H = -R~InP/~(1/T); ~\S = (~H- AG)/T (14)
Thermodynamic palalllet~l~ obtained alGng with P values are given in Table 13
5 Apparent partition coeffiriP~t~ and sh~odyllalllic pal~llct~l~ for solubilization of
estradiol by ~ yonsive polymer n,LwulL
Table 13.
'T, K P=SSH/S ~G ¦~H AS
kJ/mol I kJ/mol J/mol
277 490 -14.3 68.6
~93 520 -15.2 52.0
~10 660 -16.7 4.72 53.9
~23 660 -17.4 54.0
~33 660 -18.0 54.0

Negative ~G values indicate spontaneous solubilization at all temperatures,
whereas positive /~H shows that the solubilization was endothermic, similar to the
solubilization of estriol, as well as indomethacin, by the poloxamer. Notably, ~S of
solubilization was always positive, suggesting that the more ordered water molecules
20 surrounding hydrophobic estradiol molecules moved to the less ordered bulk phase
when the estradiol was transferred to the hydn)phobic core of PPG segments in
responsive polymer network. The aggregation of the PPG segments at elevated
tc.ll~e.atures provides not only temporary cross-linking in the gel, but also a
thermodyn~mir~lly "friendly" environment for the hydrophobic drugs. Indeed, one
25 can express the free energy of forrr.ation of the agy,-~gaLc core-water interface in
responsive polymer network as:
~'G = [aPw(1- O + aWD~](47rR2/n) (15)
where aPw and aWD are the interfacial tensions between pure PPO polymer and water
and between water and the drug, l~sye.,ti~ely; ~ is the volurne fraction of the drug
30 within PPO core; R is the effective radius of the core, and n is the aggregation
number.

CA 022~9464 1998-12-30

W 098/48768 PCT~US98/08931


Equation (3) shows that solubilization of a hydrophobic drug of high aWD
should increase ~he stability of the aggregate. The solubilization process was found to
decrease the critical mi~lli7~tion conc~ ation and substantially h~ ase the micellar
core radius in Pluronic surfactants (Hurter, P.N. et al., "In Solubilization in
5 Surfactant Ag~l~gates", Christian, S.D., Ed., Marcel Dekker, New York, 1995). A
similar trend is in~ir~tPc~ by the lowering the onset of gelation of the responsive
polymer n~lwolh upon solubilization of fluul~sce;n (LogP 2.1) (Figure 24). The
solubilization of hydrophobic drugs by responsive polymer network, analogous to the
mirell~r solubilization of drugs by poloxamer, suggests that the responsive polymer
10 network can be an effective vehicle in drug delivery.
Our in vi~ro study of hormone release from responsive polymer network
shows an increase in the initial transport rate with either decreasing total polymer
concel,~ ion in the formulation or decreasing ~ pcrdture (Figure 25). These effects
are related to the changes in macroscopic viscosity of the responsive polymer
15 network, which erodes more rapidly from the feed phase through the membrane into
the receiver compartment as the viscosity decreases (Figure 26). The degree of the
responsive polymer network erosion was measured by weighing hormone-loaded
responsive polymer network before and after kinetic experiment.
Figure '7 shows that the relative amoun~ of progesterone penetrating into the
20 receiver phase decreased 4-fold with the increase of total polymer concentration,
whereas the total relative amount of progesl~,une stayed almost constant as tetal
polymer concentration in the responsive polymer network increased. This result shows
the existence of two routes of transport of hydrophobic drugs in our model system.
Firstly, the drug incorporated into aggregates within the responsive polymer network
25 system can flow through the lll~lbldne along with the erosion of the responsive
polymer network; secondly, the drug not associated with the responsive polymer
network aggregates can diffuse out of the responsive polymer network in the feedphase. The second process should not be related to the viscosity of the responsive
polymer network. Indeed, the dynamic light scattering experiment shows no dramatic
30 change of diffusivity of poly(styrene) latex particles in the responsive polymer

CA 02259464 1998-12-30

WO 98/48768 PCT~US98/08931

54
nelwu,~ as t~ rises thereby increasing ~..rosco~ic viscosily more than 10-fold (Figure 28). This result in~ tPs that the viscosity of the ~s~onsive polymer
W~ is e~Pnti~lly ,ln~rrl~ct~d on the Il~clu~eo~;c scale.

Appendix A attached.

CA 02259464 1998-12-30

W 098/48768 55 PCTAJS98/08931

A~ ~U1X A
Cosmetic Bench Reference
Function Definitions

Abrasive: nbrldes, smwlhes. polishes Emoliien~: sofiens, smoodhes sbn
Absorbenl powder: talces up iiquids. sponge-like Ietion Emuisifier a surtace-aeuve Igem (surfaetant) toal promoles Ihe formalion of
Absorplion base: tonms waler.in-oU emulsions waler.in~il or oil-in-waler emulsions
Addulen~- Ieidifies. lowers pH. neuualizes aiicalis Enzymes: eomplex proleins produeed by living eells Ihnl ent~iyze bioehemieal
reaeuons at body lemperarUte
.~ , ' .. capable oF rencling ehemicDlly ehher IS an Ieid or a base; Fiber strands of namr.ti or symheue plymers: for inslanee. eonon. wwl, silk.
ampholene surfaetanls are eompmlble wllh 3mome and eanonie
surhet~ms nylon, polyesuer
r: ~, .solulionof,pul~. i formsfilmswhenlhesolvemev~porales
Analgesie: relieves pain
afier OppliQuon to I surface
Anlacid: neutralizes slomach neidjly Fixalive: fil~n or sels pertumes: retards .. ~ .o,-. promoles loneer laslin
~L~ / ' '' '- Ihe t~ . ' of baclena aroma
A ' ~ prevenls or retnrds cnicing of powders: keeps powders free- Fiavor: impms n .I.~L.-~U. rasle (nnd Iroma) lo edible fwds and drinks:
flowing somelimes used in iip produels
' ~ ~ relards or eliminales dandruff Foam booster enhances quaiily and quamily of l~ther of shampws
Anafoam: suppresses l'olrn during mixing Foamer: a ~ ' e-uve agem (surfactmn Ihal produces foam: an emulsion ol'
. reduces, suppresses, counleraCts ' '' ' air-in~water
A~ U reduces. suppresses or prevems irritnlion Foam stabiiiztr see Foam boosler
A~ ' ' a~ ' desuroys. inhibits or suppresses Ihe erowlh of Fungieide: inhibUs or destroys growlh of fungi
L GeUan~: ;l eelling aeem: fonms gels: includes I wide ~riery of malenals ~uch
A ' inhibits oxidalion and raneidity ~s polvmers, clays and soaps
A~ , reduces or inhibits perspirauon Glosser: fumishes I surt'lce lusler or bnghmess: usullly used in lip or h:dr
iti.. reduces or prevenls Uehing produels
Hair eoloraot: see Coloram
Antistptie: inhibhs the erowth of ~ ' ~ ' on Ihe shn or on living
ossue Hair eonditirotr see Condiuioner
Antjstat: reduces stalic by neutraiizing elecuieli charee on _ surfiee Hair d,ve: imparls I new permanenl or ; eolor lo hair
Astringent: conrraets organic bssue aller applieauon Hsir sel pol~ner- polymer and/or resins used lo maintain desired hair sh;~pe
Binder: promoles cohesion ol powders Hair-set re90: see Hair-sel polymer
Bbaehing aeem: lighlens eolor. o cidizing ngem Hair wsving see Redueing Igem and Neurraiizer
Botanieal: nDIurai planl denvmive Humeetant absorbs. holds and retains moisture

Bufrer: helps maintain onginai pH (aeidhy or basiehy~ of ;I prepar~fion 11 ' ~ ~, enhanees waler solubilhy
Carrier: a vehiele or base used for I preparation I ~ ' basle chemucals which are chemic~lly modified lo obtain Ihe
Chelr te: tonm _ complex with Irace-metni impumies. usulllv caleium or iron desired fw~ion
Colorant: ~dds eolor. m~y be ~ soluble dye or m insoluble pigmem on mix~ng with aur in soluti e agent (Surf~ctml ~ that ~onmS _ loam or lalher
r~ . improves eondUion of shn nnd hnir
Lubrieanc n duces fneuon. smwthes. Idds slip
Coupling agent: nids in ' '''' ' or. ' of , ' Moisturebarrier retardspassaeeofmoistureorwaer
eomponents
i~ ' removeseolorbyndsorption.blelchingoroxid~tion '' ' ,_. Iids in increasing the moisture eomenl of the skin Ihrough
l! used lo denature ethyl nleohol
Neutrrlizer an o~udizing Igent used in h~ir wlving thal slops the ~clion of Ihe
Dental powder: powdered denufnee reducing Igem ~d re~ ' ' ' the disulfide linlcages in hair
Deodorant: desuro,vs. masks or inhibits fonmalion of unple~sam odors Oil sbsoro n1: see Absorbem powder
Depilatorv: removes h~ir ehemieally Ointment b se: m anhydrous mixrure of oleaginous components us~d IS a
Detergent: ~ surfice-aclive agem (surfactnm~ Ihal cle~ns by emulsifying oils vehicle for
md suspens particulale soil Opaeifier opaeifies elear liquids or soiids
~;~; ~ r ~ deslroys pnthoQenie I ~ Oxidant: oaidizing _eent. neutraiizes reducine Igents. bielching Igem
Dispersant:promolesthc ' ~ ' "' ' of ~'', v , Pearlant: impnns I pe3rlescem lexnure 3nd lusler
D,ve stabilizer: ~ce Smbilizer Perfume soivent: see Solvem nnd Solubilizer
Cocmefic Bench Re~erence 1996 1.1

*rB

.

CA 02259464 l998-l2-30

WO 98/48768 56 PCT~US98/08931




Pet~oxide st~bilizer: see Slabilizer Stabilizer: added to stabilize emulsions andlor suspension~
Pigmenl:ut;nclypowdenedin~oluble~ubstDnceusedloimpmcolor.lus~eror Slimulane produces a Icmporary incre3se in Ihe tunclionDI ictivily ol ;m
opucily orpmSm or ;my or ils pans
Plasticizer:pl3s~icizes~mukesmoretle~ible)polymenct;lmsortibtrs Surfacl~lnllsurt~ aclive3gienl):lowerssurt3ce~ensionb~we~nlwo
or more i- , '' phases: SODpS. de~ert!enlS. welllny Iyenls.
Poltsh: ~moolhe~: Idds olos~ Dnd lu~ler aolubiziny Igenls ~nd cmulsirying :Iyenls cre Iyplcul
Polvmer- I ~crv hir~h molecular weiyhl compound Cun~ inF ol repeDline suffaclanls.. ,ccla,,,lj~dlsanionic~c;tlionic~nonionicand , ' ,~,
suuclur31 unils 3nionic ~urtaclanls ere neea~ively ch;trFed. cllionic surli~ct3nl~ ha~e
powder: a solid in Ihe lonm ol I;ne p3nicles no eleclric;tl charge
if~.. '.. proleclsproducrstromapollDYeby w~L Suspendingstgent keepsfinelydividcdsolidp;miclcsin~uspcnsion
Propellanl: pressunzed ~jas in I com;tiner used lo eJlpel Ihe comems wh~n Svletttner: sweelens lo pmvide a more pleDs3nl 13sle
pressure i~ relc3.~ed by opemno a v;ll~e Tanning Dccelernlor: ccceler3les Ihe lannine of ~kin
Prolein: nDlurDlly ~ccurring complc.~ ' ol amino ~cids Thickenermhickens or incre tses ~ uail~ ' V
Reducine uFene r~duce~ D chem icll compound u~uDI Iy by donDon6 ~leclron~: Thixotrope: ~he pmpeny oi cen3m ocls and emu l~ions ol becom i ny morc lloid
neulrtlizcs o~ndiziny :Iyems or less viscous when sh3ken or sllrred
Refa~inc3Fen~ dd-ùllsm;tlen;llsn~lhe~urteceol~ub~lr;tles~e~ skin;tnd UVabsorber:used~sasunscr~enandlopro~ec~prcp;lr;llion~lromdcortd~uon
h;ur by UV r;tdiDlion
Resin:nonvolDlile~olidorsem~solidorr3nic~ub~lDnceAobt3inedrrompl3nts W~3bsorber:~bsorbsin~heranFe3'WOOn;momelerslnm
3s e~tud3les lo prcpared bv l)ul~ ~L.~ ol' simple molecules
WB absorber Ibsorbs m ~he rDnge '90-1'0 n;lnome~ers ~ nm
~orm- .w"' comple.~es wilh mullllv~lenl poskive ions
' ~ Wax: my ol nurnerous subsl3nces oJ' phm. mimll or ~vmhelic onein Ihu~
Silicone: P~l! menc oromiC ~ilicon compounds which 3re W31er resisl3m com3in pnnc~pDDly eslers ol hioher iDny JCids :mli hieher l;lllV ;llcohol~: Ire~
Skin proleClanl: prolecls skin ~rom ~.. ,... ' falty 31cohols, ~any aclds and h.JIu-~bu.. moy llso be pre~enn w;u~es
denved Irom pelroieum producls sre muinly hi!5. ' ' -weieh
Solubilizer: ~olubilizes. usuDlly inlo ~qu,ous ~ehicle~. norrn311y insoluble h~J~ uiu
m;llenuh. ~uch l~ Ir3er;mc~s. ~ r~. olls. clc.
Welting u~ene a surface-Dcli~c 30eem (surhcl3nll IhDI lowers Ihe ~un~ce ;md
Sol vent: u~ulllv liu,uids cup;lbl~ ~1 di~olvlnl! olher sub~l3nces inlertDci~ ension. 13cili~alineo Ihe wenine ol' sun3ce~


~, ~ew Book Compiles The
/ ~ ~ - - Very Best in Hair Research
The Applied Research Series pulls together the ~ elv best papers
.. :3~ on srifantifie adv.ances and research. Featuring the latest techni-
Hai~ Care ~ r.~le ~ cal information forrn~ hnLr advice and ingredient revie-vs, this
.... ~. ~ book is an ideal addition to vour research librar~.

Adsorpton o~catioruc polvrners
D. ~ arrILtnd R Schmitt I would like _ copies oi the Hair Care booh (Paymenl requlred wnh oraer
~erannde--D. Braida f;~ al 3 Payment enclosed. USS64 per COpy. (US lunas drawn on a US banK only.)
Melanin5 - I;C. Broum anJl C. Prota Please aod US56 Per copy ~or all inlemaeonal alrmall oraers.
I~ienshaircoloring-S. Casperson 3 Charge my 3 nu 3 X
Skin p.. -..e..l-u.. o; hair d~es - H. Beck et ol
A~ric~n-.~ulIencnn hilir - A. Syerl et al C~n~ Numcer ~plrauon Dale
Ethnic hair care - A, Syed
HIircurl rel~;ers-P. ObuhnchoandM Bimlan as ~apDear-oncar3 IPI- J~pnne Sign-lur~
Cvsteine ~ ng lotions - A. Itcasaki Nam- ~Pb~ nnrJ COmP-nY
~eeping~'0Csundercontrol- S. Price
Acar ~
Soft co-er
69pages .. ~ r ~ -~ ~ Coc- Coumny
Published1996 A~ ~ Te~epnona lmcluce area ccael Fa~ ~mclua- ar~ corJel
ISBN:0-931H0~ a~
Illtu rl Lo~ unn;ul:~iG ~ ~ ~ e-m~ aar~ss ~llou~l~c~llo~ol~n~ : Pn~ uo~ cl~oc~on~ C2
Pnce:S6~ 3 ~ Send your oraerwllh pavmenmû Allurrd Publishing Corp
362 S Schmale Fload Carol Slream IL 60188 USA . Phone 708i653-2155 ~ Fax 7û8/653 2192

CA 02259464 1998-12-30

W O 98/48768 57 PCTAUS98/08931


Functions


Abrasive II,L '' ;Icid Marinecollagen
Adzuh bc3ns Lacuc 3cid Mushroom IConolus v~rsicolor~ exr~c
Almond (fJrunus 3mygd31us) me~ll. shell sranules Nitric 3cid Musk roK ~Rosa moschlu) oil
Aluminum silic31e Phosphonc 3cid p
Apncol ( Prunus 3rmeniaca) kernel powder shells Sodium bisulf31e Quatemium-5 1
Hydr31ed silic3 Sulfuric 3cid Rubus thunbersii exrrac
Jojoba ~ Buxus chinensis~ seed powder Tan3ric 3cid Senum prolein
Luffa cylindrica Stenoc31yx mic31ii extr3cl
Olive stonc gr3nules AHA Tricholoma matsuuke extr3ct
Oysler shell powder Apple ~ Pynus malus) e%tr3ct
Peach ~Prunus persic3) pit powder Apncot (Prunus armeniaC31 kernel powder Antibacterial
Pe3ch (Prunus persic3) slone granules Citric 3cid Ammonium iodide
Pul~ ' J 1.. ~ Ethyl 13cuue n
r~ HEC gr3nules Glycolic3cid (~ ' ' ' di3ceule C. diglucon
ral,. ; 1... ~ oxidized. P. spheres L3c3c 3cid n ~ ile
Polvsrvrene Malic acid ~1 I
Purruce Sodium lacule Hexatnidine ~: '
Rice (Orvza saùv3~ bran Tturtaric 3cid Hexelidine
Silic~ and S. colloidal Iceland moss /cetr~ri3 isl3ndic~) extrac
Sodium chlonde Antiacne Lactofemn
Walnul (Juglans rerzia~ shell powder Clays (while. yellow. red. green. pink) I - bromide. L. chlonde
P~ ' I chlonde
~' ~~rl~tion base Salicvlic 3cid 1 .:~,. '' ' chlonde
l.l.o-~ ' Sulh;r Mauriuella 3rm3u extr3clICaolin .'~tushroom (Cordvceps s3ùolifer31 exrr~ct
Per~ola~urn Anti-aging Orange ùlossom extr3cl
Rice (Oryz3 saova) starch Basil ~Ocimum b3silicum) exrr3cl Orr~nse ~Citrus aur3nlium dulcis I peel extr3ct
Sov (Glvcine soja ) slerol Carrol ~ D3ucus c3rou ) exr~3cl PEG 12 Ebinko cer3rnides extr3c~
Zeolite Caulpa k3emp~er3 exrs3a Peppenmim ~ Menth3 pipenu) exrr3c~
Ceramide 33 (liquid soy e~tracO r ~P~.. 1l ~.. ,.. ,.. Imurense~ e:-r~c~
bent powder Craraegus cuneur3 exrr3c~ Pine ~Pinus svlvesuis~ needle exu~c~
Corn IZe3 m;~ys l sr3rch Eugeni3 j;lmbol3na ex~r3c~ P~ bic~ clic oxazolidine
~ Fomes fomer tius e:~D~3C~ Qu~emium 73
Nylon- 12 Fomis~opsis pinicola exrr3c~ Rubus thunbereii cxrr3c~
Oal lAven3 s3u-3) brDn. tlour. me31 Ganodemma lucidum oil Te3 tl~e ~Melaleucl alternifoliD) oil
Zeolile Ginsens ~P3n3x gmsens) extr3c~ Tncloc~rb3n
Hyalumnic 3cid Undecylenlc 3cid
c~g~ Hydmlyzed serum pm(ein
Ace0c 3cid Hydrolyzed soy flour ~nticakin~
Ciulc 3cid Isachne pulchelh exrr3a .~luminum sr3rch o ~. ~Uxu~
Fum~nc Dcid Laclofemn Calciumsle~rDIe
Giutamic ~cid Lady's rhisrJe ~ Silybum marianum) e~urDcl DisrLarch phosphlle
Glvcolic 3cid Ligusticum jeholense extr3c~ Hydraled sllicD

TheOnlyFormofGentleEflicacy E~¦
Natural ~ Odorless ~ Biod~yliddable ~ Customcolors ~ Mildoraggressiveparticles QOaA~CW
CORPORATEOFFlCES 1151N.Fiesta~ivd.-Gilb~t.AZ~5233-t602)545-7000 Faxl602)t923000-N~w\'or~-Carlada-EuroD~ Asia Ih~N~h7~501u~0n ~

B~OOKS lNDUSl'RES inc.
Cosmttic Ingrcdi~nrs ~4 Idcas~ ' ~ ~ ~ ~
Tel908-561-;200 F 90'8NJ~7~~~
I ~ IUNIVERSAL a~ "ALPHAHYOROIrY .. CIDS"
~ IPRESERV-A-CHEM INC. ~e~ Glycolic ~. Ic
297 North 7th Street. Jr8~~7k82ni42eg York 1121 ~ ~ Tartaric Ascorbic
Fa~t:718-782-8109 Allantoin Aloe Vera
Cosmetic Bench Rererence 1996 1.;

CA 02259464 1998-12-30

W O 98/48768 58 PCTAUS98/08931


Functions
Kaolin Mulbeny IMortts nigra) eA~raa Domipben brornide
Magnesium mynstale. M. silicate NiaciDamide ascoroa~e r~
rM~ N-.. micronized Orange (Ci~rus auramium dulcis) peel eAtraa Eucalypnts (Euc~lyprus globulus) extraa
Silica silylate Orange blossom exlra~ Fennel (Foeniculum vulgare) exlrac
Sodium alulttinu m siliQte Palmeuo exlran GttrL;c (Allium sativurtt) extraa
Zioc slcarale Palmilogl collagen anuno acids Glyoeryl caprylale. G. Iaturale
Passion nower (Passiflora laurifolia) batit exlran Hexuniditne
Anticaries ~pP~ Paulownia impenalis extra~ Hinoldtiol
Cctylarnune h. ~ Salicylic acid Honeysuckle (Lonicera capnfolium) extraa
Olanur Shea buuer ~r~ ~~ parkij) Licben (Usnea baroata~ extract
Sodium fluonde Sodium ~ beta glucan ~ cbloride
Stearyl .. Ih~ ... h, l t . t, Soy (Clyane soja) protein PeDtylene glycol
... ,...... A - . Slearylyl~_~ Phenethyl alcoùol
S~enocalvx micalu extraa Pnenol
A. ,li ' _ Tocopheryl aceute. T. nicorinate r-
A- .. Trichomonas japonica eAtraa r-
r ~ ~ Fucus vesiculosus) extracl Wlllow (Salix alba) extraa Pbenyl mercudc acetale P.m. benzoale. P.m. borale
~ Ruscus aculearus) exlraa Wltch hazel (Hamamelis virginiana~ extraa o P; , !~
Carctma cambogla exlraa Wlthania somniferum extraa r.l~ ~ bicyclic oxazolidine
Fomes tometanus extraa Yanow (Achillea miUefoliurm) eA-traa Pot ssium sorbate
Fomistopsis pinicola exlraCt Zinc laaale r.,,l~
Ivy extract r ~ , ethosulfa~e
Mushroom I Conolus versicolor) exmaa Anti-irrilant , Sage (Salvia orficu;alis) extraa
TEA h . Acelyl Sodium benzoale. S. pymbione
Tncholoma mauulake exlraa AUamoin Sodium ncinoleale. S. sbale oil suUonateAllantoin ~cetyl metbionine. A gJ~_~ acid Tbimerosal
~tidandruff Azelamide MEA Tbyme ( rbYmus vulgaris) exlraa
Burdock (Arctium lappa) exrract Ber ine Tbymol
~n yl~.. ol Calendula obicinalis exuact Tddocarban
Corydalis ambi ua exrraa 1 , ~d betaine Tddosan
Disodium, .: MEA- Cocelh-7carboAylicaad 1l - ~ . .
Ginger root exrraa Comt1ower (Centaurea cvanus) extraa Undecvlenic abd
Inga edulis exlr3a Diisoslearvl dimer dilinoleale ZjDC o-ide. Z PCA
MaurBiella armata exlma Dipaltnitovl qstine Zinc pyntbione. Z ~:
~ ~v sacchannate Green lea emracl
PEG-6 1 !; Hydrolvzed sweet almond protein ~q~
Piroaone 013mine H) ~, , ~ gelatin Ascorbic acid
Resorcinol Laurnyl coUagen amino acids A polypepode
Rosemarv ~Rosmadnus officinalis) extract l-Lysine lauroyl methionine Ascorbvl oleate. A palmitate
Sodium shale oil sulfonate MaUow eAtraa r
StenodvA micalu exrract Mar icaria (ChamomiUa recuuta~ exrraa BHA
U~ . DEA Palrnilovl ùvdrolvzed milk protein HHT
WtUow (Salix albal bark extraa Palmitovl hvdrolvzed whcal prolein l-Buwl h.
Znc pvnthione Palmitovl keratul amino acids Dilaunl 1i
PEG-12 palm kemel glv~ndes Dimydswl 1 i
Anhfun~al PEG-~ glv~rvl tallowate Disodium EDTA
Black walnul ~Jugl3ns mgr3) ext-aa PEG-30 glvcervl Dislean H 'i
ConeBovA er ( Echinacea angustifolia) exrraa PEG-60 alrDond glvcendes Dodecyl gallate
Orange blossom exlract PEG-78 glvcenl cocoale EDTA
Phfrda pamcuiata exrraa PEG-82 glycenl tallowate Erythotbic acid
PEG-200 slvcervl tallowate Ferulic 3cid
A '. t.,~ 'u ~ Pmpionvlcollagenaminoaads Grape(Vitisvinifera)seedextr3a
Allamotn ~1, actd PVP Green tea exrraa
Bisabolol A Iysate e~tr3a HEDTA
Black poplar (Populus nigra? exrract Sodium Cl~-15 pareth-15 sulfonale 1l)
Brassm3l : exuaa Sodium I 11)1 ~ ~I_t.. -D 3 ,-
(Ruscus aalleants) eAnaa Soy (Glvane soja) protein F H)ll ~
Calendula officin31is eAtract ~ collagen armino acids Lactoferrin
Caralpa kaemplera exuaa Valedan (Vaienana otfianalis) extract Lysrne PC~
Celasrrus paniculata e~Auaa Melanin
C~ramide 33 (liquid sov exrraa) ~isll~ Methyl gallale
Cbaparral (l~rrea mexicana) exrraa r ch.lodde Niacinamide ascorbale
Coneuower (Echinacea angustifolia) exrract Benzoic acid t: hm L _ aad
Cornflower (Centaureit cyanus) extraa Benzyl alcohol Oat (Avena sauva) exrract
Dipotassium ~ B~ ~ . Oryzanol
r ~ fortunei exu~aa 2-Brnmo-2 -13-diol Pemitsodium pentelateEupbrasia oiEidnalis extraa r~ . r Penteuc acid
Fi~ racemosa exrraa Capryloyl collagen amino adds Ptnpyl gallale
Golden seal (Hydrastis canadensis) root extraa Capryloyl glydne. C. keratin aminn adds Retinyl palnulate polypcpode
Horse cbesmm (Aesculia 1,, ) extraa r, ~ ~ ~- bromide , ~, Iysal!e extraa
Jujube ~Zizvphus jujuba~ e~uraa Cetvl pyndinium chlodde age (Salvia offianalts) extraa
Lammana Japontca extraa rm b
Liconce ~GIvcv~hiza glabra! extraa rm ;'~ 1 Sooium selenale. S. sulfile
Ligusocwn ieholense. L. Iuctdum extract Citron oil Superoxide dismutase
Mamcaria ~ Chamomilla recunta) extract Copper PCA Tea (Camillia sinensis) exlract
Melaleuca uncinata extraa C!~ 1 alcohol Tetrasodium EDTA
MdtD azild~rachtac%trDct rP .: chlonde Tocopherol
1.6 Cosmetic Bench Reierence 1996

