Language selection

Search

Patent 2404233 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent Application: (11) CA 2404233
(54) English Title: COMPOSITIONS AND METHODS FOR THE THERAPY AND DIAGNOSIS OF LUNG CANCER
(54) French Title: COMPOSITIONS ET METHODES POUVANT TRAITER OU DIAGNOSTIQUER LE CANCER DU POUMON
Status: Dead
Bibliographic Data
(51) International Patent Classification (IPC):
  • C12N 15/12 (2006.01)
  • A61K 35/14 (2006.01)
  • A61K 38/17 (2006.01)
  • A61K 39/00 (2006.01)
  • A61K 39/395 (2006.01)
  • C07K 14/47 (2006.01)
  • C07K 16/30 (2006.01)
  • C12Q 1/68 (2006.01)
  • G01N 33/574 (2006.01)
(72) Inventors :
  • REED, STEVEN G. (United States of America)
  • LODES, MICHAEL J. (United States of America)
  • MOHAMATH, RAODOH (United States of America)
  • SECRIST, HEATHER (United States of America)
  • BENSON, DARIN R. (United States of America)
  • INDIRIAS, CAROL YOSEPH (United States of America)
  • HENDERSON, ROBERT A. (United States of America)
  • FLING, STEVEN P. (United States of America)
  • ALGATE, PAUL A. (United States of America)
  • ELLIOT, MARK (United States of America)
  • MANNION, JANE (United States of America)
  • KALOS, MICHAEL D. (United States of America)
(73) Owners :
  • CORIXA CORPORATION (United States of America)
(71) Applicants :
  • CORIXA CORPORATION (United States of America)
(74) Agent: GOWLING LAFLEUR HENDERSON LLP
(74) Associate agent:
(45) Issued:
(86) PCT Filing Date: 2001-03-28
(87) Open to Public Inspection: 2001-10-04
Availability of licence: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): Yes
(86) PCT Filing Number: PCT/US2001/009991
(87) International Publication Number: WO2001/072295
(85) National Entry: 2002-09-30

(30) Application Priority Data:
Application No. Country/Territory Date
09/538,037 United States of America 2000-03-29
09/588,937 United States of America 2000-06-05
09/640,878 United States of America 2000-08-18
09/667,170 United States of America 2000-09-20
09/704,512 United States of America 2000-11-01
09/738,973 United States of America 2000-12-14

Abstracts

English Abstract




Compositions and methods for the therapy and diagnosis of cancer, particularly
lung cancer, are disclosed. Illustrative compositions comprise one or more
lung tumor polypeptides, immunogenic portions thereof, polynucleotides that
encode such polypeptides, antigen presenting cell that expresses such
polypeptides, and T cells that are specific for cells expressing such
polypeptides. The disclosed compositions are useful, for example, in the
diagnosis, prevention and/or treatment of diseases, particularly lung cancer.


French Abstract

L'invention concerne des compositions et des méthodes pouvant traiter ou diagnostiquer le cancer, notamment le cancer du poumon. Des compositions exemplaires contiennent un ou plusieurs polypeptides de tumeur brocho-pulmonaire, des parties immunogènes desdits polypeptides, des polynucléotides codant ces polypeptides, une cellule antigénique exprimant ces polypeptides, et des lymphocytes T spécifiques de cellules exprimant ces polypeptides. Les compositions de l'invention sont utiles, par exemple, pour diagnostiquer, prévenir et/ou traiter des maladies, notamment le cancer du poumon.

Claims

Note: Claims are shown in the official language in which they were submitted.





136

CLAIMS

What is Claimed:

1. An isolated polynucleotide comprising a sequence selected from
the group consisting of:
(a) sequences provided in SEQ ID NO: 390; 392, 394, 396; 398-420,
422-424, 428-433 and 440-583;
(b) complements of the sequences provided in SEQ ID NO: 390,
392, 394, 396, 398-420; 422-424, 428-433 and 440-583;
(c) sequences consisting of at least 20 contiguous residues of a
sequence provided in SEQ ID NO: 390, 392, 394, 396, 398-420, 422-424, 428-433
and
440-583;
(d) sequences that hybridize to a sequence provided in SEQ ID NO:
390, 392, 394, 396, 398-420, 422-424, 428-433 and 440-583, under moderately
stringent conditions;
(e) sequences having at least 75% identity to a sequence of SEQ ID
NO: 390, 392, 394, 396, 398-420, 422-424, 428-433 and 440-583;
(f) sequences having at least 90% identity to a sequence of SEQ ID
NO: 390, 392, 394, 396, 398-420 422-424, 428-433 and 440-583; and
(g) degenerate variants of a sequence provided in SEQ ID NO: 390,
392, 394, 396, 398-420, 422-424, 428-433 and 440-583.

2. An isolated polypeptide comprising an amino acid sequence
selected from the group consisting of:
(a) SEQ ID NO: 584-587;
(b) sequences encoded-by a polynucleotide of claim 1; and
(c) sequences having at least 70% identity to a sequence encoded by
a polynucleotide of claim 1; and
(d) sequences having at least 90% identity to a sequence encoded by
a polynucleotide of claim 1.





137

3. An expression vector comprising a polynucleotide of claim 1
operably linked to an expression control sequence.

4. A host cell transformed or transfected with an expression vector
according to claim 3.

5. Are isolated antibody, or antigen-binding fragment thereof, that
specifically-binds to a polypeptide of claim 2.

6. A method for detecting the presence of a cancer in a patient,
comprising the steps of:
(a) obtaining a biological sample from the patient;
(b) contacting the biological sample with a binding agent that binds
to a polypeptide of claim 2;
(c) detecting in the sample an amount of polypeptide that binds to
the binding agent; and
(d) comparing the amount of polypeptide to a predetermined cut-off
value and therefrom determining the presence of a cancer in the patient.

7. A fusion protein comprising at least one polypeptide according to
claim 2.

8. An oligonucleotide that hybridizes to a sequence recited in SEQ
ID NO: 390, 392, 394, 396, 398-420 422-424, 428-433 and 440-583 under
moderately
stringent conditions.

9. A method for stimulating and/or expanding T cells specific for a
tumor protein, comprising contacting T cells with at least one component
selected from
the group consisting of:
(a) polypeptides according to claim 2;




138

(b) polynucleotides according to-claim 1; and
(c) antigen-presenting cells that express a polypeptide according to
claim 1,
under conditions and for a time sufficient to permit the stimulation
and/or expansion of T cells.

14. An isolated T cell population, comprising T cells prepared
according to the method of claim 9.

11. A composition comprising a first component selected from the
group consisting of physiologically acceptable carriers and immunostimulants,
and a
second component selected from the group consisting of:

(a) polypeptides according to claim 2;
(b) polynucleotides according to claim 1;
(c) antibodies according to claim 5;
(d) fusion proteins according to claim 7;
(e) T-cell populations according to claim 10; and

(f) antigen presenting cells that express a polypeptide according
to claim 2.

12. A method for stimulating an immune response in a patient,
comprising administering to the patient a composition of claim 11.

13. A method for the treatment of a cancer in a patient, comprising
administering to the patient a composition of claim 11.

14. A method for determining the presence of a cancer in a patient,
comprising the steps of:
(a) obtaining a biological sample from the patient;




139

(b) contacting the biological sample with am oligonucleotide
according to claim 8;
(c) detecting in the sample an amount of a polynucleotide that
hybridizes to the oligonucleotide; and
(d) compare the amount of polynucleotide that hybridizes to the
oligonucleotide to a predetermined cut-off value, and therefrom determining
the
presence of the cancer in the patient.

15. A diagnostic kit comprising at last one oligonucleotide
according to claim 8.

16. A diagnostic kit comprising at least one antibody according to
claim 5 and a detection reagent, wherein the detection reagent comprises a
reporter
group.

17. A method for inhibiting the development of a cancer in a patient,
comprising the steps of:
(a) incubating CID4+ and/or CD8+ T yells isolated from a patient
with at least one component selected from the group consisting of: (c)
polypeptides
according to claim 2; (ii) polynucleotides according to claim 1; and (iii)
antigen
presenting cells that express a polypeptide of claim 2, such that T cell
proliferate;
(b) administering to the patient an effective amount of the
proliferated T cells,
and thereby inhibiting the development of a cancer in the patient.


Description

Note: Descriptions are shown in the official language in which they were submitted.





DEMANDE OU BREVET VOLUMINEUX
LA PRESENTE PARTIE DE CETTE DEMANDE OU CE BREVET COMPREND
PLUS D'UN TOME.
CECI EST LE TOME 1 DE 2
~~ TTENANT LES PAGES 1 A 264
NOTE : Pour les tomes additionels, veuillez contacter 1e Bureau canadien des
brevets
JUMBO APPLICATIONS/PATENTS
THIS SECTION OF THE APPLICATION/PATENT CONTAINS MORE THAN ONE
VOLUME
THIS IS VOLUME 1 OF 2
CONTAINING PAGES 1 TO 264
NOTE: For additional volumes, please contact the Canadian Patent Office
NOM DU FICHIER / FILE NAME
NOTE POUR LE TOME / VOLUME NOTE:


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
COMPOSITIONS AND METHODS FOR THE THERAPY
AND DIAGNOSIS OF LUNG CANCER
TECHNICAL FIELD OF THE INVENTION
The present invention relates generally to therapy and diagnosis of
cancer, such as lung cancer. The invention is more specifically related to
polypeptides,
comprising at least a portion of a lung tumor protein, and to polynucleotides
encoding
such ~polypeptides. Such polypeptides and polynucleotides are useful in
pharmaceutical
compositions, e.g., vaccines, and other compositions for the diagnosis and
treatment of
lung cancer.
BACKGROUND OF THE INVENTION
Lung cancer is the primary cause of cancer death among both men and
women in the U.S., with an estimated 172,000 new cases being reported in 1994.
The
five-year survival rate among all lung cancer patients, regardless of the
stage of disease
at diagnosis, is only 13%. This contrasts with a five-year survival rate of
46% among
cases detected while the disease is still localized. However, only 16% of lung
cancers
are discovered before the disease has spread.
Early detection is difficult since clinical symptoms are often not seen
until the disease has reached an advanced stage. Currently, diagnosis is aided
by the
use of chest x-rays, analysis of the type of cells contained in sputum and
fiberoptic
examination of the bronchial passages. Treatment regimens are determined by
the type
and stage of the cancer, and include surgery, radiation therapy and/or
chemotherapy. In
spite of considerable research into therapies for the disease, lung cancer
remains
difficult to treat.
Accordingly, there remains a need in the art for improved vaccines,
treatment methods and diagnostic techniques for lung cancer.
SUMMARY OF THE INVENTION
In one aspect, the present invention provides polynucleotide
compositions comprising a sequence selected from the group consisting of:


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
2
(a) sequences provided in SEQ ID NO: 217-390, 392, 394, 396, 398-
420 422-424, 428-433 and 440-583;
(b) complements of the sequences provided in SEQ ID NO: 217-390,
392, 394, 396, 398-420 422-424, 428-433 and 440-583;
(c) sequences consisting of at least 20 contiguous residues of a
sequence provided in SEQ ID NO: 217-390, 392, 394, 396, 398-420 422-424, 428-
433
and 440-583;
(d) sequences that hybridize to a sequence provided in SEQ ID NO:
217-390, 392, 394, 396, 398-420 422-424, 428-433 and 440-583, under moderately
stringent conditions;
(e) sequences having at least 75% identity to a sequence of SEQ ID
NO: 217-390, 392, 394, 396, 398-420 422-424, 428-433 and 440-583;
(fj sequences having at least 90% identity to a sequence of SEQ ID
NO: 217-390, 392, 394, 396, 398-420 422-424, 428-433 and 440-583; and
(g) degenerate variants of a sequence provided i.n SEQ ID NO: 217-
390, 392, 394, 396, 398-420 422-424, 428-433 and 440-583.
In one preferred embodiment, the polynucleotide compositions of the
invention are expressed in at least about 20%, more preferably in at least
about 30%,
and most preferably in at least about 50% of lung tumors samples tested, at a
level that
, is at least about 2-fold, preferably at least about 5-fold, and most
preferably at least
about 10-fold higher than that for normal tissues.
The present invention, in another aspect, provides polypeptide
compositions comprising an amino acid sequence that is encoded by a
polynucleotide
sequence described above.
In specific embodiments, the present invention provides polypeptide
compositions comprising an amino acid sequence selected from the group
consisting of
sequences recited in SEQ ID NO: 391, 393, 395, 397, 421, 425-427, 434-439 and
584-
587.
In certain preferred embodiments, the polypeptides and/or
polynucleotides of the present invention are immunogenic, i.e., they are
capable of


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
3
eliciting an immune response, particularly a humoral and/or cellular immune
response,
as further described herein.
The present invention further provides fragments, variants and/or
derivatives of the disclosed polypeptide and/or polynucleotide sequences,
wherein the
fragments, variants and/or derivatives preferably have a level of immunogenic
activity
of at least about 50%, preferably at least about 70% and more preferably at
least about
90% of the level of immunogenic activity of a polypeptide sequence set forth
in SEQ ID
NOs: 391, 393, 395, 397, 421, 425-427, 434-439 and 584-587 or a polypeptide
sequence encoded by a polynucleotide sequence set forth in SEQ ID NOs: 217-
390,
392, 394, 396, 398-420 422-424, 428-433 and 440-583.
The present invention further provides polynucleotides that encode a
polypeptide described above, expression vectors comprising such
polynucleotides and
host cells transformed or transfected with such expression vectors.
Within other aspects, the present invention provides pharmaceutical
compositions comprising a polypeptide or polynucleotide as described above and
a
physiologically acceptable carrier.
Within a related aspect of the present invention, the pharmaceutical
compositions, e.g., vaccine compositions, are provided for prophylactic or
therapeutic
applications. Such compositions generally comprise an immunogenic polypeptide
or
polynucleotide of the invention and an immunostimulant, such as an adjuvant.
The present invention further provides pharmaceutical compositions that
comprise: (a) an antibody or antigen-binding fragment thereof that
specifically binds to
a polypeptide of the present invention, or a fragment thereof; and (b) a
physiologically
acceptable carrier.
Within further aspects, the present invention provides pharmaceutical
compositions comprising: (a) an antigen presenting cell that expresses a
polypeptide as
described above and (b) a pharmaceutically acceptable carrier or excipient.
Illustrative
antigen presenting cells include dendritic cells, macrophages, monocytes,
fibroblasts
and B cells.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
4
Within related aspects, pharmaceutical compositions are provided that
comprise: (a) an antigen presenting cell that expresses a polypeptide as
described above
and (b) an immunostimulant.
The present invention further provides, in other aspects, fusion proteins
that comprise at least one polypeptide as described above, as well as
polynucleotides
encoding such fusion proteins, typically in the form of pharmaceutical
compositions,
e.g., vaccine compositions, comprising a physiologically acceptable carrier
and/or an
immunostimulant. The fusions proteins may comprise multiple immunogenic
polypeptides or portions/variants thereof, as described herein, and may
further comprise
one or more polypeptide segments for facilitating the expression, purification
and/or
immunogenicity of the polypeptide(s).
Within further aspects, the present invention provides methods for
stimulating an immune response in a patient, preferably a T cell response in a
human
patient, comprising administering a pharmaceutical composition described
herein. The
patient may be afflicted with lung cancer, in which case the methods provide
treatment
for the disease, or patient considered at risk fox such a disease may be
treated
prophylactically.
Within further aspects, the present invention provides methods for
inhibiting the development of a cancer in a patient, comprising administering
to a
patient a pharmaceutical composition as recited above. The patient may be
afflicted
with lung cancer, in which case the methods provide treatment for the disease,
or patient
considered at risk for such a disease may be treated prophylactically.
The present invention further provides, within other aspects, methods for
removing tumor cells from a biological sample, comprising contacting a
biological
sample with T cells that specifically react with a polypeptide of the present
invention,
wherein the step of contacting is performed under conditions and for a time
sufficient to
permit the removal of cells expressing the protein from the sample.
Within related aspects, methods are provided for inhibiting the
development of a cancer in a patient, comprising administering to a patient a
biological
sample treated as described above.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
Methods are further provided, within other aspects, for stimulating
and/or expanding T cells specific for a polypeptide of the present invention,
comprising
contacting T cells with one or more of: (i) a polypeptide as described above;
(ii) a
polynucleotide encoding such a polypeptide; and/or (iii) an antigen presenting
cell that
S expresses such a polypeptide; under conditions and for a time sufficient to
permit the
stimulation and/or expansion of T cells. Isolated T cell populations
comprising T cells
prepared as described above are also provided.
Within further aspects, the present invention provides methods for
inhibiting the development of a cancer in a patient, comprising administering
to a
patient an effective amount of a T cell population as described above.
The present invention further provides methods for inhibiting the
development of a cancer in a patient, comprising the steps of: (a) incubating
CD4+
and/or CD~+ T cells isolated from a patient with one or more of: (i) a
polypeptide
comprising at least an immunogenic portion of polypeptide disclosed herein;
(ii) a
polynucleotide encoding such a polypeptide; and (iii) an antigen-presenting
cell that
expressed such a polypeptide; and (b) administering to the patient an
effective amount
of the proliferated T cells, and thereby inhibiting the development of a
cancer in the
patient. Proliferated cells may, but need not, be cloned prior to
administration to the
patient.
Within further aspects, the present invention provides methods for
determining the presence or absence of a cancer, preferably a lung cancer, in
a patient
comprising: (a) contacting a biological sample obtained from a patient with a
binding
agent that binds to a polypeptide as recited above; (b) detecting in the
sample an amount
of polypeptide that binds to the binding agent; and (c) comparing the amount
of
polypeptide with a predetermined cut-off value, and therefrom determining the
presence
or absence of a cancer in the patient. Within preferred embodiments, the
binding agent
is an antibody, more preferably a monoclonal antibody.
The present invention also provides, within other aspects, methods for
monitoring the progression of a cancer in a patient. Such methods comprise the
steps
0~ (a) contacting a biological sample obtained from a patient at a first point
in time


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
6
with a binding agent that binds to a polypeptide as recited above; (b)
detecting in the
sample an amount of polypeptide that binds to the binding agent; (c) repeating
steps (a)
and (b) using a biological sample obtained from the patient at a subsequent
point in
time; and (d) comparing the amount of polypeptide detected in step (c) with
the amount
detected in step (b) and therefrom monitoring the progression of the cancer in
the
patient.
The present invention further provides, within other aspects, methods for
determining the presence or absence of a cancer in a patient, comprising the
steps of: (a)
contacting a biological sample obtained from a patient with an oligonucleotide
that
hybridizes to a polynucleotide that encodes a polypeptide of the present
invention; (b)
detecting in the sample a level of a polynucleotide, preferably mRNA, that
hybridizes to
the oligonucleotide; and (c) comparing the level of polynucleotide that
hybridizes to the
oligonucleotide with a predetermined cut-off value, and therefrom determining
the
presence or absence of a cancer in the patient. Within certain embodiments,
the amount
of mRNA is detected via polymerase chain reaction using, for example, at least
one
oligonucleotide primer that hybridizes to a polynucleotide encoding a
polypeptide as
recited above, or a complement of such a polynucleotide. Within other
embodiments,
the amount of mRNA is detected using a hybridization technique, employing an
oligonucleotide probe that hybridizes to a polynucleotide that encodes a
polypeptide as
recited above, or a complement of such a polynucleotide.
In related aspects, methods are provided for monitoring the progression
of a cancer in a patient, comprising the steps of: (a) contacting a biological
sample
obtained from a patient with an oligonucleotide that hybridizes to a
polynucleotide that
encodes a polypeptide of the present invention; (b) detecting in the sample an
amount of
a polynucleotide that hybridizes to the oligonucleotide; (c) repeating steps
(a) and (b)
using a biological sample obtained from the patient at a subsequent point in
time; and
(d) comparing the amount of polynucleotide detected in step (c) with the
amount
detected in step (b) and therefrom monitoring the progression of the cancer in
the
patient.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
7
Within further aspects, the present invention provides antibodies, such as
monoclonal antibodies, that bind to a polypeptide as described above, as well
as
diagnostic kits comprising such antibodies. Diagnostic kits comprising one or
more
oligonucleotide probes or primers as described above are also provided.
These and other aspects of the present invention will become apparent
upon reference to the following detailed description. All references disclosed
herein are
hereby incorporated by reference in their entirety as if each was incorporated
individually.
SEQUENCE IDENTIFIERS
SEQ ID NO: 1 is the determined cDNA sequence for L363Cl.cons
SEQ ID NO: 2 is the determined cDNA sequence for L263C2.cons
SEQ ID NO: 3 is the determined cDNA sequence for L263C2c
SEQ ID NO: 4 is the determined cDNA sequence for L263Cl.cons
SEQ ID NO: 5 is the determined cDNA sequence for L263C1b
SEQ ID NO: 6 is the determined cDNA sequence for L164C2.cons
SEQ ID NO: 7 is the determined cDNA sequence for L 164C l .cons
SEQ ID NO: 8 is the determined cDNA sequence for L366CIa
SEQ ID NO: 9 is the determined cDNA sequence for L260Cl.cons
SEQ ID NO: 10 is the determined cDNA sequence for L163C1c
SEQ ID NO: 11 is the determined cDNA sequence for L163CIb
SEQ ID NO: 12 is the determined cDNA sequence for L255Cl.cons
SEQ ID NO: 13 is the determined cDNA sequence for L255C1b
SEQ ID NO: 14 is the determined cDNA sequence for L355Cl.cons
SEQ ID NO: 15 is the determined cDNA sequence for L366Cl.cons
SEQ ID NO: 16 is the determined cDNA sequence for L 163 C 1 a
SEQ ID NO: 17 is the determined cDNA sequence for LT86-1
SEQ ID NO: 18 is the determined cDNA sequence for LT86-2
SEQ ID NO: 19 is the determined cDNA sequence for LT86-3
SEQ ID NO: 20 is the determined cDNA sequence for LT86-4