CA 02259464 1998-12-30

W O 98/48768 ~9 PCTAJS98/08931


Functions
Toeopheryl acelale~ T. Iinoleale I : rntnonium eblorido Sambueus nisra oil
Wlldmarloram(Onganumvulgare)extraa I ~ b ~1 ~Ihydrnlyzed0UageD roole~ttraet
Yeasl(.e ~ ,~. cerevisiae)extraa(Faex) l~ ' J dimerdiiinoleate Selinumspp.e%tracr
Oleailmniurn ehlonde Shore- robusola extraa
AI 'i~ PEG-2 cocamine Tar~e aeid
~1 . , PEG-2- ehloride Waioul (Juslar/sresia)leafexrraa oil
Aiurninum eapryloyl hydrolyzed eollasen PEG-2 r ehloride Wbeat (Trilicum vulsare) prolein
Aluminum hrJl.A Li~ A. cblonde PEG~ r.~liJ~".,. slyeendes White nerde (ldmiurn alburn) e%traa
Aluminum , . A. ~ 1 PEG- 10 cocamine Wlteh bazel ~Hamamelis virg~ruana ~ exuaa
Aluminum PCA. A. - , ~ PEG-15 sovarnine Y , bunseanum exr~aa
Aluminuml B.. ,leoUagenaminoaeids PPG-9 . ehloride Zin,eiaa;ue
Aluminum Drconium ~ ~ ~ , PPG-25 , chloride Ziziphus jujuba exrraa
Aluminum zirconium ~ PPG-40: , chlonde
Aiuminum zireonium ~ 1 h~ GLY Propylene giyeol slearale ~
Aiurninum zirconium , o 26 -27 -53 -62. -72 Aiurniourn sLarch ~.. uO
Aiuminum-Lh gl~ . powder r , " I L ._, . ehionde ~3Oroo nir~ide
Sase(Saiviaofiieinaiis)exuaa r~l , ,, I epoxypropyldimoniutn C20-40 a0-50 C10-60aieohols
Tommemil (Polemilla er~aa) exuaa ehioride Caieium slearate
Zireonium ~ ~. Siiiea. colloidai Ceiiuiose sum
Sorbitan eaprvlate r:, ~ e.lbehenale
Antiseptic N-Sova~ 3 , .I)-N.N: .: N oL .I Dusoslearvl maiale
Aiuminum PCA arnmonium elhvl suifale Dioayl sebaeate
Azadiraehla indiea exuaaSoyeLbyl elbosuifale Dislareh pbosphale
~-Bromo-2 . r -1.3-diol r . ,,. ethosuifale
Caienduia amurrensis exlraet S~ chionde Geiiao sum
p-C3tioro-m-eresol c ~ , , . I benzvl dimonium ehionde "'~ ~ jojoba oil
aOve (Eugenia~u~h,; )oii r. r ~ ~ ethosuifale isocerylaieohol 1.palmilale
Crataegus CUneala exuacl r. ehioride isopropyl wslearale
D: ~1 aieohol N-sleuvl{3 . r- lI)-N N-dimeLhyl~N-eLbvi Isostearyl erueate. 1. isoslearale
EoLada IJh ~ estu~ael a~tttDoDium elhvl su;fale Isostearvl,
Euealypms (EUQIYPmS slobulus) eXLraa Wheal ; , ,i ~ eLbo5ulfale Ma~orleirtrtD
Golden sea3 (Hvdraslis eaDadeDsis) rool exuaa U 5, .
1- '' ,' Astringent r~ ~ eellulose
Melia ausualasicL .U. azadiraehla e~trraa AlumiD_m eiuale. A. Iaelale Oayl palmitale
Melhyl salicvlale Asuasalus sinicus e;tuaa Oayldodeevl mvrtstale
Oranse ~ Chrus auranlium dulcis) peel exuaa Astroearyum murumunL A. rueuma exlraa h~yldor~eeyl stearovl dim~r diJinoleale
Oxvquinoline sulfale Azaoirachta indica extraa ~ ... slearoyl stearale
Pfaf~ia paniculalJ extraa Azelarnide MEA Oleyl oleale
PotLcsium abiemul hvdrolvzed collagen Bearberrv ~.' r - . Iu uva-ursi) exuaa PEG-20. -75 -150. -240. -350
PVP-iodine Bireh (Bemla aJba) ieaf extracl
Silver niua~e CaLaJpa hemptera exrract ~l~u ., I.u_. P.. mlcrontzed
Sodiutn saJicvla~e Celasrrus paniCulaLa exrraa PVP
Slereulia plotanifolia exulct Coee~nca indica exr ael Sorb t I
Tea Lree I Melaleuea allernifolia) oil Coffee (Coffea arabiea) bean extract vn ' ~
Tormemil I Pmenlilla erecta ) exUacl Euphrasia ob icinalis exuact Tapioca dexurin
Xanthozvlum bungeanum ex~raCI Eulerpe preealona exuaa Tririeevl behenale. T. I
Evemns pnmrose (Oenolhera btennusl exrracl Trideevl slearovl slearare
~ Genuan ~Genuana iUlea~ excraa Tnsodium HEDTA
Aeetamlde ME ~ Geranium maeularum eXLraa
A r .I~ Inmonium ch3Oride Grape (Vios vinjferaJ leaf exrraa Biol. polymer
o~N A~c ~ h_A~ ' chlonde Henna (l~wsonia inermis) exrract Distareh phospbale
Al~cvl dimelhvl betame Hieroehloe odorata eXlrael Dos rose (Rosa eanina) seed exuaa
r ,, ~ chlonde Honeysuckle(Loniceraetlpnfolium)e-Arraet HydrogeoperoAide
r ~ . r" h! elhosulfale Hops(Hurnuluslupulus)exuaa Kojieabd
r ~ /I h, ~ .h, 1 dumonuum ch30nde Horsetail extra~ Mulbem ~Moms nisra) exuaa
C~buA~.! c nm Hypenesmper~ran~extraa ~ _ roolextraa
Celethvl elhosuJfale Ivy e~aa
' ~ chloride JunipeneicommunisexUael Botaqi
ChidD Kadsura heleliloca exuaa Acacia
Chitosan Kola (Cola aaiminata) exrraa Acacia faroesiana eAtraa
r. ~, , 1 c~h! ' " elhosulfale Lady s roan~le (A3cbemi33a vu3saris) extraa Asritttonv (Agnmonia eupatoria) extract
r. ' h.J~uA~u .. r,l hydrolyzedrice Lemon(Citmsmedicalimonumlextract peelexrma A3der(Ainucfirma)exrract
prolein Lemon - exUacl Alfalf~ (Medicago sativa) extract
r, h!. ~r,v~,~lhydrolyzedsov Lysu~chia g~ eAuaa Aie~ae(A : nodosum)exlraa
proteuD Magnoiia spp. extraa Aigae (I i dcarum) exuaa
D ~ h ~J~UA~ r~l,U Y Mrimonium chloride Mauriru nexosa extraa Aioe barbadensis. A b. exuaa
Dimelhyl D. cocarttine ~ regia exuac~ Aioe capeosis extraa
DimethvlI D.soyam0e Mela3eucaunbnata M.wiisoniiextraa AipineVeronicaexuaa
Dumelhvi lailovvartune Melia australasica exuaa Aithea offibnaiis exrraa
D ' ~' ' '!lh!l~uAi ~!' ' Nenle(Unicadioica)exrraa AngelicaarchaDgelicaexr~cl
- Oait (Quercus) bari~ eXUacl ArLce ~Piunpinelia anisum) exuaa
D; ! I--h ~ I h . ~ UA~ . ~h! I Ocimum basilicum. O. sanmm extraa Appk (Pvms maiusl extract
N-Dodecvl-N.i'l: ! I N (d~ ul acelale) Paimeno eAlraa Apncol / Pmnus Drmeniaca~ exrraa
ammomum chlonde Passlon ibwer ~ PDssiflora launfolia ~ fruil exuDct Arnica montana exlraa
r ', r ~ I h!'~'U'~' Plamain ~Phmago mDjor) exUDCI ~ttemisia capiiiaris exlra~
Gl ~cerv I ............ ' Polvgooum mulbaorum exlracl Anichoite I C- nara scolvmus) exuac
....neJ IDllùwDmlne n <lde Plerocarpu~ mDrsuplanus c~xlracl AsateDda ~ FerulD Dssa loelidal exlrDc
lc. ~ ....... l.. l.. ~.O .l .11~; RDcpnerr~ ~Ruhu~ ~slma Asi;lc~rum ~lebol li eYIrila

CA 02259464 1998-12-30

PCTrUS9N/08931
WO 98/48768 60

Functions
Aspur;teus ol l;clniJIl~ eXmtCI Cucumbem Cucumis S;tlivus~ extT; ct Jlsmine lJ~sminum o~ficin31e~ extr3c
A itrsteulus simcu~ extr3c~ Cypresc ~Cupnessus ~ exlrJe~ Job s te trs ~Coix l~crym;t-jobB extracl
AvenslGcumnvulele~tlrtc~ DDndelion~TurDxucumotficinDlelextfitct Jojob;tlBuxuschinensisJseedpovder
Avoc;tdo(Perseterlt~ m;t~exlrDcl DalelPhoenixd~clvli~er;t~ex~rDel lunipenuscommuniscx~r;tc~
B;tlmmlnl lMelicsululicint~ exmDcl~oilexmtcl DeadSeuMud Sul~s KelplM;tcmcvslispynferD)ex~roct
B~n~nu I Musu sapicnlutnl extr. c~ Doe ro~e IRos~ c;tnin;tl hips ex~rDcl KiWi lAclimdia chinensisl Iruit exlr;tct. seed oil
B~rlev I Hordeum ~ule;lre) extract Dver s broom extrDa Kola ICola ;tcummDtD~ extr;ta
Basil I Oclmum busi licum ~ eXlrtcl Eleulhen- Sinsens I A . semicosus ~ KrDmeri;t tri;tndm extrtct
Bearbenv ~AII r ~ 5 Uvu~urSil CXtrJC~ CXlntCI Lldy s m;~mle IAlch~mlllu vulcarisl e:~lrDCt
Beepollene~tlr;tc~ ElmlUlmusc~mpes~nslesur3ct Ladv'sThistlelSiivbummDn3num~extr~c~
13ee~Bel;tvuleJnsle.t~rlc~ EucalvptuslEuc~lyp~usslobulus~e.~uract L~ur,cllLlurusnobilislcxultct
Bet;teluc:ln Euc~lyptusslobulusml L~venderlLavnnduia;tneustitoli;t~e.ttntct~w~ter
Bilben,vl\~:;cciniummvnillu.~extr;tcl Eucommllulmotdesextract LemonlCilnusmedicalimonumlexu-aa.Juic~
Biollavonolds Euphr;tslu nlficinalis e~t~rac~ extrtc~. peel exu;tct
BinchlHeluluJlhD~b;trke.ttract.leDfextrlct Eveninepnmrose~OenolherDbiennis~extnDcl.oil Lemon' ~' - exlracl
airchlBelul;lplttvphyllD jJpomc;t~extrDct Everl~lln~elHelichrvsumaren3numlextract LemonerasslCymbopoeon ~exlr~ct
Hitlerormselcilrusuuranliumamara~extracl~ Fennel(F~cniculumvulgarc)extrncl Lcop3rdfower(Belamc3ndaLbinenslslroolexlr
~lowere~lrlcl~peeletlrJcl Fenuerceketlracl
BlJck ~ohosh ICimicllueD rDcemosD~ exlrJa Fennemed nce lOrvza sa~ivDI exr~nct Lettuce (Lactuca sc;tnola sanva) exlract
BlackcunrJnl(RihesniLrumlcxlracl FemlDrvoplensliiix-MJslexlracl Llconce(Glvcynhlzasllbra)exlrDc
al;lckhennJexlracl FielFicu~cnrica~exuact Ld~c(s~vnns;tvuls~nslcxm
BhJckpoplJrlPopulusnisru~e~ttrnct Fi;needletxtrDct Lmden~rillaarecntca1extract
alack walnumJuelm~ merll exlract Fumitorv IFumaria olficinalis1 extrtct m en ( m J cordatol exlracl waler
Bhldd~rwr;~ck(Fucus~eslculo~u~lexlracl Gnrdeniallondaexlracl Loriuol(Enoho~rvaJaponlc:llleatex~rJc
Boraee (Borleo ollicinJlisl c~tmac~ G3rlic ~AIiium saovuml ex~mcl Mi~ldenhalr lem eX~rJCt
BuckthomlFrJneulD:dnuslex~ract Gelidium . M~stnoh~kobusextran
Burdo k ( Arcllum IJPPjJ ~ exlrlcl Gemian I Genti~nD luteD~ eXIract Mallo~v e tu-act
Burdock I Arclium mmus I roo~ extr~cl Geranium mDculatum exlracl MandraeorJ o Icm:lrum exlract
Bumel e~tracl Gineer root exlruct M~nn~n
3_ I ~uom ~Ruscus :Iculeatus~ extroct Ginkeo biloba extraCI MDrngold
CJbbDs e rose ( Ro-;l cenulolin ~ ex~r.lcl Ginsene ( PanDx einsene~ e.x~acl MDnne sllls
Cahmus(Aconu~cJlDmus~cxlracl Cl~yld aad Mstuncana(ChamomillDreculila~ctlract
Calendulaolficin~ extrJct Glvcynhlzicacid '' .. ~ SpirteJulmana~e:~tr~ct
Caper (Capp3ns ~pmo~a~ e.xtract Glycyn~izin. JmmomDIed Melon (Cucumis m~lo~ e:~tr~ct
C~psicumlrute~censextrlct.C.l:oleore~in Golden~eJl~HyllrstisctnDdensis~roolexlr~cl MEAioo~ne
CarDv,J,v(CIrumcar~ilexlrJcl GoldthreadlCoptisjaponica(extracl Mislletoe(viscumJlbumlexlract
CDrraeeenJn i Cllondnu~ -nspuo Golu koliJ c tlracl Mu-ewon ( ~nemisia pnncep~ trJcL ~valer
Currot IDJu~u~ ~ trolJI extr.Jct GrJPC ( vhl~ viniJeral dis~illale. c~tract Mulberry n ~lonus Dlba( n~ot extrlct
Carrol(Dilucusc~rol;l~all~aloil GrDpclVilisvinlleralleJt.~eedcx~rac~ MulbcrrvH.lonusbomby~lslroolexlrDc
C~ssia aunculDIa exlrJct Grape ~iiln extrlct Mushroom txtract
CelDndine l~-h~ein mJjus~ estraa Grapetnuu Icimus ertndisl peel extract Mvrr'n (Commiphora m-rhJJ extrDct
Chamomlle ( ~nlhemi~ nob~ ( extract oil Gn en beJn ( Pha~eolus lunatu~( extract Nastunium e.~tract
ChapDn~l IL3rrea me.~(c3nJI e~lrJct Ground l~v (Glechoma hedertceJI e:~u~ct Nemli cxlract
Chem ~ Prunu~ cpec~o~a I leJt e.~tracl GuDrmD ~ PJulliniJ cupana( exlract Nenle d Jn1c3 dioicDI eslrJct
Chem bark. C.b. c.~lrDcl 11~ .. procumbens extrac~ Oak ~Qu~rcu~l bDrk exlrac~
Cheslnul ~CIslane3 ~all~ e~lracl HDvnov~erex~rac~ O~k roo~ e.~trac~
Chinese nlDI~cu~ ~ Hibi~cu~ roc3-~lnensi~l e.~rJC~ HazeHCorilu~ avellanDI nul e.~r3c~ OJI lA~ena ~JIIval br3n. brJn e.~nrac~mlour. proleln
Chlorella ~ ul~ exlrJcl Henna i L~v. ~onla inenmls I exlracl OJ~ tlov er
Cimiciiuoa loell i~ rhizome e~racl H~spendin. H. melhvl chJlcone Oli-e lOIeJ eumpa~ exlrac~. ICJt C.XlrDCt
Cinchona ~ucclrur~rJ e.~rJc~ Hibiscu~ ~abdDritfil extrx~ Onion ( Allium cepD~ extract
C;t~ uao-.Jm~3~er soluhle Hibiscus ~vnJcus extnact Oranee blossom exlracl
Guus biollJ~onold complex High betD ~ UCD barlev tlour Orange (C;UU5 DUranl~um dulcisl flo~-er e!ttrDcn
ClDrV e~rac~ Honevsuci;le ~ LonlcerD capn~olium I extract peel exlrac
clove(Eu~eniacar!nph~llus~e~tlrDcl l; . ''~Lon~ccr~japomcaHeatextr~cl P~nsv~ViolDtricolorlextra
Clover ( Tniollum prJlen.ie ~ eXlrJa Hops I Humulus lupulus I exlracl Papava I Clrica p~pDVDI e~lracl
Cnldlum olficlnJle rhlznm~ exmDcl. C.o. waler Horse chtsmul ~ Aesculia 'b~ I exlracl Parslev I Cwm ~D. ' I c.~uracl
CoHee ~Co~feD ;lrab~cJI hcJn eXlrJCI Horseradish ~CochleanD armorac~DI extrDcl Pass~on llov er I P~ssifiora launfoliDI Iruil e.~tracl
Collo~dal ollmeDI Horsetail extracl P lu_c- IPD~sii'iorD incarrlDtal exlrDc
Col~slool ~Tussllazo 13rti~r31 IC31 e~ilr3cl Houttuvnll cordata e~uacl PCD ~Pi~um ~allvum~ extract
ComlrevlS-mphvlumo~U.In;lle~leD~exu.lct HyDcinth(HyJcinthusonentalislextract PeDch~prunusprslcDlexuact~leJ~extract
Conduranoo e.~rJct Hydrrxot~l (Centdla ~CiDtiC~( extrlct Pel;treon~um eopitlttum e.~tract
C"nello~emEch~naceaim~usnlolm(extract HydrolvzedoJlprotein.sovnour Pellitor~uParictDriaotficinDlislextrtct

~ l l k e t ~ r c t ~ ~ ' R n v ~ ~ ~
Corntlower(C~nlJureJcvanuslexlracl Jap3nese~n~elicDlAn~elic~acutiloba~extr~ct. Pcriwinkie(\oncamlnor~exlr~ct
CrDtDe~US monoeln(t c~lrJcl wDuer PEG 80 jojoba acidlalcohol
Cnthmum m;triumum exlrnct Japanese hawthorn ICratDeeus cune~t~l extract PEG-1'0 jojoba Jcid/alcohol
CAMPO Siddha Herbs Extracts ~ CAMPO RF-~F'\RCH
Jolhi-Pul (r ~ . 9~ s) Siddha Extract ~or High contEtnt bir~av8ilable 44~
NN~Ural Redlum ~or anîi Karposi Sarcoma Skin Treatml~rlt~ qlW Level 36. Hong Leong Eluilding,
F~oma-Maram ~Hairy Tree~ Siddha Extract torANTI SENSE DNA 16 RathEIs Ouay. Singapora 0104 ~~
Topical lpl '' la tor HIV~ Ly,. ph n 'Tel: (65) - 7653292 Full Colour Fax: ~65) ~ 7653Z93
Siddha Ex~racts lor post-CI-.~ I' t Skin-Damage Treatment PC - \/ideo T~ . (65~ 7653292 - For Tech. Assisîance~



. ~ . . .

CA 02259464 l998-l2-30

W O 98/48768 61 PCT~US98/08931

Functions
Pfaff~a paniculilta exttaet Wheat (Tnueum vulgare) extraet. proueitt Phytie aeid
Fi. ~.- amurense extrae~ Wheat (Triticum vulgare) germ extrae~ Potassium aspartate
p; , ' jl Wheat bran lipids Sodium aspa tate
Pimento ( Pimenu otfieinaiisl extr;tet White yinger ( Hedyehium eoronarium\ extrae~ Sodium , i ~ , Igl,
Pine ~Pinus 5ylvestris ~ cDne. needle extraa White nettle ~i~mium album) extraer Sodium '
PineappletAnanassativusl~xtraa WlldagrimonylPotenoliaansennalextrac~ Iclh,:
Plantain ( Plantago major ~ extrae~ Wdd eherry ~Prunus serouna I bark extraet Tetrasodium EDTA
Pollen exu ae~ Wdd indigo (i3Dpdsta onetonD) Tnpotassium i_DTA
Pongamol Wdd marjoram (Origanum vulgarel earraet Trisodium f- DTA. HEDTA
Pona Cocos ex~rac~ Wllow (Saiix albal bark extraet. exr aet
Puerarb~ lobola exuac~ Wdlow lSalix aibal leal' extraet t PII sltmula~
C ueen ot the meadow exu ac~ Wl~eh ha~el ( Hamamelis virginiana ~ exrraet Aeseulus ehnensls e~ttrae~
C uillaja saponaria extrae~ Yatrow (Aehillea millefoiium) eJtrraet Artemisia apiaeea exrrae~
uinee I Pvrus cydoma ~ seed extrae~ Yeast ~e ~ eerevisiae ) extract ( Faeal Astroearyum muru. A. tueuma extrac~
~uinoa ~ qumoal extracl Yueea vera extraet Baetrls gaslpaes extraa
Raspberrv I Rubus ) exu ac~ 7 ~: pipenlUm e1~traet Bot~joa sorbd~s extrael
Rauwolha (Serpenuml extmet _edoary (Cureyma redoratia) oil Cl,~J monfolium extraa
Rehm tnnia ehinensis exu~c~ ~uffer Coeanea indiea exrraer
Restharrow I Ononis ~pinosa ~ extraa Ammonium earbonate. A. phosphnte Comfrey ( Symphytum off~einaie I leaf extrac~
Rh. _1._~.. 1~.. ~hlv extrDct Caieium hydroxide. C. phosphale Condurango extraet
P ._ea extmcl Citrie acid Dandelion (Taraxacum of ficinillel exLract
Rhubarb ( Rheum palmillum) extraa r-~ ~ HCI Echtea glauca extraa
Rice lOm~a s;mva~ bran exu~c~ Glveine Equisetum arvense exuite~
Riee fa~tv acid Phosphone aeid Eueaivptus (Euc;tlyptus globulus~ extrac~
Rose I Rosa multiflora) exu ac~ Potassium phosphale r forrunel exuacl
Rosemarv I Rosmannus otficinalis ~ exrntcl Potassium sodium tartm~e Euterpe precatona extraa
Rubia dnclorum extmc~ Sodium aceu~e. S. citra~e Fieus ntcemosa extmc~
SafflowemCimh;tmus unctonus) extrac~ Sodium lacute. S. phosphate hl od tra
Sage(salviaofficinillis)exu~cLwater Sueeinieaeid Hleroe oe orauex a
Sambueus ni~ra berrv exrr;tet. exrract T Horse chesunut ( Aescuha I ) ex~ract
Sandaiwood ~ Santaium album I extract 'iCnagdsura heteitloca extraet
San2uinaria eanadensls extraet ~;au~
Saponaria offieimtlis extract Ac ylates eopolymer. sphencai powder LiBUstrumi iuetd um graecum exu~c'
Sasa venchll e.~rrac~ Argtrune Maurtua tlexosa extractSaxifraga sarmentosa exuraet r ~I~J~ ,. ulglyeende ~ - ~ - reght exuact
Seabiosaar ensi~exuac~ ( .I-J.~ unglycende Melaleuci~braetelu .~ exrrila
Seu~ellana baicatensis rom e.~trac~ triglyeende Nelumbium speemsum extrae~
Siik exLrac~ t ~I ./ .~ ,./ul .. unglyeendes Oeimum basilieum extraet. O. sanrum extraet
Silver t; m Ables peamou) extrac~ Cete treth- 0 Paulownia impenalis exrlaet
Sisal (Agilve ngidal extrac~ CoeonuuCocos nuc~fera) oil Pfaffa spp. extraa
Slippery elm extraa Cyelodextrin Ptetoa~rpus marsupianus extraa
Soapberrv 153plndus mukurossl extract Dipropylene glycol Rubus thunbergii extraet
Sophom ~ngusutollit exu~a Glyeervl caprylale. G. ~ . . Selinum spp. extraa
Sophora fla- escens rom extract Hvdrated sdlca Shorea robuso~ extraa
Sophora jilponica extrac~ i_iposomes X ~ bunceimum exuact
Soybean ~GIvcine soJal exrract Magnesium silieate
Sov IGlycine so!a~ germ exUitcL pno~ein. sterol Methyl propanediol Cleansing
Spearrrunl Hvlentha ~indisI extracL oil PEG-8/SMDI copolymer 8irch I Betula albit H eaf extract
Spinach (Spinachl oleraceal exrrac~ Poulsslum chlonde i emongrass lCymbopogon: t l extrac~
Spiraea ulmiuria extrac~ PPG-I~/S.UDI Copolymer Oat (Avena salival bran extract
Sunnower I Helian~hus annuus I seed exrraa PPG-5 I/SMDI Copolymer Passion flower ( Passiflora launfolia~ hul~ extrac~
Sweet almond IPrunus amygdalus dulcis~ eAxrraa Propylene carbonate. P. glycol Wnch hazel (Hamamelis virriniana) extrac~
Sweet cherry ~ Prunus avium ) exr ac~ Serum albumin Yarrow i Achillea millefolium ) exAtrac~
Swee~ cicelv ~ Anthnscus cereiolium~ extract Sodium .~ùuA~ . Jl beLa-glucan
Sweet clo er I ~ielilotus otficinalis ) extract Sodium chlonde
Sweet violel ~ V~ola odoraL I exrrac~ Sodium magnesium silica~e Acetarnide MEA
SweniachiraLaexurlcl Tapiocadextrin 6-(N-Acetvlamino~ I UA~ IL chlonde
Tea (Camillia ~inen~ls) extract . : . .. . .
Thistle (Chicus benedictusl extracr Cheialot~s A.. ~
Thyme (Thymus vulQans~ exrrac~ Al diacedc ~ciù Adi P~ ~Y 1 1.
Tomato (Solanum l~.u~ extrac~ Calc~um d~sodlum EDTA diethylene oiamine copolymer
Tonmen~il ( Potenulla erecLal exrtac~ D~sodtum EDTA -copper AMP-isos~earo~l hvdrolvzed whea~ protein
Tuberose ~ Poli~nthes luberosa~ extract EDTA Apncot ~ Prunus armeniac31 kernel oil
Tunmenc ~ Curcuma longa ~ eAxr act HEDTA r ~ ~ chlonde
Valenan~Valenanaorrlcinalis~exuact Mal~cIc~d E ~, "I ~IUA~JIU~Idimonium
Walnut (Ju~lms rt gial extract. Ieaf exAtract Monostearyl citrate chloride
Wa~er Lily ( Nymph;tea ~Iba I root exAr act Pentasodium pentetate r ~ eLhosulfate
Watercness ~ ~astunium ûfflcinale ~ extract Penret~c ac~d r . lt ~ . PG-dimonium chlonde
CAMPO Siddha Herb Extracts ~Ç CAMPO RESEARCH ,~
CAMPO Rai.. fu.e~l Herbi-xtracts& Oils ~ L~v~136.HongL~ong~uilding,
CAMPO Australasian Herbs 8 Tea ~ree Extracts 16 Rrlm~s Ouay, Slng~oro 0104
CAMPO Chinese 8 Japanes~ Herb Extracts PC - Vidr~o T ~ d ~ 65)o7o6sr32s2- (65) ;7653293
1.12 Cosmetic Bench Rererence 1996



. .