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
8
SEQ ID NO: 21 is the determined cDNA sequence for LT86-S
SEQ ID NO: 22 is the determined cDNA sequence for LT86-6
SEQ ID NO: 23 is the determined cDNA sequence for LT86-7
SEQ ID NO: 24 is the determined cDNA sequence for LT86-8
SEQ ID NO: 25 is the determined cDNA sequence for LT86-9
SEQ ID NO: 26 is the determined cDNA sequence for LT86-10
SEQ ID NO: 27 is the determined cDNA sequence for LT86-11
SEQ ID NO: 28 is the determined cDNA sequence for LT86-12
SEQ ID NO: 29 is the determined cDNA sequence for LT86-13
SEQ ID NO: 30 is the determined cDNA sequence for LT86-14
SEQ ID NO: 31 is the determined cDNA sequence for LT86-15
SEQ ID NO: 32 is the predicted amino acid sequence for LT86-1
SEQ ID NO: 33 is the predicted amino acid sequence for LT86-2
SEQ ID NO: 34 is the predicted amino acid sequence for LT86-3
SEQ ID NO: 35 is the predicted amino acid sequence for LT86-4
SEQ ID NO: 36 is the predicted amino acid sequence for LT86-5
SEQ ID NO: 37 is the predicted amino acid sequence for LT86-6
SEQ ID NO: 38 is the predicted amino acid sequence for LT86-7
SEQ ID NO: 39 is the predicted amino acid sequence for LT86-8
SEQ ID NO: 40 is the predicted amino acid sequence for LT86-9
SEQ ID NO: 41 is the predicted amino acid sequence for LT86-10
SEQ ID NO: 42 is the predicted amino acid sequence for LT86-11
SEQ ID NO: 43 is the predicted amino acid sequence for LT86-12
SEQ ID NO: 44 is the predicted amino acid sequence for LT86-13
SEQ ID NO: 45 is the predicted amino acid sequence for LT86-14
SEQ ID NO: 46 is the predicted amino acid sequence for LT86-15
SEQ ID NO: 47 is a (dT)i2AG primer
SEQ ID NO: 48 is a primer
SEQ ID NO: 49 is the determined 5' cDNA sequence for L86S-3
SEQ ID NO: 50 is the determined 5' cDNA sequence for L86S-12


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
9
SEQ ID NO: 51 is the determined 5' cDNA sequence for L86S-16
SEQ ID NO: 52 is the determined 5' cDNA sequence for L86S-25
SEQ ID NO: 53 is the determined 5' cDNA sequence for L86S-36
SEQ ID NO: 54 is the determined 5' cDNA sequence for L86S-40
SEQ ID NO: 55 is the determined 5' cDNA sequence for L86S-46
SEQ ID NO: 56 is the predicted amino acid sequence for L86S-3
SEQ ID NO: 57 is the predicted amino acid sequence for L86S-12
SEQ ID NO: 58 is the predicted amino acid sequence for L86S-16
SEQ ID NO: 59 is the predicted amino acid sequence for L86S-25
SEQ ID NO: 60 is the predicted amino acid sequence for L86S-36
SEQ ID NO: 61 is the predicted amino acid sequence for L86S-40
SEQ ID NO: 62 is the predicted amino acid sequence for L86S-46
SEQ ID NO: 63 is the determined 5' cDNA sequence for L86S-30
SEQ ID NO: 64 is the determined 5' cDNA sequence for L86S-41
SEQ ID NO: 65 is the predicted amino acid sequence from the 5' end of
LT86-9
SEQ ID NO: 66 is the determined extended cDNA sequence for LT86-4
SEQ ID NO: 67 is the predicted extended amino acid sequence for
LT86-4
SEQ ID NO: 68 is the determined 5' cDNA sequence for LT86-20
SEQ ID NO: 69 is the determined 3' cDNA sequence for LT86-21
SEQ ID NO: 70 is the determined 5' cDNA sequence for LT86-22
SEQ ID NO: 71 is the determined 5' cDNA sequence for LT86-26
SEQ ID NO: 72 is the determined 5' cDNA sequence for LT86-27
SEQ ID NO: 73 is the predicted amino acid sequence for LT86-20
SEQ ID NO: 74 is the predicted amino acid sequence for LT86-21
SEQ ID NO: 75 is the predicted amino acid sequence for LT86-22
SEQ ID NO: 76 is the predicted amino acid sequence for LT86-26
SEQ ID NO: 77 is the predicted amino acid sequence for LT86-27
SEQ ID NO: 78 is the determined extended cDNA sequence for L86S-12


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
SEQ ID NO: 79 is the determined extended cDNA sequence for L86S-36
SEQ ID NO: 80 is the determined extended cDNA sequence for L86S-46
SEQ ID NO: 81 is the predicted extended amino acid sequence for
L86S-12
5 SEQ ID NO: 82 is the predicted extended amino acid sequence for L86S-
36
SEQ ID NO: 83 is the predicted extended amino acid sequence for
L86S-46
SEQ ID NO: 84 is the determined 5'cDNA sequence for L86S-6
10 SEQ ID NO: 85 is the determined 5'cDNA sequence for L86S-11
SEQ ID NO: 86 is the determined 5'cDNA sequence for L86S-14
SEQ ID NO: 87 is the determined 5'cDNA sequence for L86S-29
SEQ ID NO: 88 is the determined 5'cDNA sequence for L86S-34
SEQ ID NO: 89 is the determined'S °cDNA sequence for L86S-39
SEQ ID NO: 90 is the determined 5'cDNA sequence for L86S-47
SEQ ID NO: 91 is the determined 5'cDNA sequence for L86S-49
SEQ ID NO: 92 is the determined 5'cDNA sequence for L86S-51
SEQ ID NO: 93 is the predicted amino acid sequence for L86S-6
SEQ ID NO: 94 is the predicted amino acid sequence for L86S-11
SEQ ID NO: 95 is the predicted amino acid sequence for L86S-14
SEQ ID NO: 96 is the predicted amino acid sequence for L86S-29
SEQ ID NO: 97 is the predicted amino acid sequence for L86S-34
SEQ ID NO: 98 is the predicted amino acid sequence for L86S-39
SEQ ID NO: 99 is the predicted amino acid sequence for L86S-47
SEQ ID NO: 100 is the predicted amino acid sequence for L86S-49
SEQ ID NO: 101 is the predicted amino acid sequence for L86S-51
SEQ ID NO: 102 is the determined DNA sequence for SLT-T1
SEQ ID NO: 103 is the determined 5' cDNA sequence for SLT-T2
SEQ ID NO: 104 is the determined 5' cDNA sequence for SLT-T3
SEQ ID NO: 105 is the determined 5' cDNA sequence for SLT-TS


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
11
SEQ ID NO: 106 is the determined 5' cDNA sequence for SLT-T7
SEQ ID NO: 107 is the determined 5' cDNA sequence for SLT-T9
SEQ ID NO: 108 is the determined 5' cDNA sequence for SLT-T10
SEQ ID NO: 109 is the determined 5' cDNA sequence for SLT-Tl 1
SEQ ID NO: 110 is the determined 5° cDNA sequence for SLT-T12
SEQ ID NO: 111 is the predicted amino acid sequence for SLT-T1
SEQ ID NO: 112 is the predicted amino acid sequence for SLT-T2
SEQ ID NO: 113 is the predicted amino acid sequence for SLT-T3
SEQ ID NO: 114 is the predicted amino acid sequence for SLT-T10
SEQ ID NO: 115 is the predicted amino acid sequence for SLT-T12
SEQ ID NO: 116 is the determined 5' cDNA sequence for SALT-T3
SEQ ID NO: 117 is the determined 5 ° cDNA sequence for SALT-T4
SEQ ID NO: 118 is the determined 5' cDNA sequence for SALT-T7
SEQ ID NO: 119 is the determined 5' cDNA sequence for SALT-T8
SEQ ID NO: 120 is the determined 5 ° cDNA sequence for SALT-T9
SEQ ID NO: 121 is the predicted amino acid sequence for SALT-T3
SEQ ID NO: 122 is the predicted amino acid sequence for SALT-T4
SEQ ID NO: 123 is the predicted amino acid sequence for SALT-T7
SEQ ID NO: 124 is the predicted amino acid sequence for SALT-T8
SEQ ID NO: 125 is the predicted amino acid sequence for SALT-T9
SEQ ID NO: 126 is the determined cDNA sequence for PSLT-1
SEQ ID NO: 127 is the determined cDNA sequence for PSLT-2
SEQ ID NO: 128 is the determined cDNA sequence for PSLT-7
SEQ ID NO: 129 is the determined cDNA sequence for PSLT-13
SEQ ID NO: 130 is the determined cDNA sequence for PSLT-27
SEQ ID NO: 131 is the determined cDNA sequence for PSLT-28
SEQ ID NO: 132 is the determined cDNA sequence for PELT-30
SEQ ID NO: 133 is the determined cDNA sequence for PSLT-40
SEQ ID NO: 134 is the determined cDNA sequence for PSLT-69
SEQ ID NO: 135 is the determined cDNA sequence for PSLT-71


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
12
SEQ ID NO: 136 is the determined cDNA sequence for PSLT-73
SEQ ID NO: 137 is the determined cDNA sequence for PSLT-79
SEQ ID NO: 138 is the determined cDNA sequence for PSLT-03
SEQ ID NO: 139 is the determined cDNA sequence for PSLT-09
SEQ ID NO: 140 is the determined cDNA sequence for PSLT-O11
SEQ ID NO: 141 is the determined cDNA sequence for PSLT-041
SEQ ID NO: 142 is the determined cDNA sequence for PSLT-62
SEQ ID NO: 143 is the determined cDNA sequence for PSLT-6
SEQ ID NO: 144 is the determined cDNA sequence for PSLT-37
SEQ ID NO: 145 is the determined cDNA sequence for PSLT-74
SEQ ID NO: 146 is the determined cDNA sequence for PSLT-O10
SEQ ID NO: 147 is the determined cDNA sequence for PSLT-012
SEQ ID NO: 148 is the determined cDNA sequence for PSLT-037
SEQ ID NO: 149 is the determined 5' cDNA sequence for SAL-3
SEQ ID NO: 150 is the determined 5 ° cDNA sequence for SAL-24
SEQ ID NO: 151 is the determined 5' cDNA sequence for SAL-25
SEQ ID NO: 152 is the determined 5' cDNA sequence for SAL-33
SEQ ID NO: 153 is the determined 5 ° cDNA sequence for SAL-50
SEQ ID NO: 154 is the determined 5' cDNA sequence for SAL-57
SEQ ID NO: ~ 55 is the determined 5' cDNA sequence for SAL-66
SEQ ID NO: 156 is the determined 5' cDNA sequence for SAL-82
SEQ ID NO: 157 is the determined 5' cDNA sequence for SAL-99
SEQ ID NO: 158 is the determined 5' cDNA sequence for SAL-104
SEQ ID NO: 159 is the determined 5' cDNA sequence for SAL-109
SEQ ID NO: 160 is the determined 5' cDNA sequence for SAL-5
SEQ ID NO: 161 is the determined 5' cDNA sequence for SAL-8
SEQ ID NO: 162 is the determined 5' cDNA sequence for SAL-12
SEQ ID NO: 163 is the determined 5' cDNA sequence for SAL-14
SEQ ID NO: 164 is the determined 5' cDNA sequence for SAL-16
SEQ ID NO: 165 is the determined 5' cDNA sequence for SAL-23


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
13
SEQ ID NO: 166 is the determined 5' cDNA sequence for SAL-26
SEQ ID NO: 167 is the determined 5' cDNA sequence for SAL-29
SEQ ID NO: 168 is the determined 5' cDNA sequence for SAL-32
SEQ ID NO: 169 is the determined 5' cDNA sequence for SAL-39
SEQ ID NO: 170 is the determined 5' cDNA sequence for SAL-42
SEQ ID NO: 171 is the determined 5' cDNA sequence for SAL-43
SEQ ID NO: 172 is the determined 5' cDNA sequence for SAL-44
SEQ ID NO: 173 is the determined 5' cDNA sequence for SAL-48
SEQ ID NO: 174 is the determined 5' cDNA sequence for SAL-68
SEQ ID NO: 175 is the determined 5' cDNA sequence for SAL-72
SEQ ID NO: 176 is the determined 5' cDNA sequence for SAL-77
SEQ ID NO: 177 is the determined 5' cDNA sequence for SAL-86
SEQ ID NO: 178 is the determined 5' cDNA sequence for SAL-88
SEQ ID NO: 179 is the determined 5' cDNA sequence for SAL-93
SEQ ID NO: 180 is the determined 5' cDNA sequence for SAL-100
SEQ ID NO: 181 is the determined 5' cDNA sequence for SAL-105
SEQ ID NO: 182 is the predicted amino acid sequence for SAL-3
SEQ ID NO: 183 is the predicted amino acid sequence for SAL-24
SEQ ID NO: 184 is a first predicted amino acid sequence for SAL-25
SEQ ID NO: 185 is a second predicted amino acid sequence for SAL-25
SEQ ID NO: 186 is the predicted amino acid sequence for SAL-33
SEQ ID NO: 187 is a first predicted amino acid sequence for SAL-50
SEQ ID NO: 188 is the predicted amino acid sequence for SAL-57
SEQ ID NO: 189 is a first predicted amino acid sequence for SAL-66
SEQ ID NO: 190 is a second predicted amino acid sequence for SAL-66
SEQ ID NO: 191 is the predicted amino acid sequence for SAL-82
SEQ ID NO: 192 is the predicted amino acid sequence for SAL-99
SEQ ID NO: 193 is the predicted amino acid sequence for SAL-104
SEQ ID NO: 194 is the predicted amino acid sequence for SAL-5
SEQ ID NO: 195 is the predicted amino acid sequence for SAL-8


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
14
SEQ ID NO: 196 is the predicted amino acid sequence for SAL-12
SEQ ID NO: 197 is the predicted amino acid sequence for SAL-14
SEQ ID NO: 198 is the predicted amino acid sequence for SAL-16
SEQ ID NO: 199 is the predicted amino acid sequence for SAL-23
SEQ ID NO: 200 is the predicted amino acid sequence for SAL-26
SEQ ID NO: 201 is the predicted amino acid sequence for SAL-29
SEQ ID NO: 202 is the predicted amino acid sequence for SAL-32
SEQ ID NO: 203 is the predicted amino acid sequence for SAL-39
SEQ ID NO: 204 is the predicted amino acid sequence for SAL-42
SEQ ID NO: 205 is the predicted amino acid sequence for SAL-43
SEQ ID NO: 206 is the predicted amino acid sequence for SAL-44
SEQ ID NO: 207 is the predicted amino acid sequence for SAL-48
SEQ ID NO: 208 is the predicted amino acid sequence for SAL-68
SEQ ID NO: 209 is the predicted amino acid sequence for SAL-72
SEQ ID NO: 210 is the predicted amino acid sequence for SAL-77
SEQ ID NO: 211 is the predicted amino acid sequence for SAL-86
SEQ ID NO: 212 is the predicted amino acid sequence for SAL-88
SEQ ID NO: 213 is the predicted amino acid sequence for SAL-93
SEQ ID NO: 214 is the predicted amino acid sequence for SAL-100
SEQ ID NO: 215 is the predicted amino acid sequence for SAL-105
SEQ ID NO: 216 is a second predicted amino acid sequence for SAL-50
SEQ ID NO: 217 is the determined cDNA sequence for SSLT-4
SEQ ID NO: 218 is the determined cDNA sequence for SSLT-9
SEQ ID NO: 219 is the determined cDNA sequence for SSLT-10
SEQ ID NO: 220 is the determined cDNA sequence for SSLT-12
SEQ ID NO: 221 is the determined cDNA sequence for SSLT-19
SEQ ID NO: 222 is the determined cDNA sequence for SSLT-31
SEQ ID NO: 223 is the determined cDNA sequence for SSLT-38
SEQ ID NO: 224 is the determined cDNA sequence for LT4690-2
SEQ ID NO: 225 is the determined cDNA sequence for LT4690-3


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
SEQ ID NO: 226 is the determined cDNA sequence for LT4690-22
SEQ ID NO: 227 is the determined cDNA sequence for LT4690-24
SEQ ID NO: 228 is the determined cDNA sequence for LT4690-37
SEQ ID NO: 229 is the determined cDNA sequence for LT4690-39
5 SEQ ID NO: 230 is the determined cDNA sequence for LT4690-40
SEQ ID NO: 231 is the determined cDNA sequence for LT4690-41
SEQ ID NO: 232 is the determined cDNA sequence for LT4690-49
SEQ ID NO: 233 is the determined 3' cDNA sequence for LT4690-55
SEQ ID NO: 234 is the determined 5' cDNA sequence for LT4690-55
10 SEQ ID NO: 235 is the determined cDNA sequence for LT4690-59
SEQ ID NO: 236 is the determined cDNA sequence for LT4690-63
SEQ ID NO: 237 is the determined cDNA sequence for LT4690-71
SEQ ID NO: 238 is the determined cDNA sequence for 2LT-3
SEQ ID NO: 239 is the determined cDNA sequence for 2LT-6
15 SEQ ID NO: 240 is the determined cDNA sequence for 2LT-22
SEQ ID NO: 241 is the determined cDNA sequence for 2LT-25
SEQ ID NO: 242 is the determined cDNA sequence for 2LT-26
SEQ ID NO: 243 is the determined cDNA sequence for 2LT-31
SEQ ID NO: 244 is the determined cDNA sequence for 2LT-36
SEQ ID NO: 245 is the determined cDNA sequence for 2LT-42
SEQ ID NO: 246 is the determined cDNA sequence for 2LT-44
SEQ ID NO: 247 is the determined cDNA sequence for 2LT-54
SEQ ID NO: 248 is the determined cDNA sequence for 2LT-55
SEQ ID NO: 249 is the determined cDNA sequence for 2LT-57
SEQ ID NO: 250 is the determined cDNA sequence for 2LT-58
SEQ ID NO: 251 is the determined cDNA sequence for 2LT-59
SEQ ID NO: 252 is the determined cDNA sequence for 2LT-62
SEQ ID NO: 253 is the determined cDNA sequence for 2LT-63
SEQ ID NO: 254 is the determined cDNA sequence for 2LT-65
SEQ ID NO: 255 is the determined cDNA sequence for 2LT-66


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
16
SEQ ID NO: 256 is the determined cDNA sequence for 2LT-70
SEQ ID NO: 257 is the determined cDNA sequence for 2LT-73
SEQ ID NO: 258 is the determined cDNA sequence for 2LT-74
SEQ ID NO: 259 is the determined cDNA sequence for 2LT-76
SEQ ID NO: 260 is the determined cDNA sequence for 2LT-77
SEQ ID NO: 261 is the determined cDNA sequence for 2LT-78
SEQ ID NO: 262 is the determined cDNA sequence for 2LT-80
SEQ ID NO: 263 is the determined cDNA sequence for 2LT-85
SEQ ID NO: 264 is the determined cDNA sequence for 2LT-87
SEQ ID NO: 265 is the determined cDNA sequence for 2LT-89
SEQ ID NO: 266 is the determined cDNA sequence for 2LT-94
SEQ ID NO: 267 is the determined cDNA sequence for 2LT-95
SEQ ID NO: 268 is the determined cDNA sequence for 2LT-98
SEQ ID NO: 269 is the determined cDNA sequence for 2LT-100
SEQ ID NO: 270 is the determined cDNA sequence for 2LT-103
SEQ ID NO: 271 is the determined cDNA sequence for 2LT-105
SEQ ID NO: 272 is the determined cDNA sequence for 2LT-107
SEQ ID NO: 273 is the determined cDNA sequence for 2LT-108
SEQ ID NO: 274 is the determined cDNA sequence for 2LT-109
SEQ ID NO: 275 is the determined cDNA sequence for 2LT-118
SEQ ID NO: 276 is the determined cDNA sequence for 2LT-120
SEQ ID NO: 277 is the determined cDNA sequence for 2LT-121
SEQ ID NO: 278 is the determined cDNA sequence for 2LT-122
SEQ ID NO: 279 is the determined cDNA sequence for 2LT-124
SEQ ID NO: 280 is the determined cDNA sequence for 2LT-126
SEQ ID NO: 281 is the determined cDNA sequence for 2LT-127
SEQ ID NO: 282 is the determined cDNA sequence for 2LT-128
SEQ ID NO: 283 is the determined cDNA sequence for 2LT-129
SEQ ID NO: 284 is the determined cDNA sequence for 2LT-133
SEQ ID NO: 285 is the determined cDNA sequence for 2LT-137


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
17
SEQ ID NO: 286 is the determined cDNA sequence for LT4690-71
SEQ ID NO: 287 is the determined cDNA sequence for LT4690-82
SEQ ID NO: 288 is the determined full-length cDNA sequence for
S SLT-74
SEQ ID NO: 289 is the determined cDNA sequence for SSLT-78
SEQ ID NO: 290 is the determined cDNA sequence for SCC1-8.
SEQ ID NO: 291 is the determined cDNA sequence for SCCl-12.
SEQ ID NO: 292 is the determined cDNA sequence for SCCl-336
SEQ ID NO: 293 is the determined cDNA sequence for SCC1-344
SEQ ID NO: 294 is the determined cDNA sequence for SCC1-345
SEQ ID NO: 295 is the determined cDNA sequence for SCC1-346
SEQ ID NO: 296 is the determined cDNA sequence for SCC1-348
SEQ ID NO: 297 is the determined cDNA sequence for SCC1-350
SEQ ID NO: 298 is the determined cDNA sequence for SCC1-352
SEQ ID NO: 299 is the determined cDNA sequence for SCCl-354
SEQ ID NO: 300 is the determined cDNA sequence for SCC1-355
SEQ ID NO: 301 is the determined cDNA sequence for SCCl-356
SEQ ID NO: 302 is the determined cDNA sequence for SCC1-357
SEQ ID NO: 303 is the determined cDNA sequence for SCCl-501
SEQ ID NO: 304 is the determined cDNA sequence for SCC1-503
SEQ ID NO: 305 is the determined cDNA sequence for SCC1-513
SEQ ID NO: 306 is the determined cDNA sequence for SCC1-516
SEQ ID NO: 307 is the determined cDNA sequence for SCC1-518
SEQ ID NO: 308 is the determined cDNA sequence for SCCl-519
SEQ ID NO: 309 is the determined cDNA sequence for SCCl-522
SEQ ID NO: 310 is the determined cDNA sequence for SCC1-523
SEQ ID NO: 311 is the determined cDNA sequence for SCC1-525
SEQ ID NO: 312 is the determined cDNA sequence for SCCl-527
SEQ ID NO: 313 is the determined cDNA sequence for SCC1-529
SEQ ID NO: 314 is the determined cDNA sequence for SCC1-530


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
18
SEQ ID NO: 315 is the determined cDNA sequence for SCCl-531
SEQ ID NO: 316 is-the determined cDNA sequence for SCC1-532
~EQ ID NO: 317 .is the determined cDNA sequence for SCCl-533
SEQ ID NO: 318 is the determined cDNA sequence for SCC1-536
SEQ ID NO: 319 is the determined cDNA sequence for SCC1-538
SEQ-ID NO: 320 is the determined cDNA sequence for SCC1-539
SEQ: ID NO: 321 is the determined cDNA sequence for SCCl-541
SEQ ID NO: 322 is the determined cDNA sequence for SCC1-542
SEQ II7:~ NO: 323 is the determined cDNA sequence for SCCl-546
SEQ ID NO: 324 is,the determined cDNA-sequence for SCC1-549
SEQ ID NO: 325 is-the determined cDNA sequence for SCC1-551
SEQ ID NO: 326 is the determined cDNA seqti~nce fox SCCl-552
SEQ ID NO: 327 is-the determined cDNA sequence for SCC1-554
SEQ ID NO: 328 is the determined cDNA sequence for SCCl-558
SEQ ID NO: 329 is the determined cDNA sequence for SCC1-559
SEQ ID NO: 330 is the determined cDNA sequence for SCC1-561
SEQ ID NO: 331 is the deterrilined eDNA sequence for SCC1-562
SEQ ID NO: 332 is the.determiried cDNA sequence for SCCl-564
SEQ ID NO: 333 is the determined cDNA sequence for SCC1-565
SEQ ID NO: 334 is the:determined.cDNA sequence for SCCl-566
SEQ ID NO: 335 is the determined cDNA sequence for SCC1-567
SEQ ID NO: 336 is the determined cDNA sequence for SCCl-568
SEQ ID NO: 337 is the determined cDNA sequence for SCC1-570
SEQ ID NO: 33$ is~the determined cDNA sequence for SCC1-572
SEQ ID NO: 339 is the determined cDNA sequence for SCC1-575
SEQ ID NO: 340 is the determined cDNA sequence for SCCl-576
SEQ ID NO: 341 is the determined cDNA sequence for SCC1-577
SEQ ID NO: 342 is the determined cDNA sequence for SCCI-578
SEQ ID NO: 343 is the determined cDNA sequence for SCC1-582
. SEQ ID NO: 344 is the determined cDNA sequence for SCCl-583


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
19
SEQ ID NO: 345 is the determined cDNA sequence for SCC1-586
SEQ ID NO: 346. is the determined cDNA sequence for SCC1-588
SEQ ID NO.: 347 is the determined cDNA sequence for SCC1-590
SEQ ID NO: 34'8 is the determined cDNA sequence for SCC1-591
5EQ ID NO: 349 is the determined cDNA sequence for SCCl-592
SEQ ID NO: 350 is the determined cDNA sequence for SCC1-593
SEQ ID NO: 351 is the determined cDNA sequence for SCCl-594
SEQ ID NO: 352 is the determined cDNA sequence for S.CC1-595
SEQ ID NO: 353 is the determined~cDNA. sequence for SCCl-596
SEQ IDrNO: 354 i~ the determined cDNA sequence for SCCl-59.8
SEQ ID I'~O: 355 is the determined cDNA sequence-for SCCl-599
SEQ ID NO: 356 is the determined cDNA sequence for SCCl-602
SEQ ID NO: 357 is the dcterinined cDNA sequence for SCC1-604
SEQ ID NO: 358 is he determined cDNA sequence for SCC1-605
SEQ ID NO: 359 is the determined cDNA sequence for SCCl-606
SEQ ID NO: 360' is the determined cDNA sequence for SCC1-607
SEQ ID NO: 361 is the determined cDNA sequence for SCC1-608
SEQ ID NO: 362 is the determined cDNA sequence for SGC1-610
SEQ ID NO: 363 is the determined cDNA sequence for clone DMS79T1
SEQ ID NO: 364 is the determined cDNA sequence for clone DMS79T2
SEQ ID NO: 365 is the determined cDNA sequence for clone DMS79T3
SEQ ID NO: 366 is the deteimii~ed cDNA sequence for clone DMS79T5
SEQ ID NO: 367 is the determined cDNA sequence forclone DMS79T6
SEQ ID NO: 368 is the determined cDNA sequence for clone DMS79T7
SEQ ID NO: 369 is the determined cDNA sequence for clone DMS79T9
SEQ ID NO: 370 is the determined cDNA sequence for clone
DMS'79T 10
SEQ ID NO: 371 is the determined cDNA sequence for clone
DMS79T11
SEQ ID NO: 372 is the determined cDNA sequence for clone 128T1


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
SEQ ID NO: 373 is the determined cDNA sequence for clone 128T2
SEQ ID NO: 374 is the determined cDNA sequence for.clone 128T3
SEQ ID NO: 375 is the determined cDNA sequence for clone 128T4
SEQ ID NO: 376 is the determined cDNA sequence far clone 128T5
5 SEQ ID NQ: 377 is the determined cDNA sequence for clone 128T7
SEQ ID NO: 378 is the detern~ined.cDNA sequence for clone 128T9
SEQ ID NO: 379 is the determined eDI~A sequence for clone 128T10
rEQ ID NO: 380 is the determined cDNA sequence for clone 128TH
SEQ ID NO: 381 is the d~'termined cDNA sequence for clone 128T12
10 SEQ. ID NO: 3,82 is the determined cDNA sequence for clone
NCIH69T3
SEQ- ID NO: 3$3 is the determined cDNA sequence for clone
NCIH69T5
SEQ ID NO: 384 is the determined cDNA sequence for clone
15 ' NCIH69T6
SEQ ID NO: 385 is the determined cDNA sequence for clone
NCIH69T7
SEQ ID NO: 386 is the determined cDN.A sequence for clone
NCIH69T9
20 SEQ ID NO: 387 is the determined cDNA sequence for clone
NCIH69T10
SEQ -II7 NO: 388 is the determined cDNA sequence for clone
NCIH69T11
~SEQ ID NO: 389 is the determined cDNA sequence for clone
NCIH69T12
SEQ ID NO: 390 is the full-length cDNA sequence for 128T1
SEQ ID NO: 391 is the amino acid sequence for 128T1
SEQ ID NO: 392 is the full-length cDNA sequence for 2LT-128
SEQ ID NO: 393 is the amino acid sequence for 2LT-I28
SEQ ID NO: 394 is an extended cDNA sequence for clone SCC1-542


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
21
SEQ ID. NO: 395 is the amino acid sequence corres~ondirig to SEQ ID
N0:394
SEQ-ID NO: 396 is.an extended cDNA sequence fox clone SCCl-593
SEQ ID NO: 397 is the amino acid sequence corresponding to SEQ ID
N0:396
SEQ ID N0:398 is the determined cDNA sequence for 55508.1
SEQ ID NO:399 is the determined cDNA sequence for 55509.1
SEQ ID N0:400 is the determined .cDNA sequence for 54243.1
SEQ~ ID N,0:401 is the determined cDNA sequence for 54251.1
SEQ- ID N0:402 is the determined cDNA sequence for 54252.1
SEQ ID. N0:4,03 is the determined cDNA sequence for 54253.1
SEQ ID N0:404 is the determined cDNA sequence for 55518.1
SEQ ID N0:405 is the deterrriined cDNA sequence for 54258.1
SEQ ID N0:406 is the determined cDNA sequence for 54575.1
SEQ II7 NO:407 is the determined cDNA sequence for 54577.1
~SEQ..ID N0:408. is the determined cDNA sequence for 54584.1
SEQ ID N0:409 is the determined cDNA sequence for 55521.1
SEQ ID NO;410 is the determined cDNA sequence for 54589.1
SEQ ID. NO:~11 is the determined cDNA sequence for 54592.1
SEQ ID N0:412 is the deterrriined cDNA sequence for 55134.1
SEQ iD N0:413 is the determined cDNA sequence for 55137.1
SEQ ID N0:414 is the determined cDNA sequence for 55140.1
SEQ ID. N0:415 is the determined cDNA sequence for 55531.1
SEQ ID N0:416 is the determined.cDNA sequence for 55532.1
SEQ ID N0:417 is the determined cDNA sequence for 54621.1
SEQ ID N0:418 is the determined cDNA sequence for 55548.1
SEQ ID N0:419 is the determined cDNA sequence for 54623.1
SEQ ID N0:420 is the determined cDNA sequence for L39
SEQ ID N0:421 is the predicted amino acid sequence for L39
SEQ ID N0:422 is the determined cDNA sequence for SCC2-29


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
22
SEQ ID-N0:423.is the.determined cDNA sequence for SCC2-36
SEQ ID N0:424 is the determined cDNA sequence for SCC2-60
SEQ ID N0:425 is the predicted amino acid sequence for SCC2-29
~SEQ ID N.0:426 is the predicted amino acid sequence for SCC2-36
SEQ ID IV0:427 is the predicted amino acid sequence for SCC2-60
SEQ ID N0:428 :is an extended cDNA .sequence -for the clone 20129,
also referred to as 2LT-3, set fob in SEQ: ID'NO: 238
SEQ ID N0:429 is ari extended cDNA sequence for the clone 20347,
also referred to as 2LT-26, set forth irz-SEQ II7 N0: 242
1-0 SEQ ID NO430 is an extended cDNA sequence for the clone 21282,
also referred to as 2LT-57, set forth in SEQ ID NO: 249
SEQ ID NO:431 is an extended cDNA sequence .for the clone 21283,
also referred to as 2LT-58, set forth in SEQ ID NO: 250
SEQ. ID N0:432 is an .extended cDNA sequence for the clone 21484,
also referred to as 2LT-98, set forth in SEQ ID NO: 268
SEQ ID N0:433 is an extended cDNA sequence for the clone 21871,
also referred to as 2LT-124, set forth in SEQ ID N.O: 279
SEQ ID N0:434 is an amino acid sequence enCOdeel by SEQ ID NO: 428
SEQ ID NO:435 is an amino acid sequence -,encoded by SEQ ID NO: 429
SEQ ID N0:436 is an amino acid sequence encoded by SEQ ID NO: 430
SEQ ID N.0:437 is an amino acid sequence encoded by SEQ ID NO: 431
SEQ ID N0:438.is an anima acid sequence encoded by SEQ ID NO: 432
SEQ ID N0:439 is an amino acid sequence.encoded by SEQ ID NO: 433
SEQ ID N0:440 is the determined cDNA sequence for clone 19A4
SEQ ID NO: 441 is the determined frill-length cDNA sequence for clone
14F10.
SEQ ID NO: 442 is the determined 5' cDNA sequence for clone 20E10.
SEQ ID NO: 443 is a f rst determined cDNA sequence for clone 55153.
SEQ iD NO: 444 is a second deteririined ,cDNA sequence for clone
55153.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
23
SEQ ID NO: 445 is a.first determined cDNA sequence for clone 55154.
SEQ ID NO: 446 is a second determined cDNA sequence for clone
55154.
SEQ ID' NO: 447 is the determined cDNA sequence for clone 55155.
SEQ ID NO: 448 is a first determined cDNA sequence for clone 55156.
.SEQ ID NO: 449 is a second determined cDNA sequence for clone
55156.
~SEQ ID NO: 450 is a first determined cL7NA sequence for clone 55157.
SEQ ID NO: 451 is a second .determined cDNA sequence for clone
55157.
S,EQ ID NO: 452 is the determined cDNA sequence for clone 55158.
SEQ ID NO: 453 is the determined cDNA sequence for clone 55159.
SEQ ID NO: 454 is a first determined cDNA sequence for clone 55161.
SEQ ID NO: 455 is a second determined cI7NA sequence for clone
55161.
SEQ ID NO: 456 is ~ first determined cDNA sequence for clone 55162.
S.EQ ID NO: 457 is a second determined cDNA sequence for clone
55162.
SEQ ID NO: 458 is a first dete~rriiried cDNA sequence~for clone 55163.
SEQ ID NO: 459 is a second deterriiined cDNA sequence for clone
55163.
SEQ ID NO: 460 is a first determined cDNA sequence for.clone 55164.
SEQ ID NO: 461 is ~. second determined cDNA sequence for clone
55164.
SEQ ID NO: 462 is a first-determined cDNA sequence for clone 55165.
'SEQ ID NO: 463 is a second determined cDNA sequence for clone
55165.
SEQ ID NO: 464 is a first determined cDNA sequence for clone 55166.
SEQ ID NO: 465 is a second determined cDNA sequence for clone
55166.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
24
SEQ ID. NO: 466 is a-first deteriniried cDNA sequence for clone 55167.
~SEQ ID NO: 467 is a second determined cDNA sequenEe for clone
55167.
SEQ ID NO: 468 is a first determined cDNA sequence for clone 55168.
SEQ ID NO: 469 is a second determined cDNA sequence for clone
55168:.
SEQ ID NO: 470 is a first determined cDNA sequence for clone 55169.
SEQ ID NO: 471 is a second deterrriined cDNA sequence for clone
55169.
SEQ ID 1t0: 472 is a first detei~ilined cDNA sequence for clone 55170.
SEQ ill NO: 473 is a second determined cDNA sequence for clone
55170.
SEQ ID NO: 474 is the determined cDNA sequence fot clone 55171.
SEQ ID NO: 475 is the deteimined cDNA sequence for-clone 55172.
S-EQ ID NO: 476 is the determined cDNA sequence for clone 55173.
SEQ ID NO: 477 is a first determined cDNA sequence for clone 55174.
SEQ ID NO: 478 is a second determined cDNA sequence for clone
551'74.
'SEQ ID NO: 479 is the detei~rnine~l~ cDNA sequence for clone 55175.
SEQ ID NO: 480 is the determined cDNA sequence for clone 55176.
SEQ ID. NO: 481 is the determined cDNA sequence for.contig 525.
SEQ ID NQ: 482 is the determined cDNA sequence for conlig 526:
SEQ ID NO: 483 is the determined cDNA sequence for contig 527.
SEQ ID NO: 484 is the deterriiined cDNA sequence for corltig 528.
SEQ .ID NO: 485 is the determined cDNA sequence for contig 529.
SEQ ID NO: 486 is the determined cDNA sequence for contig 530.
SEQ ID NO: 487 is the determined cDNA sequence for contig 531.
SEQ ID NO: 488 is the determined cDNA sequence for contig 532.
SEQ ID NO: 489 is the :determined cDNA sequence for coritig 533.
SEQ ID NO: 490 is the determined cDNA sequence for contig 534.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
SEQ ID NO: 491 is the detei~nined cDNA sequence for.contig 535.
SEQ ID NO.: 492 is the determined cDNA sequence for coring 536.
SEQ ID NO: 493 is the determined cDNA sequence for contig 537.
SEQ ID NO: 494 is-the determined cDNA sequence for contig 538.
5 SEQ ID NO: 495 is the determined eDNA sequence for contig 539.
SEQ ID NO: 496 is the determined cDNA sequence for contig. 540.
SEQ ID NO: 497 is the determined cDNA sequence for contig 541.
SEQ ID NO.: 498 is the determined cDNA sequence for contig 542.
SEQ~ID NO: X99 is the determined cDNA sequence for contig 543.
l0 SEQ II7 NO: 500 is the determined cDNA sequence for contig 544.
SEQ ID NO: 501 is the determined .cDN~. sequence for contig 545.
~SEQ TD NO: 502 is the determined' cDNA sequence for contig 546.
~SEQ ID NO: 503 is the determined cDNA sequence for contig 547.
SEQ ID NO: 504 is the determined cDNA sequence for contig 548.
15 SEQ ID NO: 505 is the determined cDNA sequence for contig 549.
SEQ ~ID NO: 506 is the determined cDNA sequence for contig 550.
SEQ ID NO: 507 is the determined cDNA sequence for contig 551.
SEQ ID NO: 508. is the determiried cDNA sequence for contig 552.
SEQ ID NO: 509 is the' determined cDNA sequence for contig 553.
20 SEQ ID NO: 510 is the determined cDNA sequence for contig 554.
SEQ ID NO: 511 is the determined cDNA sequence for contig 555.
~SEQ- II,l NO: 512 is the determined cDNA sequence for clone 57207.
SEQ ~ID Nl'~: 513 is the determined.cDNA sequence for clone 57209.
SEQ ID NO.: 514 is the determined cDNA sequence for clone 57210.
25 SEQ ID NO: 515 is the determined cDNA sequence for clone 57211.
SEQ ID NO: 516 is the determined cDNA sequence for clone 57212.
SEQ ID NO: 517 is the determined cDNA sequence for clone 57213.
SEQ ID NO: 518 is the determined cDNA sequence for clone 57215.
SEQ ID NO: 519 is the determined cDNA sequence for clone 57219.
SEQ ID NO: 520 is the determined cDNA sequence for clone 57221.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
26
SEQ ID NO: 521 is the determined cDNA sequence -for clone 57222.
SEQ ID' NQ: 522 is the determined: cDNA sequence for clone 57223.
SEQ ID NO: 5-23- is the determined .cDNA sequence for clone 57225.
SEQ ID NO: 524 is the determined cDNA sequence for.clone 57227.
SEQ ID NO: 525 is the determined cDNA sequence for clone 57228.
SEQ ID~NO: 526 is the determined-cDNA sequence for.clone 57229:
SEQ ID.NO: 527 is the determined cDNA sequence for clone 57230.
SEQ ID NO: 528. is the deterriiined cDlVA sequence for .clone 57231.
SEQ ID N(7: 529' is the determined cDNA sequence for clone 57232.
SEQ ID.NCO: 53,0 is the determined cDNA sequence for clone 57233.
~SEQ ID NO: 531 is the determined cDNA sequence for clone 57234.
SEQ ID NO: 532 is the determined cDNA sequence for clone 57235.
SEQ ID NO: 533 is the determined cDNA sequence for clone 57236.
SEQ ID NO: 534 is the determined cDNA sequence for clone 57237.
SEQ ID NO: 535 is the determined cDNA sequence for clone 57238.
SEQ ID NO: 536 is the-determined.cDNA sequence for clone 57239.
SEQ ID NO: 537 is the determined cDNA sequence for clone 57240-.
SEQ ID-NO: 538 is the determined. cDNA sequence for clone 57242.
SEQ IID NO: 539 is the determined cDNA sequence for clone 57243.
SEQ ID NO: 540 is the determined cDNA sequence for clone 57245.
SEQ ID NO: 541 is the determined cDNA sequence for clone 57248.
SEQ ID NO: 542 is the determined cDNA sequence for clone 57249.
SEQ ID NO: 543 is the :determined cI?NA sequence for clone 57250.
SEQ ID NO: 544 is the determined cDNA sequence for .clone 57251.
SEQ ID NO; 545 is the determined cDNA sequence for clone 57253.
SEQ ID NO: 546 is the determined cDNA sequence for clone 57254.
SEQ ID NO: 547 is the determined cDNA sequence for clone 57255.
SEQ ID NO: 548 is the determined cDNA sequence for clone 57257.
SEQ ID NO: 549 is the determined cDNA sequence for clone 57258.
SEQ ID NO: 550 is the .determined cDNA sequence for clone 57259.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
27
SEQ ID NO: 551 is the determiri~d cIDNA sequence' for.clone 57261.
~SEQ ID NO: 552 is the determined cDNA sequence for clone 57262.
SEQ ID NO: 553 is the determined cDNA sequence for clone 57263.
SEQ ID NO: 554 is the determined cDNA sequence for clone 57264.
SEQ ID NO: 555 is the determined cDIsIA sequence for clone 57265.
SEQ ID NO: 556 is the .determined cDNA sequence for clone 57266.
SEQ ID NO: 557 is the determined cDNA sequence for clone 57267.
SEQ ID NO: 558 is the determined cDNA sequence for clone 57268.
SEQ ID NO: 559 is the determined cDNA sequence for clone 57269:
SEQ ID NO: 560 is the determined cDNA sequence for clone 57270.
SEQ ID NO: 561 is the determined cDNA sequence for clone 57271.
SEQ ID NO: 5'6,2 is the determined cDNA sequence for clone 57272.
SEQ ID NO: 563 is the determined cDNA sequence for.clone 57274.
SEQ ID NO: 564 is the determined cDNA sequence for clone 57275.
'SEQ ID NO: 565 is the determined cDNA sequence for clone 57277.
SEQ ID NO: 566 is the deferinined cDNA sequence for clone 57280.
SEQ ID NO: 567 is the determined cDNA sequence for clone 57281.
SEQ ID NO: 568 is the determined cDNA sequence for clone 57282.
SEQ ID NO: 569 is the determined cDNA sequence for,clone 57283.
SEQ ID' NO: 570 is the determined cIDNA sequence for clone 57285.
SEQ ID NO: 571 is the determined cDNA sequence for clone 57287.
SEQ ID NO: 572 is the determined cDNA sequence for clone 57288.
SEQ ID NO: 573 is the determined cDNA sequence for clone 57289.
SEQ ID NO: 574 is the determined cDNA sequence for-clone 57290.
SEQ ID NO: 575 is the determined cDNA sequence for clone 57292.
SEQ ID NO: 576 is the deterrriined cDNA sequence for clone 57295.
SEQ ID NO: 577 is the determined cDNA sequence for clone 57296.
SEQ ID NO: 578 is the determined eDNA sequence for clone 57297.
SEQ ID NO: 579 is the determined cDNA sequence for clone 57299.
SEQ ID NO: 580 is the determined cDNA sequence for clone 57301.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
28
SEQ ID NO: 581 is the determined cDNA sequence for clone 57302.
S~Q ID NO: 582 is the determined cDNA sequence for the beta.chain of
_a lung tumor specific T .cell= receptor.
SEQ ID NO: 583 is the determined cDNA sequence for the alpha chain
of a lung tumor specific T cellrreceptor.
SEQ =ID NO: 584 is, the axyino acid sequence encoded by SEQ ID INTO:
583.
SEQ. ID NO: 585 is the amino acid sequence encoded by SEQ ID NO:
582.
1~0 SEQ ID NO: 586 is the amino acid sequence encoded by tl~e 5' terminus
of 14F10.
SEQ ID- NO ; 58T is the amino acid sequence of a T cell epitope
contained within SEQ ID NO: 586.
DETAILED DESCRIPTION OF THE INVENTION
The present .invention is directed generally to .compositions .and their use
in the therapy .and diagnosis of cancer, particularly lung cancer. As
described further
below, illustrative compositions of the present invention include, but are not
restricted
to, polypeptides, particularly immunogenic :polypeptides, -.polynucleotides
encoding
such polypeptides, .antibodies and other binding agents, antigen presenting
cells (APCs)
and immune system cells (e.g., T cells).
The practice of the present invention will employ, unless indicated
specifically to the contrary, conventional methods of virology, immunology,
microbiology, -rilolecular biology and recombinant DNA techniques within the
skill of
the art, many of which are described below for -the purpose of illustration.
Such
techniques .are explained fully in the literature. See, e.g., Sambrook, et al.
Molecular
Cloning: A Laboratory Manual (2nd Edition, 1989); lVlaniatis et al. Molecular
Cloning:
A Laboratory -Manual (1982); DNA Cloning: A Practical Approach, vol. I & II
(D.
Glover, ed.); Oligonucleotide Synthesis (N. Gait, ed., 1984); Nucleic Acid
Hybridization (B. Hames & S. Higgins, eds., 1985); Transcription and
Translation (B.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
29
Hames & S. Higgins, eds., 1984); Animal Cell Culture (R. F~eshney, ed., 1986);
Perbal,
A Practical Guide to Molecular Cloning (1984):
All publications, patents and patent applications cited herein, whether
supra or infra, are hereby incorporated by reference in their.entirety,
As used iy this specification and the .appended claims, the singular forms
" » " » " »
a, an arid. the include plural references. unless the content clearly dictates
otherwise.
Polypeptide Compositions
As used herein, the teim "polypeptide" is used in its conventional
meaning, i.e., as a sequence ~of amino. acids. The polypeptides are not
limited to a
specific length of the plroduct; thus, peptides, oligopeptides, and proteins
are included
within the definition of.polypeptide, and such terms may be used
interchangeably herein
unless specifically indicated otherwise. This term also does. not refer to or
exclude post-
expression modifications of the polypeptide, for example, glyeosylations,
acetylations,
phosphorylations and the :like, as well as other modifications known in the
art, both
naturally occurring and non-naturally occurring. A polypeptide may be an
entire
protein, or a- subsequence thereof. Particular polypeptides of interest .in
the context of
this -invention are amino acid subsequenees comprising epitopes, i.e.,
antigenic
determinants substantially responsible for the immunogenic properties of a
polypeptide
and being capable of evoking an .immune response.
Particularly illustrative polypeptides of the .present invention comprise
those encoded by a.polynucleotide sequence set forth in,any one.of SEQ ID NOs:
217-
390, 392, 394, 396, 398-420 422,424, 428-433 and 440-583 or a sequence that
hybridizes under yoderately stringent conditions, or, alternatively, under
highly
stringent conditions, to a polynucleotide sequence set forth in any one of SEQ
ID NOs:
217-390, 392, 394, 396, 398-420 422-424, 428-433 and 440-583. Certain other
illustrative polypeptides of the .invention comprise amino acid sequences as
set forth in
anyone of SEQ ID NOs: 391, f93, 395, 397, 421, 425-427, 434-439 and 584-587.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
The polypeptides of the present invention are sometiriles herein referred
to as lung tumor proteins or lung tumor polypeptides, as an indieatioy that
their
identif canon has been based at least in part upon their increased levels of
expression in
lung tumor samples. Thus, a "lung tumor polypeptide" or "lung tumor protein,"
refers
5 generally to a polypeptide sequence of the present invention, or a
polynucleotide
sequence .encoding such a- polypeptide, that is expressed in a substantial
proportion of
lung tumor samples, for example preferably vgreater than about 20%, -more
preferably
greater that about 30%, and most preferably greater than about ~0% or rilore
of lung
tumor sarizples tested .at a level that-is at least two fold, and preferably
at least five fold,
10 greater than the level of expt~essiQn in normal tissues, as detei-tniried
using a
repreSentati~e assay provided herein. A lung turrior polypeptide sequence of
the
invention, based upon its increased level of expression -in tumor cells, has
particular
utility .b,oth as a diagnostic marker as well as a therapeutic target, as
further described
below.
15 In certain preferred .embodiments, the polypeptides of the invention are
immunogenic, i.e., they react detestably within an immunoassay (such as an
ELISA or
T-cell stimulation assay) with antisera andlor T-cells from a :patient with
lung cancer.
Screening for immunogenic activity can be performed using techniques well-
known to
the skilled artisan. For example, such screens can be performed: using methods
such as
20those .described in Harlow and Lane, Antibodies: A Lab'or'atory Manual, Cold
Spring
Harbor Laboratory, 1988. In one illustrative example, a polypeptide may be
immobilized on a solid support and contacted with patient sera to allow
binding of
antibodies within the sera to the immobilized polypeptide, Unbound sera may
then be
removed arid -bound antibodies detected using, for example, 'z5I-labeled-
Protein A.
25 As would be recognized by the skilled artisan, immunogenic portions of
the polypeptides disclosed herein are also encompassed by the present
invention. An
"immunogenic portion," as used herein, is .a fragment of.an .immunogenic
polypeptide
of the invention. that itself is immunologically reactive (i. e., specifically
binds) with the
B-cells ,and/or T-cell surface antigen receptors that recognize the
polypeptide.
30 Immunogenic portions may generally be identified using well known
techniques, such