CA 022~9464 1998-12-30

WO 98/48768 62 PCT/US98/08931


Functions
r . r ~ : behenale Hydrolyzed sweel almond pro~cin r. 1~ chlond~
iehenamine oxide Hydrolyzed wheat proleir /PVP copolvm~r r~ 1~, , : . ~ , , 1
ehenovl PG-mmonium chloride Hydrolyzed wheal proleio polvsiloxane polvmer ehloride
ehenyibelain- Il ' ~Ih,ll ~_' dimoniwnchloride r~, 2.-5 -6-11 -16
ihvL~ hvdrolvzdcollagn 11~- ~ ' r.l~ 17 -18 -24-29 ~4
r , ~I belaine H~ U~ chilosan Pot ssiurn dimcthicone copolyol pamhenyl
Capramide DEA 11~_ , Jl guar h ' ~, "' ' pbospbale
r , ~;~uw mglycende chlortde Poatssiwm lauroyl colla5en amino aads
Caprylyl pyrrolidone 11~ b ~ r ~ JI ~ , J ~ Potassiwmlawoylhydrolyzedsoyprmein
Cassia aunculala exuacl chloride Potassium lawovl wheat amino acids
Cetamine oxide 11, ~ Jl bis-,l~ ~' '' chlande Poassiwm slearovl hydrolyzed collagcn
r, ~ c hlond- H 1 ' - gelalin PPG-5 laoolin alcohol elber
ChilosanPCA 11~_ ~r~ ~ l; hydrolyzed keralin PPG-9 " ' ~ ' chlonde
Ci~nc acid H h silk Pi~G-20 lanolin alcohol elher
r; . r~ ~" '' /; ' Cd laclale CI 11~ b ~, , hydrolyzed wheal Proline
propion n~ prolein P opylene giycol stearale
r. , r~ , ./1 Isopropylh~J~ - ' dimelhicone rvP," ' , ~ vl~
hydrolyzrd collagen copolyol polygivcol esler
r, ~ , Isopropvl lanolal- ~ " ' ' ' ,; ' ~; - copolym~r
h~JIvA~tJ~uu~ h.l~ J collag-n ' ' , belain- 1 ~vr~ J;
r~ h ' ' elhosulfale Jl ' ' !' giUconale ~ 5i~vl esler
r~ , , .I PG-dimoniumchlonde CPc ' ' 1/" ' ' Pivcolale PVf/l ' '~.. vwheatDroleincopolvmer
phosphate I r ~ /1 b! iacvale Qualerruum 2~ -26 -33~ -61 ~2 -70 -80
Co v I ' ' o)tide ' v~ ~1 .Ih!l " abosuifate ~ualemium 76 hvdmlyzed coliagen
r"al.' ', r-l buaine ~ !l v; ~ chionde P ' ' ~lln vv'' chionde
Co~ ' h~J u~u uu~ I hvdrolvzed hair ' ' ' vl morpholine I m lactale r , ,1 epoxvpropyl dimonium
keralin I ~ , I morpholine oxide ciniondc
r, h!J~u~ v~, hydmlyzedrice I ~IPG-dimoniumcbionde " ' ' ,I~h! ' elhosulhle
ptm-in ' " chionde f ice peplide
r, h.J~ v~lhvdrolyzedsilk Isoslearvlhvdrolyzedanimaiprolein r .;:' ahosulfale
r. - h!J~ ,Ihydrolyzedsoy l~u~ ' JI '' ' .~ v~Jldimonium P' ' ' ;Ibelaine
protein ehlonde '" ' ' ' N ' ' ~' lactal~
Coconm aicohol I ' ' ' ' ' ~1 ~Ih! ' elhosulfale
N-Cocovl(3 ,;)-NN ;I'i !1 I ~ rJl 3 ' ~ chlonde
ammonium elhvl sulfale I ~I PG-dimonium chlonde I Pc ~ ' ' ' , h elhosulfal-
Collagenphlhalale phosphale Siiiconequa~ernium 3
D;b~h~ 1/0; ' 1~1 dirnonium chlonde i awamine oxide Silk amino acids
Diiv~h- !; chloride i~awoampho PG-giycinale phosphate Sodium/TEA-laurovl collagen amino acids
D;-c ~ chlonde Laut~vlhydrolyzedcollagen Lh elaslin SodiwmTEA-laurovl hvdrolvzed keralin
D;l-.. ; ' chionde Lauroyl siik amino acids Sodium~lEA-lauroyl keralin amino acids
i~;h d~ h.lcoclmineoxide Lattrvlmelhvleiucelh-lOh!J~u~ v~-l Sodiumauate
Dh; ' ;~h~li !J~VJ~ Ur!I dimoniumchionde Sodiumcocovlhvdrolvzedsoyprotein
chionde Laurvl phosphale L pvrrolidone Sodium h!l~ lailow dimelhvl givcinat~
D ' !v~ JIvl laiiow ~Ivcina~c I . ' h hv~y v~u!; hvdrolvzed Sodium laurovl collaeen keraon amino bcids
Di' .J,u~. ' I tallowamine oxlde collagen keralin sov protein Sodiurn laurovl wheat amino acids
DilaUrVI aCelVI dimOniUm ChlOndC I ~ Sodium
~; ; k r ~ ; Miik armno acids Soluble keratin wheal prmein
Dimethvlh!~ Iallowamine Mtikprolein~Lactisproleinum) SovamideDEA
Dimelhvllauramine Dl isostearate ~ '' chionde " Ib ~L~;~ chionde
Dimethvl ~ sovamine slearamine Mv uu~lbetainc M ~ !; c, r r;l b~taine S !' ',~
D' '~ dimerate t1s ~; bromide r ~lah~ ethosulfale
Disodium h!l _ ' cmtonseed glycende Oa~ (Avena sanva~ protem 50yethvl r' ethosulfate
Oleamide o ethosulfate
Disodium laureth '' t~ ' ~ r!l betaine O ! Steanmide MEA
Disodium l n ,~ a~ JI d ' ~' hvdrolyzed o H _ !; ! ~ ~ ~
Di,l.. .; ' chlonde collagen ~ IbenzvldimoniumchDonde
Ethvl ester of hvdrolyzed keratin (1 ' ~ ' oxide ~ I cetearvl dimonium tosvlate
N ELh!' ' -t . I ~N-i v; ' ' 1- Olearnine ~ ,;d' v' slearate
N N-dimethvl ammonium chlo Ol amune oxide o ,, I ' .' ' ahosulfa~e
Glulamic acid Oleoyl sarcosme ~o ~ ~I morpholine laaale
Glyeervl collagenate Oleyl belaine o ' ~ .I PG dir~onium chlonde
Glvane Olevl ' b! ' ' ~1 elhon um ethosulfale phospbale
Guarh, ' vu u~. Pl chlonde r ~ . rJlbetame slearamitteoxide
Henna I Lawsonia inermis) exlraa r r ~ 1; ! I ~' '' ' ~ I hydrolvz-d
H. I ~te~DOwamin~oxid~ r P. oxtde eobagen Ireralin
11;1 ~ I " i ' chDoride Pamhenvl h~JIu~r Ju~ chDoride c panthenol
Hydrolyzedconchionnprolein PEG-~-' hD ' SlearoylamDdoethyld
Hvdrolvz~d eegprotein PEG 31 c onde ~ ' bromide
Hvdrolvzed extensin - auramme oxld- Slearvl dlsttethicone
Hvdrolvzed tibronectm 5 st-aryl ammomum laaate T r Jl ~ !
Hvdrolvz d hsh orot~in PEG 15 n c Te~ramethvl tribydroxy hexadecane
Hvdrolvzed keratin ~u-uuu !_ chlonde TEA-cocoyl hydrolyzed collagen
Hvdrolvzed lactalbumin PEG-'7
Hvdrolvzed nnilk protein PEG~0 Tn.c ~ chlonde
H-droNzed oals PEG-S5 lanolin Tridecvl saDtcylate
H~drol~zedmllculin PEG-70ol) Triethomumhydroly2cdcollagencthosutfate
H~dml\zcv~ rr-u-ln Pul!~' ' copol~ol Wheal-." ~ DClate

CA 02259464 1998-12-30

WO 98/48768 63 PCT/US98/08931


Functions
Wheat v ', , Jl .~, ' ' Disodium I ' ' TEA-PEG-3 cocamidt sulfate
ethosulfale Disodium I ' lil , ' t ~ betaiDe
Wheat p~podc Disodium lauryl ''
Yeast powder, ', ' Disodium mvristalttudo MEA '' Disinfectant
Disodium wwxyool-10 '' H " ' cbloride
~;Q~ ne ~ Pr-- Disodiumolea~ttido PEG-2 '' ChloropheDe
Acetyl ' ' Disodium PEG~ cocoamido MIPA '' D Yl chloride
~ ~ DisDdium ' ' '' MEA '' M ~ ' " saccharittale
Myreth-3 Disodium ": ' li, ,' Sbil~oniD
Oleyl alcohol ~ sulfonic acid Sodium ~"" ' , '
PPG-10 butaDediol D ' ~ ' 6, -9 Tea tree (Melaleuca allernifolia) oil
PPG-10 celvl ether I J~J~ r p T .
PPG-10 olevl ether I ' . , /1 betaine
PPG-15stearyle~her Isosteareth-ocatwxylicacid Diseersanl
PPG-22 butyl ether r ~ AllcyLtted ~A~l~ . , '~, ' '
PPG-23 oleyl ether Isoslearyl ~ .. hll imidazoliDe C20-40, C30-50, C40-o0 alcobols
PPG-50 oleyl ether I ~ , oxide Castor (RjCjDUS cornmuDis) oilTrideceth-7 carboxylic acid Latueth-ll Ceteareth-20
Latuoampho PG-glycinale phospba~e Ceql PPG-2 isodeceth-7 carboxvlate
Denaturant Laurylglucoside,L.phosphate Ch~l~t~.J'~ ' ,1,'~.~:' ' llauroylglutamate
Nicottne sulfate Magneslum htueth sulfate. M laurvl sulfate Dusosteuvl adipate
Sucrose octaacetate MEA-lauretD sulfate Dunethicone copolyol melhyl ether
Tbymol MEA-lauryl sulfate D~ ~ ' I duner dilinoleate
Dental powder MlpA-laurylsulfate r. ~ l
Dicalcium pbosphate MyristamiDe oxide Eihyl L, ' ~. ' yl ole,vl oxazoline
Silica Myrisucacid Glycerylcaprylate.G.~,.. :
Sodium . ~ ~ Nonnxynol-10 Glycnyl diisostearate
S~tnnous fluonde Oleth-li -15 !I"'O'J 11! _ ' tallow slvcendes
Deodorant Oleyl belaine ' ' ~ copolymer
Abieuc acid ~ ' ' ', , yl betaine Isnceql alcohol
Azadirachta indica extraa PEG-10 slycervl stearate Isopropyl Cl -15-pueth-9~carboxylate
1'1' '." coppercomplex PEG-15glvcerylslearate Isosteuyl
Eugenia jambolana exrract PEG-25 glycervl isostearate Lanolin acid
Famesol Potassiurn coroyl hydrolyzed collasen Lauretb 1, -6, -16
Fermented vegetable Sooiutn , , ' Melanin
Mauritia tlexosa extract Sodium , ' Nonoxynol-2. -18. ~20, -30, ~0
Salvia miltionhiza exrract Sodium . Octox,vnol-5, -10
Sodium aluminurn ' ' ' ~J~VA~ lactate Sodium~ js. ' suUate OctoA-vnol 16, 30, 10. 70
Spondias arnara exuact Sodittm cocoyl hydrol,vzed soy protein Ot t~: 5
Trietbvlcirrate Sodiumcocoylisethionate o n: ~ 1/, copolyol citrate
Zinc phenol sulfonale. Z ncinoleale Sorliurn C12-15 puelh-25 sulfate Oletb40
Sodium C1~16 olefin suUonale Oleyl alcobol
DepiiatorY Sodium C14-17 alkvl secsuUonale PEG-5 caslor oiJ. glvcervl sesquioleale
13uium sulfide Sodium dccetb suUate PEG-o becswax
Eeeswax. oxideed Sodium d~cyl diphenyl etber sulfonate PEG-8/SMDI copolvmer
Calciurn ~Lv N ' _odium .I~/d~ :' ' ' PEG-9 castor oil, oleate. stearate
L-cysleine HCL Sodium !' ' ~il ' ,. ether sulfonate PEG-10 dioleate. stearumine
potassium P 1~ ' Sodium iodate PEG-12 becswax
Sodium ' _1}. ' Sodium laureth-2 suUate PEG-12 glyceryl dioleate, Iaurate
Tbtioglycerin Sodium lauretb-3 suUate PEG-15 castor oil
Sodiurn lauretb-7 suUale PEG-20 almond slycerides
Det~gen t Sodium lauretb- 12 sulfale PEG-20 glyceryl isosteuate
Ammonuum lauretn suUatc Sodiurn lauretb- 13 carboxylate PEG-20 sorbitan misosterate
Ammonuum laurvl suUale Sodium laureth suUale PEG-25 caslor où
Capramidc DEA Sodiurn ' li, , ' PEG-30 ~
, yl ~ ! lactale Sodium ~ PEG-~0 b~ _ ' caslor oil PCA isoslearate
Deql glucoslde Sodium lauroyl metbyl alalltnate PEG 60 sbta buner slycerides
De~,. ' ' ' 25 Sodium lauryl pbosphate. S.l. suUale Poloxamer 101,127 181, 182.184
DEA lauryl suUIle Sodium lauryl sulfoacelale Pnlyglyceryl-2
Dlumyl sodium '' Sodium methyl oleoyl laurate Polyglyceryl-3 "' . oleate
Dicyclolbexvl sodium '' Sodiurn methyl cocoyl taurate re,l~ yl 5 disteuate
Diisobuql sodium '' Sodium ~ ' :' .: PM~6 mixed fanv acids
Disodiumc, ,' ' Sodiuml b~: ,' ' ' '' PD1~ ljl 10 "' dislearate
Dlsodmm ,. , ' bl . SodiummyrenbsuUale Pol~ c-yl 10decaolealeDisodium n y' ~ ' , ' ' Sodiwm myristyl sulfale Pol~ . acid
Disodium ~,. ~: , 'i~ , Sooiwm octyl sulfale. oleyl suUale Polysorbale 40, 80
Disodtum celearyl '' Sodiwm POE alkyl ether acetale Potassiwm ,oolyacrylale
Dtsodtum cocanudo MEA ~ '' Sodiwm nidecetb-7 carboxylate PPG-3 PEG-6 olevl etber
Disodium cocamido MIPA ' Sodiwm trideceth suUate PPG-9 " ' .: phosphate
Disodium , ' 'i , Sodiwm tridecvl suUate PPG-IVSMDI Copolvmer
Dlsodmm deceth-o ' Sleareth-ll. ~i0 PPG-15 stearyl etber
Dlsodmm isodecvl '' IEA :' ' " '' PPG-25, PPG~0 '' ' ,' chloride
Disodium lauramido MEA TEA-laweth sullale PPG-511SMDI Copolymer
Dlsodium lauramido PEG-' TEA-lawvl sulfale h ~/~iW_~olr copolymer
Dlsodmm laurelh ~' TEA-pabm l~ennelsarcosiDale 1 v~ copolymer
1.16 Cosmetic ~ench Relerence 1996


.. ..

CA 02259464 1998-12-30

PCT/US98/0893 1
WO 98/48768 64


Functions
Rapcseed ~)d. elho)lyl;llcd hlyh enucic acld Celyl s~c~ryl oclmoale t' h ' ' ~yl heh~na~e
Ricinoleyl ~Icohol Chi. ~Solvia hispanic;n oil D;h, ~ allovvamin~ olea~e
Sodiumcetelh-l3-clrhoAvl;l~e Choles~cnceslers Diisobulvladipme
Sodium h= 'I' S. pul~ ' Choleslcml Diisocelvl adipale. d 'c
Sodium pol~. ~ rl ~ ~LA ' ~sl/~ 'J"ve.yl h~un~vl elu~:~ma~e DiisodeLvl ;Idip~le
SorbilDn oleale Cholo~leyl h, '~ y~ .l. Diisopropyl Jdipule. dimcr dilinol~;lle
Slelrelh 10 Cholc~lcryl slCaralc Dii~opropyl ~ebacaleTncom~nYI PVp Cholclh-~4 Djjsoslcaroyl i,.. e~h~ p" ~doxv ~ilicateTni.~oslcmn PEG-h eslers C 18-70 Isop Irall;n Dii.ws~earyl adipale
T~lylJ.~.. vl cl~ra~e C10-18. C12-18 mglycendcs Diisos~c~ryl dimcrdilinole3le
C12-15 lincaraleohol~ '-c,h.;h Diisoslearvl l'um~r~e. D. mula~e
EmQIJi~ r. ', . , I PG-Jimnnlum ~hlondc Dilim~leic lcid
Amyl ledclvcol~le~rllc Coco~Theobmmacacaolhu~cr Dimelhicone
Acelylaledh.5 'I;molin r. , r. Dimelhicunecopolvo
Ac~lylaled h .JI U~ rd elycendc ron t r ~ ' Dimelhicl~ne copulvol acc~u~. D c. almond~
Acelylilled h~l."e.. ~.I.J vercllble clyccnde Coconul ICucos nucileral oil Dimethicune copol~nl hius~e:lrJIc. D.c. Iac
Acelyl led h~nolin. A.l. ;llcohol Cocoyl hydmlvzed ~I~V prmeln Dimelh~cone copl~l~ol me~hvl e~her
Acelyl Ied l rd ~:lyc~nd~ Cullaeen phlhal le Dimelhicone ~opulyol phlhalille
Acelylal~d ~ Collold;ll u~lmcal Dimelhic(lne ~ .h l - behen~
Acclyl~led palm kernel glycendes Comtrev ISymphvlum olricinule~ l~aie~u~ct D' ' ' ' ~ICarille
Alcunles moluccana elhvl CSler Com (Zca mavs~ od Dim-lh~ I lauram~nc ~dea~e
Allaoloin Curnp~ppv~Pap verrhl~ca~lexlracl Dio~nyl loipa~e
,~ - v hvdro xlde ~Icaral~ Cullon.~ecd ~ Cossvpl um 1 ~ld Dioclv l ,limer dil inulcale
AMP-i~o~lcarnyl hvdrolyzcd.~ov pmlem Cullleli~heXlraCI D;u~
ApncollPrunus Irmenl;lcalAcrnel~il C~ ~ ~ D~ .' ' .Idimerdilinoleale
Arachidvvl hehenalc Decclh~ phosphale Diuelyldooecyl ' '
Ar~ania ~pmosl oll Deevl IdeDle Dioclyl malalc D. ~cbac:lle. wccin:lle
AvocodolPerseaLralissim;l~oil. '' ' D.~ . D; !~ ~lullally~cidc~lcr
Avocldooilelhvlcsler ~ r~ dloxane D; ~ slhex~ u,~l.. l;/l.cs:lc:lprJl~
BabassulOrbicnyaoleiferaloil Dibulvl~ebacale Ch ~ lhexahydroxy~lcnrale/l~o~ ralc
Blryl isoclcar ,c. a. sle~lc Dicnprvl ~dipale Disle:lryl ' ~ dilinldc:lle
P ' ~ q~yl '' .lluAr~ dimonium Dicnprvlylelher D maleale Dimdecyl:ldipale
chlonde Dielhyieneclycol-;' - Do~roselRo,~canlna)hip~vil
Beheno~vdmelhicone Diclhylcncclycoldioclanoale EzclO~um~yol~exlrac
Behenylalcohol.8.behenalc bis-l~ .c.. U.. ",.~' ~.. u.. ,.. /;.. ~learalC/ EmuIDmmlcelus)oil
Bchenvl enucale. B. iso~learale h,o,~;A~ Erucyl erucale
aenzvl laural~ bis-D: '~;c"L~ "v' .~ ' Elhyl ~oc~dale
aladdervrac61Fucu~eslculu~usl~AIract k.-. r ~ i~ hhylhexyli~opillmilale
Bor~ce ~ B-~raco ~I'ficinali~ ed ud
Dv, -;~ ,uyi l,hv.".h..l..lvl PG-oimonlum
Br~in cxlmcl
Br~zd nu~ cnholelliil csccls~) od _ I _
Bulvl m~n~lal~. ol~al~ arJI~ Y ~ i~
BUIVIOCI~I vleale ~ ~ i~
Cl'-l~. Cl'-16. Cl~-15 llcohols
Cl'-15alcuhuh-~clanoalc
Cl'-15~ locnzoale I . L~l 5 !!~
dl-CI'-15 llkvl lumartlC
Cl~-15 Ill;yl lacl3lc
Tca ( Carnell ià ~mcnsls I oi l ~ _
C10-30 h~ L.. uUI ~ lers

r vl~ c~nde
C.,,lrl-~/L~n~ Inelyc~ndc PEG I csl~rs
C-ulrL-~-.Ju~ mglycendc I 8 i ~ 1 1 ~ 1 i ' i5 ~ ~ ~ i
C. ~,~ y l,./.~u"-,l~ l-i; mglvcende
C.~,,.yhcl-.-,u~/ol~.~ Inclycéndcs
C. " ~b i~uf~f~c~ Inclyccnde
Cupsicum Irulc.sCen~ olcoresin
C;trrot i Daucus c trOL7 sallval od
clshewlAnacardiumnccident.7lc~nuloil 1 . . Ll
C~slo m Ricinuscommunisloil ~ _ ~
Ccle3ryl bchen~l~. C. candelill3le _¦¦ ~ 3~ ~_
Celearyl ' C. oct noalc _
Celelryl palmilrtlc~ C. ~learale_~
Celelh- 10
Cclosle3ryl UCarale ~""~
CetvlCI'-15parelh-~carboAvlalc ~ ,L~
Ccr'vl acet~lc. C. ~Icohol ' ROBECO INC. o~
Ccryleslcrs.C.13clalc ~~P~RKAVENUE~NE\NYORK.NYio8fio ~~R~C~
Cclyl m~n~l.71C. C. ~A 13noal~ Zl2-CJ80~10 ~ ~ ~ ~ ~
Cclvl OIC:IIC. C. palmuJIc FAX 2l2-cec-~
Cc~vl PPG~ )decclh-, ~Jrbo~ lc "'~q'
CCI! I n.tn~llealc. C. ~Icar:)lc ~ OUR 78~ YFAR ~1~5~
( ~cmf~ l lr~rrn~ n/- l ln