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
31
as those summarized in Paul, Fundamental Imrr~unology, 3rd ed., 243-247 (Raven
Press,
1993) and refer"ences cited therein. Such techniques include screening
polypeptides for
the ability to react with antigen-specific antibodies, antisera and/or T-cell
lines or
clones. As used herein, antisera arid antibodies are "antigen-specific" if
they
spesif sally bind: to an antigen (i. e., -they react with the protein in an
ELISA or other
immunoassay, and do not react detestably with .unrelated proteins). Such
antisera and
antibodies may be prepared as described herein, and using well-known
techniques.
In one preferred embodiment, an immunogenic portion of a polypeptide
~of the present invention is a portion that-reacts with amisera and/or T-cells
at a level that
is :not substantially -less than the reactivity .of the full-length
polypepiide (e:g., in an
ELISA andlor T-cell reactivity assay). Preferably, the level of irnmunogenis
activity .of
the immunogeiiic portion is at least about 50%, preferably at least about 70%
and most
preferably greater than about 90% .of the iriimunogenicity for the full-length
polypeptide. In some instances, preferred immunogenic portions will be identif
ed that
have a -level of timmunogenic activity greater than that of the corresponding
full-length,
polypeptide, e.g., having .greater than about 100% or 1~0% or more immunogenic
activity.
In certain other embodi~nerits, illustrative immunogenic portions may
inslucte peptides in which an N-te~~ninal leader sequence and/or transmembrane
domain
have been .deleted. Other illustrative imriznnogeriic portions. will contain a
small N-
and/or C-terminal deletion (e.g., 1-30 amino acids, preferably 5-15 amino
acids),
relative to the Triature protein.
In another embodiiiient, a polyp~ptide composition of the invention may
also comprise one or rilore polypeptides that are imriynologisally reactive
with T cells
and/or antibodies generated against a polypeptide of the invention,
particularly a
polypeptide having an amino acid sequence .disclosed herein, or to an
immunogenic
fragment or variant thereof.
In another embodiment of the invention, polypeptides axe provided that
comprise one or more polypeptides that are capable of eliciting T cells and/or
antibodies
-that are immunologically reactive with one or more polypeptides described
herein, or


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
32
one -or more polypeptides encoded by contiguous nucleic acid sequences
contained in
the polynucleotide sequences disclosed herein, or immunogenic fragments or-.
variants
thereof, or to one or more nucleic acid sequences which hybridize to one or
more of
these sequences under conditions of moderate to high stringency.
The present invention, in another aspect, provides polypeptide fragments
comprising at-least about 5, 10, 15, 20, 25, 50, or 10.0 contiguous amino
acids, or more;
including all intermediate lengths, of a polypeptide compositions set forth
herein, such
as those set forth in SEQ ID. NOs: 391, 393, 395, 397, 421, 425'-427, 434-439
and 584
587, or those encoded ~by a palynucleotide sequence set forth in a sequence of
SEQ ID
hTOs: 217-390, 39~, 394, ff6, 398;420 422-424, 42f-433 and 440-583.
In another :aspect, the present iriventiori provides variants of -the
-polypeptide compositions described herein. Polypeptide variants generally
encompassed by the present invention will- typically exhibit at least about.
70%, 75%,
80%, 85%, 90%, 91 %, 9.2%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or more
identity
(detei~ilined as described below), along its length, S;o a polypeptide
sequences set forth
herein.
In .one preferred embodiment, the polypeptide fragments and variants
provide by the present invention .are immunologically reactive with an
antibody andlor
T-cell that reacts with a full-length polypeptide specifically set for the
herein.
In another preferred embodiment, the polypeptide fragments and variants
provided by the present invention exhibit a level of immunogenic activity of
at least
about 50%, preferably at least about 70%, and most preferably at least about
90% or
.more of th~.t exhibited -by a full-length polypeptide sequence specifically
set forth
herein.
A polypeptide "variant," as the term is used herein, is a polypeptide that
typically differs from a polypeptide specifically disclosed herein in .one or
more
substitutions, deletions, additions and/or insertions. Such variants may be
naturally
occurring or maybe synthetically generated, for example, by modifying one or
more of
the above polypeptide sequences of the invention and evaluating their
immunogenic


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
33
activity as described herein and/or using ,any of a number of techniques Well
known in
-the art.
For example, certain illustrative variants of the polypeptides of the
invention include -those in which one or more portions; such as an N-terminal
leader
sequence or transmembrane domain, have been removed. Other -illustrative
variants
include variants in which a small portion (e.g., 1-30 amino acids, preferab~Iy
5-15 amino
acids) has been removed from the N- and/or C-terminal of the-mature protein.
In many instances; a variant will contain conservative substitutions. A
"conservative substitution" is one in which. an amino acid is substituted for
another
atriino acid that has similar pP,operties, such that one skilled in the art of
peptide
chew istry would expect the secondary structure and hydropathic nature of the
polypeptide to be substantially unchanged. As described above, modifications
may 'be
. made in the structure of the polynucleotides and polypeptides of the
.present invention
and still .obtain a functional molecule that encodes a variant or derivative
polypeptide
with desirable characteristics, e.g., with irrimunogenic characteristics. When
it is
desired to alter the amino acid sequence of a polypeptide to create an .
equivalent, .or
even an improved, immunogenic variant or portion of a polypeptide of the
invention,
one skilled in the art will typically .change orie or more of the -codons of
the encoding
DNA sequence according to Table 1.
For exairiple, .certain amino acids may be substituted for other amino
acids in a protein- structure without appreciable loss of interactive binding
capacity with
structures such as, for example, antigen-binding regions of antibodies or
binding sites
on substrate molecules. Since it is 'the interactive capacity and nature of a
protein that
defines that protein's biological functional .activity, certain amino acid
sequence
substitutions can be made in a protein sequence, and, of course, uts
underlying DNA'
coding sequence, .and nevertheless obtain a protein -with :like properties. It
is thus
contemplated that various changes may be made in the peptide sequences of the
disclosed compositions, or corresponding DNA sequences which :encode said
peptides
without appreciable loss of their biological utility or activity.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
34
TABLE 1
Amino Acids Codons


Alanine Ala A GCA GCC GCG GCU


Cysteine Cys C UGC UGU


Aspartic Asp D GAC GAU
acid


Glutamic Glu B GAA GAG
.acid


PhenylalaniriePhe F UUC UUU


Glycine -Gly G GGA GGC GGG .GGU


Histidine His H CAC CAU


Isoleucine Ile I AUA AUC AUU


Lysine Ly5 K AAA AAG


Le~ucine Leu L UUA UUG CUA CUC CUG CUU


Methionine Met IVI AUG


Asparagine Ash N AAC AAU


Proline Pro -P CCA CCC CCG -CCU


Glutamlne Gln Q CAA CAG


Arginine Arg R AGA AGG CGA CGC ~CGG CGU


S.erin~ Ser S AGC AGU UCA UCC U:CG UCU


Threonine Thr T ACA ACC ACG ACU


Ualine Val V GUA GUC GUG ~GUU


Tryptophan Trp W UGG


Tyrosine Tyr Y UAC UAU


In making such changes, the hydropathic index of amino acids may be
considered. The importance .of the hydropathic amino acid index in conferring
interactive biologic function on ~. protein is generally understood in the art
(Kyte and
Doolittle, 1982, incorporated herein by reference). It is accepted that the
relative
hydropathic character of the amino acid contributes to the secondary structure
of the
resultant protein, which -in turn defines the interaction of the protein with
other
molecules, for example, enzymes, substrates, receptors, DNA, antibodies,
antigens, and
the like. Each amino acid has been assigned a hydropathic index on the basis
of its


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
hydrophobicity and charge characteristics (I~yte arid Doolittle, 1982). THese
values are:
isoleuciue (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8);
cysteine/cystine
(+2,5); mefhionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7);
serine (-0.8);
tryptophan (-0.9); tyrosine (-1.3); proline (-1,6); histidine (-3.2);
glutamate (-3.5);
5 glutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); arid
arginine (-4.5).
It is known in the art that certain amino acids may be substituted by
other amino acids having a similar hydropathic index or score and still result
in a
protein with similar biological activity, i. e. still obtain a biological
functionally
equivalent protein. In making such changes, the substitution of amino acids
whose
10 hydropathic indices are within ~2 is preferred, those within ~1 are
particularly
preferred, and those within ~0.5 are even more particularly preferred. It is
also
understood in the art that the substitution of like amino acids can be made
effectively on
the basis of hydrophilicity. U. 5. Patent 4,554,101 (specifically incorporated
herein by
reference in its entirety), states that the greatest local average
hydrophilicity of a
15 protein, as governed by the hydrophilieity of its adjacent amino acids,
correlates with a
biological property of'the protein.
As detailed in U. S. Patent 4,554,101, -the following hydrophilicity
values have been assigned to amino acid residues: argi~ine (+3~0); ~lysirie
(+3.0);
aspartate (+~.0 ~ 1); glutamate (+3.0 ~ 1); serii~e (+0.3); asparagine (+0.2);
glutamine
20 (+p.2); glycine (0); threonine (-0.4); proline (-0.5 ~ 1); alanine (-0.5);
histidine (-0.5);
cysteine (-1.0); methionine (-1.3); valirie (-1.5).; leucine (-1.8);
isoleucine (-1.8);
tyrosine (-2.3); phenylalanine (-2.5); tryptophan (-3.4). Tt is understood
that an amino
acid can be substituted for another having a similar-hydrophilicity value and
still obtain
,a biologically equivalent, and in particular, an irnmunologically equivalent
protein. In
25 such changes, the substitution of amino acids whose hydrophilicity values
are within ~2
is preferred, those within ~1 are particularly ,preferred, and those within
~0.5 are even
more particularly preferred.
'As outlined above, amino acid substitutions are generally therefore based
on the relative similarity of the amino acid side-chain substituerits, for
example, their
30 hydrophobicity, hydrophilicity, charge, size, and the like. Exemplary
substitutions that


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
36
take various of the foregoing characteristics into consideration are well
known to those
of skill in the art and include: arginine arid lysine; glutamate and
aspartate; serine and
threonine; glutamine and asparagine; and valine; leucine and isoleucine.
In addition, any polynucleotide may be further modif ed to increase
stability in vivo, Possible modifications include, but are not limited' to,
the addition of
flanking sequences- at the 5' and/or 3' ends; the use of phosphorothiaate or
2' O-methyl
rather than phosphodiesterase linkages in the backbone; and/or the inclusion
of
nontraditional bases such as inosine, queosine and wybutosine, as well as
acetyl
methyl-, thin- and other modified forms of adenine, cytidine, guanine, thymine
and
1.0 uridine.
Amino acid substitutions may further be made on the basis of similarity
in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the
amphipathic
nature of the residues. For example, negatively charged amino acids include
aspartic
acid and glutainic acid; positively charged amino acids .include lysine and
arginine; and
amino acids with uncharged polar head groups having similar hydrophilicity
values
include leucine, isoleucine and valirie; glycine and alanine; asparagine and
glutamine;
and seririe, threonine, plienylalanine and tyrosine. .Other groups of amino
acids that may
represent conservative changes include: (1) ala, pro, gly, glu, asp, gln, asn,
ser, thr;
(2) cys, ser, tyr, thr; {3) val, ile, leu, met, ala, phe; (4) lys, arg, his;
and (5) phe, tyr, trp,
his. A variant may also, or alternatively, contain rionconservative changes.
In a
preferred embodiment, variant polypeptides .differ frorii a native sequence by
substitution, deletion or addition of five amino acids or fewer. Variants may
also (or
alternatively) be modified by, for example, the.deletion or addition of amino
acids that
have minimal influence on the iinmunogenicity, secondary strut",tore and
hydropathic
nature of the polypeptide.
As noted above, polypeptides may ,comprise a signal (or leader)
sequence at the N-terminal end of the protein; which co-translationally or
post-
translationally directs transfer of the protein. The polypeptide may also be
conjugated
to a linker or other sequence for .ease of synthesis, purification or
identification of the


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
37
polypeptide (e.g., poly-His); or to enhance binding of the polypeptide to a
solid support.
For example, a polypeptide may be conjugated to an immunoglobulin Fc region.
When comparing polypeptide sequences, two sequences are said to be
"identical" if the sequence .of amino acids .in the two sequences is the same
when
S aligned for maximum correspondence, as described below. Comparisons between
twa
sequences are typically perforrried :by comparing the sequences over a
comparison
window to identify arid coiripare local regions of sequence similarity. A
"comparison
window" as used herein, refers to a segment of at least about 20 contiguous
positions,
usually 30 to about 75; 40 to about 50, in which a sequence. .may be
eoriipared to- a
reference sequence of the same number of contiguous positions after the two.
sequences
are optimally aligned.
Optirilal aligivment of sequences for corilparisen may be conducted using
the Megalign program in the Lasergene suite of bioinformaties software
(DNASTAR,
Inc., Madison, WI), using default parameters. This program embodies several
alignment schemes described in the following references: Dayhoff, M.O. (1978)
A
model of evolutionary change in proteins - Matrices for detecting distant
relationships.
In Dayhoff, M.O. (ed.) Atlas, .of Protein Sequence and Structure, National
Biomedical
Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J.
(1990)
Unified Approach to ~.lignment arid Phylo,genes pp. 626-645 Methods in
Enzymology
20' vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D,G. aid Sharp;
P.M. (1989)
CABIOS 5:151-153; Myers, E.W. and Muller W. (1988) .CABIOS 4:11-17; Robinson,
E.D. .(1971) Comb. Theor 71:105; Santou, N. Nes, M. (1987) Mol. Bi~l. Evol.
4:406-
425; Sneath, P.H.A. and Sol~al, R.R. (1973) Nurner°ical Taxonomy - the
Principles and
Practice of Nuyrierical Taxonomy, Freeman Press, San Francisco, :CA; Wilbur,
W.J. and
Lipman, D.J. (1983) Proc. Natl. Acad., Sci. USA 80:726-730.
Alternatively, optimal alignment of sequences for comparison may be
conducted by the local identity algorithm of Smith and Waterman (1981) Add.
APL.
Math 2:482, by the identity alignment algorithm of Needleman and Wunsch (1970)
J.
Mol. Biol. 48:443, by the search- for similarity methods of Pearson and Lipman
(1988)
Proc. Natl. Acad. Sci. USA 85: 2444, -by computerized implementations of these


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
38
algorithms (,GAP, BESTFIT, BLAST, FASTA, and TFASTA in the WisconsiwGenetics
Softvv~re Package, Genetics CeiTiputei Group (GCG), 575 Science Dr., Madison,
WI),
or-by inspection.
One preferred example of algorithms that are suitable for determining
percent sequence identity and sequence similarity are the BLAST arid BLAST 2.0
algorithms, which,are desciibed-in Altschul et al. (1977) Nucl. Acids Res.
25:3389-3402
and Altschul et al. (r990) J. Mol. Biol. 215:403-410, respectively. ~BLAS:T
and BLAST
2.0 can be used, for example with the parameters described herein, to
determine percent
sequence identity for the polynucleot'ides and :polypeptides of the invention.
Software
for -per~or 'rn, irlg BI,A.ST analyses is publicly .available -through the
TVational Center for
Biotechnology Information. For amino acid sequences, a scoring matrix can be
used to
calculate the cumulative score. Extension- of the word hits in each direction
are halted
when: fhe cumulative alignment score falls .off by the quantity X from its
maximum
achieved value; the cumulative score goes to zero or below, due to the
accumulation of
one or more negative-scoring residue aligiimients; .or the end of either
sequence is
reached. The BLAST algorithm parameters W, T and X determine =the sensitivity
and .
speed of the alignment.
In one preferred approach, the "percentage of sequence identity" is
determined by comparing two optimally aligned sequences ,over a window of
comparison of at least 20 positions, wherein the :portion- of the .polypeptide
seduence in
the comparison window may comprise additions or deletions (i. e., gaps) of 20
percent
or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the
reference
sequences (which does not comprise additions or deletions) far optimal
alignment of the
two sequences. ~'.he percentage is calculated by determining the number of
positions at
which the identical amino acid residue occurs in both sequences to yield the
n~.unber of
matched -positions, dividing the number of matched positions by the :total
number of
positions in the reference sequence (i.e., the window size) and multiplying
the results by
100 to yield the percentage of sequence identity.
Within other illustrative embodiments, a polypeptide may be a fusion
polypeptide that comprises multiple polypeptides as described~herein, or that
comprises


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
39
at least one polypeptide as.deseribed herein aiid an unrelated sequence, such
as a known
-tumor protein. A fusion partner may, for exa~riple, assist in providing T
helper epitopes
(an immunological fusion partner); preferably T .helper epitopes recognized by
humans,
or may assist in .expressing the protein (an expression enhances) at higher
yields than
the native recombinant protein: Certain preferred fusion partners are both
immunological and expression enhancing fusion paitrlers. Other fusion-partners
niay be
selected so as to increase the' solubility of the polypeptide or to .enable
the polypeptide
to be targeted to desired intracellular compautments. Still further fusion
partners
include affinity tags, which facilitate purification of the polypeptide.
1.0 Fusion polypepti -des may generally be prepared using standard
techniques, including cherriical conjugation. Preferably, a fusion polypeptide
is
expressed as a .recorribiriant polypeptide, allouving the production of
increased levels,
relative to a~ non-fused polypeptide, in an expression system: $riefly, DNA
sequences
encoding the polypeptide components may be assembled separately, and ligated
into an
appropriate eXpression vector. The 3' end of .the DNA sequence encoding one
polypeptide component is ligated, with or without a peptide linker, to the 5'
end of a .
DNA sequence encoding the second polypcptide corriponent so that the reading
frames
of the sequences are in phase. This permits translation into a single fusion
po~ypeptide
that retains the biological activity ofboth component polypeptides.
A .peptide linker sequence may be employed to separate the first anal
second. polypeptide components by a distance sufficient to ensure that each
polypeptide
folds into its secondary and- tertiary structures. Such a peptide linker
sequence is
incoiporated into the fusion polypeptide using standard techniques well known
in the
art. Suitable peptide linker sequences may be chosen based- on the following
factors.:
(1) their ability to- adopt a flexible extended conformation; (2) their
inability to adopt a
secondary structure that could interact with functional epftopes on the first
and second
polypeptides; and (3) the lack of hydrophobic or charged residues that might
react with
the polypeptide functional epitopes. Preferred peptide linker sequences
contain Gly,
Asn and Ser residues. Other near neutral amino acids, such as Thr and-Ala may
also be
used in the linker sequence. Amino acid sequences which maybe usefully
employed as


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
linkers include those diselosed~ in Maratea et al., Gene 40:39-46, 19$5;
Murphy et al.,
Pr~o,.c. Natl: Acad Sci. USA 83:8258-82-62, 1986; IJ.S. Patent No. 4,935,233
and U.S.
Patent No. 4,751,1'80: The linker sequence may generally be from 1 to about 50
amino
acids in length. Linker sequences are not required when the first ~ and second
5 polypeptides have non-essential N-terminal amino acid regions tliat~ can be
used to
separate tl~e functional domains and prevent. steric interference.
The Iigated DMA sequences are operably linked to suitable
transcriplioiial or translational. regulatory elements. The -regulatory
eleriients
responsible for expression of DNA are located only 5' to the DNA sequence
encoding
1~0 the first polypeptides. Sirxiilarly, stop codons required to end
translation and
transcription terirination signals are only present 3' .to the I)NA sequence
encoding the
second polypeptide.
Tlle fusion polypeptide can comprise ~. polypeptide as described herein
together with an unrelated immunogenic protein, such as an irnmunogenic
protein
15 capable of eliciting a recall response. Examples of such proteins include
tetanus,
tuberculosis and hepatitis proteins (see, for example, Staute et a1. New Ehgl.
J. Med.,
336:86-9I, 1997).
In .one preferred embodiment, the immunological fusion partner is
derived from a Mycobacterium sp., such as a Mycobacterium tuberculosis-
,derived Ral2
20 fragment. Ral2 compositions and methods for their use in enhancing the
expression
and/or immunogenicity of heterologous polyn~cleotide/polypeptide sequences is
described in U.S. Patent Application 60/~ 58,585, the disclosure of which is
incorporated herein by .reference in its- entirety. Briefly, Ral2 refers- to a
polynucleotide
region that is a subsequence of..a Mycobacteriur~i tuberculosis MTB32A nucleic
acid.
25 MTB32A is a serirle protease of 32 KD molecular. weight encoded by ;a gene
in virulent
and avirulent strains of M. tuberculosis. The nucleotide sequence and amino
acid
sequence of MTB32A have been described (for .example, U.S. Patent- Application
60/158,585; see also, Skeiky et al., Itafection aid Imnaun. (1999) 67:3998-
4007,
incorporated herein by reference). C-terminal fragments of -the MTB32A coding
30 sequence express at high levels and remain as a soluble polypeptides
throughout the


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
41
purification process: Moreover, -Ral2 may enhance the immunogeriicity of
heterologous
immunogenic polypeptides vi~ith which it is fused. One preferred' Ral2 fusion
polypeptide .,corriprises a 14 KD ~C-terminal fragment .coiTesponding to amino
acid
residues 192 to 323 of 1VITB32A. Other preferred. Ral2 ~polynualeotides
generally
-comprise at least about 15 consecutive nucleotides, at least about 3-0
nucleotides, at least
about ~0:nucleotides, at least about 100 nucleotides, at least about 200
nucleotides, or at
least about 300 nucleotides that encode a portion of a Ral2 .polypeptide. Ral2
polynucleotides may comprise a native sequence (r. e:, an endogenous sequence
that
encodes a Ral2 polypeptide or a portion thereof) ar may comprise a variant of
such a
sequeri~e. Ral2 polynucleotide variants may contain one or -mole
substitutions,
additions, deletions and/or insertions such .that the biological .activity .of
the encoded
fusion polypeptide is not substantially diminished; relative to a fusion
polypeptide
comprising a naive Ral2 polypeptide. ~,lariants preferably exhibit at least
about 70%
identity, .more preferably at feast about ,80% identity grad most preferably
at least about
90% identity to a polynucleotide sequence that encodes anative 1Za12
polypeptide or a
portion thereof.
Within other preferred embodiments, ari imiiiitnological fusion partner is
derived from- protein D, a surface protein. of the gram-negative bacterium
Haemophilus
influenza ~$- (WO. 91118926). Preferably, a .protein D -derivative comprises
approximately the first third of the .protein (e.g., the first N-terminal 100-
110 amino
acids), and a protein D derivative may be lipidated. Within -certain preferred
.eraibodiTalents, the first 109 residues of a Lipoprotein D fusion partner is
included on the
N-terminus to provide the polypeptide with additional exogenous T-cell
epitopes and to
increase the expression level in E. cola (thus functioning 'as an expression
enhancer).
The lipid -tail -erasures optimal. presentation of the antigen to antigen
presenting cells.
Other fusion partners include the non-structural protein from influenzae
virus, NS 1
(hemaglutinin). Typically, the N-terminal 81 amino acids are used, although
different
fragments that include T-helper epitopes may be used.
In another embodiment, the immunological fusion partner is the protein
known as LYTA, or a portion thereof (preferably a C-terminal portion). LYTA is


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
42
derived from Streptococcus pneumouiae, which synthesizes am N-acetyl-L-alanine
amidase known as aniidase LYTA (encoded -lay the LytA gene; Gene .3:265-292,
1986). LYTA is an autolysiri that specifically degrades certain bonds in the
peptidoglycan backbone. The C-terminal domain of the LYTA protein is
responsible
for the affinity to the choline or .to soiiie choline analogues such- as DEAE.
This
.property lias 'been .exploited for the -developmerit of E. coli C-LYTA
expressing
plasmids useful for eXpressiorl of fusion .proteins. Purification of hybrid
proteins
containing the C-LYTA fraginerrt at the amino terminus has Been described (see
Biotechnology 10:795-798, 1992). Within a preferred .embodiment, a repeat
portion of
LYTA may ~be incorporated into a fusion polypeptida. A repeat portion .is
found in the
C-terminal .-region ' stat-ting~ at residue 178. A particularly preferred
repeat .portion
incorporates residues 1.85-305.
Yet another illustrative embodiment involves fusion polypeptides, and
the polynucleotides encoding them, wherein the fusion partner comprises a
targeting
signal capable of directing a polypeptide to -the endosomal/lysosornal
compartment, as
described in U.S. Patent No. 5,633,234-. An immunogenic polypeptide of the
invention,
when fused with this targeting signal, will associate more ..efficiently -with
MHC class II
molecules and thereby .provide enhanced -in vivo stimulation of .CD4+ T-cells
specific
for the polypeptide.
Polypeptitles of the .invention are prepared-casing any of a variety of well
known synthetic and/or .recombinant techniques, the latter of which are
further
described below. Polypeptides, portions and other variants generally less than
about
15.0 amino acids can be generated by synthetic means, using techniques well
known to
those of ordinary skill in the art. In one illustrative -.example, such
polypeptides are
synthesized using any of he commercially available solid-phase techniques,
such as the
Merrif eld solid-phase synthesis method, where arriirio acids are sequentially
added to a
growing :amino acid chain. See Merrifield, J. An2. Chena. Soc. 85:2149-2146,
1963.
Equipment for .automated synthesis , of polypeptides is commercially available
from
suppliers such as Perkin ElmerlApplied BioSystems Division (Foster City, CA),
and
may be operated according to the manufacturer's instructions.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
43
In general, polypeptide compositions (including fusion polypeptides) of
the invention are isolated: An "isolated" polyp-eptide is one that is removed
from its
original environment. For example, .a naturally-occurring protein or
polypeptide is
isolated if it is separated from soye or all of the coexisting materials in
the natural
system. Preferably, such .polypeptides are' also -purif ed, e.g:, are at least
about 90%
pure, .more preferably at least about 95% pure and most preferably at least
about 99%
pure.
Polynucleotide Compositions
The present -invention, in other aspects, provides .polynucleotide
~orhpositions. The .terms '"DNA" arid "polynucleotide" are used. essentially
interchangeably herein to refer to a DNA molecule that has :been isolated free
of total
genomic DNA of a particular species. "Isolated," as used herein, means that a
polynucleotide is substantially away from other coding sequences, and that the
DNA
molecule does not .contain large portions of unrelated coding DNA, such as
large
chromosomal fragments or other functional genes or polypeptide coding regions.
Of
course, this. refers, to .the DNA molecule as origiri~lly isolated, and does
not exclude
genes or coding regions later added to, the segment by the hand of man.
As will be understood by those skilled :in the art, the polynucleotide
compositions of this invention can include genomic sequences, extra-genomic
and
plasmid-encoded sequences and smaller engineered gene segments that express,
or may
be adapted to express, proteins, polypeptides, peptides and the like. Such
segments may
,be naturally isolated, or modified synthetically by the hand of man.
As will be also recognized by the skilled artisan, polynucleotide$ of the
invention rriay be single-stranded (coding or antisense) or double-stranded,
and may be
DNA (genomic, .cDNA or synthetic) or RNA molecules. RNA molecules may include
HnRNA .molecules, which contain introns and correspond to a DNA molecule in a
one-
to-one manner, and mRNA molecules, which do not contain introns. Additional
coding
or non-coding sequences may, but need not, be pz'esent within a polynucleotide
of the


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
44
present invention, and ~ polynucleotide may, but need not, be lii~lced to
other molecules
and/or support materials.
Polynucleotides may comprise a native sequence .(i. e., an endogenous
sequence that encodes a polypeptide/protein of the invention or a portion
thereof) or
may comprise' a sequence that encodes a variant or derivative, preferably and
immunogenic v~:riant or derivative, of such a sequence.
Therefore, according to another aspect of the present invention,
polynucleotide compositions are provided that comprise sorrie o~ all of a
polynucleotide
sequence set forth in ~ny.one of SEQ ID N4s: 217-390, 392, 394; 396, 398-420
422-
424, 428-433 and 440-583, complements- of a polynucleotide sequence set forth
in any
one of SEQ ID NOs: 217-390 392, 394; 396, 398-420 422-424, 428-433 and 440-
583,
arid degenerate variants of a polynucleatide sequence set forth in any one of
SEQ IID
NOs: 217-390, 392, 394, 396, 398-420 422-424, 428-433 and 440-583. In certain
preferred ~embodimertts, the polynucleotide sequences set forth -herein encode
immunogenic polypeptides, as described above.
In other related embodiments, the present invention provides
,polynucleotide variants having substantial .identity to the sequences
disclosed herein in
~EQ ID NOs: 217-390, .392, 394, 396, 398-420 422-424, 428-433 and 440-583, for
example :those comprising at least 70% sequence identity, preferably at least
75%, 80%;
85%, 90%, 95%, 96%, 97%, 98%, or 99% or higher, sequence identity compared to
a
polynucleotide sequence of this invention using the methods described herein,
(e.g.,
BLAST analysis using standard parameters, as described below). Orie skilled in
this art
Will recognize that these. values can be appropriately adjusted o determine
corresponding identity of proteins eneoded by two nucleotide sequences by
taking into
account codon degeneracy, amimo- acid similarity, reading frame positioning
and the
like.
Typically, polynucleotide variants will contain one or more substitutions,
additions, deletions and/or insertions, preferably such that the
immunogenicity of the
polypeptide encoded by the variant polynucleotide' is not substantially
diminished
relative to a polypeptide encoded by a polynucleotide sequence specifically
set forth


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
herein). The term "variants" should also -be understood to encompasses
homologous
genes of xenogenic origin.
In additional' embodirnents~ the present invention provides
polynucleotide fragments comprising various lengths of contiguous stretches of
5 sequence -identical to or corriplezrientary to one or more of the sequences
disclosed
herein. For exayple, palynucleotides are provided by this invention 'that
comprise at
least about 10, 1.5, 20, 30, 40~ 50; 7S, 100, 150, 200, 300; 400, 500 or 1000
or more
contiguous nucleotides of one or more of the sequences disclosed herein as
well as all
intermediate lengths there between, It= will be readily understood that
"intermediate
1.0 lengths", in this. context, means any length between the quoted values,
such as 16, 17,
18-, 19, etc.; 21, 22, 23, etc.; 30, 31, 32, etc.; 50, 51, 52, 53; ,etc.; 100;
101, 102, 103,
etc.; 150; 151, 152, 153, etc.; including all integers through 200-500; 500-
I,000, and the
like.
In another embodiment of the invention, polynucleotide compositions
15 are provided that are capable of hybridizing under moderate to high
stringency
conditions to a polynucleotide sequence provided herein, or a fragment
thereof, or a
complementary sequence thereof. Hybridization techniques are wellknown in the
art of
molecular biology. For purposes of illustration, suitable moderately stringent
coadit~ons for testing the hybridization of a polynttcleotide of this
invention with other
20 polynucleotides include prewashing in a solution of 5 X S'SC, 0.5% SDS, 1.0
mM
EI?TA (pH 8:0); hybridizing at 50°C-60°C, 5 X SSC, overnight;
followed by washing
twice at 65°C for 20 minutes with each- of 2X, O.SX and 0.2X SSC
containing 0.1%
SDS. 'One skilled in the art will understand' that .the stringency of
hybridization can be
readily manipulated, such as by altering the salt ,content of the
hybridization solution
25 and/or the terriperature at which the .hybridization is performed. For
example, in
another embodiment, suitable highly stringent hybridization conditions include
those
described above, with the exception that the texriperature of hybridization is
increased,
e.g., to 60.-65°C or 65-70°C.
In certain preferred embodiments, the polynucleotides described above,
30 e.g., polynucleotide variants, fragments and hybridizing sequences, encode
polypeptides


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
46
that are immunologically .cross-reactive with a polypeptide sequence
specifically set
.forth herein. In other preferred embodiments such polynucleotides encode
polypeptides that have a level of iminunogenic activity of at least about
50%,.preferably
at least- about 70%, and more preferably at least about 90% of that for a
polypeptide
sequence specif cally set forth herein:
The puIynucleotides- of the present invention, or .fragrilerits thereof,
regardless of the lengtli~ of the coding sequence itself, may be combined
.with other
DNA sequences, such as -promoters, polyadenylation signals, additional-
restriction
enzyrrie sites, multiple cloning sites, other.coding segments, and.the like,
such that their
overall length may.vary considerably. It is therefore contemplated that.a
nucleic acid
fragment of almost any length may be employed, with the total length
preferably being
limited by the ease of preparation and use ~in~ the interide~l recombinant DNA
protocol.
For example, illustrative polynucleotide segyents with total lengths of about
10,000,
abort 5000, about 3000, about 2,000, ab-out 1,0,0Q, about 500, about 200,
about 100;
about 50 base pairs in length, and the like, (including all intermediate
lengths) are
contemplated to be useful in many implementations of this .invention.
When comparing polynucleotide sequences, two sequences are said to be
"identical" if the sequence of nucleotides in the two sequences is the same
when aligned
.for maximum .correspondence, as described below. eCoW parisons between two
sequences are typically performed .by corizparing the sequences over a
comparison
window to identify and compare local .regions of sequence similarity. A
"comparison
window" as used herein, refers to a segment of at least about 20 contiguous
positions,
usually 30 o about 75, 40 to about 50, in which a sequence may be compared to
a
reference sequence of the same number -,of contiguous positions after the two
sequences
are optimally aligned.
Optimal .alignment of sequences for comparison may be conducted using
the Megalign -program in the Lasergene suite of bioinformatics software
(DNASTAR,
Inc., Madison, Vi~I), using default parameters. This .program embodies several
alignment schemes described in the following references: Dayhoff, M.O. (1978)
A
model of evolutionary change in proteins - Matrices for.detecting distant
relationships.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
47
~In Dayhoff, It4:Q. (ed.) Atlas of Protein- Sequence and Structure, National
Biomedical
Research Foundation, Washington DC Vol. 5, Suppl. 3, pp: 345-358; Hein J.
(1990)
Unif ed Approach to Alignment and Phylogenes pp. 626-645 Methads i~
Evizyytiology
vol. 183, Academic Press, Inc., 'San Diego, CA; Higgins, L?.G. and Sharp, P.M.
(1989)
CABIOS 5:151--153; Myers, E.W. and lVluller W. (1988) CABIOS 4:11-17;
Robinson,
E.D. (1971) Comb: ~'hea~ I1:105; Santou, N. Nes, IVI. (1987) Mol. Biol. Evol.
4:406-
425; Sneath, P:H.A. and Sokal, R.R. (1973) Numerical Taxonomy - the Principles
atzd
Practice ofNuinerical Taxonomy, Freeman Press, San Fraricisco,=CA; Wilbur,
W.J. and
Lipman, D.J. (1983) Prac. Natl. Acad., Sci. USA 80:726-73b:
Alternatively, optimal. alignment of sequ~erices for comparison may tie
conducted by the local identity algorithm of Smith and Waterinari (1981) Add.
APL.
Math: 2:482, by the identity alignment algorithm of Needleman and Wunsch
(1970) J
Mol. Biol. 48:443, by the search for similarity methods of Pearson and Lipman
(1988)
Proc. Natl. Acad. Sci. USA 85: 2444, by computerized implementations of these
algorithms (GAP, BESTFIT,-BLAST, FASTA, and TFASTA in the Wisconsin Genetics
Software Package, Genetics .Computer Group (GCG), 575 Science Dr.,
la,~Iadison, WI),
or by inspection.
One preferred ,example of algorithms that are suitable- for determining
percent sequence .identity and sequence similarity are the HLAST and BLAST 2.0
algorithms, which are described- in Altschul et al. (i9'77) Nucl. Acid's Res.
25:3389-3402
and Altschul et al. -(1990) J. Mat. Biol. 215:403-410, respectively. BLAST and
BLAST
20 cambe used; for- example with the paraW eters described herein, to
determine percent
sequence identity for the polynucleorides of the invention. Software for
performing
.BLAST .analyses is publicly available through the National Center for
Biotechnology
Information-. In one illustrative example, cumulative scores .can be
calculated using, for
nucleotide sequences, the parameters M (reward score for a pair of matching
residues;
always >0) and N (penalty score for mismatching residues; .always <0).
Extension of
the word hits in each.direction are-halted when: the cumulative alignment
score falls off
by .the quantity X from its maximum achieved value; the cumulative score goes
to zero
or 'below, due to the accumulation of one or more negative-scoring residue
alignments;


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
~$
or the end of either sequence is reached. The BLAST algorithm parameters W, T
and X
determine the sensitivity and speed. of the alignment. The BLASTN program (for
nucleotide sequences) uses as defaults a wordlength (W) of 11, and expectation
(E) of
-10, and the BLOSU11~I62 scoring matrix (see Henikoff and Henikoff (1989)
Prac. Natl.
Acad. Sci. -USA 8.9:10915) alignments, (B) of 50; expectation. (E) of 10, M=5,
N=-4 and
a comparison of both straxids.
Preferably, the "percentage of sequence identity" is determined by
conipating two optimally aligned sequences over a window of comparison of at
least 20
positions, wherein the :portion of the polynucleotide sequence in the
comparison
window may comprise ~dditioris or deletions -(i. e-., gaps) of 20 percent or
:less, usually 5
to 15 percent, or 10 to 12- percent, as compared to the reference sequences
(which. does
not comprise additions or deletions) for optirrial. alignment -of the two
sequences. The
percentage is calculated by determining the number of positions at which. the
identical
nucleic acid bases occurs in both sequences ~to yield the number ,of matched
positions,
dividing the number .of matched positions by the total number of positions -in
the
reference sequence (i. e., the window size) and multiplying the results by 100
to yield
the percentage of sequence identity.
It will be appreciated by those of ordinary skill in the art that, as a result
of °the degeneracy of the genetic code, there are many nucleotide
sequences that encode
.a polypeptide as described herein. Some of these polynucleotides bear minimal
homology -to he nucleotide sequence of any native gene. Nonetheless,
polynucleotides
that vary .due to differences in colon usage are specifically contemplated by
the present
invention. Further, .aheles of the :genes comprising the polynucleotide
sequences
provided herein are within the scope of the present invention; Alleles are
endogenous.
genes that are altered as a result of one or more mutations, such as
:deletions, additions
and/or substitutions of nucleotides. The resulting mRNA and protein may, but
need
not, have an altered structure or function. Alleles may be identified using
standard
techniques (such as hybridization, amplification and/or database sequence
comparison)r
Therefore, in another embodirrient of the invention, a mutagenesis
approach, such as site-specific mutagenesis, is -employed for the preparation
of


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
49
immurlogenic variants and/or derivatives. of the polypeptides described
herein. By this
approach, specific modifications in a ~polypeptid~ sequence can be made
through
rriutagenesis of the underlying polynucleotides that -encode them. These
techniques
provides a straightforward approach to prepare aired test sequence variants,
for example,
incorporating. one or more of 'the foregoing considerations, by introducing
one or more
nucleotide sequence changes into the polynucleotide.
Site-specific mufiagenesis allows the production of mutants through the
use of specific > oligonucleoticle sequences which ericode~ the DNA sequence
of the
desired mut~'tiori, as well as a sufficient number of adjacent nucleotides, to
provide a
primer sequence of sufficient size and sequence coinpleXity to form a stable
Dudley on
both; sides of -the deletion junction being traversed: Mutations may ~be
employed. iii a
selected polynucleotide sequence to improve, alter, decrease, rriodify, or
otherwise
change the properties of the palynucleotide itself, andlor alter the
properties, activity,
composition; stability, or primary sequence of the encoded polypeptide.
In certain embodiments of the .present invention, the inventors
contemplate the mutagenesis of the disclosed polynucleotide sequences to alter
one or
more properties of the encoded polypeptide, such as the immunogenicity of a
polypeptide vaccine. The techniques of site-specific mutagenesis are well-
known in the
art, and are widely used to create variants. -of both polypeptides and
~polynucleotides.
For .eXarilple, site-specific rriutagemesis is often used, to alter a specific
portion of a DNA
molecule. In such embodiments, a primer comprising typically about 14 to about
25
nucleotides or so in length is erilployed, with about 5 to about 10 residues
on both sides
of the junction of the sequence-being altered.
As will be appreciated by those .of skill in the art, site-specific
rnutagenesis techniques have often eimployec~ a phage vector that exists in
both a single
stranded and double stranded form. Typical vectors useful in site-directed
mutagenesis
include vectors such as the M13 phage. These phage are readily
commercially-available and their use is generally well-knovim to those skilled
in the art.
Double-stranded plasmids are also routinely employed in site directed
mutagenesis that
eliminates the step of transferring the gene of interest from a plasmid to a
phage.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
In general, site-directed mutagenesis in accordance herewith is
performed lay f rst obtaining a single-stranded vector or melting apart of two
strands of
a double-stranded vector that includes within its sequence a DNA sequence that
encodes
the desired peptide. An oligonucleotide primer bearing the desired mutated
sequence is
5 prepared, generally synthetically. This primer is then annealed with the
single-stranded
-vector, aid subjected to DNA :polyrrierizing enzyriies such as E. coli
polymerase I
I~lenow fragment, in .order to complete the synthesis of the mutation-bearing
strand.
Thus, a heteroduplex is forriied wherein one strand encodes °the
original non-mutated
sequence arid the second strand bears the desired mutation. This heteroduplex
vector is
10 ~tlieri. used to transform appropriate cells, such as E .ca~i cells, and
clones are selected
which include recombinant vectors bearing the mutated sequence arrangement.
The preparation of sequence variants of the selected peptide-encoding
DNA segixa.ents -using site-directed mutagenesis provides a means of producing
potentially useful species and is riot meant to be limiting as there are other
ways in
15 which sequence variants of peptides and the DNA sequences encoding them may
be
obtained. For example, recombinant vectors encoding the desired peptide
sequence
may be -treated with mutagenic agents, such as hydroxylamine, to obtain
sequence
variants. Specific details regarding these methods and -protocols are found in
the
teachings of Maloy .et al., 1994; Segal, 1926; -Prokop. and' Bajpai, 1991;
Kuby, 1994;
20 and Maniatis et al., 1982, each incorporated herein ~by reference, for that
purpose.
As used herein, the term "oligonucleotide directed mutagenesis
procedure" refers to template-dependent -processes and. vector-mediated
propagation
which result in an increase in the concentration of a specific nucleic acid
molecule
relative -to its initial concentration, or in an increase in the concentration
of a .detectable
25 signal, such as amplification. As used herein, he term "oligonucleotide
directed
mutagenesis procedure" is intended to -refer to a process that involves the
template-dependent extension of a primer molecule. The term template dependent
o:
process refers to nucleic acid synthesis of an RNA or a DNA molecule wherein
the
sequence of the newly synthesized strand. of nucleic acid is dictated by the
well-known
30 rules of complementary base pairing (see, for example, Watson, 1987).
Typically,