CA 02259464 1998-12-30

PCTAJS98/08931
W Og8/48768 65

Functions
2-Ethylhexvl isostearate Isononyl i OL~
Etltyl linolenalc. E. minlcale ' , ~: " ' O ~: ' ' yl behenale. O. oenzoale
EIDYI morrhuale. E. mynstale Isopropyl avocadale Octyldodecyl entcDIe. O. myristale
Elhyl oleate, E. olivale l opropyl C12-15 1 ~ 9~ : ' ' ,' oleale. O. ncinoleale
Evening pnmrose (Oenolhera biennis) exlrDct, oil Isopropyl isoslearale Octyldodeql slearale
Glycerelh4.5-lactale Isop~pyl lanolale, 1. Iinoleale bis~ ~: ' ' , I sleDroyl dimer diliooleale
Glycerelh-5 laclale Isop~pyl mynslale. 1. palmitale Octyldodeql slearoyl steDrale
Glycereth-7 benzoate boplopyl PPG-2-isodeceth-7 arboxvlate Oleamine oxide
Glycereth-7 ~ Isopropyl sleDrDIe n~ .\ glycerides
Glycerelh-7 IriaCetate Isotorbide laurDle Olek alcobol
Glycerelh-7 Inoclanoale Isoslearic acid Oleos~earine
Glycerelh-l~ -26 ISOSteDIYI alcohol Oleyl alcohol, O. erucale, O. oleate
Glycerol n i~; ' Iso tearyl behenale, 1. benzoate Ol jve (Olea europa) oil
Glycetyl adipale. G. dioleate Isoslearyl dislyceryl succinale Orange (Chlus auramium dulcis) peel wax
Glyceryl isostearate. G. Ianolate IsosteDryl erucate. 1. ~rucyl erucate Orange roupy (I', ' ' atlamicus) oil
Glyceryl linoleate. G. I , ,. _' Isostearyl isosleDrale. 1. Iactale Palm (Elaeis suineensis) oil
Glyceryl mynslale. G. oleale Lsostauyl malate. 1. myristale PDlm l~ernel slycendes
Glyceryl ncinoleale Isostearyl . , palrttitale Palmitic acid
Glyceryl Inacelyl r.JI~ Isostearyl slearoyl slearale Pao~henyl triace~ale
Glycerylmacelylncinoleale I ~ H hyc' r~ r,;dimooium Partiallyh,' ,, ~canolaoil
Gl~ cblonde Partially h. ' I soybean oil
Cl~ tridecyl ' Peach (Prunus persica) eltract
Gold of Pleasure oil Isolridecyl mynslale Peanul (Arachis hypogaea) oil
Grape (Vids viniferal seed oil Jojoba (E3uxtls chioensis) oil Pec~tn (Carva illinoensis) od
Hazel (Corvlus avellana) nut oil Jojoba buner, J. eslers PEG-2 ';' P, dioclanoale
Heliamhus annum elhyl esler lojoba oil. symhelic PEG-2 rDillc solids
Hexadecyl isopalmhale ICul~ui (Aleumes molaccana) nul oil pEG~
!- ' ,.' " '' Lactamide DGA PEG 1 ~ ~ P. dilaurale
Hexyl laurale L;utethH0 acetale PEG~5 C3~i2 alcohols chrale
H~Ar 'd ' Laoolin. L acid PEG-5 Cl~-18 alcohols chrale
HeAyldecyl stearale LaDolin alcohol, L oil ' PEG-5 1l! - _ ' caslor oil
Honey exlracl l~ttoliD. ultra aohydrous PEG-5 h. ' ,, ' castor oil ''
Hybnd safflower (Carthamus linclonus) oil LaDolir~ wax PEG-6
Hybnd sunflower (Helianthus annuusl oil Lanosle~l PEG~t b , ' ' , ~:' glycendes
1 Iy ' ~ ' C6- 1~ olefin polymers l~rd glyceride PEG-7 glvceryl cocoale
11~ ' _ ' c~swr oil Latlreth-~ ~3 PEG-8
H. ' ~ J CaS101 oil laurale Laurelh~ acelale. L. benzoale PEG-8 ddaurale, P. dioleale
11; ' _ J coconm oil Laurelh-'~octanoate PEG-8/SMDI copolvmer
H~ cononseed oil I ' '~ ' ' ' ' ' tnglyceride PEG-9 slearyl stearalelly ~ _ ' C1''~18 Iriglycendes Lauryl behenate, L lactale PEG-10 slearvl stearole
11, ' ' lanolin Lauryl phosphale PEG-12
11~1 _ - ' lanolin, dislilled I ,: '' h~.: ' isoslearale PEG-12 dioleale. P: palm kernel glycerides
- ' lecilhin l~squerella fendlen oil PEG-15 coamine ul.,.l~,~ ' , '
H~ millc lipids Linoleic acid PEG-18
Il~ ', ~, ' n3inlc oil Maadar ua lernifolia nm oil PEG-2D
Il,. _ ' paim kernel glvcerides Malealed sovbean oil PEG-20 1.. ' _ ~ caslor oil isoSlear31e
ll~ln ' palm oil Manso (Masnifera indical oil. seed oil PEG-20 h. ' , ' castor oil
pVIr l Mansokerneloil PEG-20';1 _ 'lanoljn
H~ sovbean oil M ' ,; (limnamhes alba) seed otl PEG-24 h M ~ ' lanolin
' slarch hvdrolysale Menhaden (Erevoonia Iyrannus) oil PEG-25 PA8A. P. propylene glycol slearale
11~1 ' lallow glycende MePDYI acetyl ncinoleate PEG 10 ghyceryl laurale
H~l 1 lallow glvcende lactale Metbyl glucelh-20 PEG 10 h.. ' ' caslor oil isoslearale
' tunJe oil Methyl glucelb-20 benzoale. .M. g. dislearale PEG 10 h!- _ ' caslor oil laurale
Il ~vegelablesl,vcendes Metltylh,2. ~ M.ncinoleate PEG-10h. ' _ 'castoroil, ''
11; ~ vegetable oil ~ ! waA PEG 10 jojoba oil
Hydrolvzed collagen Mined oil ~Parab'inum liquidum) PEG~50 h. ' _ ' castor oil laurate
Hydrolvzcd conchonn proteiD Mi~ otl PEG-50 h;. ' ' castor où I
Hydrolvzcd l;eralin Musl~ rose (Rosa moschala~ oil PEG-oO shea buner slycerides
Hydrolvzed mushroom ~Tncholoma matsutal~e~ Myretb-3 PEG~70 manso giycendes
extract Myrelh~3 Qprale. M. Iaurate PEG-75
Hydrolyzed oat prolein Myreth-3 myrislate. M. octanoate PEG-75 laDolio, P. shea butler slvcerides
Il, ' v i ' lanolin Myrisql alcohoL M. Iaaale PEG-75 sborea buner glycendes
H~ JA~' ' miL~c slycendes Myrisql mynstale. M. octanoale PEG-150
H~ ' V~.UiL acid Myrisql propionale, M. slearale PEG/PPG~1716 copolvmer
lliipe buner Neatsfool oil rc ~ ' ~I dioleate
150bulvl palmilalc. 1. sle~ral~ Neem (Melia azadirachla) seed oil r~
Isoceljl behenale. 1. omanoale Neopentyl glycol dicaprate r. ~. d s~earate
Isocetyl palmilale. l.salicylale Neopemyl gly01 d' " J P- )~h.hl
lsocelyl slearale Neopemyl ~lycol "' r"~
Isodecetn-2 cocoale Neopenryl slycol dioctanoale P~,.. ~.~.~.lh.. ;l: ' p,
Isodecyl cilrale. 1. co oale Oal (Avena saliva~ ~ran exlraC~, eAtract, flour P-... t.. ~. ~ . ' ' jl tetralaurale. P.
IsodecYI 1. Iaurale Octa0sanyl slearate r. ~ ~ ~llerraoleate. P. . , ' _
Isodecyl , Octyl cocoale r. ~ ~ ~1 le~raslearale
Isodecvloclanoale 1.olcale oc~yll~ o . r~ ~
Isodecyl slelrale Octyl , , O. omanoale P, ~ , 1-, '," ,; elher
Isododecane Oaylole~le. O. palmilale Petrolarum
1s~eicosane Octyl pelar=onale, O, slearalc Pbenethvl dimelhicone
OayldecJnol Phenyl '' ~ P. melhiconc. P. Irimelhicone
1.20 Cosmetic Bench Reierence 1996



... ., .. ~

CA 02259464 1998-12-30

W098/48768 66 PCTrUS98/08931

Functions
Phvl3nmol PPG S/SMDI copolvmer Propylene glywl mvnslyl e~her aeelate
Pis~nchio I Pistnci3 v~ml nul oil PPG-9 Propylene glycol stearate SE
Pl3cemnl enzvmes PPG-9-buleth- 1 ' Purnphn (Cucurbila pepo~ seed oil
pollen exlr3cl PPG-9 bulvl ether Quinoa ('~ - quinoa) oil
Poloxamer 105 benzoale PPG- 10 butanedioL P. celvl elher Rnpeseed ~E3rassic3 campesms) oil
PoloxJmer 18' dibenzoale PPG-IO melhvl glucose eiher Rice (Oyza saliva) bran oil. bran wax
Polvbulene PPG-IO olevl elher Rice falq aeid
Polvdecene PPG- 11 slearvl elher Safrdower (Cnrthamus linclonus) oil
Pul~ ~ copolvol PPG-I'-buteih-16 Saltnon(Salmo)et~Lzexlrac'
F~l. .h! l~n~ elycol PPG-I'-PEG SOItnolin Sesame~Sesamum indicum)oil
Pol~giyceryl-' p PPG-I~-PEG-651anolinoi) Sharkliveroil
Pul.~ l-' Inisoslearnle PPG-I~/SMDl Copolvmer Sheabulterll3 1. u~ . parLi)
PUI;~ 1-3 p 0l~31C PPG-IJbutvlether Sheabutter(e la. parhi)extrnct
Ful.tl~ 1-3 steorate PPG-15 butvl elher. P. ste3rvl ether Shea butter. ethoxvlaled
Ful;~ l~.. G -fi diolente PPG-15 sle trvl elher ben20ale Shorea stenoptera butter
Pul.~ l-10 dec301eme P. dectstetrate PPG-16 butyiether Silvbum mananum ethvl esler
Pul~tlv.~.~l IOIelraoleale PPG-18bmvlelh~r Sitostearvlaeetate
Ful;. PPG-'O Shn lipids
Pul; ~. PPG-'O-buteth-iO Slipperv elm extract
Pul~. , . . PPG-'Ocetvlether SodiumC8-16
P~ l PPG-'I-glvcerelh- ~ sulfonate
Pul;.. vvu~c PPG-'6 Sodium e~C .~ I beta-gluc3n
Pvl;vA~h~Ic.. c ~ o~ v~ rl~.. glycol PPG-'7 Qlvcervl ether Sodiumcelelh-13-carboxvlale
Ful... ~.. c 3 PPG-'S-bulelh-3 i So3ium dimethicone copolvol ncelyl
Fu:. ~ ,ul~ ~h.. ~ copolvmer PPG-30 Sodium glyceyl ole3le phosphnle
Polvsorbal~ JO PPG-;O celvl elher Sodium hvaduronale. S. ~ lulc
Polassium dimelhicone copolvol phosphale PPG 10 butvl elher Sorbeth- OPPG- -bulelh-3 PPG-iO celvl ether. P olevl ether Sorbitan isostearate. S. palmitate
PPG-' lanolin nlcohol elher PPG-51iSMDI Copolvmer Sorbitan S. ~-
PPG- mvnslvl elher propionale PPG-53 bmvl elher Sorbitan tnoieate
PPG-3 1, ~J,, castor oil Propglene glycol cetelh-3 ncet~te Sovbean (Glycine sojaJ oil
PPG-3 mvnslvl ether Pmpvlene glvcol dicJprylate Spennaceti
PPG-5-buteth-7 Propvlene glycol dl ~ b
PPG-5-lnureth-i Propvlene r~ivcol P.g. dioctanoale Squaiene
PPG-5 bulyl elher Pmpvlene gijcol l i, 51 I cele3rVi dimonium losvlale
PPG-5 lanolin waa Pmpvlene givcol isoceteth-3 acetate Stearetb I stearate
PPG-5 ~ .. - ~ilu,.. l ether Pmpjlene gijcol isosle3rate. P.g. laurale Stearie aeid S. hydra2ide
PPG-7-buteth-10 Pmpylenegiycolmynstate Stearoxydimetbicone
I

1~1 ~ 3
~_____
I ~ r ~


_
__
~ t~ ;~ 3~ ~ --
a~ ~ :~~ ~_~ 11 ~_
~ ~ l 1~


C.~sme~ic B~ncrl Rete~ence 194~ 1.'1

*rB

CA 022;i9464 1998-12-30

WO 98/48768 67 PCT/US98/08931

Functions
S~ c~llolymer C31cium sle3rlle N-Dodecvi-N.N-dimelhyl-N-(oodecyl aCe~31el
Sle3rvi behen31e. S. oenzo3le C31cium ~le3rovl htclyl3le Jmmonium chlonde
Sle3rvl '' ' S.cruc31e C;lprDmideDEA ~ ~ ~1~ '. '.I.. _mddccondens3le
Sle3rylhepl3no3le 5.propion31e t- ~ .' 3cid Egg(ovumlvoikemraLt
Sle3ryl ~le3ralc 1~ ~!; .' ,. elycendes Emulsirying WD~I NF
Ste3rvl ~le3rnvl .ue3r3le CuYIor oil. clho~lyl3led Etho~lyl3led f3uv 31cohol
Sucrose ~0~03le f-- ~- chlonde N E ' ,: ' hD 1.1 (N i ~ .,,v. ' ' 1-
Sunllower I Hcli3mhus 3nnuus ~ ~ccd oil Cele3rclh-' -I -5 -6 N.N-dimelhvl 3mmonium chlo . r:
Sweel 31mond ~ Prunu, 3mygd31u~ dulcls) oil Ccle3relh-~ phosph~tle Elhyl he~l~nediol
Sweel ~herrv I Prunus 3vlum~ ph l-d Ccle3relh-5 phoYph~tle Eu~elen3 er3cilis ~ul. ~-.h.. d~
Synlhelic jl~jObOOII Cele'.~relh-u7 lo ~1 It Glycerelh-26phosph31e
Symhelicw3x Cete3relh-lOphosph31e Glycerylctprvl31e.G. v; '~
T3110w Cele3relh-15-17~0-'5 Glycery1 ~ "'; '.'
TLn.. J~V.I~;~U~VI ~le3r31e CCICUrelh-~7 -29 -30 -3~ Glycervl coco31e. G. dil3urale
Tocophcrvl 3cel31e Ccle3ryl 31cohol Glycerjl dil3ur31e. G. diole31e
Tric3prin Cele3ryl glucoYide Glycervl disle3r3le. G. h, 3
Tnc3prvlin Cclelh-' -~ -6 -10 -1~ -13 Glycerjl isosle3r;tle. G. 13nol3le
Tnc3prylyl cllr3le Cclelh-16 -'0 -'5 -30 -33 Glvcervl 13ur~1e. G. Iinole31e
Trichoh)ma m3lYul3ke cV~lr3cl ~'~ ' , ' '' ' bromide Glvcerjl mono-di-lri-c3prvl31e
Tridecyl behen31e. T. coco3le t-- chlonde Gljcervl mynsl3le. G. ole31e
Tndecyl cruc31e. T r Celyl dimelhicone copolvol Glycerjl p31mil3le. G. ncinole3~e
Tridecvl ocl;~no3le. T. ~le3rlle Cclyl phllsph31e Glycervl neinole3le SE
Tndecvl sle3rovl ~le tr31e Cholexlerol Glyeerjl sle3r3le. G. sle3rale Cilr31e
Tndecvl Inmellh3le Cholclh-10 -15 -'I Glvcervl ~le3r3le 13cl3le
T, :' v IJ~yl ihr3le Coc3mide DEA. C. .~1 EA Gl jcervl slenrlle SE
Tnisocelvl cnr3le ('- . . !D ! Giycenvl ~ vl
TnisoYIe3nn ('~ ,.. 1 PG-oimonium chlonde Glycol disle3r3ie. G. ole31e
Tnlsosle3ryl cilr3le ~hosphme Glycol p31mil3le. G. ~le3r31e
TnlsoYIe3rvllnhnole3le Coc3mlne Glycolsle3r31eSE
Tnl3unn Co-elh-7 .3rbo~tylic 3cid Glycolamide sle3r3le
Tnlinolein Coconul Icid Cl.. ' ' 'i~ '
T. ' . I~J u- u .. ~. v I UC/I- - Coppcr prolein c0mple~v~ coco-gl~ cendcs
T, ' Vi 1~. ~ mcoco3le Collon~eed~lvcende 11,3~ 'cononYeedrlvcende
T.i ' vlulp.. r ~ mhur3le Cl -13 puelh-; ~1 9 ~t3 11~ ' ' 13nolin
Tnmynson C16-18 p3relh-3 ~5.5 -13 -19 11~.' ' lecilhin
Triocl3nom Cyclode~mn 11~3i ' p31m oil
T~io_~vlJuJ~vl cur3le D ~s~ul . '' ' 11~!1 ~ sov glvcende
Triolein DEA-ccle3relh-'-phosph3le 11 ~ ' l3110W elvcendes
Tnp31milin DEA~elyl phosph;lle 11~ ' ~3110w nl;cendes cilr~le
Tnpropvlene :Ivcol citr31e DEA~v~lu~LùA~ ' IIJ '1 ~ phoYph3leTnsle3rin DE.~-olelh-3 phosphule 11~1 ~' ' hnolin
T.i ' r DEA-ùlelh-5-phosph3le 11~ ' ;' ' lechhin
Vegel3ble oil DEA olelh-10 phosph31e 11~ ~. .I h.JIu ~ ~.n-
W31nul IJu-13ns regi3~ oil DEA-olcnh-_O-phosph3le 11.. 1~ I b
Whe3mTnlicum~ulg3re~enm~lil Dicele3relh-lOphosphonc~cid 1 ' 8sle3r31eU'' chlonde
Emulsi fier D. ' .: ' ' . I ~le3r31e Isocelelh- l O sle3r3lc
Acelvhled l).J.. - ' 13rd ylvccnde Diglycervl sle3r31e m313le Isoceuelh-'0
Acelvl3ledh~JI, 'veeel3hlc dycende l::h~J-. ~ 15-'0-30 Isocervl~Icohol
Acelvl31ed .~ c"l~., r;h ' l3110W phlh31ic 3cid ;Imide Isol3urelh-6
Acr,vl3les/C10-C3b31kyl;lcryl3lc-,., '~. Dil;luryl3celvldimoniumchlonde 1 '')l u~ldh/~J~' eluco:llle
Acryl31e~/vlnvl ~ l. r~ - ~(, u~ dimelhicon~ u~ -lvcolllc
Acrylic ~chl/. .- ~, coplllymer copolvol phosph31e
"~ . . ~ Dilinole;c 3cid chlonde v,
Ammomum ,.,v; ~ v~ copolymer D' copolyol 31mond~le lsosle3relh-- -3 -lo -l- ~-o~-~ -5o
Ar3chidvl 31cohol t! copolyol isosle3r31e Isosle3re h-2-oclano3le
Reesw~x ~; copolvol 13ur3le Isosle~reth-10 sle3rDle
.u~lvl l;h.I.u~ I dimonium ~\; copolyol methvl elher Isosle3ric 3cid
chlonde ~- copolvol oliv31e Isosle3rvl dielvcervl 5uccinDIe
Behenelh-5-10-'0-30 ~ copolvolphlh3131e ~ uu~ldih~droxypropyldimonium
Behemc 3ad ~ ~1.. 1.~1 h~J.u,~.h~; chlonde
Behenyl belDine I ''
130~ ' I u~ vl I ' ~sl PG-dimonium Dipropyleneglycol Lcoeth-~ -10-h5 -16-20 10
chlonde Disodiumh~ '- = 'collonseedglycende L3neth-lODcel31e
Cl'-~0 3cid PEG-8 esler Disodium n ' ' ' ' :-1E.\ '' ' L~ndin
C 18-36 3cid Disodium sle3ryl ~ r L~nolin. ultr3 3nhydrous
C31cium Jul-~ sulronulc Disodium '' ' ' ' L3nolin wax
C31clum prolein complex Dislaryl phlhalic acid 3mide l~ramide DEA. L. MEA


5 ¦~ ~L~!IcrF3C E~lUI5lt1ERS I~ ich
dis~erse caroomer For su; ~ t ' ' e-3imina~eS surtaclant-based T~Jk to the global leader.
1 22
Cosmetlc 8ench Reterence 1996

CA 022~9464 1998-12-30

WO 98/48768 68 PCT~US98108931

Functions
I ' ' r ' PEG-5 lanobte. P. oleamirte PEG-20 lanolirt P. Iaura~e
1 PG-dimonium chloride PEG-5 sny steml P. soyamine PEG-20 oleale
Laurelh-l ~Z -3 ~ -5 PEG-5 slearacttirle~ P. slearale PEG-20 melbyl glucose
Laureth-Z-oclanoale PEG-5 lallow mine PEG-20snrbilartbeeswax
Laurelh-3 phosphale PEG-6 ' ,1;.. i~lycerides PEG-20 sorbilan isosleUalo
Laurelh--l carboxvlic acid PEG-6 cocarttide PEG-20 sorbilan misoslerale
Laurelh-j carboxvlic acid PEG-6 ClZ-t4 eflùer PEG-20 sorbi~an uioleale
Laurelh-6-7-9-11-1' PEG~5dilauRIe.P.dioleale PEG-20slearale.P.tallowarnine
L turelh- 11 cDrboxvlic acid PEG-o disleaRIe P. isosteuale PEG-23 oleale. P. slearale
Laurelh-16 -'0 -'i -_S -30 PEG-6 lauraunide. P. Iaurale PEG-24 h, ' ' lanolin
Lauryl PCA PEG-6 oleale. P. padmilale PEG-25 CaslOr oil
~: copolyol PEG-o sorbitatt beeswax PEG-25 phyloslerol
Lecuhin PEG-6 sorbitan lauRIe PEG-25 pmpylene glycol slearale
l PG-dimonium chloride PEG~i sorbirltn oleate PEG-25 soy sterol P. slearale
phosphale PEG-6 sorbiaut slearale PEG-29 casmr oil
Lithium stearate PEG-6 steaRIe PEG-30 caslor oil
Magnesiumsulratel i h.. ' - PEG~i-3Z PEG-30 'il '~b,.'. -
Maleated sovbean oil PEG-o-32 slellrale PEG-30 glycervl cocoale
Melhoxv PEG-17idodecyl slycol copolymer PEG-7 glyceryl cocoale PEG-30 glycerjl isoslearale
Melhyl gluceth-Z0 distearate PEG-7 h! ' _ ' c tslor oil PEG-30 glycervl laurate
Melhvl glucose dioleate. M. g. PEG-7 oleaue PEG-30 glycervl oleale
Melhyl glucose PEG-75 lallowamine PEG-30 glyceryl slearale
MEA-laurcth sulfale PEG-8 PEG-30 h, ' _ ' castor oil
Myrelh-3 -I -7 PEG-8 beeswax. P. casmr oil PEG-30 lanolin
Myrelh-i mvri5tale PEG-8 Cl'-14 elher PEG-30 sorbitart tetraoleate
r ~ b ~ ' PEG-8 dilaurate. P. dioleDle PEG-32 dilaurate. P. dioleate
Nonoxynol- I -' -~ -5 -6 -7 PEG-8 disleaRIe PEG-32 dislearale. P. Iaurale
t: ~.. ol8-9-10-11-lZ-13 PEG-8giyceryllaurale PEG-32Oleale P.slearale
Nonoxvnol-14-15-18-'0-30 10-j0 PEG-81auRIe.P.oleale PEG-33c~sloroil
Nonvl nonoxvnol-5 -10 PEG-8. P. t;dlate PEG-35 casmr oil. P slearale
Oal~Avenasativa)flour PEG-9ctstoroil PEG 10casmroil
Octoxynol-I-3-j-8-10 PEG-9diisoslearale PEG~0glycerylisosleara
Octoxvnol 16. 30. 40 PEG-9 dioleate. P. disleDrale PEG-10 glycervl laurale
Z-Octyl dodecvl ;tlcohol PEG-9 laurale P. oleale PEG~0 glyceryl . '
o,~ PEG-9 stearate PEG-10 h! ' _ ' castor oil
O ~ t b '0~'5 PEG-10cDslo~oil.P.cocamine PEG 10h. 'cDstoroilPCAisoste~rale
Oleamidc DEA PEG-10 coconut oil cslers PEG 10 sorbhan '
O' ' ~Id.. ~h.' ' PEG-lOCI_-18alcohols PEG 10sorbhanlanolale
PEG- 10 dioleale PEG-10 sorbilan lelmoleale
Oleic acid PEG-10 glyceryl isoslelrale PEG~0 slearale
Oleth-'-3 1-5-6-7-8-9 PEG-10h!~ ~ 'cDsloroil PEG 10/dodecvlglycolcopolymer
Olelh-10-lZ-15-Z0-_3 PEG-10h ' _ 'casmroill ' PEG 12babassuglvcerides
Oleth-'5 -30 -~10 -50 PEG-10 lartolale PEG~ sorbitart laurale
Oleth 13 PEG-10 polyglvceryl-' laurale PEG 15 padm l~ernel glycendes
Oleth-' PhosphDte PEG- 10 sorbhan l~ura~c PEG 15 safflower clycendes
Olelh-3 phosphale PEG-10 sov slerol. P sle tramine PEG-50 ianolin. P. stc~raminc
Oleth-S phosphat~ PEG-10 steaRIe PEG-50 slearale
Olcth-10 phosphalc PEG-II bDbassu glycendes PEG-60 almond slycendes
Olelh-'0 phosphale PEG- 11 casmr oil PEG-60 cDstor oil
Palm acid PEG- I_ dilaurale. P dioleDte PEG-60 corn glycendes
r ~ - PEG-I disleatale PEG-60 glvcervl i
Palmilic ;tcid PEG-12 glyceryl dioleale PEG-60 h;d _ d casmr oil
PEG-' cocamine. P. dislearale PEG-I_ laume P. oleDle PEG-60 b; ' ' casmr oil isoslearate
PEG-_ L~d~ tallow amine PEG-12 sleaRle P. Iallale PEG-60 b; b _ ' cDsmr oil
PEG-Z laurJIe. P. Iaurale SE PEG-14 avocado giycendes PEG-60 sbea bmter glvcerides
PEG-Z oleamine. P. oleale PEG-15 castor oil PEG-60 sorbiian lelraoleD~e
PEG-' sovamine. P. stearamine PEG-15 coQmine PEG-70 mango glycendes
PEG-' slearale. P. sleara~e SE PEG-15 glyceryl isos~eara~e PEG-75
PEG-3 cocamide PEG-15 glyceryl laura~e PEG-75 CDS~Or oil. P. dilaura~e
PEG-3CI'-C18alcohols PEG-15glycerylricinolea~e PEG-75diolea~e P.dis~eara~e
PEG-; ylvceryl isosleara~e PEG-15 oleamine. P. oleale PEG-75 lattolin. P. Iaura~e
PEG-3glyceryl '' PEG-15 P.s~earamine PEG-7501ea~e
PEG-3 glvceryl tnstearate PEG-15 lailow amine PEG-75 sbea buner glycerides
PEG-3 lanola~e. P. sorbi~an oleale PEG-15 ladlow polyamine PEG-75 sborea buner glycendes
PEG-3 slearale PEG-16 PEG-75 slearale
PEG~ dioleale. P. ~''' PEG-16 h. ' ~ ' caslor oil PEG-80 sorbitan lauralePEG-S dilaurale. P. dis~esra~e PEG-16 soy s~erol PEG-90 sleara~e
PEG I glyceryl dislearate PEG-18 sleara~e PEG-IOO caslor oil
PEG I laura~e P. olea~e PEG-20aimond slycerides PEG-lOOh! ' cas~oroil
PEG- I s~earate PEG-ZO cas~or oil. P. dilaura~e PEG-IOO lanolin P. sleara~e
PEG I sleoryl stearale PEG-ZOdinleale P. dislearale PEG-120 disleuale
PEG I lallale PEG-ZO glycenl laurale PEG-150 dilaurale. P. dioleale
PEG-5 casmr oil. P. cocamine PEG-ZO glycervl oleale PEG-150 dis~eara~e. P. Ianolin
PEG-5 C12-C18 alcohols PEG-ZO glyceryl sleara~e PEG-150 laurate. P. olealePEG-5glycervlisosletrale PEG'oylycerylu~ . - PEG-150slearale
PEG-5 glycervl scsquiolemc PEG-20 glvcervl tnslearale PEG-ZOO casmr oil
PEG-5 glyccryl slearale PEG-_O h ' ' caslor oil PEG-'OO tdvcervl slelrale
PEG-5gl~cervl~ PEG-_Oh 3~ 'ltnolin PEG-'Oi)h;' ~ctsmr
CosmeîiC Bench Re~erence I aa~