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
51
vector mediated ruethodologies involve the introduction of theta ucleic acid
fragment
into a DNA or RNA vector; the clonal amplif cation of the vector, arid the
recovery of
the amplified nucleic acid fragment. Examples of such methodologies are
provided by
U. S. Patent No'. 4,23'x,224, specifically incorporated herein by reference in
its entirety,
Iri another approach for. the production of polypeptide variants of the
present invention; recursive sequence recombination; as described in U.S.
Patent No.
5,837,458, may be erriployed: In-this approach, iterative cycles of
recombination and
screening or selection are pe~foriried to "evolve" individual po-lynucleotide
variants of
the invention having, for cxairiple; enhanced immunogcnic activity.
In other embodirnerzts of the present invention; the polynucleotide
sequences provided herein can be advantageously used as probes or prirriers
for nucleic
acid:hybridization. Ars such, it is contemplated that riucIeic acid segments
that comprise
a seq~erice region of at f east about 15 nucleotide long contiguous sequence
that has the
same sequence as, or is complementary to, a. 15 nucleotide long contiguous
sequence
disclosed herein will find particular utility. Longer contiguous identical or
complementary sequences, e.g., those of about 20, 30; 40; 50, 100, 200, 500,
1000
(including all internriediate -lengths) and even up to full length sequences
will also be of
use in. certain embodiments.
The ability of such nucleic acid probes to specif cally hybridize to a
sequence of interest will enable them to be of use in detecting the presence
of
complementary sequences in a given sample. However, other uses are also
envisioned,
such as the use Qf the sequence information for -the preparation of mutant
species
primers, or primers for use in preparing .other. genetic constructions.
Polynucleotide molecules having sequence regions consisting of
contiguous nucleotide stretches of 10-14, 15-20, 30; 50, or even of 100-200
nucleotides
or so (including intermediate -lengths as well), identical or complementary to
a
polynucleotide sequence disclosed herein, are particularly contemplated as
hybridization probes for use in,-e.g., Southern and-Northern blotting. This
would allow
a gene product, or fragment thereof, to be analyzed, both in diverse cell
types and also
in various bacterial cells. The total size of fragment, as well as the size of
the


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
52~
corilplerilentary stretch(es), v ill ultimately depend on the intended use or
application of
the particular nucleic acid' segment. Smaller fragments will generally frill
use in
hybridization embodiments, Wherein the length of the contiguous complementary
-region may be varied, such as between about 15 and about 100 nucleotides, but
larger
contiguous .complementarity stretches may be used, according to the length
complementary sequences one -wishes to detect.
The use of a hyliridizatiort probe of about 15-25 nucleotides in length
allows the formation of a duplex molecule that is both stable and selective.
Molecules
having contiguous complementary sequences over stretches greater than 15 bases
in
1~0 length are generally preferred, ;though; in order to .increase stability
arid -selectivity of the
-,hybrids and thereby improve the quality and degree of specific hybrid
molecules
obtained. 'One will geriera~ty -prefer to design nucleic acid ri~oleeu~es
having gene-
coxnplementary stretches of 15 to 25 contiguous nucleotides, ar even longer
where
desired.
Hybridization probes may be selected from any portion . of any of the
equences disclosed herein. All .that is required is to review the sequences
set forth
herein, or to any continuous portion of the sequences, from about 15-25
nucleotides in
length up :to and including the foil length sequence, that one wishes to
utilize as a probe
ar primer. The choice of .probe and. primer sequences may be governed by
various
factors. For example, -one may wish to employ primers from towards the termini
of the
total sequence,
Small polynucleotide segments or fragments may be readily prepared by,
for example, directly synthesizing the fragment by chemical means, as is
commonly
practiced using an automated oligonueleotide synthesizer. Also, fragments may
be
obtainedr by .application of nucleic acid reproduction technology, such as the
PCRTM
technology of U. S. Patent 4,683,202 (incorporated herein by reference), by
introducing
selected sequences into recombinant vectors for recombinant production, and by
other
recombinant DNA techniques generally known to those of skill in the art of
molecular
biology.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
53
The nucleotide sequences of the invention may be used for their ability
-to selectively form duplex molecules with complementary stretches of the
entire gene or
genie fragments of interest. Depending on the application envisioned; one will
typically
desire to erriploy varying conditions of hybridization to achieve varying
degrees of
selectivity of probe towards. target sequence. For applications requiring high
selectivity,
one will typic~l~ly desire to employ relatively stringent conditions to form
the hybrids,
e.g., one will select relatively low salt and/or high temperature conditions,
such as
piovided by a salt concentration of froth about 0.02 1V~ to about 0.15 M salt
at
temperatures of from about 50°C to about 70~°C. Such selective
:conditions tolerate
little, if any, mismatch between the.probe and the template or target sti'and,
and would
lie particularly suitable for isolating related seq~ierices.
Of course; for some applications, for example, whena one desires to
prepare mutants employing a mutant primer strand hybridized to an underlying
template, less stringent (reduced stringency) .hybridization conditions will
typically be
needed in .order .to- allow formation of the heteroduplex. In these
circumstances, one
may desire to eiiiploy salt conditions such as those of from about 0. i S M to
about 0.9 M
salt, at temperatures ranging from about 20.°C to about 55°.C.
Cross-hybridizing species
can thereby .be readily identified as positively hybridizing signals with
respect to control
hybridizati~tis. In any case, it is generally .appreciated that conditions can
be rendered
mote stringent by the addition of increasing amounts of formamide, which
serves to
destabilize the hybrid duplex in the same manner as increased temperature.
Thus,
hybridization conditions can be readily manipulated, and thus will generally
be a
method of choice depe~iding on the desired results.
According to another .embodiment of the present invention,
polynuclep'.tide -compositions cori~.prisiilg .antisense aligonucleotides -are
provided.
Antisense oligonucleotides have -been demonstrated to be effective and
targeted
inhibitors of protein synthesis, and, consequently, provide a therapeutic
approach by
which a disease can be treated by inhibiting the synthesis of proteins that
contribute to
the disease. The efficacy of aiZtisense oligonucleotides for inhibiting
protein synthesis
is well established. For example, the synthesis of polygalactauronase and the
muscarine


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
54
type 2 acetyleholine receptor are inhibited: by antisense oligonucleotides
directed to
their respective mRNA sequences (LT. S. Patent 5,739,119 and U. S. Patent
5,759;829).
Further, examples of .antisense inhibition .have been demonstrated With the
nuclear
protein cyclin, the multiple drug resistance gene (MDG1), ICAM-1, E-selectin,
STK-l,
striatal GABAA receptor and human EGF (Jaskulski et al., Science. 1988 Jun
10;240(4858):1544-~; V~.santhakumar and Ahriled, Cancer Coymun. 1989;1(4):225-
32; -Peris et al., Brain Res lYTol Brain Res. 1998 Jun 15;57(2):310-20; U. S.
Patent
5,801,154; U.S. Patent 5,789,573; U. S. Patent 5,718,709 and U.S. Patent
5,610,288).
Antisense constructs .have .also been described that inhibit and .can be used
to treat a
variety of abrLOriiral celhtlar piroliferatiorls, e.g. cancer (U. 5. Patent
5,747,470; U. S.
Patent 5;51,317 and U. S. -Patent 5,783,683).
Therefore, in- certain embodirrients, the present invention provides
oligonucleotide sequences that comprise all, .or a portion of, any sequence
that is
capable of specifically binding to polynucleotide sequence described herein,
or a
complement thereof In one embodiment, the antisense oligonucleotides comprise
DNA
or derivatives thereof. In another embodiment, the oligonucleotides oomprise
RNA or
derivatives thereof. In a third embodiment, the oligonucleotides are modified
DNAs
comprising a- phosphorothioated modified backbone. In a fourth embodiment, the
oligonucleotide sequences -comprise -peptide nucleic acids or derivatives
thereof. In
each case, preferred compositions corilprise a sequence region that is
complementary,
and more preferably substantially-complementary, and even .more preferably,
.completely coinplementaiy to one or more portions -of polynucleotides
disclosed herein.
Selection of antisense compositions specific for a given gene sequence is
based upon
analysis of the ,chosen target sequence .and determination of secondary
structure, T""
binding energy, and relative stability. Antisense comipositions may be
selected based
upon their relative inability to farm dimers; hairpins, or other secondary
structures that
would reduce or prohibit specific binding to .the target mRNA in a host cell.
Highly
preferred taxget regions of the rilRNA, ara those which are at or near the AUG
translation initiation codon, and those sequences Which are-substantially
complementary
to 5' regions of the mRNA. These secondary structure analyses and target site
selection


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
considerations can be performed; for. example, using v.4 of .the ~LLGO primer
analysis
software and/or the BLASTN 2Ø5 algorithm software (Altschul et al., Nucleic
Acids
Res. 199'7, 25(17):338-402}
The use of .an antisense delivery method -employing a short peptide
5 vector, teriiied- MPG (~7 residues), is also contemplated. The MPG peptide
contains a
hydrophobic domain derived from the fusion sequence of HIV gp4v amd, a
hydrophilic
domain frorri the nuclear localization. sequence of ~SV40- T-antigen (Morris
et al.,
Nucleic Acids Res. 1997 Jul 15;25(14):2730-G). It has been demonstrated that
several
molecules of the MPG.peptide coat the antisense oligonucleofides and can be
delivered
10 into cultured mammalian cells irz less than 1 hour with relatively high.
efficiency (90%).
Further, the interaction with MPG strongly increases =both the -stability of
the
oligonucleotide to nuclease and the ability to cross the plasma-membraxie.
Ae~ordirig to another embodiment of the ipvention, the polynucleotide
compositions described herein are used in the design and .preparation of
ribozyme
15 molecules for inhibiting expression of the tumor polypeptides and proteins
of the
present invention in tumor cells. Ribozymes are RNA-.protein complexes -that
cleave
riu~leic acids in a site-specific fashion. Ribozyriies have specific catalytic
domains that
possess endonuclease activity (I~im and Cech, Proc Natl Acad Sci. U S A. 1987
IDec;84(24):8788-92; Forster and Symons, Cell: 1987 Apr 24;49(2):2.11-20). For
20 example, a large number of ribozymes accelerate phosphoester transfer
reactions with a
high degree of specificity, often cleaving only one of several phosphoesters
in an
oligonucleotide substrate (Cech et al., Cell. 1981 Dec;27(3 Pt 2):487-96;
Michel and
Westhof, J Mol Biol. 1990 Dec 5;216(3):585-610; -Reinhold-Hurek and Shub,
Nature.
1992 May 14;357(6374):173-6). This specificity has been attributed to-fihe
requirement
25 that the substrate bind via specific .base-pairing interactions to the
internal guide
sequence ("IGS") of the ribozyme prior to chemical reaction.
Six basic varieties. of naturally-occurring enzyrriatic RNAs are known
presently. Each can catalyze the hydrolysis of RNA phosphodiester bonds in
tans (and
thus can cleave other RNA molecules) under physiological conditions. In
general,
30 enzymatic nucleic acids act by first binding to a target RNA. Such binding
occurs


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
56
through the target binding .portion of a enzymatic nucleic acid which is held
in close
proximity to am enzymatic portion of the molecule that acts ~to cleave the
target RNA.
Thus, the enzymatic nuclete acid first recognizes and then binds a target RNA
through
comple'rnentary base=pairing, and once bound to the correct site, acts
erizymatically to
cut the target RNA. Strategic cleavage of such a target RNA will destroy its
ability to
direct synthesis.of an encoded-protein. After an enzymatic nucleic acid l~~s
bound and
cleaved itS.RNA target, it is.released from that RNA to search for another
target and can
repeatedly bind and cleave new targets.
The enzymatic nature -of a ribozyme is advantageous over rriany
teclinalogies~ such as antisehse technology (where a nucleic acid molecule
simply binds
to .a nucleic .acid target to block its translation) since the concentration
of ribozyme
necessary to affect a therapeutic treatment is lower than that .of art
antisense
oligonucleotide. This advantage reflects the ability of the ribozyme to act
enzymatically. Thus, a single ribozyme molecule is able to cleave many
molecules of
target RNA. In addition, the ribozyme is a highly specific inhibitor, with the
specificity
of inhibition depending not only on the base pairing mechanism of binding to
the target
RNA, but also. on the -mechanism of target RNA cleavage. Single mismatches, or-
base-
suhstitutions, near the site of cleavage can completely .eliminate catalytic
activity of a
ribazym~e. Similar mismatches in- antisense molecules do not prevent their
action
(Woolf et al., Proc Natl Acad Sci U S A. 1992 Aug 15;$9(1'6);7305-9). Thus,
the
specificity of action of a ribozyme is greater than that of an antisense
oligonucleotide
binding the wine RNA site.
The enzymatic .nucleic acid molecule may he formed in a hammerhead_


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
S7
1;31(47):11$43-S2; an example- of the RNaseP motif is described by .Guerrier-
Takada~
et al., Cell. 1983 Dee;35(3: Pt 2):849-57; Neurospora VS RNA ribozyme motif is
described liy Collins (Saville and Collins, Cell. 1990 May 18;61(4):685-96;
Saville and
Collins, Proc Natl Acad Sei U S A. 1991 Oet 1;88(19):8826-30; Collins and
Olive,
Biochemistry. 1993 Mar 23;32(11):2795=9); and van example of the Group =I
introit is
described in (U. S. Patent 4,987,071). All~that is important in an enzymatic
nucleic acid
molecule of this invention. is that it has a specific substrate binding site
which is
complementary to one or -more of the target gene RNA. regions, and that it
have
nucleotide sequences within .or surrounding that substrate binding site which
irr~part an
RNA cleaving activity to the molecule. Thus the ribozyme constructs need not
be
limited to specif c motifs -mentioned herein,.
Ribozymes riiay be desi-fined- as .described in Int. Pat. Appl. Publ. No.
WO 93/23569 and I~t. Pat. Appl. Publ. No. WO 94/0259, each specifically
incorporated herein by reference) and synthesized to be tested ih vitro and i~
vivo, as
described. Such ribozymes can also .be optimized for delivery. While specific
examples are provided, those in -the art will recognize that .equivalent RNA
targets in
other species can be utilized when necessary.
Ribozyme activity .can be optimized by altering the length of the
ribozyme -binding arms, .or chemically syrithesi~ing ribozyiries with modif
cations that
prevent their-degradation by serum ribonucleases (see e.g., Int. Pat. Appl.
.Publ. No. WO
92/07065; 'Int. Pat. Appl. Publ. No. WO 93/15187; Int. Pat. Appl. Publ. No. WO
91/03162; Eur. Pat. Appl. Publ. No. 92110298.4; U. S. Patent 5,334,711; and
Int. Pat.
Appl. Publ. No. WO 94/13688, which describe various chemical modifications
that can
be made to the sugar moieties of enzymatic RNA molecules), modifications
'which
enhance their efficacy in cells, and removal of stem II bases to shorten RNA
synthesis
times and reduce chemical requirements.
Sullivan et al. (Int. Pat. Appl. Publ. No. WO 94/02595) describes the
general rizethods for delivery of enzymatic RNA molecules. Ribozymes may be
administered to cells by a variety of methods .known to those familiar to the
art,
including, but not restricted to, encapsulation in liposomes, by
iontophoresis, or by


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
58
incorporation into other vehicles, such as hydrogels, cyclodextrins,
biodegradable
nanocapsules, and bioadhesive nnicrospheres. For some indications, ~ribozym~s
may be
directly delivered ex vivo to cells or tissues with or without the
aforementioned vehicles.
Alternatively, the RNA/vehicle combination may be locally delivered by direct
inhalation, by direct injection or by use of a catheter, inftision pump-or
stmt. Other
routes of deli ery include; but are riot limited to, intravascula~,
intramuscular,
suli,cu~arleous or joint injection, aerosol inhalation; oral =(tablet .or pill
form), topical,
systemic, ocular, intraperitoneal and/or intrathecal. delivery. More detailed
descriptions
of -ribozyme delivery arid administration are provided in ant. Pat. Appl.
Publ. No. V~10
94/059.5 and- Int. Pat. Appl.. °Publ. No. WO 93/23569; :each specif
cally incorporated
herein by reference.
Another means of accumulating high concentrations of a ribozyme(s)
within cells is to incorporate the ribozyme-encoding sequences into a DNA
expression
vector. Transcription of the ribozyme sequences are driven from a promoter for
1 S eukaryotic.:RNA poly~rierase I (pol ~), RNA polymerase -II (pol II), or
RNA polymerase
III (pol III). Transcripts from pol II or pol III p~orrioters will. be
eXpressed at high levels
in all cells; the levels of a given pol II promoter in a given cell type will
depend on the
nature of the gene :regulatory sequences (eriharicers, silencers, etc. )
present nearby.
Prokaryotic RNA polymerase .promoters may also. be used, providing that the
prokaryotic RNA polymerase enzyme is expressed in the appropriate cells
Ribozymes
expressed from such promoters have been shown to function in mammalian cells.
Such
transcription units can be incorp.orated~ into a variety .of vectors for
introduction into
mammalian cells, including but not restricted to, plasrriid DNA vectors, viral
DNA
ve, ctors (such as adenovirus or aderio-associate vectors); or viral RNA
vectors (such as
retroviral, semliki forest virus, sindbis virus vectors).
In another embodiment of the invention, . peptide nucleic acids (PNAs)
compositions are .provided. PNA is a DNA mimic in which the nucleobases are
attached to a pseudopeptide backbone (Good and Nielseri, Antisense Nucleic
Acid Drug
Dev. 1997 7(4) 431-37). PNA -is; able to be v tilized in a number methods that
traditionally have used RNA or DNA. Often PNA sequences perform better in


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
59
techniques than the corresponding RNA or DN1~ sequences arid 'have utilities
that are
not .inherent to RNA or DNA. A review of PNA including methods of making,
characteristics of, and: methods of using, is provided by Corey (Tre~a's
Baotechnol 1997
Jun;15(6):224-9). As such, iri certain embodiments, one may prepare PNA
sequences
=that are corriplementary to one or more -portions of the ACE mRlVA sequence,
and such
PNA compositions may :be used Io regulate, alter, decrease, or t;educe the
translation of
ACE-specific mRNA, and hereby alter the level of ACE activity iri= a host
cell. tov vhich
such PNA compositions have been administered.
PNAs have 2-aininoethyl-glycine linkages =replacing the norriial
IO phospliodiester backbone .of DNA (Nielsen.et al., Science 1991 Dec
6;254(5037}:1497-
5.00; .Hanvey et al., Science. 1992 Nov 27;258(5087):1481-5; Hyrup and
Nielsen,
~Bioorg lVled Chem. 1.996 Jan;4(1):5-23). Thin chemistry has three important
consequences: firstly, in contrast to DNA or phosphorothioate
oligonucleotides, PNAs
are neutral molecules; secondly, PNAs are achiral, which avoids the need to
develop a
stereoselective synthesis; and -thirdly, PNA synthesis uses standard Boc or
Fmoc
.protocols for solid-phase peptide synthesis, although other yethods,
including a
modified Merrifield method, have been used.
PNA monomers or ready-made oligoiners are ~comiiiercially available
-from PerSoptive Biosysterns (Framingharri, ~MA). -PNA syntheses by either Boc
or
°Fmoc protocols are straightforward using manual or automated:protocols
(Norton et al.,
Bioorg Med Chem. 1995 Apr;3(4):437-45). The rizanual protocol .lends itself to
the
production of chemically miodified PNAs or the simultaneous synthesis of
families of
closely related PNAs.
As with peptide synthesis, -the success of a particular PNA synthesis will
depend on the properties of the chosen sequence. For exarriple, while in
theory PNAs
can incorporate any combination -of,nucleotide bases; .the presence of
adjacent purines
can lead to deletions of one or more residues in the product. In expectation
of this
difficulty, it is suggested that, in producing PNAs with .adjacent purines,
one should
repeat the coupling of residues likely to be added inefficiently. This should
be followed
by the purification of PNAs by reverse-phase high-pressure liquid
chromatography,