CA 022C9464 1998-12-30

WO 98/48768 69 PCT/US98/08931

Functions
PEG-zOo lauralc. 1~. ~,leale Sooium C12-15 pareth-15 sulfonale T " ~ , ,1
PEG-~OO laurale Sodium isoslearoyl laclylalo Taliowelb-6
Phosphale eslers Sodium laurelh-l7 carboxylale Tetrasodium: ~. ,I slearyl
Phosphaled Imine ~"I~des Sodium lauroyl laclyla~e
Sodium lauryl sulfate TEA---,1 a.. v _ copolymer
PoloxamerlOl ll~fhlZ'.1''31Z4 Sodium ~ 6phosphale rlssueexlraa
Poloxamer 181. Ik2 i~4.185 '35 ~37 Sodiumoclylsulfale Tl q phosphale
Poloxamer Z38. 31~it 338cs07 Sodiumoleate Trideceth-3. -5. -6. -7 -8
Pvl~bl~ vl-2 olc;~tc Sooium oleyl sulfate Tridecelh-9. -10 -IZ -15
P'lJhl~ yl-3f~ h~ Sodiumphospha~e Tridecyl~lhoxy;ale
Pul, Iy.. vl ' s~ ~ Sodium stearovl lactvhte T
Pul.bl~ l 2stcfr~lc Sorbelh-20 Trilaweth--lphosphate
Pul,bl~ 1-2-PEG I Soroilan isoslearlle S. Iaurate Triolein
Pul~hly-~lv1-2-Pf:G~lstearale Sorbilanoleale S.palmilale TrisodiumHEDTA
Pol~hly.-,11-3 dn~lcarate. P. dioleate Sorbilan Tristeann
PulJ61~.. v1-3dh.tc;rate Sorbitan ' S
Puhbl, ~ -3 i J'.. distearale Sorbilan stearate. S. i Enzyme
PulJbl~ 1-3 olc;llL. . ~JU ~. Sorbhan moleate. S. tristearate Fermemed vegelable
Pul~bls~... . 3 sm;~ lc 5 , , I .- . . Ganoderma lucidum oil
Pul~bly.L.. I I olc;nc. P. slearale Sojamine Lipase
ru1.61~- v1-6 dhllcJIc. P. dislearale Slearamide DEA Papain
rvl.hl~ i 6 laun-lc. . mvnstate Ste~ramide DlBA-stearate Sov (Glvcine soja) prolein
Pul~blv~c~ vl.6 olcillC, P. ~vl~ ; Superoxide dismulasePul ~ SI ~ v 1 -6 SlCJ~:~lc ~ . .
Pul 51;.c~v1-8 olc;llc . . 1 ' laalle
Pulselj... ,vl-lOdc~ lclle ~ ,lPG-dimoniumchlonde Essent~aloil
Pulj~ls... ~ I lOdii~-~ learale phosphale Aesculuschinensisexlrac
Pul.61~.. ;1-10 di"lcJIe. P. dipalmilate Slearamme Artemlsla apllcea exlram
Pul hly.G. v 1-10 di~lc;~rlle. P. isoslearate Slearamine oxide BrasslCa ~F~ exlract
Puls~ls.~lvl-10 i;,ur;llc. P. Iinoleate Stearelh-2. ~. -6. -7 -10. -11 -13 Carawav (Carum carvi) oil
r I I l-lOmi~ciflllvacids Steareth-2phosphate Cardamon(Elettana . )oil
~ ~b ~; Steareth-15 -20.~21 -30.~100 ciove(Euseniac~vl J" )oii
Pu1~ ,vl.lo ~)lc.ltC Stearic Icid Eclipta alba extract
Fu~ 1-10 Sucrose cocoate. S. dislearale Eucaiypms blobulus oil
h~ v ~ Sucrose stearale r, ~ fonunei extrac
P-~;h~Vl-lO Iclr;l~lclle Symhelic beeswax Eulerpe precalona exlr3m
P- '~hl~.--;l-lo ~rhdc:lle Tallow glvcende. 3celvlaled 1.. '. Hterochloe odorala exlraa
Pul. ~.~.h~ " lv- ~ lycol T ~- . ~I DEA Kadsura ùeleliloca exlracl
Pul ~"11
Polvsorbme 'O ~1. 111 60. 61
Poljsorbale 6~i. 8n. ~1. 85 _
Polassium 31rgimlc. 1' .elvl phosphale ~jj_ ~;,~
Polassium laurale. P. myrislale
Polassium lallowalc ~ .... _
PPG-I-PEG.g Iaurvl clycol elher
PPG-'-celearelh-'
PPG-3 isosle3relh-'
PPG-3 PEG-~ olcvl ~ u hcr . .~_ ."e~
PPG-5 celelh-10 rl~ h3~ '0
PPG-8 vlcale ~--~i~_ - i3i .~~;
PPG-IO celvl elher l-h~ph3le --D~ ~~

PPG 15 ~Ic~rvi elh-
PPG-'~-buleih-'7
PPG-35 laurelh- '5
PrG-~6-hulelh-~h
I'PG-'6 olclle
l'rG 36~llCIle
Prnpylene 51vcol ;~lcul -l~. P.g. dioleale
I'ropvlene glvcol h~dr~vvSIearale
l'ropvl~ne gl;~col l;llll.uc. P.~. ricinoleale
Propilene glvcol rMIloltlle SE ~ -.
I'ropvlene glvcol ~Ic:~r;llc ~ ~:. ~li~
I'ropylene glvcol ~Ic:~r:ne. SE ~q~
~u31erniUm-33 -- --
U ~r--~ I Lll~' '- ' elhOSUlfale ' ~ -- l~lcc (Orv~a ~;~liv31 hr:m vvax
DEi\
I~icinoleic ;Icid
.'i:lponins
~clcnium pn)lcinc~m~l'le
~dicone yu ucrnium- K ~6 ,
um L.;;pr ;~l lc l ~ 3~ =~
,I~IIum ~:lrl-lllllcr

n~ n 1 . ,~ e~ence Iqq~
1 .~5

*rB

.. . ....

CA 022S9464 l998-l2-30

W O 98/48768
PCT~US98/08931

Functions
Ligus~rum lucidum ex~raa PVMMA deeadiene , 1~ . ~ , ,, I belame
Lysimachia r ~ exlr;tc~ PVP/~i ~ , Lauryl belaine
Melaleuca bracteaut extract polyglyeol esler M~ h~ P
Melaleucil nvpercifoli3 eXtrDCt b ~ ,~ ' copolymer copolyol phospha~e
Melaleuca ~ v.~-u exu3ct P~l, ' J ', ' ~ ~ Mynstamine oxide
Melaleuca uncina~a exnact i '~ yl,p_:,J~_31 ester Octyldodecvl benzoate
Melaleuca wilsonii extmct pVP/eieosene copolymer Oleamide DEA. O. MIPA
Naslurlium sinensis exuact P v 1, . copolymer Oleyl be~aiDe
Nelumbium speciosum exlrDct r ~'1 ll., ls . d whest protein copolymer Palm kernelamide DEA
Paulownia impenDlis extract Rice peptide PEG-3 lauramine oxide
Rosemary ( Rosmarinus officinalis) oil Seriein PPG-15 stearyl ether benzoate
Selinum ~pp. extroct She- butter (~ l-. , parkii) PEG-7000
Trichomonas japunicaextract Shellac Sodium .'
Withania somniferum extract Sodium C12- 15 pare~h-7 sulfonate Sodium cocovl isethionate
Yuzu oil Sodium hyaluronate Sodium laureth sulfate
Ziziphus jujuba extmct Soluble collasen Sodium lauroyl wheat amino acids
Soluble keratin Sodium octoxynol-2 ethane sulfonale
Exfoliant Soluble wheat prolein , . r yl betajne
Apncot ( Prunus armeniaca) kernel powder TEA-.. ~ ~. .: . _ copolymer Tallowamide MEA
Glycolic;tcid ~, r ~ resin , .
Jojoba ( Huxus chinensis) seed powder Trieontanyl PVP Foam stab~ er
Laaie acid Tnelhonium hvdrolvzed collagen elhosulfale r , ,: oxide
Papain Wheal peplide l~ehenamine oxide
PEG ll-~vocado Glvcerdies Caprylyl pyrrolidone
Willow (Salix alba) bark exlrDcl Fixative Cetamine oxide
Aerylates copolymer Cocamide DEA. C. Mf A. C. MIPA
~~c Adipic ~ ,u,ut,.l r. , , .I belaine
Corn ~Ze;t mays) cob powder dlelhylene uiamlne copolymer 5~ , "I hJ.
Nvlon-66 AMP-acrvlates copolymer r- , ,: laurvl ether
Oat (Avena sativa) bran, meal Hydrolvzed zein r. , ,,: oxide
Ravon Methacr,vlol ethvl ~ .,.. ~; copolvmer Coeamine oxide
Methyl rosinate D:, ~mh!l Cl -15 alLA~,u.u,u~ oxide
film former Pvl~., L -lo. -zg D:- ~.h.l cocamine oxide
Acetvlated lanolin PPG-Zo methvl glucose ether r J.,lh.l Iallowamine oxide
Ac.~ ,h. . ~b.~ acrvl3tes copolvmer Sodium polystyrene sulfonate , , ,I h.Lu~
Aerylates,u.. ~L.~: copolvmer H~ I ~,.. , ~. . ~,
Aervl3uscopolvmer Fla~or /aroma~ DEA
Alkvlated eVl~;; ~ r--- ~ ,l~ Laur rnide DEA, L. ,UEA
Ammonium.,.,~ eopolvmer Caraway(C3rumc3rvi)0il I r ~: oxide
Eletaglucm Cardatnon (Elettaria _ M ~ Ojl Lauramine oxide
~ vJ~ k(Fucusvesiculosus)e-Atract CiDnamon(r casia)oil Laureth-10
,~ . . . Clove (Eugenia ~.,.~ ~,h.: ) oil Lauric-linoleic DEA
Ethyl vanillin I ,: ( .~
Chitos3n lae~ale Eucalyptus slobulus oil I .: ".. ,m~ I .
Collapen Flavor (aroma) Lauryl pynolidone
Collaeen phthal3te Glutamic 3cid Linoleamide MEACollmd31 oa~meal Gl~.~-, acid Mynstamide DEA. .U. .UEA
Desamidocollagen Glycyrrhizic aeid Oleamide ME.~
D ~ ~ ~Rl~ , sjloxv silicate Glyeynhizin. ammoniated Palmitamide MEA
DMHF Melhyl salicylate PEG-3 lauramide
Elhvl esler of hvdrolyzed silk OraDge (Cilrus aurantium duleis~ oil PEG-I oleamide
_.. ;l ,. . Peppenmint (Men~ha pipenla~ oil ~ MEA

GeUan sum Rosemary ~Rûsmarious off~einalis~ oil Ses;~mide DEA
GIJ. d ~1~.. glyeol/adipate ~-U~ VI~ Sodium ~ - Whea~ permamide DEA
High beta-glucan barley llour Tttymol
Hydrolyzed collagen Vaoillh Ammorlium laureth sulfate
HvdTolvzed keratin
Hjdrolvzed oat protein Foam booster Ammonuum laureth-5 sulf3te
Hvdrolvzed pea protein All~ ~: oxide Ammonium laurelh-12 sulfa~e
Hydrolvzed re~iculin ~ r , yl betaine Amrttomum lauryl sulfale. A. 1. -Hvdrolvzed RNA r ~ oxide Amraonuummyrelh sulfale
Hjdrolyzed silk Caprylyl pynolidone Ammonium nonoxynol ~I sulfalc
Hydrolvzed sov protein Carrageenan (Chondrus crispus) Capryl ~"y~yl~ B 1
Hvdrolvzed wheat protein Coeamide DEA. C. MIPA Ce~yl belaine
Hjdroljzed wheal ~. copolyol r- ~, "I betaine Coeamide
phosphaleeopolvmer r- , , ~: ! ' laetale r- . .,'~
HydrolyzedwhealproteimPVPeopolymer r- -, ,,lh,. ~- C~ , ";: 1~, iactate
Il.. ~,u.up.: r, L DEA~laurethsulfale
11; ~,u.u,u~ gelalin r. ),~ ~, ,,lbelaine DEAlaurylsulfale
Jojoba (Buxus chinensis~ oil Coeoyl amido hydrùxy sulfo belaine Deeyl glueoside
I ~'~ L I Cocoyl j ~ ~ ' ' elhoxylale Disodium ' r
Mvnslûvl hvdrolvzed collagen DEA b ,. I-- d leeRhin Disodium ., , ~ il
~ Dimelhyl laurarnine Disodium ~". ~:
Oal (Avena saliva) exU3cl. prmein Disodium eoeamido ME~. ~ ~r ' Disodium rt ,~
PuH. .1 .... ,. ionomer Disodium , Disodium I
Pul.~lu.il.. l' h.-~ -ll.-"'. ~9 DisodiumlauramidoMEI~ Ir Disodium' p il r
pol~vin~ ceullr. P. ;llcohol Disodium laurelh Disodium laurvl
r~ L3ur3mide MIP A Disodium ule3mido MEA ~ r~
' ~ rr~ n,-,~ ",~

CA 02259464 1998-12-30

PCT~US98/08931
W O 98/48768 71

Functions

Disodium PEG-~I cocoamido ?~111 A '; Aiuminum distearate. Amrislearale t_, . bromide. C. chloride
r ~ ~ oxlde Behenic acid Celvl pyndinium chloride
Luuryl giucoslde CDicium a4inale C'oia (Saivia hispanica) oil
MEA laurelh sulIale CDrbomer Ch.~ ' monfolium eXIrac
Mixeo ;~_r- . ' ~ mvnslale N O ~ ! , ,,, , Cinchona succirubra exlracl
MlPA-laurvl sulfale ' ' ~ r. , . ,1 !~' prOplOllale
PEG-80 sorbilan iaurale CDnaseenan (Chondrus crispus) Coccinea indica exlraa
PEG laurvl ~her sulfDle Cere5in r, h, . ~,u.ou~ I hydrolyzed
Polassium cocoale. P. Iaurvl sulfale CCICDrYI caDdelillale coUa,r~en
Quillaja saponana ~xlracl 1~" ~ bi l r, - h,3 r~ I hvdrolyzed kemlin
Sodium .. ~ , ~ r , ~ Dcld copolymer r~ u~ Jl silk amino acids
SodiumL.""~ Elhybne/VAcopolymer r h,J, ~y,~r~lhydrolyzedwhea
Sodium .~ . . r Gellan gum proKin
Sodium ~ ~ ' ' ' ' Hexanediol behenyl beeswax r, h. Il ~ YIUA~h.l cellulose
Sodium ~ n H~ ' jojobaoil r, chlonde
Sodium Cl~- 15 parelh~5 sulfale 1l) ~ _ ' jojoba wax Collagen amino acids
Sodium CI'-15 parelh-3 sulfonale 11~ Dcid r,
Sodium C1'- 15 parelh- 15 sulfonale Jojoba wax L cysleine HCL
Sodium CHt-16 olcfin sulfonale Lanelh-5, -15 1~ ~
Sodium decelh sulfale ~ ~ Di.. l.: " chloride
Sodium laurelh~' sulfa~e Mvrelh-3-oclanoale r... chlonde
Sodium IDurelh-3 sultale OaDcosanvl slearale Di;, h ~ Mallowamine oleale
Sodium IDurelh-7 sulfDle Olelh.3 phosphale Dimethi0ne
Sodium ~ n~ Olelh~lo phosphale Dimelhicone copolvol aCelale. D c~ llmondale
Sodium laurylelher '' Poloxamer 105, 123, 1~4 185. '35 Dimelhicone copolyol amine
Sodium laurvl sulfDle. S. 1. sulfoacelale Poloxamer '37 ''38. 338. ~07 Dimethicone 0POIYOI ILh.d~UA~
Sodlum laur,vl lf Pol~ ' Dimelhicone copolvol isosleDrale. D. c. Iaurale
Sodium magnesium laurelh sulfDle p~1' . ' D ' copolvol olivaleSodiummyrelhsulfDIe.S.mynsl~vlsulfale r ,~ ,., ox3dlzed Dimelhiconeh .I~LA!~U~r~ Mnmoniumchlonde
Sodium trideceth sulfate Pnlassium alsinale, P. chloride Dirctethyl lauramine dimer dilinolcale
TEA~l.J.~,p ~ Sodium ~. ' 6 phosphale ! r fJ~ ah~,
TEA-laurelh sulfau Sodium lallowalc D ' )~I~.h.l h~3 ~.~h.'
TEA-lauro,vl collD~en Dmino acids Synlhclic bccswax ~ ~
TEA-laurovl kemlin Dmmo DCids lEA ~ copolvmcr Diphenvl d ' 'TEA-laurvi sulf31e Tribehenin D: " ' chloride
TEA-pDlm kernel sarcosinDIe N-Dodecvl-N.N dimelhvl N-(dodecvl acelDIcl
WheDI 8~ r .,u~l belDinc G1055er ammoniumchloride
YUCCD vem eXlracl CI8~36 aad slvcol csler Emada ~ IA d~ _ eYIraCI
Diphenvl dimethicone Ethyl esler of hvdrolyzed animDI prolein
Fragratnr r~ Oclvldodecvl laclale bulvlene glvcol chlonde
Orange (Ciuus auramium dulcis) oil P~nenvl melhicone. P n ' ' cm-tin
Peppermim (Memha pipenlD~ oil Polyglycer,vl-~ dioleale orev IMel)
Phenelhvl alcohol Pole ' ~vcrolvzedcollar~en
r. ,~; - icrolized hair kerann
Fr~rance solvent r. ~c . ; - jcrolized vegelable prolein
Benzvl benzoale r l; ~ ~ ~ - vorolvzed wheal u., '' ' copolvol
Dielhvl phlhalDIe ' ' v , ! ~ chlonde acetvl copolvmer
Trielhyl cilrale Tea (CDmellia sinensis) oil ~ d~ ' " ' PhOSPhale
Fungicide Tribehenm 1l) ~r.v~ hydrolvzed collagen
AslrocDrvum munumunu exlracl Hair care praein ~,uB ' co ~vldrolyzed whea
Azadlrachla mdlca cxlraa G-miDna scabra exlraa Hvssop lHyssopus officinalisj exlract
aptan ~laldenhair fern extract Insa edulis exlraa ! oxid
Ficus ra~cemosa extracl Nicotinic acid lsoslearoyl hydroiyzed collagen
Liguslicurn ~ hoh.. _ e~ a Wztercress lNaslurtium officinale) exttacl Kiwi /Aairtidia chmensis) fruil extraa
MelaJeuca ~ , ' ! U-,.ll~U eXIraCI ~ ~ Kola (Cola acuminala) exlraa
Mella DzadirDchla eXlracl Atnino bispropyl; LDmmana 1Dpontca extraa
Mushroom (cordvceps sabolifera) exlracl AMPD-isoslearovl hydrolvzed collagen Lauryl h, h ~ ,u~ u~,~ I Irimonium yON~
Sodium ( ' I t ~qua Ichlhammol I ~p !I ;SOSteDraleTea Iree (MelDieuca allennifoliD) oil e.abaSSu (Orblgnya oleifera) oil r . I~!JI~ I hydrolvzed
1, ,, chloride collagen
UL'~, ~ ~EA F~t ~-;~I ! I~ ~'' ' h!Jlu~ ur:lhydrolyzedwheD
Zinc ~ -h~l dimonium prolem
Ziziphus jujuba exlrDct chlortde di;inoleale ' ' !; dimer
Eiotin ' I biscelv
ACrVliCDCid/~LIvl ~ copolvmer ~ ! I malonamlde Lvslmachla ' ~l,
~gar r ~ vl pG dimollium ~1elaleuca hvpercifolia exlraCI
Algin chlonde Ocimum sanlum exlraa
Brazil nm (Benholellia excelsa) oil OleDllmnium chlonde
CoSmetic clench Relerence 1996
1 .'J7

CA 02259464 1998-12-30

W O 98/48768 72 PCT~US98/08931


Functions
Oleyl " ' . ' ' , , ,1 clhonium elhosulfale VA/bulyl ' " ' , I acryla~e copolymer Panthenyl ethyl etber
r I v~ .; ,1 ....... copolymer PCA
Panthenylelhylclher V~ ' ,Ipropionatecopolvmer PEG4
Paulownia imperialis cxlrDct VAh copolymer PolyZuDirto susar condensale
PeDch (Prunus penicD~ leat exlracl Vmyl e, ' '. v'P/ Pot ssium laclale
PEG-2 ~ ' chloride I , ~ ! copolymer Propyleneslycol
PEG-1'0 jojoba acid/alcohol r ,: hydrolyzed collagen
PG h ' ~ ' '' ' chlonde Hairshe~n rl ,: hydrolyzedsoy prolcin
PG h ' ~ ' ' chlonde Maidenhir krn exUaCI r. ,: hydrolyzed wheal prmein
PG h.d~A;.. ~ ' " T ' ~ Jl melhicon~ Qu ternium-22
chlonde Rice ~Oryza saliva~ germ oil
PG h, ' A~ h,R " ' ,~ " Hairwaving SeaSZtlts(Marissal)
chloride Ammonium ' ' ,'~. ' A Ihiolaaale Shea butler (E ~ parkii)
Phenyl ' ' Argania spinosa oil Siil~ powder
p j~ L cysleine HCL Sodium ùehenovl laclylale
Phylamriol Cysline Sodium caproyl laclylale
Pul~ dlV~ slycol ri ~s Sodium cocoyl laayla~e
Pul.r , ,1- ~ glvcoi Dilburyl ' ' U Sodium hyaluronale
P~ 6~ -7~ -10 r-~ ~ - sul;ite E ' ' ~1~ ' Sodium isostearoyl lactylate
Pul, , ' '' -'8, 39 E ' ' ' thiolactDtc Sodium laclale S Iauroyl lactylale, S PCA
PPG-5-cclelh-10 phosphale Glyceryl ' ' 's ~ Sodium, 1~0,
rlu~; hvdrolvzedcollasen 11, ~. '.m' ': ~,'c SodiumsleDroyllaclylale
F~",.l. hvdroljzed soy prmein lojob eslers Sorohan laurale
P~Ut~ hydrolyzed wheDI prolein ~ ' Ihiolaclale Sorbtlan
(~ ~ 18. -75. -~-ZI, -8 Sheabuuer ~Ihoxylaled Sorbltol
O ~ 79 hvdrolvzed keralin Sodium ' ' ~ F _ 5
79 hydrolyzed silk rhioslycenn TEA-PCA
Sambucus niera extract~ oil ntioslycolic acid Urea
S ' , I " ' chlonde Thiolactic acid H,~ I"
Silicone, 1, 8 Humet;tant Ammonium, ''
Sodmm , Ammonium ~
Sodium cocovl hydrolyzed collasen Acetamtde MEA Cetamine oxide
Sodium polvstvrene sullonate Acelyl ' ' ' ~ ox'd
N-Soya-~i ', r I)-NZ,N " ' ~I N -~hvl 6-(N Ac~ UA~h-~ chlonde L;uramineoxid~
ammonium elhvl sulfDle Adenosine phosphale
SteZlpvnum chloride Ammonium iaclD~e PPG-'~ 6, -9, -1'
C,l 1~ ' chlo-ide, , , Calcium r Sodium cumcne suironate
C ~ i ~JIUA~ , ,I hydrolyzed whea~ CDlclum sleDroyl iaaylale Sodium loluene su;fonate
protein chlonde ' ~ ' ~I chitosan ' ' ' Tridecab 19 ~arboxviic tcid
St.~ ' ' I .mvA~_,h l hvdrolvz~d collasen ilosan PCA
N-St~ar,vl-( i r ; ~ I)-N.N-dimelhvl-N-elhyl Chol~sl~ryl h~ A~
Immoniumelh-lsulrale CoUasen puN ' bydrolyzale CDPrVIjCJC;d
StenocDlvx mic;tlii cxlracl Coilmdai oalmeai i~ecelh-;
T~ .",.N' '.; ' chlondc n copoiyollaurale Diethylsuccmale
T ~ ' 1, chlonde Ethyl ester of h,vdrolyzed silk DM hvd-moin
Tea (CZZrnellia sinensis) oil i Zjrt,v quaternary atnine chlonde complex Ethvlene dichlonde
T EA-coco v I hv dro lvzed sov prole in Giycereth- 7 - I ' -'6 ~i~ iuoro 3-nUro aniline

T~ Gl ' ' ~ Methvl benzoale, M cocoaKWheal amino acids ycenn
Honey extracl Methyl Isoslearate M Iaurale
~jr set resin polymer I~ - ' passion fruitoil Methylmynstate M palmUitte
~n ~' ~?r~vhlmide copolvmer Hydrolyz~d CDSem Oietc Dnd
Acrjlates/PVP copulymer ilijdroivzed ~ TaU oii acid
Acrylates/h~JuA . ~.~acrvlatescopolymer Hydroljzedoalprotein TaUowacid
AMP-acrylales copolvmer HvjrJroiyzed sllk Laîhering agent
Butylester ot PVM-MA copolymer 11, ~ i chitosan Ammonium cocovl sarcosinate
Carbox,vlatedvinvlacetateterpolymer 11~ , rJ' ' ' hvdrolvzedcasein AtnmoniumC~ 15alkvlsulfDte
Diglycol/cHDM~ ,IP copolymer 11~ ~ hvdrolvzed silk Ammonium lauroyl sarcosinate
Eclipta alba extraa 1~ ' ' hVdrOIvzed SOv prolein Cocamide MEA elhoxylale
EthyleslerofPVMMAcopolymer 11~' " ,' ' ' hydrolyzedwheatpnuein (~ I:'Ut'!
I IJ J~UA~ ~.U,UV I chilosan Keratin am;no acids bydrolyzed collagen
Isopropyl esler of PVM/MA copolvmer Lactamide DGA UEA Laurovl sucosine
O-l~la-l~ ; !1 1 ~ r ,Itnmoniumchloride Myristoylsarcosine
~I copolymer Lacticacid Sodiumcocoylsucosinalc
PUI~. ' Vl~.. JU~. r; I ' chloride Lactose Sodium lauroyl sarcosinate
Pul!~, u~ . glycol C, Lawoyl Ivsine Sodium methyl cocoyl taurate
PVP Mallllol Sodiwn myrisloyl sarcosinale
pVP/," ' ~, ~ " ~ ~I copolymer Mannitol TEA~cocoylsarcosinatc
pVP/Polv~L~ ~I polvelycol eslcr Mclhvl 51uccth-10 -'0 TEA-lauroyl sarcosinale
pVP,'VA c opol~ mer Natto gum
pVP~V~ m !Ipolpionalecopolymer Oal(Av~nasaliva~extract prolein Lubrtcant
Sodlum pol~lcr~ l~le Pamhcm)l ,~, -
~- Cosmetic 8ench Reterence 1996


.. .. , ~ . . ..

CA 02259464 1998-12-30

W O 98/48768 73 PCT~US98/08931

Functions
Boron ni~nde S~earyl dimelhlcone Lanolin PEG-80 jojoba acidUaicohol
Caicium aluminum borosilicale Triisos~earyl citrate Lipo~ytic--Gelidium '' _'
Calcium sloarale Triolein 1) ~ n ' peroxide Hydrogeo peroxide.
f ~ tnglvcende Trisodium HEDTA Urea peroxide
Cocelh-7 clrboxylic acid T ' OJry8~n l ",, p~
Coconul (Cocos nucilera) oil Zinc laurale. Z. slearate Pcr~ide - p; Sodium stannale
C . Scalp - ~ e ' (Belula alba) leaf exuac
Diisodecvl adipale Mlscellanr ous Scbosradc--i aminana sacchanna extracl
Diisostearvl fumarate Adhcsion promorcr~ h~' glycoU Shu~c. H,. l~-.lwheat prolein
Dimelhicone copolvol adipale . h h ' ~ .ur,I yvlv. ''
Glyceryl isoslearale. G. oleate Ar '_ ' Glycol salicvlale SWn barricr lipid--Ccramide 3 ~i('7-
Glyceryl ~,vl ~ ~ Anc5thclic .~ ~ h,l ' _
Gold of Pleasure oll An~i-claslic H~ . d Ulva lacnuca exua~ sAin clarificr--Oa; (Avena saliva) bran cxtrac
Hyaluronic acid A- ' ~ ' shale oil sulfonate Skin I , ~ (Belula alba) leal e~lrac
coconuloil A~ ' _ ' hvdroxide.Magnesium .~.. .. ~ Dimelhicone copolyol
ll~d _ ' cottonseed o~l silicate~ Simethicone
ii~3~ _ 'palmoil Anu~ocm--Dimelhiconesilylale Simelhicone ' ~ ~ :
H~ . ' oil Anri/ipusicJ_aminaria saccharina extran h, ' ~ l tnmomum chlonde
Il~' sovbean od An~iprurilic--Coal tar
I 1~ .b ~ vegelable oil A ~ ' "--Garlic (Ailium salivum \ exlracl St nlc5s ~ r~yl tyrosine Eclipla alba
Hydrolyzed oal flour A- ' . " Chioese hibiscus ~Hibiscus rosa- eauacl in while emulslon
I guar sinensis) exlraa Tonic~Ciwi (Aclinidia chinensisl fruil exlracl.
Isodecvl slcarale llarricr~il~. .1-.. glycoUadipale Malncaria ~Chamomiila reculila~ cxlract.
Isopropvl ianola~e . Oran~o ICitrus auranlium dulcis) peel exuact
Isostearvl diglycervl succinate C~ll .. ~ .. c._ Cl .~v" . ~.. Hvdrolvzed Uscoslrv sla~ilizer--Diisodecyl adipate
Jojoba eslers Ulva laauca extracl Sprcading agenr--Slearvl heplanoale
Lanolinoil ~Ao_ ~ r Ch~ h.. L'o. .. ' ' ~I Woundhealing--Comfrev(Symphylumofficinale)
Laurelh-3 phosphale
Magnesium mvns~ale ~I sleaale lauroyl glulamale. Isododecane leafexlracl
Mango ( Mangi~era indica~ oil Colloid--Gelaon 1 ~ cgenl--PVP!eicosene copolymer.
Mineral oll (PDraffinum liquidum~ Coolins r ~ I PCA. .~enthone giycenn P'v I ~A~J~ c copolymer. Tricomanyl pVp
Mink oil r ~ aover(Tnfollum pralense) exu-an Moisturebarrier
Neatsfool oil Dyc srabiliz~r--Unc acid ~ I.,. v ' ' ' copolymer~- Filkr--Mica Belaglucan
Panially l.~d~. ~ - ' soybean oil Frasranc~slabiliz~r--2 ''.4.4'- C16-leA alkvl melhicone
PEG I dilaurate Frccradlcaiscà~cngcr--Melaoin Glycolipids
PEG-5M IRfiller--Corallinaofficinalis Isoelcosaoe
PEG-'3M ~ ~ D l~T ~ T
PEG-27 lanolin
PEG-30 IJnolin
PEG 10 lanolin. P. stearate C H E M I C A L C O M P A N Y
PEG~SM
PEG-90M
PEG-160M T T
PEGIPPG-17;6copolvmer Up to date. innovative technolog~ for the
Pemaervlhruvl; ' .
Petrolalum r Y cosmetic industrv has been the clriving force
Phenelhvl dimelhicone

Phenylme~hlcone behind Bernel Chemical Companv since its
Pul~ v' ' ' ~1~. sulfonicac~d ",
Polybulene foundin~ in 1982. Combinin~ over 60.years
Pul~' copolyol t7 t,
rul~ leslerofmixeùvegelablefallyacids of cosmetic e~cpertise and marketing know-
Potassium laurate P. mynslate ledge, we have introduced more than 20 raw
PPG-' mvnslyl e~her propiona~e
PPG-3 mvrislylelher materlals ~or use ~y tne cosmetic chemist.
PPG~9 bulelh-18
PPG- 1 I sleary l elher ~--
PPG- 1~ -bulelh- 16
PPG-I~-PEG-50 lanolin J ur product is innovation. Finding unique
PPG locetvl e'thhe'rr materials~ such as ~ARRL~ SF and CUPL~V
PPG-20 buteth-30 ~
PPG-~4-but~lh-~7 rl~, that contrlbute to the growth of our
PPG-28 bulelh-35
PPG-3601eale customers has established Bernel products
PPG~0 butyl ether
Qualernium-79 hvdrolvzed keralin worldwlde.
U - 79hvdrolvzedsiLk B E R N
Rice (Orvza satival starch ~ ~
Shea bul~er ( l~u~ parkii) exlract C H E I h I C A L C O M P A N Y
ShoreaslenoplerabuUer l~Grand.~ve.,Endewootl.. ~J0~631
Slearamid~ MEA. S ~EA-sleara~e Phone:_01-~69-893~ ~ F~ 01-569-1,~1
51~4..~A~ I. I !
Cosme~ic Bench Reterence lq96 1.')9

CA 022;i9464 1998-12-30

WO 98/48768 74 PCTAUS98/08931

F-lnctions

~ ~ Emblica o~ficinalis exuact b~ elaslinale. M.i~noslerol Elhyl minkale Miik atnino acids
Octvl pelargonale. O. sleDrate Eugenia jambolana exlract Minerai oil (Paraffinum liquidum)
p~ l~ Evening pnmrose (Oenolhera bieonis) exuact. oil ~ '~ aspanale
Pul~ Gail- sinensis exuacl Mourin apiranga exuac
Pul~ Ganori-rma lucidum oil Natlo gum
Silicn silvlale Ginsens (Panax ginseng) exlracl Nelurnbium speciosum exuac
TH~ UA~I ' '' '. h.. A~propylmyrislyl Gkditsiasinensisexlracl Neopemylglycoldicaprale
elher Glycereth-l Oat (Avena sativa) protein
T .~ ~ . Glyceryl alginale. G. collasenale Ocryl h
Glyccryl yOH. ~ Ophiopogon japonicus exuacl
~r ~ .t.. ; . Glycolic acid Orange (Ciuus auramium dulcis~ peel wax
~- .y~llrimoniumchlonde Glycolipids Palmeltoexlrac
Adeoosine Inphosphale rl~ _ ~ Pantethine
Aesculus chinensis exuacl Cl ~ Pamhenyl ethyl elher
Aigae (Ascophvllum nodusum)extracl Gnclum exuact Par ffio
Aigae exuacl Grape (~nis vinifera) seed oil Partia~y h!_ _ sovbean oil
AJoe barbadensis. A. b. exUacl Hazel (Corvlus avellana) nul oil Pe nul (Arachis hypogaea) oil
Ammonium laclale Honey exuacl Pecan (Carya illinoensis) oil
Amnioficlluid Hyaluronicacid PEG I -o.-8.-12
Apple (Pvrus malus) eXlracl Hybrid saffiower ICanhamus 0nclonus) oil PEG-70 maogo glycendes
Apncol ( Prunus Irmeniacal kernel oil H! b _ ~ C;tSlOr Oil PEG-75 shea bmler glvcendes
Arginine PCA Hy _ coconul oil PEG-75 shorea bmler glvcendes
A 1 Iy ~ cmlonseed oil PEG- lOO slearale
Anemisil ~placea exlr~cl IH _ ' lecilhin P~ h~ ~vl '~r x
Asuocarvum murumuru exuacl "~- palm oil adipale
Avocado ~Perse~ gr~lissimal ex~rac~. Oil 11,- YUI!; r, ! ~
Avocndo(Perseaer;tlissima) ~ sovbeaooil Pemvleneglycol
Babassu lOrbign~a oleifera) oil 11 _ s-.: _ oil r. ~ .h~Y~Y!I ether
8acms gasipaes exuacl 1~- ~ vegelable oil Pelrolamm
Benincasa hispids cxtracl Hydroiyzed c Ii Peuoleum wax
Belaglucan Hydrolvzed collagen Pfaffia spp. exuacl
8etaine Hydrolvzed elaslin Pistachio (Pistacia vera) nut oil
Borage (Boraso otficioalisl seed oil Hydrolyzed fibronenin Placemal prolein
Brazil nul ( Benholellia cxceisa ~ exuacl. oil Hydrolvzed ~ ! ~ a Plankloll exlmCI
CI0-30 - ~ esters Hydrolyzed keralin Polyamino susar condensale
Caicium I ~ ~ Hydrolyzed milk prolein Polvbmene
Calcium prmein complex Hydrolvzed oats P~l~. iany acids
C.. y ~ .. y. l. Inelvcende Hydrolyzed pea prolein Pmassium DNA. P. Iaclale. P. PCA
C y~vl ~i~ Iy~i~P ~nglvcende Hydrolyzed placemal prolein PPG-8/SMDI copolvmer
C~y~vl . -.y.-.. uigiycende Hydrolvzed rice prolein PPG-20 melhyi glucose elher dislearate
C~ VI;~ YII~mI~;~ .- iv.. nd. Hydrolyzedtransgeniccollagen Propyleneglycoldi.~ylv;
Cashew lAnacardium occidentale~ nul oil Hydrolyzed serum protein Propylene glycol dioctanoate
Celastrus paniculata extract Hydrolyzed silk Pumphn (Cucurbita pepo) seed oil
Ceramide 33 (liquid sov extrac~) Hydrolvzed sweet ~Imond protein Quinoa (~ quinoal extract
Chia (Salvia hispanical oil Hydrolyzed whem pro~ein Rapeseed (Br~ssica campesuisl oil
Chinese hibiscDs I HibiscDs rosa-sinensis) eAxtrlct II!J ~-~ .h . I chRoson Rehrnanma chinensis exU~CI
Chitin Inositol Rice (Orvza satlva) bran oil
Chitos;tn. C. PCA Isodecyl salicvlate Rose Water
Cholestenc est rs Isostearyl hydrolvzed nnimal protein Royai jellv extract
Cholesterol Jojoba (Buxus chinensisl oil Sacchande isomerale
Cb ~ kluL-~l laurovl giutamate Jojoba esters c .~- lvsate extract
'~ h;l. UA~yl~V.I hvdrolyz~dcollagen Keratinaminoacids ~ /5~v prmeintermem
rc h .J~A Vl~ Ur; i hvdrolyzed silk Kiwi (Actinidia chinensisl fruil exuact Saifiower (Canhamus tinctonus) oil
r- - h . ;i .. A~ Y~u~,; I hvdrolvzed vvhe;tl Kol- (Cola acuminata ) exuacl Selenium aspanate. S. protem complex
protein Kul~ul (Aleurites molaccaoa~ nut oil Serian
. hVI~ A~yluy. I silk Jmino acids Lactamide DGA. L. MEA Serum albumin
Collagen Lactic acid Sesame (Sesamum indicum) oil
Colla5en amino acids. C. phthalate ~ . ! fermem Shea butter (rmS. ~ paukii)
Copper ~spanale. C. prolein complex Laclococcus hydrolysale Shea buller (r s . I parhi) cxlrac
Corn (ZeD mavsloi~ Lactoyl !; elaslinale Sho~easlenoplerabmler
Collonseed ( Gossvplum I oil Lanolin alcohol Sill~ amino acids
Cralaegus Cuneala exlracl Lauryl PCA Sodium ~ IA~ bela-slucan
Cucumbcr (Cucumis s~tivus) extract Lectlhin Sodium chondroitin sulfate
Desamido collDeen Lesquerella fendleri oil Sodium DNA. S. hyaluronate
Dicaprvlvl maleDte Liposomes Sodium lactale. S. PC~
Diisocelvl Lysme PCA Solublecollasen
Diisoslearvl adipate Macadamla terni~olia nut oil Soluble Iransgeoic elaslin
Dimelhvl hvaluronale Masnesium aspanale Soybean (Glycine soja) oil
C: .:; hvaluronale Malîllol Spherical cellulose acelate
Dio~ vlJuJ c!l dirner dilinoleate Mango (Man if cra indica) oil Spondias amara extract
D ~l! v ~ Mannan Stomach cxtracl
hlllUI fDll,V DCld ester Marine yU'! iJ. Sun~ower (Helianthus annuus) seed oil
Dog rose ( Rosa camna) h~ps exuacl Mauritella arma~a exu~ct Superoxide dismutase
Dog rose I Ros~ canma) seed extmct ~ regia extract r~ssue extract
EchitcD glaucD exlracl ~ ~ ~ .. ( Limoamhes alba) seed oil Tocophervl acetate. T. Iinoleme
Elasun Dmmo DCio~ Mclalcuca hvpercifoliD cxuact Tomato (Solanum ~ cxtract
1 30 Cosme~ic Bench Reterence I 996

CA 02259464 1998-12-30

WO 98/48768 75 PCT/US98/08931


Functions
Tormennl(Polcnllll;lereclDIeAlrDcl SleDryl~leOlrDte AmmoniUmo~r; ~; copolymer
Trch:~lu~e Styrene r 1~ Ab' ~; copolymer
T,i St~. ~I.. t.. copolym~r Ab'l-i _ylhydrolvzedcollDeen
VeeetDblc oil Styrenc/PVP copolymer Bulylester ol pVM-MA copolymer
WDlnut IJuclanj reciD~ oil TriisojleDrin PEG 6 es~ers Czlcium cDnrDgeenDn
WulerCreS~ I N;l~lunium olficin;llcl txlrDcl (~: ~ VinylDCelDle lerpolymer
Wheul ( Trbicum ~ ulg3re I cerm e1urDcl, yenm oi l P~ Ce~eueth-8 phosphoteY3rrow (A~hillco millelolium~ e.~lrDc~ Acetyl mbulyl chrDIe CcleDrelh 5 phosph;ue
WheOn umlno ucids Acelyl Inelhyl cilrDIe CeleDreth-10 phosphDle
Yc3sllC ~' ~ CerevisiDe)e~lrccl(F;lexl A~ roylhydrolyzedwhe:llprolein CeleDreth-~9.-3~1
Yoeun lillr~lc AMPD-iso~leOroyl hydrolyzed CollDgen C~ L
Zinc ilsp3nDIe Cyclohe~;mc odimelhDnol dibcnzoOue r. h~lluA~ul~ luA~. h,l cellulo,e
Ziziphu~JuJub;lc:'lrDcl Dibulvlphlh31;lte Cl7-13pueth~ 9.-'3Diethvl phlh;llDIe DEA-celellre~h-~-phosphDIe
Diethjlene gl~col dibenzoDle DEA-olelh-5-phosphDle
~ A-- ' Diisopropvl jebDc;~le DEA-olelh-~O-phosphDIe
Aminoelh,vl propDnedh)l r~ copolvol DiglycoUCHDM/i r '~IP copul,vmer
l propDnediol Dimethvl phthohle Diisopmpyl dimerdilinoleDle
,~ zl propDnol Dipropylene clvcol dibcnzoDle [ ,1 " z~ ;IOAY silic:lle
Ammonium ~ubon:lle Ethvl eslcr ot hvdrolvzed kerOIinDjjSOSIeDrVI dimer dilinole~le
Culcium hvdroAlde Glyceml Inbtnzo;ue Dilinoleic Dcid
r~ ~ Glycol D~ ~ ~. Dcid/celeuyl ' ~ ~L
Hydmlyzed ~enum prolein copolvmer
GlucDmlnc Isocelyl j;llic IDIe Eclipt t 31b:l eAlr:lcl
Dvr ~ Isodecyl bcnzome Ethyl esler ot pVM/MA copolymer
l~u~,. u~ . IsoeicosDne r M 1.. /.. v 1;. ilC id copo Ivmer
'-Melhyl-~-h~.l,uA~".. Isopmpvl IDnolOIe EthjlenelVA copolymer
Morphollnc IsosleDrovl hvdrolvzed collDI!en Glycerelh-'6 pho~phule
Sodlum bromDle l~urovl hvd;olvzed coll;lgen HvDluronic Dcid
Succlnic Icld M;trine collDgen Hydmljzed wheDI prolein poly~ilo.~Jne pol,vmer
T Neopemyl slycol ùibenzo:lle H~_ !r _n~l i hydrolyzed collDeen
Octyl benzo;lle. O. IJur~le 11~ !r ~Ur~ i hvdrolyzed whcDI
Oil absorbent PEG-60 ~h~D buller clycendes pn~lein
HydrDled ~lliCI P~ o~ .. ~Irl I Limelh-~O
Polvmelhvl .~O.~ P.h ~ eI,VCOI dibcnzoDle I : r~l-uA~ ,url h,v-lrolyz~d ~ov
Silicon dioAide hvdt;lle 1'l ~r r ~ . clycol dibenzo:ue pmlein
WDlnumJucluns regiDI shell powdcr PPG-I'-PEG-50 IOnolinMethDcrylol elhylb~ .r' copolymer
PPG-'O c~lvl clher O.-~lo-~r v ~ ~i
Ointment h~- PPG-'O IDnolin Dlcohol elher , rl--lC copolymer
BOrD5e ( Bor:lgo otficinOlisl se~d oil Pmpylcne elycol dibenzoDle Oleth-' phosphme
C. ". ~ . u~ ~~/.1-. ric Inslycende Pmpylene glycol mvn~lvl clher DCel~le Olelh-5 phosphDle
Glvcervl COCODI~ Ric~ (Or~zD SDU~DI br:m V.:IA PEG-3 IDnolDIe
H~ . coco-gl~cendes Semm prolein PEG~ ~lelrDle
LDnolin Tu,~ ,u~v resin PEG-5~1
S1ink oil TnDcefin PEG-7 glycervl cocolle
Oleosle;mne Tnbulyl cBr~lc PEG-8 elycervl IDurDIe
T~llow Trielhyl cBrDIe PEG-81SMDI copolymcr

Tnmelhvl pem3nediol dibenzoDle PEG-9 c~slor od
Opacifier T ~ PEG-9.~1
BDnum sullDIe PEG-I I bDbessu elvcende~Cl~-16 llcohol~ h PEG-I' pDlm kelmel glycendes
Ccleu,vl ocl~no;lle ACrYIDI~S copolvmer PEG-I ~leDrDI~
Cclyl mvnslDIe. C. pDlmimlc Aluminum ~iliclle PEG-BI ilvoc:ldo elycendes
C~ , ~,pvl I;lur,vl elhcr N~DISfOOI oil PEG-15 glycervl l;lur~le
Glycervl ~ leu3le Tallow PEG-'O conn giycendes
Glycervl hvdroAysleDrnle PEG-'Ocvening pnmrose elycende~
Glyceryl mvnslme, G. ~le:uDIe ~ m~ PEG-'O glyceryl ole~leGlycol dlsleuDIe. G. ~leu:lle AcrylDmide codium ilcrv6ne copolvmer PEG-'3 oleDle
M35neslum mvnsl31e AcrvLIe~-VA ~.u~,uls PEG-13M
PEG-l ~ le3r3le. P. sleOr31e AcrvLIes/3crvlDmide ~opolvmer PEG-'9 c3sl0r oil
PEG-' sle3r3le SE Acrybles/h~i.u,.~_.. l.. , 3crvl31escopolvmer PEG 12 b3b3ssu olvcendes
PEG-3dlsle3r3le Ac.. ; 'o~lu~-~: copolvmer PEG 15~3tflowerolvcendes
Propylene ~Iycol mynsrû~e. P. g. s~e3r3~e Ac.;; ':le3relh '0, ~, copolvmer PEG 15M
Sle3rDmlde Adipic " j~t el~U~S~ r~ Ur l ~ PEG 60 evemns pnmrose elycende~
Sle3r3mlde DlBA-s~e3r3~e copolymer PEG-oO h~ ' c3slor oil
Sle3r3mide MEA Adipic .Ic-1'. - ~: h ~r- r1I PEG-75 cOs~oroil
Sle3r3mlde MlEA-sle3r3le dielhylene In3mine copolymer PEG-90M
S~ "1 Jl 13cl3le Ammonium 3cryl31es copolymer PEG-I'O disleDr3le

~ ~ ~r~Y~lER~CEMU151rlERS I~ ich
New, easiest to For surfac~ant-based Eliminates enn' .. b~;l Talk to the global leader.
disDerse car~omer products
; ~ ,""~
1.31

CA 02259464 1998-12-30

WO 98/48768 76 PCTAUS98/08931

Functions

PEG-150 lDnolin Powder n " ' chlonde
PEG-160M Acrylales copolymer, sphencal powder U ehloride
PC A, h . '' ' ' ~: " chlonde Anapulgite Berl~Dicacid
PG h, ' ;mhr' " ' ' chloride 13oronnilride Ben2ylalcobol
PG h,.'1 r. ' r' " ' al~ ' ' Calcium aluminum borosilicate r
chloride Calcium carbonale 5-Bromo-5-oilro-1.3-dioxaoe
POlr. ~1.. ,. ionomer Cellulose maeelate 2-Bromo-2-~ 1.3-diol
Pul~ ... ,. micronized Corn (Zea mays) cob powder, slarch r ~
I'ul~ . oxidized 11~ ' jojuba wax Calciuro pmpionale
Pu1~ 1-7 pMyh,.' ~ Magnesium carbonale. M. mvristate ('' bromide
Pul~. r; r '~ chloride Magnesiumstearate Cetylpyndiniumchlonde
PM~ 6.-7,-10,-11.-~ 39 Mica (~
rul~ . cellulose ~ .
Polassium alginale Nylon-6 e-Cymen-5-ol
Polassium laurovl collagen amino acids Nylon powder Di~lidinyl urea
Polassium laurovl hvdrolvzed sov protein Ool (Avena sativa~ s~arch ~ 1 alcohol
Potassium laurovl wheal amino acids Polvllmide 1~ ~
PPG-8/SMDI copolymer PLI~ ' ,!.. ~ C~ ~ ' ~ 11 1 . .r
PPG-I~ISMDI copolymer Polvmelhvl ' ~' Dintethyl h, ' ~. ' ,I pyrazole
PPG-51/SMDl copolvmer Poh. ~; ~ Dime~byl oxazolidinePVWMA dec~diene ~ r~JI~ PTFE Disodiutn EDTA
P~ r !' ' ~1 ' copolymer Silica DMDM bydamoin
PVP/VA copolvmer Sill~ powder EDTA
Sodium cocovl hvdrolyzed whell prolein Sphencll cellulose acetate Erytborbtc acid
C- h~ ,u.ur,rl hvdrolvzcd wh~m Talc r
prolein Tapioca dextnn ~ ~
Slearelh-~ phosphale Zinc laurale Fomistopsis offminalis oil
TEA-.. ~; 'a ~' copolvmer ~ r
T~ ,' ' '.r,u/~ resin Powder. absorbent Glut~ral
T~, ' ' ' ' ' ' ~d. resin Aluminum slarch u~ r HEDTA
Tridecelh-~i, -6, -7, -8 Clays (white, yellow. red. green. pink) ~-VA/butvl ' ' ~1 acrylale copolymer Sorbilol He~mtdme
VA/c .... ~1 ' copolymer Taploca I ' ~1 urea
VmyI -~
r ~ ; copolymer P~ Isopropvl sorbale
Wheal ~Trhicum vulgare) prolein Alcnhol
Xanthan gum Arcorbic acid MDM hvdamoin
Ascorbyl palmilale r ~ chlonde
Me~hvl paraben sodium
In the World of
Natural Waxes ; ~i
Carnduba~ Beeswal~ Candelilll~Va~ Mushroom(Cordvcepssaboli~era)exlracs
' ''~ ~ P masnocdlum pentetate
WDi ~1 PheDethvl alcohol
? ~ i lll Phenvl mercunc Icemte
Pe~ r"l biguanide
.~A~ ~ ¦~ Potassiurnsorbate
_ - ._ r ,, ll

5T~AHL ~ ~IT5CH INC. ~il~u=mj~ls
Sodium ' ~'l ' S. Jeh..'
_, " ~= Sodium enthorbale, S. ethyl paraben
Sodium h '
_~ _~ Sodittm, ' '~ S.
Sodium o-l ' .1~ '
Sodium propiOnate~ s ~ r~ l~
Sodium pvmhione, S. salicylale
\~ ~_.;;~ 5~orlbiUcmacSiuofit~
Te~sodium EDTA
Ceresine ~nd_E~ 7 P;uliiin And Th;imerosal
Ozolcerne .. ~ ' Th!mol
T h e r e i s n o o n e e I s e ! Trisodmm EDTA, T, HEDTA
Dedicated to ~atural Waxes and us ic cid
Specialty Blends Since 1 904
¦ "~"I~C~C ~0 ~CII 1111~ !10 C-UA~A~I~IC~0 ~ U~ 0~ PmPel ~ t (;16) 587-9000 / FAX: (516) 58,-9120 j Dimethvl e~her
lS~ t
1,32 Cosmetic Bench Reterence 1996



. ~.