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
providing yields and .purity of product similar to those observed during the
synthesis of
peptides:
Modifications of PNAs for a given application may be accomplished by
.coupling amino acids during solid-phase synthesis or by attaching compounds
that
5 contain a :carboxylic .acid group to the exposed N-terminal amine.
Alternatively, PNAs
can be modified after synthesis .by coupling to an introduced lysine ,or
cysteine, The
ease witlx whicli. ~PNAs can be modified facilitates optimization for better
solubility or
for specific functional requirements. Once synthesized; the identity of PNAs
and- their
derivatives can vbe canfinned by mass spectrometry. Several studies have made
and
10 utilized ~odificatioris of PNAs (for example, Norton et al., Bioorg IVIed
Chem. 19.9.5
Apr;3(4):437-,45; Petersen- et al., J ~Pept Sci. 1995 May-Jun;l(3):175-~3;
Orum et al.,
Biotechniques. 1995 Sep;l9(3):472-&0; Footer et al:, Biocherilistry. 1996 Aug
20~35(33):I0673-9; Griffith et al., Nucleic Acids Res. 1995 Aug 11;23(15):3003-
8;
Pardridge et al., Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):559-6; Boffa et
al.,
15 Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1901-5; Gambacorti-Passerine et
al.,
Blood. 1996 Aug 15;88(~):14I1-7; Armitage et al., eProc Natl Acad S,ci U S A.
1997
Nov 11;94(23):12320-S; Seeger et al., Biotechniques. 1997 Sep;23(~):SI2-7).
U.S.
Patent No. 5,700,92 discussed ;PNA-DNA-PNA chimeric molecules and their uses
in
diagnostics, modulating protein i~ organisms, and treadnent of conditions
susceptible to
20 therapeutics.
Methods of characterizing the antisense binding properties of PNAs are
discussed in. Rose (Anal Chern. 1993 Dec 15;65(24):3545-9) and Jerisen et al.
(Biochemistry. 1997 Apr 22;36(16):5072-7). Rose uses capillary gel
electrophoresis to
determine binding of PNAs to their complementary oligonucleotide, measuring
the
25 relative binding. kinetics .and stoich'iometry. Similar types of
measurements were made
by Jensen et al. using BIAcoreTM technology.
Other applications of PNAs .-that have been described and will be
apparent tb the skilled artisan include use ire DNA strand invasion, antisense
inhibition,
mutational analysis, enhancers of transcription, nucleic acid purification,
isolation of


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
61
transcriptiorially active genes, blocking of transcription factor binding,
genome
cleavage, biosensors~, in situ hybridization, and the like.
Polynucleotide Identification; Characterization: and Expression
Polynucleotides compositions of the .present invention may be identified,
:prepared and/or manipulated using any ..of a variety of well established
techniques (see
generally, Sambrook et al., Molecular Cloning: A Labo~ato~y Manual, Cold
Spring
-Harbor Laboratories Cold Spring Harbor, NY, 1989, and other like references).
For
example, a polynucleotide rnay be identified,, as .described in more detail
below, by
screeniing a microarray of cDNAs for tumor-associated expression (i. e.,
expression that
is at least twa -fold greater iri a tumor than in normal tissue, as determined
using a
representative' assay provided herein). Such. screens znay be performed, for
example,
using the microar~ay technology of Affymetrix, .Iric. -(Santa Clam, CA)
according to the
manufacturer's instructions (and essentially as described by Schena et al.,
Pr~oc. Natl.
Acid. Sci. USA 93:10614-10619, 1996 and .Heller et al., Proc. Natl. Acid. Sci.
USA
94:2150-2155, 1997). Alternatively, polynucleotides may -be amplified from
cDNA
prepared from cells expressing the proteins described herein, such as tumor
cells.
Many templafe dependent processes are available to ayplify a target
sequences of interest present in,a sample. ~Orie ofthe best-known
arriplification methods
is the polymerise chain reaction (PCRTM) which is described in detail in U.S.
Patent
Nos. 4,68.3,195, x;683,202 .arid 4,800,159, each of which is incorporated
herein by
-reference in its entirety. Briefly, in PCRTM, two primer sequences are
prepared- which
are coW plementary to regions .on opposite Gomplemeritary strands of the
target
sequence. An excess of deoxynucleoside triphosphates is added to a reaction
mixture
along with a DNA polymerise (e.g., Taq polymerise). If the target sequence is
present
in a sample, the primers will bind to the target and the polymerise will cause
the
primers to be ,extended along the target sequence by adding on nucleotides. By
raising
and .lowering the temperature of the reaction mixture, the extended primers
will
dissociate frorri the target to form reaction products, excess primers will
bind to the
target and to the reaction product and -the process is repeated. Preferably
reverse


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
62
transcription and PCRTM amplification procedure may be performed in order to
quantify
the amount of mRNA amplified. Polymerise chain reaction iTiethodologies are
well
known in the art.
Any of a number .of other template dependent processes, many of which
ark variations of the PCR TM amplification technique; are readily known and
available in
the art. Illustratively, some such methods include the ligase chain reaction
(referred to
as LCR), described, for example, in 'Ei~r. Pat. Appl: Publ. No. 320;308 arid
U.S. Patent
No. 4,883,750; Qbeta. Replicas; described. in PC'T Intl~. Pat. Appl. Publ. NQ.
PCTlUS87/0088.0; Strand Displacement Amplification (SDA) and Repair Chain
Reaction (RCR). 'Still other amplification methods. are .described iW:Great
Britain Fat.
Appl. I~o. 2 202 328, and in=PCT Intl. Pat. Appl. Publ. No. PCT/USBg/Q1025.
Other
~nizcleic acid aiilplification procedures include ~transcriptiori-based
amplification systems
(TAS) .(PCT Intl. Pat. Appl. Publ. No. WO 88/10315), including nucleic acid
sequence
based amplification (NASgA) and 3SR. Eur. Pat. Appl..Publ. No. 329,822
describes a
nucleic acid amplification process involving cyclically synthesizing single-
stranded
RNA ("ssRNA"), ssDNA, and doable-stranded DNA (dsDNA). PCT Intl. Pat. Appl.
Publ. No. WO $9/06700 describes a nucleic acid sequence amplification scheme
based
on the .hybridization of a promoter/primer sequence to a target single-
stranded DNA
("ssDl~A") followed .by transcription. of many RNA copies of the sequence.
Other
amplification methods such as "RACE" (Frohman, 1990), and "one-sided PCR"
(Ohara,
1-989) are also well-known to those of skill in the art.
An amplified. poz~ion of a polynucleotide of the present invention may be
Bused to isolate a full length gene from a suitablelibrary (e.g., a tumor
.cDNA library)
using well known techniques. Within such techniques, a library (cDNA or
genomic) is
screened using one or more .polynucleotide probes or primers suitable for
amplification.
Preferably, a library is size-selected to include larger molecules. Random
primed
libraries may also be preferred for identifying 5' and upstream regions of
genes.
Genomic libraries are preferred for. obtaining introns and extending 5'
sequences.
For hybridization techniques, a partial sequence may be labeled (e.g., by
nick-translation or end-labeling with 32P) using well known techniques. A
bacterial or


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
63
bacteriophage library is then generally screened -by hybridizing filters
containing
,denatured- bacterial colonies (or Iawns containing phage plaques) with the
labeled probe
(see Sariibrook et al., Malecula~ Cloning: A Laboratory Manual; Cold Spring
Harbor
Laboratories, -Cold Spring Harbor, NY, 1989). Hybridizing colonies or plaques
are
selected and° expanded, and the DNA is isolated for further analysis.
cDNA clones may
be axialyzed to determine the arnaunt of additional sequence by, for
exariiple, ~PCR using
a primer from the partial sequence and a-primer from the vectox. Restriction
maps and
partial sequences may be generated to identify one or more overlapping clones.
The
complete sequence .may then be determined using standard techniques, which may
involve .genera~irig a series of deletion clones. The resulting overlapping
sequences can
then assembled into a single contiguous sequence. A full length cDNA molecule
can be
generated by ligatirig suitable fragments,:using well known techniques.
Alternatively, amplif canon techniques, such .as those described above,
can be useful for obtaining a full length coding sequence from a partial cDNA
sequence.
Qne such amplification technique is inverse PCR (see Triglia et al., Nuel.
Acids Res.
16:8186, 1988), which uses restriction enzymes to generate a fragment in the
known
region of the gene. The fragment is then .circularized by intramolecular
ligation and
used as a template for PCR -with divergent primers derived from the known
region.
Within an alternative approach; sequences- adjacent to a partial .sequence may
be
ZO retrieved by amplification with a prirrier to a linker sequence and a
primer specific to a
know region. The amplified sequences are typically subjected- to a second
round of
amplification with the same linker primer and a second- ptimer specific to
the' .known
region. A variation on this procedure, which employs two primers that initiate
.extension- in opposite directions -from the known sequence, is described in
WO
96/38591. Another such technique .is known as "rapid amplification of-cDNA
ends" or
RACE. This technique involves the use of an internal primer and an external
primer,
which hybridizes to a polyA region or vector sequence, to identify sequences
that are 5'
and 3' of a known sequence. Additional techniques include capture PCR
(Lagerstrom
et al., PCR Methods Applic. 1:111-19, 1991) and walking PCR (Parker et al.,
Nucl.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
64
Acids. Res. 19:3055-60; 1991). Other- methods employing amplification may also
be
employed to obtain a full length cDNA sequence.
In certain instances, it is possible to obtain a full length cI7NA sequence
by analysis of sequences provided in an expressed sequence tag (EST) database,
such as
that ~.vailable from GenBank. Searches for overlapping. ESTs may generally be
performed .using well kriowri programs (e.g., NCBI BLAST searches), and such
ESTs
may be' used to ~gen~r~,te a contiguous full length sequerice: Full- length
DNA sequences
may also be obtained-by analysis of genomic fragments.
In ather emtiodirnents of the invention, polynucleotide sequences or
fragments therebf which encode polyp.~p~tides :of the invention, or fusion
proteins or
functional equivalents thereof, may be. used in recombinant DNA molecules to
direct-
expression of a polypeptide .in appropriate ha.st cells. Due to the inherent
degeneracy of
the genetic code, .other 1DI~1A sequences that encode substantially the same
or a
functionally equivalent amino acid sequence may be produced and these
sequences may
be used to clone .and express a given polypeptide.
As will be understood by those of skill in the art, it may be advantageous
in some instances to produce polypeptide-.encoding -nucleotide sequences
possessing
non-naturally occurring codons. For exarriple, codons preferred by a
particular
prokaiyotic ~or eukaryotic host can be selected to -increase the rate of
protein expression
or to produce a recombinant RNA transcript-having desirable properties, such
as a -half
life which is longer than that of a transcript .generated from the naturally
occurring
sequerice.
Moreover, the polyn~cleotide sequences of the present invention can be
engineered -using methods gerierahy -known in the art in order to alter
polypeptide
encoding sequences for a variety of reasons, including but not limited to,
alterations
which modify the cloning, processing, and/or expression of the gene .product.
For
example, DNA shuffling by random fragrrientation and PCR reassembly of gene
fragments and synthetic oligonucleotides may be used to engineer the
nucleotide
sequences. In addition, site-directed mutagenesis may gibe used to insert new
restriction


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
sites, alter glycosylation patterns, change codon preference, produce splice
variants, or
introduce mutations, and so forth:
In another embodiment of the invention, natural, modified or
recombinant nucleic acid sequences may be ligated to a heterologous sequence
to
5 encode a fusion protein. For example, to screen peptide libraries for-
inhibitors of
polypeptide activity, it may be useful to. encode a child eric protein that
can be
recognized by a comrriercially available antibody. A fusion protein may also
be
engineered to contain a cleavage site located between the polypeptide-encoding
sequence and the lieterologous protein sequence, so that the pplypeptide may
be cleaved
10 and purified. away from the heterologous moiety.
Sequences erieoding a desired polypeptide may be synthesized, in whole
or in part, using chcrriical methods well known- in tlZe art (see -Caruthers,
M. H. et al.
(1980) Nucl. Acids Res. Symp. Ser. 215-223, Hom, T. et ~1. (I980) Nucl. Acids
Res.
Symp. Ser. 225-232). Alternatively, the protein itself may be produced using
chemical
15 methods to synthesize the amino acid sequence of a polypeptide, or a
portion thereof.
For example, peptide synthesis can be perforri~ed using various solid-phase
techniques
(Roberge, J. Y. et al. (19f5) Sciehce 269:202-204) and automated synthesis may
be
achieved; for example, using -the ABI' 431A Peptide Synthesizer (Perkin Elmer,
Palo
Alto; .CA).
20 A newly synthesized peptide may be substantially purified by
preparative high performance liquid chromatography .(e.g., Creighton, T.
(1983)
Proteins, Structures and Molecular -Principles, WH Freeman and Co., New York,
N.Y.)
or other comparable techniques available in the art. The composition of the
synthetic
peptides may be confirmed by aiizina .acid analysis or sequencing (e.g., the
EdW an
25 degradation procedure). Additionally, the amino acid sequence of ~
polypeptide, or any
part thereof, may be altered during direct synthesis and/or combined using
chemical
methods with sequences from other proteins, or any part thereof, to produce a
variant
polypeptide.
In order to express a desired polypeptide, the nucleotide sequences
30 encoding the polypeptide, or functional equivalents, may be inserted into
appropriate


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
66
expression vector, i.s., ~: vector which contains tie necessary elements for
the
transcription and translation of the inserted coding sequence. Methods which
axe well
known to those skilled in the art may be used to construct expression vectors
containing
sequences encoding a polypeptide of interest and appropriate trariscriptional
and
translational control elements. These methods include in vitro recombinant DNA
techniques, synthetic techniques; and iii vivo genetic recombination. Such
techniques
are described', 'for example, in Sarrib'rook, J. et .al. (1989) Molecular
Cloning, A
Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y., and Ausubel, F.
M. et
al. {19:89) Current Protocols in Molecular Biology, John Wiley ;& Soys, New
York.
10. N.Y.
A variety of expression vector/host systeW s -may be utilized to contain
arid- ekpress polynucleotide sequences. These include, but ate not limited to,
microorganisms such as bacteria transformed with recombinant bacteriophage,
plasmid,
or cosmid -DNA expression vectors; yeast transformed with yeast expression
vectors;
1~5 insect .cell systems infected with virus expression vectors (e.g.,
baculovirtis); plant cell
systems transformed with virus expression vectors (e.g., cauliflower .mosaic
virus,
CaMV; tobacco mosaic virus, T1VIV) or with bacterial .expression vectors
(e.g., Ti or
;pBR322 plasmids); or animal cell systems.
The "control -elements" or "regulatory sequences" present in. an
~0 expression vector are those .non-translated. regions of the vector--
enhancers, promoters,
5' and 3' untranslated regions--which interact with host cellular .proteins to
carry out
transcription and translation. Such elements -may vary in their strength and
specificity.
Depending on the vector system and host utilized, any number of suitable
transcription
and translation elements, including constitutive arid inducible promotersy may
be used.
25 For example, when cloning in bacterial systems; inducible promoters such as
the hybrid
lacZ promoter of the PBLUESCRIPT phagemid (Stratagene, La Jolla, Calif.) or
PSPORT1 plasmid (Gibco BRL, ~Gaithersburg, MD). and the like may be used. In
mammalian cell systems, -promoters from mammalian genes or from mammalian
viruses .are generally preferred. If it is necessary to generate a cell line
that contains


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
6-7
multiple copies. of the sequence encoding a polypeptide, vectors based on SV40
or EBV
may be advantageously used with an 'appropriate selectable marker.
-In bacterial. systems, any of a number of expression vectors may be
selected depending upon the use intended for the expressed .polypeptide. For
example,
when large quantities are needed; for .example for the induction of
antibodies, vectors
which direct high level expression of fusion proteins that are readily purif
ed may be
used. Such vectors include, but are not liixiited 'to, the multifunctional E.
coli cloning
and expression vectors such as BLUESCRIPT (Stratagene), in which the sequence
encoding the polypeptide of interest may be ligated -into the vector in frame
with
sequences, for -the amino-terminal. Met and the subsequent 7 residues of
.beta.-
galactosidase so that a hybrid protein is produced; pIN vectors (Van. Heeke,
~G. and S.
1VI. Schuste~ (1989) J Bial: Chem: 264:5503-5509); and the like. pGEX Vectors
(Promega, Madison, Wis.) may also be used to express foreign polypeptides as
fusion
proteins with glutathione S-transferase (.GST). In general, such fusion
proteins are
soluble and can easily be purified from lysed cells by adsorption to
glutathione-agarose
beads followed by elution .in the presence of free ,glutathiorie. Protei=ns
made in such
systeri~s may be designed to include heparin, thrombin, or factor XA protease
cleavage
sites so that 'the cloned polypeptide of interest can be released from the GST
moiety at
will.
In -the yeast, Saceharorriyces cerevisiae, a number of vectors containing
constitutive or inducible promoters such as alpha factor., alcohol oxidase,
and PGH may
be .used. For reviews, see Ausuliel et -al. (supra) amd Grant et al. .(1987)
Methods
Ertzymol. 153:516-544.
In cases where plant expression vectors are cased, -the expression .of
sequences encoding polypeptides may be driven by any of a number of promoters.
For
example; viral promoters such as the 35S and 19S promoters of CaMV may be used
alone or in combination with the omega leader sequence from TMV (Takamatsu, N.
(1987) EMBO J. 6:307-311. Alternatively, plant promoters such as the small.
subunit of
°RUBISCO or heat shock promoters may be used (Coruzzi, G. et al. (1984)
EMBO J.
3:1671-1680; Brogue, R. et al. (1.984) Science 224:838-843; and Winter, J. et
al. (1991)


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
6$
Results Pxobl: Cell Diffef~. 17:&5-105). These constructs can be introduced
into plant
cells by direct DIVA transformation or pathogen-mediated transfection. Such
techniques
are-described in a niixiiber of generally available reviews (set, for example,
Hobbs, S. or
Murry, L. E. in McGraw Hill Yearbook of Science and Technology (1992) McGraw
Hill, New York, N.Y.; pp. 191-196).
Ari insect system may also be used to express. a polypeptide of interest.
For example, in one such system, Autographa ealifori~ica nuclear polyhedTOSis
vines
(AcNPV) is used as a vector to express foreign genes in S~odoptera frugiperda
cells or
in ~'richoplusia larvae. The sequences encoding ;the polyp.eptide may be coned
into a
1,0 -non-essential region of the virus, such as the polyhedxiri gerl~, and
placed. under control
of the polyhedrin promoter. Successful insertion of tl~e polypeptide-
:~ricoding sequence
will render the polyhedrin gene inactive and produce recoW binant virus
lacking coat
protein. The recombinant viruses may then be used to infect, fox example, S,
frugiperda
cells or Tri~ho~lusia larvae in. which the polypeptide of interest may be
expressed
(Engelhard, E, K. et al. (1994) Proc. Natl. Acad. Sci. 91 :3224-3227).
In mammalian host cells, a number of viral-based expression systems are
generally available. For .example, in cases where an adenovirus is qsed as an
expression
vector, sequences encoding a polypeptide of interest may be iigated into an
adenovirus
transcription/translation complex consisting- of the late promoter arid
tripartite leader
sequence. Insertion in a riori-essential E1 or E3 region of the viral genome
xilay be used
to obtain a viable virus whicli is capable of expressing the polypeptide in
infected host
-cells (Logari, ~. and~'Shenk, T. (-19$4) P~oc. Natl. Acad. Sci. 81:3655-
3659). In addition,
transcription ~rihancers, such as the Rous sarcoma virus .(RSV) enhancer, may
be used
to increase expression in mammalian host cells.
Specific initiation signals may also be used to achieve .more efficient
translation of sequences encoding a polypeptide of interest. Such signals
include the
ATG initiation =colon . and adjacent sequences. In .cases where sequences
encoding the
polypeptide, its initiation colon, and upstream sequences are inserted into
the
appropriate expression vector, no additional transcriptional or translational
control
signals may be needed. However, in cases where only coding sequence, or a
portion


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
69
thereof, is inserted, exogenous translational control signals including the
ATG initiation
colon should be provided. Furthermore, the initiation colon should be in the
correct
reading frame to ensure translation of the entire insert. Exogenous
translational
elerrients, and initiation co-dons may be of various origins, both natural and
synthetic.
The efficiency of expression may be enhanced by the inclusion of enhancers
which are
appropriate for the particular cell system which is used; such as these
,described in-the
literature (Schar~, I~. et al: (1994) Results P~obl. Cell Differ. 20:125-1(2).
In addition, a host cell strain may be .chosen for its ability to modulate
the expression .of the inserted sequences or to process the expressed protein
in the
1 ~ desired fashion-. Such modific~tioris -of the palypeptide include, but are
not limited to,
acetylation, carboxylation. -gl-ycQSylation, phosphorylation, lipiciation, and
acylation.
Post-translational processing which cleaves a "prepro" form of the protein may
also be
used to facilitate correct insertion, folding and/or function. Different host
cells such as
CHO, COS, HeLa, MDCK, H~K293, and WI38, which have specific cellular
machinery and characteristic mechanisms for such post-translational
activities, may be
chosen to ensure the correct modlfrcation and-processing of the foreign
protein.
For long-term, high-yield- production .of recombinant proteins, stable
expression is generally preferred. For example, cell lines which stably
express a
polynucleotide of interest may be transformed using expression vectors which
xriay
20. contain viral origins of replication and/or endogenous expression
.elements and a
selectable marker gene on the same or on a separate vector. Following the
introduction
of the vector, cells.-may be allowed to grow for 1-2 days in an enriched media-
befo-re
_they are switched to selective media. The purpose of the selecXable marker is
to confer
resistance to selection; and its .presence allows growth and recovery of cells
which
successfully express the introduced sequences. Resistant clones of stably
transformed
cells may be proliferated using tissue culture techniques appropriate to the
cell type.
Any number of selection systems may 'be used to recover transformed
cell lines. These include, but are not limited to, the herpes simplex virus
thymidine
kinase (Wigler, M. et al. (1977) Cell 11:223-32) and adenine
phosphoribosyltransferase
(Lowy, I. et al. (1990) Cell 22:17-23) genes which can be employed in tk-
or


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
aprt.sup-.- cells, respectively. also, atltiinetabolite, antibiotic or
herbicide resistance can
be used as the basis for selection; for example, dhfr which confers resistance
to
methotrexate (Wigler, -1VI. et al. (198.0) P~oc. Natl. Acad. Sci. 77:3567-70);
npt, which
confers resistance to the" aminoglycoside5, neomycin and G-418 (Colbere-
Garapin, F. et
5 al (198.1) J. Mal. PioZ: 150:1-14); and als or -pat, which confer resistance
to
chlorsulfurorl a~c~ phosphinotricin acetyltrarisferase, respectively ,(hurry,
supra).
Additional- selectable genes have been described, for exaW plc; tipB, which
allows cells
to utilize indole in place of tryptophan, or hisD; which allows .cells to
utilize histinol in
place of histidine (Hartinan; S. C. and -R. C. Mulligan (198:) Proc. Natl.
Acad Sci.
1.0 85:807-~1). The use of visible markers has gained popul'arify with such
markers as
arithocyanins, beta-glucuronidase and its substrate GUS, and lu~iferaae and
its substrate
luciferin, being widely used not only to identify transforrriants, but also to
quantify the
amount of transient or stable protein expression attributable to a specific
vector system
(Rhodes; C. A. .et al. (1995) ll~fethods Mol. Biol. .55:121-131).
15 Although the presence/absence of marker gene expression suggests that
the gene of interest is also present, its presence and expression may need to
be
confirrried. For example, if the sequence encoding a polypeptide is inserted
within a
.marker gene sequence, recombinant cells containing sequences can be
identified by the .
absence .of marker gene function. Alternatively, a marker gene can be .placed
in tandem
20 with a polypeptide-encoding sequence under the control of a single
promoter.
Expressipn of the marker gene in .response to induction or selection usually
indicates
expression of the tandem gene as well.
Alternatively, host cells that contain arid express a desired
polynucleotide sequence may -b~ identified by a variety of procedures known
.to those of
25 skill in: the art. These procedures include, but are not limited to, DNA-
DNA or I~NA-
RNA hybridizations and protein bioassay or immunoassay techniques which
include,
for .example, membrane, solution, or chip based technologies for the detection
and/or
quantification of nucleic acid or protein.
A variety of protocols .for detecting and measuring the expression of
30 polynucleotide-encoded products, using either .polyclonal or monoclonal
antibodies