CA 02259464 1998-12-30

WO 98/48768 77 PCTAUS98/08931

Functions
Isobutane Sodium cDsemitle Liposomes
PropDne Sodium coeoyl hydrolyzed collDgen MDgnesium sulfale hepl~-hydrale
Sodium coeoyl hydrolyzed soy prolein Detyldodeeyl behenDle O mvnslale
Protein Sudium mynslovl hvdrolvzed colbtgen bis~Octyldodeeyl steilroyl dimer dilinolelle
Albumen Sudium oleovl hvdrolvzed colllgen Oelvldodecvl stearovl ~le~rate
Sodium steilroyl hydnolyzed coll;teen Oetvl b,l~
131etiahvaclnlhinae~r;tet Sodium ' .1~ v~ hydrolvzedeolhleen PEG-3stearDte
Clu z monfoliume~tr;tel Sodium~TEA-laurovlhvdrolvzedeollai~en PEG \oleamide
C~ ' hvdro~ti propyl hydroly2ed Sodium/TEA laurojl hydrolvzed kemlin PEG-6 ~ .p ~l . elyeendes
,ollaren Soluble coliaeen PEG-7 glyeervl cocoille
C~ h~ 1,!1hydrolyzedkerltin Solublekeralm PEG-16
C~ ' hydro~propyl hydrolyzed soy Soluble wheill protein Propylene glycol Lihp~L",
pn)tein Soy (Glycine soj;t~ protein
Cl '' hydro~ypropyl hydrolyzed wheat 5~ " ' h.J~u,~ ,I hydrolvzed Resm
protein collagen AL.~ UA~. . Dcylates copolymer
C )coyl hvdrolvzed colhleen ~ ' h d~"~ h.l hydrolyzed coll;~een Ethylene vinyl acet~te
Cullugen C phthalate TEA--ocoylhydrolvzedcollDgen GlyeerylablelDIe
Collaeen un~mo-polv~ilonane hydrolyzDte TEA-eocoyl hydrolvzed soy protein MethDcrvlol ethyl I ' ' ~' - copolymer
D~u ~y~ ,' kn acid TEA-louroyl colloeen ilmmo ileids ~Methyl
Dcsamhlo coll~een TEA-hluroyl ker~tln ilmino Dcids rùl.r ~el~
ELI~tinlmlni)acid, Tntcheahvdrolveite Pul.~ 16 ~1
Embrvo e~tra~t Triethomum hvdrolvzed collaeen ethosulfDte Sucrose benzo~te
Ethvl eelem~l hvdrolvzed mimDI protein Wheat ~Tnticum vulg;lre~ yerm e~ttrDct protein r~
Fibroneclln Whe~l ;Imino acids
Gclatin Wheal peptide Glcium acetate C pho~phale C ,ulf ~te
Human placental protein Whe;ttprotein ~ ~ ' andentr~pmem svstems
Hydrolvzed .oll;leen PentDsodlum tnphosphute
Hydrolyzede~lensin Pro~ein.h,d,uly~d PolDssiumphocphale P~odiumlDnr~tc
Hydrolyzed nsh proteln Ethyl ester ot hydrolyzed sdk Silieon dionide hvdrate
Hydrûlvzed hemoelobin Hydmlyzed eDsein
Hydrolyzed k er~tin Hydrolvzed elaslin Sodium cltrDte S glucon~te
Hydrolyzed lactalbumin Hydroljzed mushnoom (Tncholoma mDtsulDkel T~rtDne Deid
Hydrolvzed milk proleln e~ttr~el
Hydnolyzed ~oy llour Hydmlyzed pel protein TnpotDsslum EDTA
Hydrolyzed ~veel nlmond protem Hydrolyzed nee protem
H~ p~l", h ' hydrolyzed eoll;lgen H,vdmlyzed senum protein Silicone
Isosle~rovl hydrolvzed coll~gen Hydrolyzed sill Amino bispropyl dimelhieone
KerDbn Hydrolyzed soy prolein Ammonium~'' ' ' copolvol sult'lte
Laetotemn Hydrolyzed vege~Dble prolein A ~ ~
t - ~ ~ ~ Hydmlyzed vvheal proteln sehenoltv dmethieone
~ '' h~ ,u,u,u Ihydmlyzedcollaeen IH1 Sr ,~ln- hydrolyzedctsein C16-18~1kvlmethicone
MDrillecollacell H~ 'r ,.lli hvdrolvzedslik Cervldimethiconecopolvol
Methvlsilanol elaslinDle 11~ hvdrolyzedsoy prolein C~ ')iiso~letrovM, ' ~lolp.,
Polaselum ubieloyl h-drolyzed collaeen H! ~ hl hvdrolvzed ~~heal silo~y silic~le
Pol;tssium ~ocovi hydrolyzed collDeen prolem Diisod~c~d ~dipnle
Polaes~um mynslovl h~drolyzed COIIDgen r DiiSosl~Drv~ ~--.. ,.,h!lulul. silo~y silicale
Potas~um leovl hvdrolvz~d colheen ~ ~enl Dimelhlcone
Pol~ssiumundec~leno,vlhydrolyzedcollagen Dimynslyl '' 'i, ~~ Dimelhiconecopolvol
P~ ' i h~drolvzed collDeen Hydrolyzed zeln iodized Dimelhicone copolvol DlmondDIe
r,S",;~ hvdrolvzed sov protein Hydmlyzed zein ~ultunzed Dimethicone copol;~ol isosteDrDte
rru~"h" hydrol;zed wheat prolein Zinc ~, ' ' ' ~ '- sulfonylDIe Dimahieone copolyol olivnte D, c phthal~te
Protein h!llu., , Dimethieone .u,uoH, '
Q /9 hvdrolvzed kerDlin ~ - ~- D ' ' ' r .dilinoleie aeid
Qu;llernium-~9h~droljzedsilk ' ' ".tnelyeendePEG Iesters l!' '' 'h.d~u~ ,.ue D steartle
Rice p~plide Cocamlde MIPA Diphenvl dimelhicone
RNA DjjSOSIeDrYI dim~rdilinoleDIe Disodium-PG l,,U,, '' ' IhiosulfDIe
Scnum ;llbumin S prolem 11~ ~ pûlm kernel glycendes Isopmpvl h. ' ~L_ ~ ~ J,m'
Silk powder Le slehtiryl emcDle 1 isOsleDntle copoiyol
Methlcone
T y ou~ cross linking conoi~ione~ CRODASONE W C r o~ d~O aD

B~OOKS LNDUS~ES irLc~
C~sm~n~ /n~r~di~nls ~ Ide~'
70 Tvler Place ~outh Pl~infield. NJ 07n80 USA ~ ~ ~ __
Tel 908~61-i'00 F:lx 908-~61-917.1 ~j ~ i
Cncme~ n( h Rele!ence I ~f~ 1 33

CA 022~9464 1998-12-30

W O 98/48768 78 PCTAJS98/08931


Functions

Octamethyl ~~ ' ' Pot~ssmm cocoyl hydrolyzed collagen Isodecyl saliqlale
Phenyl melhicone, P n ~ - Relinyl pDlmilale polypepude lojoba (8uxus cDinensis) oil
Polyelher Trisiloxnne Saivia millionhiza exuacl Ladv's Thistle (Silybum mananum) exlrt
r~,l,. .: - Sil- l~uDiDaria japonica exlraa
A I " ~ d ' Sodium cocoyl hydrolyzed collagen Ligusucum jeholense exnac
Q ~o Soluole UDnsgeniC elaslin i' iposomes
Silicone qualennium-l -d '' h, 's ~nh~l hydrolyzed coilagen Ma~oliaspp exnac
Sodium-PG-propyl IhiosulfDlc dimelhicone Slearyl melhicone MaDgo kernel oil
Sl.~ JA~I ' ' '' ' ' copolymer Marsilea minuta exlran
T ' ~lail~ kilLh~a~ Mel ieucahyperafoliaexlrac
Catendula obTicinalis eXIracl Melaleuca uncinala ~xlrac
rjL' - calmin~ Pn~ Cl~ , Melaieucawilsonii exnacl
Cornflower lCcmDurea cvanus) exlraCI Hydrocolyl (Cemelh asialica) exlrDn '' ' ' '' ' In PEG-8 glyceryl cocoolc
Fenn-l (Focniculum vulyDrel exlract Oat (AvenD saliva) exlran Oal (Avena salival meal
Fenugreek exnacl Sandalwood (Samalum album~ exlracl Oysler (Oslrea) shell eXIrac
Linden (rdiD corda~D) exlrDcl Speannim ~Memha vindis) exlran r ~
Valenan (Valerianl officinalis) exnD~ Pearls (Margama margama)
Skin li~l.l . . ~/~.1 t .~ ~Pn~ r~ ! .
Skin cleanser Ascorbic Dcid polyp~plide p, A ~ .'
Dog rose IRosa canina~ hips exnacl Be~rbeny (A , ' !lua uva-ursi) exlran p~ A ~ h ' .ID~ U~U~I elher
Pap-ya (cancD papaval ~xlran 11~ ~I , ' i,m" D ,' , . ' ~ Petrolalum
Peach IPrunus persicDI ~XlrDcl Lemon (Chrus medica limonuml peel extract PEG-8/sMDl copolymer
Rose IRosa muldilora~ exlraa Pearls (MDrgamD marganla) PEG-12 Ebinko ceramides exlran
Willow(Salixalba)exlracl Pfaffiaspp exlrac
Skin protecta~ Pi ~ ' 'i~ '
CL;n ~ A~ 1 ' !; '' ' elasljnale Planxlon exlrDcl
Artemisia apiacea exrrDcl Ailamoin A aluminum hvdroxide Polvgonum muhillorum exmacl
A~ ~ mcuma exlran Aioe barbDdensis A b exlracl Pobgamol
Bacsns gasipaes ~xlract Aiuminum starch u~. !' PPG-I~'SMDI Copolvmer
Biolin Anise ( Pimpinella anisum ~ emacl PPG 5 liSMDI Copolvmer
A ~ ~ 2 ~ nh.l ùiscelyl malonamide Amica monlana exUaCI P~,, ' hydrolyzed collagen
Blelia hyacimhina exoacl Artemisia apiDCea exlrDCI Ouinoa 1(-1 , '' quinoal exUacl ~il
80rage (Borago officinalis) seed oil Ascorbyl m 't!' ' ' peminale Saivi~ millionhiza exlrac
r , , . ~ t~. l PG dimonium A ~ lucuma exlrDa Sambucus nigra exmc
chlonde Baclns gasipaes exlmcl ShariA liver oii
C bU~! BetaglucDn Shorea robusola exlran
Calalpa kDempferD ~xnDcl lli,h, h ~nh~l biscnvl malonamide Sodium chondroilin sulfale
Coco ~ I PG-dimonium cbioride Blelia hyacimhina exUacl Soluble IransgeniC elaslin
' " ' h I~UA~ "lhydrolyzedkeralin C18-701soparatfin ~ ' h!' ~ ' Ihydrolyzcd~lla~ "
Collagen amino acids Catendula amunensis exlrscl Sterculia platanifolia exlrac
c; r ~. n chilin Superoxid~dismmase
D ' D copolvol acelale Carcinia cambogia exlracl Trach-a hvdrolysale
Emblica orrlcinalis exuact Canm (Daucus carotal exlracl Wheal ITntlcum vulgare) genm exlracl prlu~ jn
Equisemm Irvense exuacl Carrol ( Daucus cDrmD salivaJ oil While nettie I immium album I exnaCI
Elhyl esler oi hvdrolvzed ~nimal prmein Catalpa kaemptera exlracl Withama somoilerum exlrac
Evening primrose I Ocnmhera biennis) oil ~' a~ " ttlbum exlmcl ,Y ' ' bungeanum exnDc
Fomes lomemnus exnDcl Chtosan Zioc oxidc
Fomislopsis offlcinalis oil Ch ~ ' monfolium exlraa
Geladn Collageo ~ s. ~ ~Pnt
Ginseng Mlld~UA~ ' ' ' chionde Conn poppy (Papaver rhoeas) exoacl Ailhea orfinnalis eXlrDCI
bulyleoe glycol Crataegus cuneala exlran Coltsfool (Tussilago larfara) ieaf exlrac
Glycolipids Crataegus monogina exlraa Comfrey /Symphylum officinDle) leDf cxn
Gl~ Cypress (Cupressus , ~ . ~) exrract Plamain (plamago major) exnaCI
Gnelum exlram t ' Sericin
Honey (Mel) D A ~ ~ ~ dilinoleic acid
Hydrolyzed ' '',, ' Di ' ' ~I M ' ~ _ D slearale Skln solten~llg
Hydrolvzedelaslin D ' " hvaluronale Clays(while yellow red green pink)
Hvdrolvzed pea prolein Eehilea glauca extran Cueurober (Cucumis sadvus) exlrDc
Hydrolyzed nce prolein Embryo exlracl ICelp (Macrocyslis pyrifera) eXlran
Hydrolyzed serum prmein Enlaoa, ' ~ ' ' eXlrDCI Peacb IPrunus persicDI exlrDC
Hydrolyzed silk Equiselum uveose exlract Phenethyl dimelhicone
Hydrolvzed sov prmein ' ' ' fonunei exlr;tn
Hydrolvzed vegelable prmein Euierpe preQlona exlract Skin 500thing
Hydrolyzed wheat prolein Fenugreek e%tract Calendula officinalis extmct
Inga edulis extract Fomistopsis officinalis oil, F pinicola extran Cberry bult e%tran
Kiwi (Aclinidia chinensis) fruil exlracl Galla sinensis exlract Cueumber (Cucumis salivus) exlract
Laminana japonica exoacl Genlian (Gentiana lutel) exlract Gulic (Allium satwum) extract
Lecithin Gleditsia sinensis extract Hyssop (Hyssopus officinalis) extram
Marsilea minuta eXlran Glyeeryl ncinoleale Jasmine t~asminum offieinale) extran
Nettle (UnicD dioicD) extmct Glyeolipid5 ICelp (Macrocvsos pynfem) extract
p . , Hierochloe odorala exlran Mango kemel oil
Pearls I MartA~anla mar arilD) Hyaluronic Icid U ' (Spiraea ulmana) exlmc
PEG-~' Ebinko cemmtdes exuacl H ~ _ ' lecilhin Ouinee ( Pyrus cydonia ) seed extmct
Phenvl i ' Hydrolyzed lupine prm~in Slipperv ebo eXlrDct
Phnamriol Hydrolvzed milk prmeln Valenan I Valenma officinllis) exlrlc
Poi-yonum mubilll)rum exlmCI Hydrolvzed mushroom iTricholuml malsmake~ Willow ISalix albal extroc
pol~umllcrnium-~-'' ~1) exlracl Whchhlzcl(Hamamcli~\irrinional~lr~
Indl m Ir.~ ITr~mo~l~lum m utl~Qxtrac ~ Irr~ ;hillc a mdl-lldhlml ~~str l-

*rB

.. . .

CA 022F79464 1998-12-30

WO 98/48.'68 79 PCT/US98/08931


Functions
PEC-15 cas~oroil PPG-3 ' ' '7
Solubilizer PEG-18 stePrPIe PPG-3 isoee~elh-20 oeetate
Accn~l ' ' PEG-20ylycerylisos~ePr~le.P.B laurrte PPG-5~eelelh-10phosphPIe
Alm~md oil PEG-6 es~ers PEG-70 ylyceryl olePle. P. g. sle~r~le PPG-5-celeth-20
PEG~20 melhvl glucose ' PPG f ' ~: ' ' 12. -20. -30
Aminoelhvl propanediol PEG-20 sorbi;Pn isoslePr~le PPG-12-PEG-65 IPnolin oil
.~- !IP". ' A.pmpPnol PEG~2osorbilpnuiisosler~le PPG-15stearylelher
~pncol kernel oil PEG 6 eslerS PEG-2~ 13nolin PPG-18 bulyl elher
B " ~ chloride PEG-25 clslor oil PPG-24 bulvl elher
Bulo~dil!lycol PEG-25 h~ .' ' cPslOr oil PPG-26-bulé~h-26
Bul.vl l!luco~i~le PEG-30 c~slor oil PPG-33 bulyl ether
Bulvlene cl~col PEG-30 glyeeryl coeoP~e PPG-33-bute~h 15
a ~ PEG-30 ~Iyceryl isosleDrPIe PPG-10-PEG~60 IPnolin oil
C~prlc-eaprylic -~ PEG 30 glyeeryl l~urale PPG-50 celyl elher
Cilpryl ~yl ~1~; PEG-30 glyeeryl oleale Propl~lene ylyeol diePprylale. dicpprylPle/
C.",. ~ l--/-.. ". -- ~nYlycende PEG-30 elyceryl slC~r~le dkDprPIe
C~ ' ' melycende PEG-33 c3sloroil r DEA
C~ /ul~ Inglycendes PEG-35 casloroil r lo
C~ yl ~ l clucOside PEG-36 c~slor oil Sodium alphP olefin sulfonPle
CeleJrclh-~0 PEG 10casloroil SodiumlPurylsulfPle
Celclh-10 PEG 10 olyceryl l~ur~le. P. 6 ~tePrale Sodium '~
Celvl PPG-' isudecelh 7 c~rbo~vl~le PEG 10 h,. ' . _ ' cDslor~il T '
Chule~lerol PEG-10 h ~J,. ~ ' c3slor oil PCA isoslePrPle rrioClanoin
Corn oil PEG-oe~ler~ PEG 10sorbilpndiisoslearPIe T
Dec~l!lvcerol 1 ' PEG 15 p~lm kern~l ylycendes
~ ~ - PEG-18 h.. ' ., ' caslor oil ~
Dil~urelh- 10 pho.~phDle PEG-50 caslor oil Acnie PCid
Dimelhyloclvnediol PEG-50r,.' _ 'cPSloroil ACelOAe
Diolelh # phosph~te PEG-60 ;llmond gl,vcendes Alcohol. .~. denPL
Glyeerelh-7 -'6 PEG-60 cPslor oil r
Glyceryl clpryl~le. G. dihurPIe PEG-60 conn glycendes e ~ .ol
Glyceryl .. ,u.vl ~, PEG-60 olyceryl isosle~r~le. P. ~,. sle~rPle Buryl ~cet31e
ISoeieosPne PEG-60 I,!J~. _ i c3stor oil n~Buql ~Icohol
r ~ ~ ' PEG~60 l~nolin Burvl mynsl~le. B. sleDr31e
Isosle:lrelh-'O PEG 70 mPnY-o glycendes Burvlene elvcol
L;meth-S. -15 PEG-75 l~nolin C9-11 isopPralfin
LiJurelh-_3 PEG-75sheDbullergl~cendes C10-11 isop;u~ffin
~lelh~ ed ~v~ J~ ,. PEG-75 ~horePbu~lerglycendes C10 13 isop~rPffin
~ynelh-3 PEG-801,.1~ c~sloroil CPprvlicalcnhol
~Ivnelh-3-~clDno~le PEG 80 jojobP ~cld/31cohol CPslor IRicinus communis) oil
NonoJlynol-10.~ I1.-IO.-S0 PEG-80sorbil~nIPur~le Cele~rylocl~noPle
OcloJtynol- 11. -10 PEG-100 CDSlOr oll Ceql sle~ryl ocl~noPIe
O' p ~d~ uv-; Ir PEG-lOOh.. ' 'clsloroii f'l~
Olelh 3.-~. -10.-15.-~0.-'5.-50 PEG-I'O jojobP~cidlPIcohol Decvl~lcohol
Olelh-'0 pho~phDIe PEG-'00 I-.h.ù~ .~,... Diethvlene ~Ivcol
PEG-~.-6.-8.-I'.-16.-'0.-i'. 10. Polo~Pmer~07 Diethylen~elvcoldibenzoDIe
PEG-l dil~ur3le Polyglyceryl 3 ole~le Diethyl sebPc~le
PEG-h-.. u--c/-.~ li- _1~cendes Poly_lyceryl 6diolePle Diisoeetvl~dipPle
PEG-6 melhvl elher P~ 1-10 dec~ole~le. P. telr~olePIe Diisopropvl ;ldip~le. D. ~eb~c~le
PEG-8 disleDrlle PolYsorbille '0. 60. ~0 Dimelhvl phlhal~le
PEG-I' l~ur~le PPG-~ isodecelh-l. 6. -9.-1' Dipropjleneglycol
Pigments ~ r.~,. Yd~ ~.ta-~b ~ F~ , ~ F- "' ~ Esters ~ Proteins ~ Lanolin


I,~ We Speci~ e in Personal Care.

~ Perforrnance Chemicals for Specialty Requirements.

Costec, Inc. ~ 655 First Bank Drive ~ P~latine. IL 60067 USA
~ Telephone: 8~71359-5713 ~ F~x: 800/5 COSTEC

.~loe ~era ~ Jojoba Oil ~ t ~ Pi~ ls ~ P~ erY~tiY~ ~ Surfactants ~ Fm~lcifi~rs

.. , . ... ... " .., ... , ~


.

CA 02259464 1998-12-30

WO 98/48768 80 PCTAJS98/08931

~ Functions
Dipropylene glvcol dibenzoale Glyeery~ c' , G. stear le SE Sueerianin~ agenl
~ ~ ~v~ui Glyeeryl mono-di-~n-caprylate Linnbarnide DEA
Elhvl aCel~ie. E. laclal~ PEG-20 almond glyeerides
Elhyl mvnsmle. E. oleale ) ~ ' C12-18 Iriglyeendes PEG-oO lanolin
'-Elhylhex,vl isoslearale ~ allow glyeendes PEG-75 lanolin
Glveerin - ydrolyzed oat flour
Glveohrol ~ ~, . I h~J~ Surfartant
Heptane ~araya (S~enculia urens) gum Alltvl dimelhvl belain~
H~xyl nlcohol ,aurelh-3 A"e~: " ',; oxide
Hexylene glycol v nllno Ammonium eoeovl sareosimle
Isobugvl slearale Oe~hy adled ~. . Arnmonium C12 15 alkyl sulfale
50CelVI salievlale ' G~0 slearnle Ammonium l" ' eopolyol sulfalesodeeyj benzoale, Ij ' ,G40/dooecyl glyeol eopolymer Ammonulurn jaurelh-n sulfa~e
koeieosane ' )~ elher Ammomum iauro,vi sareosinale
Icohol I mVnslale 'PG-7~ elh-10 Ammonium laurvl sulfale. A 1 ''
Laurelh-' aeClale opyiene earbonale. P. g yeol ~Iginale mmomum o=xynoi 4 sulfale
,t d _ y~ul , ~todjum ~ ~ I I CO 1O aleohol elhoxylale
1~ ' ,t---Jr--, . odium earbomer C30-50 alcohol elhoxvlale
vle~hyl ~Icohol ~torbban laurale C40-60 aleohol elhoxvlal~
Melhyl propanediol~learie hvdrazide Caleium d ' .IL~.~.,~. sulfonale
Melhylene ehlonde _2',4,~1'-Tr~. h~ ~, , p~ Crdeium laurale
~lEK ~rieapnn Celenrelh-2 phosphale
MIBK rieaprvlin Celearelh-5 phosphale
Morpholine ~rilaunn Cetearelh-10 phosphale
Omyl benzoale, O. ~rimynslin Celolelh-35
Octvl laurale. O palmilale ~ripalmilin C~lvl belaine. C phosphale
Octyldodecvl laelale Trisle rin r~~mide MEAelhoxvlale
Olive oil PEG-6 eslers r ~ , I belaine. pomssium sal
Pemul oil PEG-6 eslers ~ mQlant r ~ ~I belaine ammonium sal
pemane Capsicum fruleseens exlracl r - ~ ~t ,, I hydroxv sullaine
Peuoleum dislillales EAeulhern ginseng (~ ' , semieosusl r. ', ,, I hydroxy sullaine, Immonium sall
PEG-6 melhvl elher eAIraet r. ~ v~ I hydroxv sullaine. pomssium sal
PEG-12 Guarana(plulliniacupana\exlract r ~ ."" oxide
PEG-20 I,~J" _ ' cnsmr ml l~aocoeeus hydrolvsate Coeelh-7 earbnxvlie aeidPEG-33 cnswr oil ~ ~ ~ ' ' elnslinale r. g,
PEG-50glyceryl cocoale ~ ' ' ' h..... ' ., _' aspartale r. I Iaurvl-laurelhsulfale
Pul~gl~ yl-_ dioleale TEA b. l. '; r ~ laur,vl sulfale
Fol~gl~ vl-3 1, Toeopheryl nieolinale r Indeeelh sulfale
Fu~ mh~ glyeol dib~nzoale Uroe nieaeid Coeo ~ ' ' Ivl PG-dimonium chlonde
Pul~.,v~ glveol dlbenzoale Yeast (-~ ' .. " cerevisiae) eXuacl (Faex) N-Coeoyl-(3 , , ~I)-N.N-dimelhvl-N-ethyl
PPG- t mvnslvl elher propmnale Ledostrv ICurcvma zedorlria) oil amtnonium ~Ihvl sulfale
PPG-3 Zine DNA Coeovl glmamic acid
PPG-'0 l~nolin ~Icohol elher Coeovl hvdrolyzed sov prmein
Propvl ~Ieohol Sun5creen Coeovl h; bv,~.,.h~l imidazoline
Propvlenc carbonale Basil (Pasilicum sanrum) oil exlracl Cll-i5 parelh-9. -i'. -'0, -30, -~0
Propvlene glycol Basil (Ocimum basllicum) exuam C12-13 pare~h sulfate
Propylene glycol dibenzoale p ~ ,3 I C12-13 parelh-5 c~rboxylie Icid
Propvlene glvcol m~hyl elha 3 ~ , ' ' carnphor C12-15 parePù-12
Prop,vlen~ gl,vcol mynslale Borojoa sorbilis exlracl C14-15 pauelh-8 clrboxylic Icid
Pyndine C12-15 alkvl benzoale DEA-olelh-5-phosphale
Sesame ~S~samurn indicum) oil Coffee (Coffen arabica) bean exrran DEA-olelh-20-phosphale
Slearvl heplanoale Ethyl srdieylale Deeeth-3, -6. -8
Toluene Glyceryl PABA D ~.. ' '~ ' 25
Xylene Homosalate Dieelearelh-10 phosphorie Ieid
SpF booster H~ ' , tn~.-D 3' ,, ' r ~ copolvol
Borojoasorbilis exuaet Isoamylp: ' ~ 0 ~ eopolyol almondale. D c. iSoslearale
I salicvlatc I . , .1' ~I saBcylate rl ~ copolyol laurale. D c olivale
Sl,.. /a.,~' copolymer Job'stears(Colxl .,. i~,l.,)exrtaQ D copolyolphlhalale
Yeast (S~.. h. u.. ~ cerevisiae) exuacl (Faex) Oclyl dimelhyl PAE3A. O ~ prorp'yl PG-belaine
Oclyl salicylale, O unas one D;~..... ' ' ' ' 2 laurovl glulamale
Stabilizer Oryzanol Dio.. ,.'r'~ ' ' 5 lauroylglmamale
Acnlales-VA ~ul~ Pansy (Vola Incolor) exlracl D ~s ' ' ~1 lauroyl glulamale
.l,u~0 '~ copoIymer PEG-~S PABA Disndium ~ m' ~ '
A ~ /r''~ rlh ~O ' ' ~' copolvmer Ph.. ," ' ' sulfonic acjd Disndium ~
Acrylatesiv!nvl ~ TEA-salicvlale Disodium lanelh-5 ''
C10 pol~ I polyglvcol esler Tltamum dioxide Disodium lauramido MEA ~' -
Cllcium alginale Disodiurn laurelh ''
n~vD~ lacla~e Sunscreen U\/8 Disodium olclmido MIPA ~ ''
Coc~mine oxide L~ , ' -5 Disodium olelmido PEG-2 ''
Colloidal silica sols Eclipla Jlba exuacl Disodium olelh-3 ~ "
Cvclodex~nn PEG-'5 PABA Disodium, ' ' MEA ~ ''
Disodium EDTA Ste~relh-10û Disodium lallamido MEA -~f
Gcllan gum Tridecvl salicvlale Dislelrelh-' laurovl glulamale
(D~sme~jc ~sench Relerence 1996 1.3,

CA 022~9464 1998-12-30

W O 98/48768 81 PCT~US98/08931


Functions

Oi Ih ~ Inurovl ylurtmnlc PEG 120Jojobn o;l Sodium Inuroyi hydrolyzed collngen
ElhoAyl3led gly-erol sorbitnn snturnted fDtty neid PoloADmer 101. 1~' Sodium inuroyi sarcosinote. S L tnurnte
ElhoAylnted glycerol sorbitnn unsaturated fatty p~ polyelher copolver Sodium methyi oleoyi tnurnte
neid ester Pou~ssium eo-oyl slyemnte Sodium mynstoyl ylutamnte
Glyeereth-_5 PCA i~o~tenr~e Polnssium cocovl hydrolvzed eollngen Sodium mvnsloyl hydrolyzed eollnyen
Glyeerelh~6pho~phme PotassiumC9-lSphosph3leester Sodiummvnstoylsnrcosinnte
Glyceryl hydroAvs~earnte Pot~ssium Inurovl hvdrolvzed collnsen Sodium mynslyl sulfme
11~ ' Mnllowoyl glummle neid Polassium IDurvi suifme Sodium ~ ol 6 phosphme
Isopropyl h, 5 VA~ Potassium mvnsloyl hydrolvzed eollngen Sodium oaoAynol-7 elhnne ~ulfonnle
copoly I Polassium nleovl hydrolvzed collngen Sodium oclyl sulfme
r ~ r Y I helnine Potassium p3imnme Sodium oleoyl hydrolyzed collagen
L3ure~h~ 3. 1.-7.-1_.-16 Polassium ' ~8.. ~,.1hydrolyzedeoll3gen Sodiumsle~n7glhydrolyzedcollagen
Laurelh-3 carbonvlic Icid. L. phosph;ne PPG-7-isodece~h I -o -9 - I _ Sodium mdecah sulf3le
Laurelh-ScarboAylic3cid PPG-6CI_-18purelh.11 Sodium_ ' ~I.. vvlhydrolvzedcoll3yen
Luurelh- 11 carboAvlic achl Prolein b, '. _~ ' Sodium/TEA-laurovl hvdrolyzed collayen
Lluroyl ~3rcosine Q Sq Sodiumfl'EA-lauroyl hydrolyzed ker3lin
L3urvl;' Y ~lu~buA~t. ,Iul.. ,~- Quillajasapon3n3eAIr;tet Sorbitani~o~teartte
L~uryl h, ' A~.. YI imidazoline R3h'mose 13ur3te. R. mvnslale. R. ole3te Sle3n7vl sareosine
bEA RDffinose p;tlmitate. R. ste3rDIe Sulfaled c3slor oil
M3enesium 13uKIh-8 sulflle r , , ,I belaine TEA-cocovl elulom;tle
MeroA3pol 105. 171. 17' Silieoneuualemium-1.-8.-9 TEA-cocoylhydrolyzedcoll3een
MEA-13uryl sulfue Sodium alph3 olefin sulfonate TEA Cl7 15 alkyi suil lle
MlAed ~u~ . . mvn Sodium cocovl hydrolyzed wheal prolein TEA h, h~c M3110w glulam3le
Myrelh-7 Sodium cocovl iselhionale TEA-lauroyl glulam3leMynstoyl s3reosine Sodium Cl ~ 13 sult'ale TEA-laurovl ker31in umino 3cids
Mynslyl 31eohol SodiumCI'-I~ parelh-7 sulf31e TEA-laurovl ~arCOsin31e
NonoAynol-7 -9 ~ 13 -15 Sodium C I _-15 p3relh-3 sulfon~le TEA-laurvi sulf31e
NonoAynol-lOc3rboxylicacid SodiumCI_-15p~relh-7carboAyl3le TEA-mvnsloylhydrolyzedcoll3een
OaoAynol-10.-1~ SodiumCI'-15parelh-7sulfon3le Toeopherelh-5-10-18-'0-30-50-70
0LI~ ' ' ' 10.-16 SodiumCI'-15parelh-8c3rboAyl3le Tridecelh-7carboxyliclcid
Oleoyl sarcoslne Sodium C I '-15 p3relh- 15 ~ulfonale Tndecelh-9
Olelh-' phosph31e Sodium Cl_-18 31kvl sulf31e Tridecah-l9-c3rhoAvlic 3cid
Olelh-5 phosph31e Sodium C13-17 alk3ne ~ullon3le Tridecvl elhoAylaleOleyl bel3ine Sodium C1-1-16 ohl;n sulfonale T ~ ~ C10-1-1 sulf~le
Oleyl l.~J.uA~.h!l imid3zoline Sodium cele3ryl sulf3le Tnlauryl phosph31e
r o-AIde Sodium celyl oleyl sulf~le Whe31 e~ 1 helaine
Palmilyl belalne Sodium coco-l3110w sulf3le Yueea ver3 eAIracPCA elhvl cocovl ~rgm3~e Sodium cocoyl ylulam3le
PEG-7 h~JI, ' c3slor od Sodium cocoyl hydrolyz~d colhgen ~pendin~ ~nt
PEG-8.. ~,.YW.. ~".. clycendes Sodiumcocovlhvdrolyzedsoypro~ein A.,~: ' 10 ' ~ . copolymer
PEG-813ura~e Sodiumcoeovl~arcosin~le A~ 0 ' Yl.n.copolymer
PEG-8 ste3rl1e Sodium .'' ' copolyol 3ceryl Alein
PEG-15 elvcer l sle3rale ~ ! . C BemOnile
PEG-'5 elvcer l iso~l~3rale Sodium L~JIue_.. l.J l3110W glulamole C10 ~ . ' .I polyelvcol esl~r
PEG-_7 lanohn Sodium isod~cvl sulfale
PEG-30 13nolin Sodium i~ur~lh-5 c3rbol(vlale C31clum 31ym3le
PEG-IO C3510r oil Sodium 13urelh- 11 c3rbo~-ylale C~rbom~r. C. 93
PEG 10 ~Ivcervl sle~rDle Sodium 13urclh- 1 3-csrbo~vl3le C~eeeniul IChondrus cnspus
PEG~O joJoba oil. P. I~nolin Sodium 13urelh sul~3le Cellulos~ gum
PEG-60 ~Iycer~l isosl~ le. P. g. sle~31e Sodium I . ' Cetyl h ' ~ ' J; " '

WltcocollJGl d~iOn _¦
~'r- 01l 1'' ' ' ~ Group _~eet!ng daily your changln~
W ItCO 2cOa3l~6olo~277(BOutSjdetheu.s) ~for su-~actants glo~
Fax 203 552-2B50
OUR NAME IS MCINTYRE ,~
~, OURGAME IS AMPHOTERICS

MclNT~'RE 24601 Governors Highway . University Park, IL 60466 )
GROUP LTD. (708) 534-6200 ~ FAX: (708) 534-6216 . 1-800-645b457



.~ .

CA 022~9464 1998-12-30
.


W O 98/48768 82 PCT~US98/08931


Fun~:tions

Dih!-dn---na~Ld lallow phlhalic acid amiLIc Culcium alginote MDM hydamom
Dislc:lr! l l7hlhalic acid amlde Calcium carrageenan I ~
GuamC~ ;-nopsis ~ eum Caprylic alcohnl ~ ~
Hccmlllc Carbomer Mynstomide DEA. M MEA
Hvdn~ . c L ~ ' ~I h 8 ~ ' Myristomine oxide
!i~ JMAcopl)lvmer Currogeenan~Chondnuscnspusl Mynslylalcohol
Macllc~lulll aluminum silicate Cellulose. C gum Ocrocosi~nvl slearate
Mcd~lc.llulo~c Ceteorvlalcohol C behenate Olenmide.O.DEA.O ~1EA
p ~ Celeoryl oLIanoate. C ~tearale Palmitomide MEA
Pui ~ c. P micronlzed Cetoslearvl slearale Pectin
Pn~pv;~ Iycol aleimne Celyl alcuhol PEG-2 laurale
Qu;ll;lllllllll-18bentonlte Cctylb~J~UA~ ' PEG-3disleiarstle.P.Iauramid~
Qualcrllillln 1.7 hectorjte Cetyl mynstate C palmilale PEG-3 huramineoAide
Sodiulll m3enesium silicale Cocomide PEG-4 "' P oleamide
Sodiulll 1~ Cocomide MEA C MIPA PEG-5M
cl ~ hemonile S heclonle C< ~ oxide PEG-obeeswaA
SlcarcOI l~)allvH ' ~; copolvmcr Coco-betoine PEG-7h~' ~ 'costoroil
Trac l~illull I Aslraealus eummifer~ gum CL' O . PEG-8
Trih;bclllll C. '~' I betaine PEG-8 dioleale P. distearale
Trihvdlll~v~leann Cocosl amido hydroxy ~ulfo betitine PEG-8 steara~e
T,~ ' macneslum aluminum uli-iJIc Cocoyl, ' ' ' elhoxylale PEG-9M
Xunlhilll cum Colloidid ~ilica ~ols PEG-12 beeswaA
DE.~ h.dlu~ lechhin PEG~18glycerylul-_oe'
s ~ DE.~-linolea~e PEG-23M
C;ILIUIII ~.~Lchann DE.~-olelh 3 phosphale PEG-28 glyceryl tallowa~e
Fnuclll~c DE.~ oleth- 10 phosphale PEG 10 jojoba oil
GlycyldlLIlnic acid Decyl alcohol PEG 15M
GlycvrllllA- Icid Dextran PEG-50 tollow slmide
Glycjrrhl~ln ' Dextrin PEG-55 propylene glycol olea~e
Hydn~ L'd corn Storch Dilaureth- 10 phosphate PEG-75 sleara~e
Laall~; Dioleth-8 phosph;tte PEG-90M
Mallill ll D! IHF PEG- I OO stearate
Mamlill ~I Ethox! laled falty alcohol PEG- 1'0 methyl glucose diolea~e
Sacch;mll Gellan cum PEG-150dis~eora~e
Sodiu~ -hann Gl~ccrslbehenale~G steara~e PEG-150~ lteu-as~eara~e
Sorhhlll Gl~cer!-1~1. ' vl,~. PEG-loOM
Sucnl~c GuamC!anopsis .. ' ~ I gum PEG-200 elvcervl steara~e
Gus~r b~ u~ .i chlonde PEG-200 glyccryl ~allowa~e
Tannin~ Jcccl~.dtur Hectorioe P~n.. ~' .1 ' '
!~ce~vl Ivnl~ine He~l alcohol r~m.~ .' IIVI le~rasteara~e
Carr;n (j~JULU~ carolalex~ract H~drtedsilica Poloxam~rlO5 12~ 185 '37 '38.338 ~07
CoppLr ILclvl~vroslnsllemelhvlsilslnol H~genatcdrapeseedoil Polyacrylicacid
Dihvdr-~lvucelone H! ~ena~ed s~arch hvdrolvsa~e Polysorba~e 'O
Di~;)diulll Inulvl 1~ rosina~e H~ ~eenaled lallowelh-oO myns~yl glycol Potassium aleina~e. P chlonde
Ecliplu .llhu exlraa m whhe emulsion H~ zed oa~ llour Po~ssium olea~e. P stearate
GIUC~/~L ~vnl~ina~e H ~i~zed transeenic collaeen PPG-5-ceteth-10 phospha~e
H'~ Propylene olvcol s~eara~e
Thickcncr H~ ~x~ propvl chilosan PVM/MA decadiene .. u ,~ uH . _.
Acrvlulc~ VA ~~ u ~l ul ~ H ~;propjl euar PVP
AcrjlulL~/C I O~C30 alAyl acrvla~e . u ,~ . H r ~ H!--~x~propyl ~ . " ' Qustternium- 18 bentonile
AcrylDIL~/cC~e~h-2oitaconalecopolvmer H~ , Quaternium-18hectori~o
A.,11.m 1- -' 20 ' ~: copolvmcr l~:th~10 Rapeseedoil.e~hoxyla~edhighenucicacid
AcrylulL~ earelh-2o ilaconale copolymér ls;~ramide DEA R' ' ' ' ' MEA
AcrylulL~l~leare~h-7o~ lL~lv; copolvm-~r ISC~F oAide SesamideDEA
A.,~ -J-J Irr'h-50acrylatecopolymer 1~ Sodiuma.,~' M .1 ' .. u~"vl
Acrvluoe~/vinvl' 1L ~u.~vl. )~ aX Sodiumcarbomer.S carrageenan
Acryli~ m~ .. v copolymer r~ --.alSIenculiaurens)gum Sodiumceleth-13-carooxylslle
Algin ~ ide DEA L MEA. L. vtlPA Sodium chlonde
~1 h ' hydroxide slearale 1 r ~ Jl oetajne Sodium maenesium silicale. S j~earate
Ammonlum -lV; /~ v'- u coplJl~m~ __~-10 Soroitan '' S. mstearaoe
~mml,nlum aleinule ' ' --.:-linoleic DEA Soys~mide DEA
~rachRlyl ulcohol I -~ I-linokoyl '' ' ' ' ~ r,~ - ~ ,/1 betstine
Behem~ aLid -- !I-mvnstoyl '' '' ' ' ' S~rch ~1.~;0 ' ,1. .o~ul.. ~ ' salt
Behenyl;~l~ohol B behenate I ~:alcohol.L betaine StsuchI h.. ~ ' ''~copolvmer-sodiumsaB
Benu)nBL ~:U rnide DEA. L MEA r - " bentonite. S. hectonte
~ 10 p-,h;curbS myl polvglvcol ester :~:;ri; acid Stearstmide
-1 -15ulcohols :~:~icacid Stesu mideDEA.S.MEA S MEA-steslrate
-I'-lf)slhllhols ' :- s heaniCeratonislsiliqualgwn '' '' ~1 " '; lactate
_ 18-3~1 aL-Id ' ~ sium slluminum silicate Slesuamine oxide

~rich
~.e,v easiestto Forsu ~ Biminatess,u" ,. ~ Talktothe global leader.
~ e~~e carcorr~er

CA 022~9464 1998-12-30

W098/48768 83 PCTAJS98/08931


Functions
Stearelh-lOallyl ' '.. ~. copolymer Goldofpleasureoil CeraiD
Slearie acid Gntpe ~VIds vinifera) seed oil Cetyl :' ' ' C. isooetanoale
Slearvl aleohol Hael (Corylus avellana~ nul oil D' '~
Symhede beeswax HyWd sunilower (Heliamhus annuus) oil D- ' ' ' h, '
T~ " _ ' MEA 11~ ~ ' coconuloil D' ' ' ' stearale
TEA~ ; a~m ~ ' _ copolvmer lly ~ ' co~lonseed oil 11, ' .. ' caslor oil
Traeacablh lAslragalus gummifer) gum 11~ ~ ' vegetable oil 11~ ' coltonseed oil
Tribehenin Jojoba ( Buxus chinensis) oil I _ ' jojoba oil. H. j. wax
T~ ICubd (Aleurites molaeeana) nut oil 1' ~ ' ' palm kernel oil
T. ' ' magnesium aiuminum silieate MY damia tennifolia nut oil I, ~ ' rapeseed ml
Wheat germamide DEA ~ ' ' . (Limnanthes alba) seed oil I ~ nee bran wax
Wheat b-- , ,, I betaine Mexiean P~PW ~il I ~ ~ vegeta e m
Xamhan sum Palttt (Elaeis suineensis) kernel oil Isooetadeevl i
Partitllv h ' ' sovbean oil J put (Rhus succedanea) wax
T~;Y~trope Pe dt (Pmnus persiea) kemel oil Joioba esters
Bentonue Peanut (Ar tchis hvpogNa) oil Monta~ (Montan cera) wax
Heetonte Peean (Carya illinoensis) oil Ouneury wax
'' -" bentomte Pumpxin(Cucurbitapepo)se doil r~ cc-~13beeswax
T Rapeseed (Brasslca campesms) oil r. ..... , .. , . copolymer
,oner Rice (Orvza sadval bran oil - '
Althea offtcinalis exlmct SaEllower ~Canhamus unclonus) oil Syntheo?e candelilla wax
Dog rose I Rosa canina) hips exlract ot SyDIbedc carnauba
Ginseng ( P~nax ginseng) ex~raa Sisymbrium irio oil Wetting al ent
HorselaQ extracl Sogbean (Glvcine soja) oil r " chlonde
Lemon L A extraa SuDflow-r (Helianthus annuus) seed oil r ~ chlonde
~ ' ' e (Splraea ulmana) extract W lnut (Juslans reeia) oil r. ' chlonde
Nettle ( Unica dioica) extract Wheat (Tridcum vulgare) germ oil Ceteareth- 0
Rose (Rosa mulnQora) extrac~ Wtld borase oil Ceteth-20
Rosemary ~Rosmarinus officinalis) extract Celyl pyndinium chloride
B ' -U-2.-3~-4.-6-8 -9 -11.-12 ~teorbicaad t;~ ' 'i ' ' aeid
8utyl ~J.I ........... Aseorbic acid polvpepdde D" ' ' ' Ivl ~ ' C
Corallina otficinalis Aseorbyl palmitate rr ~ copolvol melhvl ether
Isopropyl ~I;t ~ ,.; Biodn 11~ ~ copoljol phthalale
Menthvl ;mthrtnilale Caleium I ' Dioetyl sodium ''
l.4'-T ~ Eîhylh. ' ~. ' yloleyl oxazolinerltanium dioxide C ~ ~ ~ Il, ' B milk glycendes
Zine oxlde Edipla alba e%trael Isolaureth-6
UVB absorber Embliea o'~lcinalis extram Lanolin acid
Equisetum arvense extract Laurvl pyrrolidone
Argama spmosa ml r r ~ '
r ~ m -3 ~ -6 -9 -11 Eseulin Leathin _ - ' rosinale
Corallina officlnalis Elhvl linoleale Methyl rosinale
DEB. I.. _li.G~- Folicacid Nonylnonoxynol-5
l~uninana japonica extract Oetollvnol-8. 70
Elhyl d ' ~J~ I PA8A Marsilea minmaexlracl Oleth 15
Etocrylene Melaleuca braaeata extract Oleth-20 phosphate
Homosalate Merutdione PEG-9 eastor oil
Isoamyl p: ' ~ ' Nastunium sinensis extmet PEG-15 castor oil
Isopropyl, ' , Nelutnbium speciosum extract PEG-20 glyceryl slearale
15, , .. 1 vl salievlate Niaein PEG-20 sorbitan triisosterate
t M ~ Ikl. .~ camphor t:' ' ' N. ascorbate P G-45 palmkemelglycerides
Octocrylene t . . P 'G-60 ~Imond glycendes. P. com slycendes
Omnzole Nieotinic acid P 'G-60 shea butter glycerides
Octyl dlmethyl PABA Oeitnum basilicum extract P 'G-70 mango glycerides
Octvl ' r ' PanthenyMnacetate Pl.G-75 shorea butter glycerides
Octyl salicvlale. O. mazone Panlothenic Icid PEG-80 sorbilan laurale
PA8A r;.,: Polmtamer123.181 18'.184 '35 334
PEG-75 PA8A Pyridoxine HCI Polyether trisiloxane
'1 ' ' ' sulfonie Icid Reunnl Polyglvcervl-3 oleale
Shea buner. elhoxylaled Retinyl acetate. R. palmitate rM~ 6 dioleate
TEA-salicylate Rednyl palmilate polypeptide FM~ 10 lelraolealerltanium dioxide Rednyl propionate Polysorbate 60 80
TriPABA pamhenol Ribonavin lelraaeelale PPG-2-isodeceth~t. -6 -9 -12
Zioc oxide Sodium as0rbale PPG-10 lannlin alcohol elher
Thiamine HCL Propylene glycol
t/~gp~ qii Toeopherol Sodium' ~. ' v aeelale
Apncol ~prunus ammeniaca) kemel oil Toeopheryl acelale T. succinale Sodium c~
AvoemJo (Persea sralissima) oil Sodium decyl diphenvl elher sulfonale
Eaobab oil ~k~ Sodium ' ' ~ 1 ether sulfonal-C;llendul~ otficinalis oil Baybeny (Mynca cen~era) wax Sodium lauryl sulfale
rl = " T kurzii) oil 13ehenoxv dmethicone Sulfated castor oil
Coconm ICocos nucifera~ oil C16-18 alkvl mclhicone Triisocenl ehrale
Corn ~ Zea mavs I oil CandelillD ( Euphorbia cenfer t) wax Tnisostearin PEG-6 eslers
C~ulonsceLi ( Gossyplum ~ oil Carn tuh~ ICopemici t cerifera) wax Yucea vera exlntcl



.

Representative Drawing

Sorry, the representative drawing for patent document number 2259464 was not found.

Administrative Status

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Administrative Status , Maintenance Fee  and Payment History  should be consulted.

Administrative Status

Title Date
Forecasted Issue Date Unavailable
(86) PCT Filing Date 1998-05-01
(87) PCT Publication Date 1998-11-05
(85) National Entry 1998-12-30
Dead Application 2001-04-04

Abandonment History

Abandonment Date Reason Reinstatement Date
2000-04-04 FAILURE TO RESPOND TO OFFICE LETTER
2000-05-01 FAILURE TO PAY APPLICATION MAINTENANCE FEE

Payment History

Fee Type Anniversary Year Due Date Amount Paid Paid Date
Application Fee $300.00 1998-12-30
Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
RON, EYAL S.
HAND, BARRY J.
BROMBERG, LEV S.
KEARNEY, MARIE
SCHILLER, MATTHEW E.
AHEARN, PETER M.
LUCZAK, SCOTT
MENDUM, THOMAS H. E.
Past Owners on Record
None
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Description 1998-12-30 83 4,589
Cover Page 1999-03-26 1 38
Abstract 1998-12-30 1 62
Claims 1998-12-30 7 237
Drawings 1998-12-30 28 263
Assignment 1998-12-30 3 117
PCT 1998-12-30 3 92
Correspondence 1999-03-02 1 31