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
71
specific for the .product are known in the art. Examples include enzyme-linked
imrimnosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence
activated
cell sorting (FAGS). A two-site, monoclonal-based immunoassay utilizing
monoclonal
antibodies reactive to two non-interfering epitopes on a given polypeptide may
be
prefei~ed~ for some applications, but a competitive binding assay may also be
employed.
These .and- other assays are- described, among other.plac_es, in I~amptori, R.
et ,al. (1990;
Serological Methods, ~ Laboratory Manual, APS Press, St Paul. Minn.) and
Maddox, D'.
E. et al. (1983; J. Exp. Med. 158:1211-1216).
A wide variety of labels arid conjugation techniques are known by those
skilled in the art and riiay-he used in various nucleic acid and amino acid
assays. Means
for producing .labeled hybridization or F.GR probes for detecting sequences
related to
polynucleotides include oligolabeling, nick translation, end-labeling or PCR
amplification using a labehed nucleotide. Alternatively, the sequences, or any
portions
thereof wiay be cloned into a vector for the production of arL mRNA .probe.
Such vectors
1 S are -knov"Vn in the art, are commercially available, and may be used to
synthesize RNA
probes in v-itro by addition of an appropriate RNA polymerise such as T7, T3,
or SP6
and labeled nucleotides. These procedures may be conducted using a variety of
commercially available kits. Suitable reporter molecules or labels, which may
be used
-include radionuclides,-enzymes, fluorescent, chemiluminescent, or.chromQgenic
agents
as well as substrates, .cofactors, inhibitors, riiagnetic particles, and the
like.
Host cells transformed with a polynucleotide sequence of interest may be
cultured -under- conditions suitable for the expression and recovery of he
protein from
cell culture. The protein.produced by a recombinant .cell may be secreted ,or
contained
iritracellularly depending on the sequence and/or the vector used. As will be
understood
by those of skill in the art, expression vectors containing polynucleotides of
the
invention may .be designed to contain signal sequences which direct secretion
of the
encoded ,polypeptide hrough .a prokaryotic or eukaryotic cell membrane. Other
recombinant constructions may be used to join sequences encoding a polypeptide
of
interest to nucleotide sequence encoding a polypeptide domain which will
facilitate
purification of soluble proteins. Such purification facilitating domains
include, but are


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
72
not limited to, metal chelatirig peptides such as histidine-tryptophan modules
that allow
purification on immobilized metals, protein A .domains that allow purification
on
immobilized iinrnunoglabulin, and the.domain-utilized in the FLAGS
extension/affinity
purification- system (Irrimuriex Corp., Seattle, Wash.). The inclusion of
cleavable linker
sequences such as those specific for Factor XA or enterokinase (Invitrogen.
San-Diego,
~Calif.) between the purification dorriain and the encoded. polyp~ptide maybe
used- to
facilitate purification. One such expression vector provides for expression of
.a fusion
protein containing a polypeptide of interest and a nucleic acid encoding 6
histidine
residues preceding a thioredoxin or an.enterakirlase cleavage site. The
histidine residues
facilitate purification on IMIAC (immobili2ed xnelal ion affinity
chromatography) as
described in ~porath, J.-,et al. (19.92, Pt~ot. Exp. Purif. 3:263-281) while
the enterokinase
cleavage site provides a rilearis for purifying the desirey polypeptide from
the fusion
protein. A discussion of vectors which contain fusion proteins is provided in
Kroll, D. J.
et al. (1993; DNA Cell Biol. 12:441-453).
~In addition to .recoinbinarlt production methods, polypept~des of the
invention, and fragments thereof, may be produced by direct peptide synthesis
using
solid-phase techniques (Merrifield J. (1963) J. Am. Cheirt. Soe. 85:2149-
2154). Protein
synthesis may be performed using manual techniques or by automation. Automated
synthesis -may be achieved, for example, -using Applied Biosysterris 431A
Peptide
Synthesizer (Perl~iri Elmer). Alternatively, various fragments may be
chemically
synthesized separately and combined using chemical methods .to produce the
full length
molecule.
Antibody Compositions, Fragrrients Thereof.and Other Binding Agents
According to another aspect, the present invention further provides.
binding agents, such as antibodies and antigen-binding fragments thereof,
.that .exhibit
immunological .binding to a tumor polypeptide disclosed herein, or to a
portion, variant
-,or derivative thereof. An antibody, or antigen-binding fragment thereof, is
said to
"specifically bind," "iminunogically bind," and/or is "inununologically
reactive" to .a
polypeptide of the invention if it reacts at a detectable level (within, for
example, an


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
73
ELISA assay) with the polypeptide; and does not react detestably with
unrelated
polypeptides~ under similar:conditions.
Immunological binding, as used in this. context, generally refers to the
non-covalent interactions of the -type which occur between an immunoglobulin
molecule and an antigen for which the immunoglobulin is specific. The
strength, or
affinity .of immuiiologica~ binding interactions can be expressed iri terms of
the
dissociation constant (Kd) of the interaction; wherein a smaller Kd represents
a greater
affinity. Immunological biridir~g properties of selected: polypeptides can be
quantified
using methods well known in the- art. One such rnetliod entails measuring the
rates of
1,0 antigen-binding site/ai~tigen complex formation and dissociation,
v'vherein those rates
depend on the conceritrations of the complex partners, the aff nity of the
interaction, and
on geometric parameters that equally influence the rate in both directions.
Thus, both
the "on rate constant" (Kon) and the "off rate constant" (Ko~.) can be
determined by
calculation of tl~e concentrations and the actual rates of association and
dissociation.
The ratio of Ko~. /I~o" enables cancellation of .all parameters not related to
affinity, and is
thus equal to the dissociation constant Ka. See, generally, Davies .et.al.
(1990) Animal
Rev. Biochem. 59:439-473.
An "antigen-binding site," or "binding portion" of an antibody refers to
the part of the immnnoglobulin molecule that participates irx antigen binding.
The
antigen binding site is formed by amino acid residues .of the N~terminal
variable ("V")
regions of the heavy ("H") :and light ("L") chains. Three highly divergent
stretches
within the V regions of the heavy and light chains are xeferred to as;
"hypervariable
regions" which are interposed between more conserved flanking stretches known
as
GG 77 GG 77 GG 77
framework regions, or FRs . Thus the term FR refers to amino acid sequences
which are naturally found between and adjacent to hypervariable regions in
irilmunoglobulins. In an antibody molecule, the three hypervariable regions of
a light
chain and the three hypervaxiable regions of a heavy chain are disposed
relative to each
other in three dimensional space to form an antigen-binding surface. The
antigen-
binding surface is complementary to the three-dimensional surface of a bound
antigen,


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
74
arid the three hypervariable regions of each of the heavy and light chains are
referred to
as "compleiilentarity-determining regions," or "-CDRs."
Binding agents inay be further capable of differentiating. between
patierits with and without a cancer, such as lung cancer, using the
representative assays
5provided herein. For example, antibodies or other binding agents that bind to
a tumor
protein will preferably generate ,~ signal indicating the presence .of a
cancer in at least
about 20% of patient with- the disease, more preferably at least about 30% of
patients.
Alternatively, or in addition, the antibody will generate a negative signal
indicating the
absence of the _disease iri at least about 90°/d of individuals without
the cancer. To
determine whethe'r_ a binding agent satisfies this requtirement, biological
samples (e.g.,
blood, sera; sputurii, urine and/or tumor biopsies) from patients with arid
without a
cancer-(as deteriiiined using staxzdard clinical tests) may be assayed as
described herein
for the presence of polypeptides that bind to the bindirig agent. Preferably,
a
statistically significant number of samples with and without the disease will
be assayed.
Each binding agent should satisfy .the above criteria; however, those of
ordinary skill in
the art will recognize that :bimding agents may be used in corribination to
improve
sensitivity.
Any agent that satisfies the above requirements rnay be a binding agent.
For -example, .a binding agent ~rrray be a ribosome, with or without a peptide
component,
a,n -RNA molecule or' a polypeptide. In a preferred embodiment; .a binding
agent is ail
antibody or an antigen-binding -fragirient thereof. Antibodies may be prepared
by any of
a variety of techniques known to those of-ordinary skill in the art. See, e.g"
Harlow and
Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In
general, antibodies .can be produced by cell culture techniques, including the
generation
of monoclonal antibodies as described herein, or via transfection of antibody
genes into
suitable bacterial or mammalian cell hosts, in order to allow for the -
production of
recorribinant antibodies. In one technique, an immunogen.comprising.the
polypeptide is
initially injected into any of a wide variety of mammals (e.g., mice, rats,
rabbits, sheep
or .goats). In this step, the polypeptides of this invention may serve as the
immunogen
without modification. Alternatively, particularly for relatively short
polypeptides, 'a


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
superior immune response may be elicited if -the polypeptide is joined to a
carrier
protein, such as bovine serum albumin or keyhole limpet hemocyanin. The
immunogen
is injected into the animal host, preferably according to a predetermined
schedule
incorp.or~ting one or-more booster immunizations, and the ariirilals are bled
periodically.
5 Polyclonal antibodies specific for the polyp-eptide may then b~ .purified
from such
antisera by, for example, affinity chromatography using the polypeptide
coupled to a
suitable solid support.
Monoclonal antibodies specific for an antigenic polypeptide of interest
may be prepared., for example, using the technique of Kohler and Milstein,
Eur. .I.
10 Immu~ol. 6:511-519, 1976, -and improvements thereto. Briefly, these methods
involve
the preparation of immortal .cell lines capable of -producing antibodies
having the
desired specificity (i.e., reactivity with the polypeptide of interest). Such
cell lines may
be produced, for example, from spleen cells obtained from an animal immunized
as
described above. The spleen-cells are then immortalized by, for example,
fusion with a
15 myeloma cell fusion -partner, -preferably one that is syngeneic with the
immunized
animal. A variety of fixsiorr techniques maybe employed. For example, the
spleen cells
and myeloriza cells may be combined with a nonionic detergent for a few
minutes and
then plated at low density on a selective medium. that supports the growth of
hybrid
cells, but vot :rnyelorria- cells. A preferred selection technique uses I-lAT
(Iiypoxantliine,
20 aminopterin, thymidirie) selection. After a sufficient time, usually about
1 to 2 weeks,
colonies of 'hybrids are observed. Single colonies are selected and their
culture
supernatants tested for binding activity against the polypeptide. Hybridomas
having
high reactivity and specificity are preferred.
Monoclonal antibodies maybe isolated frorri the supernatants of growing
25 hybridoma colonies. In addition, various techniques may be employed to
enhance the
yield, such .as injection of the hybridoma.cell line into the peritoneal
cavity of a suitable
vertebrate host, such as a mouse. Monoclonal antibodies may .then be harvested
from
the ascites fluid or the blood. Contaminants -may be removed from the
antibodies by
conventional techniques, such as chromatography, gel filtration,
precipitation, and


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
76
extraction. The polypeptzdes of this invention may be used in the purification
process
in, for example, an affinity chromatography step.
A number of therapeutically useful molecules are known in the art which
comprise antigen-binding sites that are capable of exhibiting immunological
binding
S properties of an antibody molecule. The ~proteolytic enzyme papain
preferentially
cleaves IgG rizoleeules to yield several fragments; two of which (the "F(ob)"
fragrrynts)
each comprise a covalent heterodiiner that includes an .intact antigen-binding
site. The
enzyme pepsin is able' to cleave IgG molecules to provide several fragments,
including
the ".F(ali')z " fragment which comprises both antigen-binding sites. An "Fv"
fragment
can be produced by preferential. protcolytic .cleavage of an IgIVI; and on
rare occasions
IgG or IgA immunnglobulin molecule. Fv fragments are, however, more commonly
derived using recombinant techniques known in the art. The Fv fragment
includes a
non-covalent VH::V,, =heterodimer iricludin~ an antigen-binding site which
retrains much
of the antigen recognition and binding capabilities ~of the native antibody
molecule.
mbar et al. (1972) Proc. Nat. Acad. Sci. USA 69:2659-2662; Hochman et aI.
(1976)
Biochem 15:2706-271D;.atld Ehrlich et al.-(I980) ~iochem 19:4091-4096.
A single chain Fv ("sFv") polypeptide is a -covalently linked VH::VL
heterodimer which is expressed from a gene fusion including VH and VL-encoding
genes linked by a peptide-encoding linker. Huston -.et ~1. (1988) Proc. Nat.
Acad: S,ci.
USA 85(16):5879-588.3. A number of methods have been described to-discern
chemical
structures for converting iie naturally .aggregated--but chemically separated--
light and
heavy polypeptide chains from an antibody V region into an sF'v molecule which
will
fold into a three dimensional structure substantially similar to the structure
of an
antigen-binding site. See, e.g., U.S. Pat. Nos. 5,091,513 and 5,132,405, to
Hustorl et al.;
and U.S. Pat. No. 4;946,778, to Ladner et al.
Each of the .above-described molecules includes a .heavy chain and a
light chain CDR set, respectively interposed between a heavy chain and a light
chain FR
set which provide support -to the CDRS and define the spatial relationship of
the CDRs
relative to each other. As used .Herein, the :term "CDR set" refers to the
three
hypervariable regions of a heavy or light chain V region. Proceeding from the
N-


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
77
terminus of a heavy or light chain, ahese regions are denoted as "CDRl,"
"CDR2," and
"CDR3" respectively. An antigen-binding site, therefore, includes six CDRs,
comprising the CDR set frorri each .of a heavy arid a light chain V region. A
polypeptide
comprising a single CDR, (.e.g., a CDR1, CDR2 or CDR3) is referred to herein
as a
"molecular recognition unit." Crystallographic analysis of a number of antigen-
antibody
couiplexes has demonstrated that the amino acid residues of ~CDRs form
extensive
contact with bound antigen, wherein the most .ex'terrsive antigen contact is
with the
heavy chain CDR3. Thus, the molecular recognition units are .primarily
responsible for
the specificity of an antigen=biiic~ing site.
~s usedrhe~ein, the term "FR set" refers -to the four flanking amino acid
sequences which frame the CDRs .of a CDR set of a heavy or light .chain V
region.
Some FR residues inay eonlact b.otind antigen; however, FRs are .prirriarily
responsible
for folding- the V region into the antigen-binding site, particularly the FR
residues
dixectly adjacent to the-CDRS. Within ~'Rs, certain amigo residues arid
certain structural
1 ~ featu'res are very highly conserved. In this reg~.rd, all V region
sequences contain an
internal disulfide loop of around 90 amino acid residues. When the V regions
fold into a
binding-site, the CDRs are displayed as projecting loop motifs which form an
antigen-
-binding surface. It is generally recognized that there are conserved
structural regions of
FRs which influence the folded shape of the CDR loops. into certain
"canonical"
structures--regardless of the precise CDR amino acid sequence. Further,
certain FR
residues are known to participate in non-covalent iriterdomain contacts which
stabilize
the interaction of the antibody heavy and light chains.
A number of "humanized" antibody molecules comprising an antigen-
binding site derived from:a rion-human immunoglobulin have been described,
including
chimeric antibodies having -rodent V =regions and their associated CDRs fused
to human
constant domains (Winter et al, (1991) Nature 349:293-299; Lobuglio. et al.
(1989)
Proc. Nat. Acad. Sci. US-A 86:4220=4224; Shaw et al. (1987) J Iminunol.
138:4534-
4538; and Brown et al. (1987).:Cancer Res. 47:3577-35,83), .rodent CDRs
grafted into a
human supporting FR prior to fusion with ari appropriate ,human antibody
constant
domain (Riechmann et al. (1988). Nature 332:323-327; Verhoeyen et al. (1988)
Science
WO 01/72295 PCT/USO1/09991


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
78
239:1534-1536; and JorieS et al. (1980 Nature 321:522-525}; and rodent CDRs
supported by recoinbinantly veneered .rodent FRs (European Patent Publication
No.
519,596, published Dec. 23, 1992). These "humanized" molecules are designed
.to
minimize unwanted -immuriological response toward rodent antihuman antibody
rriolecules which limits the duration and effectiveness of therapeutic
applications of
those moieties in Human recipients.
As used herein, the terms "veneered FRs" and "recombiriantly veneered
FRs" refer to the selective replacement of FR residues from, e.g., a rodent
heavy or light
chain V =region, with human FR residues in .order to provide a xenogeneic
molecule
~coinprising an antigen-binding site which retains substantially all of 'the
native FR
polypeptide folding structure. Veneering techniques are based on the
understanding that
the ligand Binding characteristics of an antigen-binding site ale determined
primarily by
the structure and relative disposition of the heavy and light chain CDR sets
within the
antigen-binding surface. Davies ,et al. (1990) Ann. -Rev. Biochem. 59:439-473.
Thus,
antigen binding specificity can be preserved in a =humanized antibody only
wherein the
:CDR. structures, their interaction with each other, and their interaction
with the rest of
the V region dcimains are carefully maintained. ry using veneering techniques,
exterior
(e.g:, solvent-accessible) FR residues which are -readily erlcauritered by the
immure
systerri are selectively replaced with human residues ~to provide a hybrid
molecule that
comprises either a weakly irnmunogenic, or substantially non-immunogenic
veneered
surface.
The process of veneering makes use of the available sequence data for
human antibody variable domains compiled by-Kabat et al., in Sequences of
Proteins of
Immunological Interest, 4th :ed., (U:S. Dept. :of Health and Human Services,
U:S.
Government Printing Office, 1987), updates to the .Kabat database, and other
accessible
U.S. .arid foreign databases (both nucleic acid and protein). Solvent
accessibilities of V
-region amino acids can be deduced from the known three-dirriensional
structure for
human and -marine antibody -fragments. There are two general steps in
veneering a
marine antigen-binding site. Initially, the FRs .of the variable .domains of
an antibody
molecule of interest are compared with corresponding FR sequences of human
variable


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
79
domains obtained from the above-identified sources. The most homologous human
V
regions are then compared residue by residue to corresponding marine amino
acids. The
residues in the marine FR which differ from the human counterpart are replaced
by the
residues present in the human moiety using recombinant techniques well- known
in the
art. Residue switching is only carried out with moieties which are at least
partially
exposed (solvent accessible), and- care is exercised in the replacement of
amino acid
residues which may have a sigiiif cant effect on the tertiary structure of V
region
domains; such as proline, glycine and charged amino acids.
In tliis.manner, the resultant "veneered" inurine antigen-binding sites are
10- thus designed-to retain the marine CDR residues, the residues.
substantially adjacent to
the .CDRs, the residues identified as buried or .mostly buried (solvent
inaccessible), the
residues believed to participate in riori-co~alerit (e.g., electrostatic arid-
hydrophobic)
contacts between heavy and light chain domains, and the residues from
conserved
struetura~ regions .of the FRs which are believedl tp influence the
"canonical" tertiary
structures. of the CAR loops. These design criteria are then used to prepare
recombinant
nucleotide sequences which combine the CD,Rs .of both .the heavy and light
chain of a
marine antigen-binding site into human-appearing FRs that can be used to
transfect
rriammalian cells fox the expression of recombinant human antibodies which
exhibit the
antigen' specificity-of the marine antibody molecule.
In another embodiment o~ the invention, rrionoclonal antibodies of the
present invention rnay be coupled to one or more therapeutic agents. Suitable
agents in
this regard include -radioriuclides, differentiation induceirs, drugs, toxins,
and derivatives
thereof. Preferred radioriuclides include 9°Y, 123I~ ~zsh ~s~h ~ssRe~
~saRe~ zl'At, and z'zBi.
Preferred .drugs include methotreXate, and pyriinidin~ and puiine analogs.
Prefei~ed
differentiation inducers include phorbol esters and -butyric acid. Preferred
toxins
include ricin, abrin, diptheria- toxin, cholera toxin, gelonin, Pseudomonas
eXOtoxin,
Shigella toxin, and pokeweed antiviral protein.
A therapeutic agent may be coupled (e.g., covalently bonded) to a
suitable monoclonal antibody either directly or indirectly (e.g , via a linker
group). A
direct reaction between an .agent and an antibody is possible when .each
possesses a


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
substituent capable of reacting with the other. For example; a nncleophilic
group, such
as an ari~ino or sulfhydryl group, on one inay be capable of reacting with a
carbonyl-
containing group; sueli as an anhydride ox an acid halide, or -with ari alkyl
group
containing a good leaving group (e.g., .a halide) on the other.
5 Alternatively, it may be desirable to couple a therapeutic agent and an
antibody via a linker group: A linker group can function ~s a spacer to
distance an.
antibody from ail agent in order to avoid interference witl~~ binding
capabilities. A
linker group can also serve to increase the chemical reactivity of a
substituent on an
agent or an antibody, arid thus increase the coupling efficiency. An increase
in
10 chemical reactivity may also facilitate the use of agents, -or functional
groups on ,agents,
which otherwise would not be possible.
It will be evident to those skilled in the art that a variety of bifunctional
or polyfunctional reagents, both homa- and hetero-functional (such as those
described
in the catalog of the Pierce :Chemical Co., Rockford; IL), may 'be employed as
the linker
15 group. Coupling may be effected, for example, through amino .groups,
carboxyl groups,
~sulthydryl groups or oxidized carbohydrate residues. There are numerous
references
describing such-methodology, e.g., U.S. Patent No. 4;671,958, to Rodwell et
al.
Where a therapeutic .agent is more potent when free from the antibody
~oilion of the imtriuuoconjugates ofahe present invention, it -may be
desirable to use a
20 linker group which is cleavable..during or upon internalization into a
.cell. A number of
different cleavable .linker groups have been described. The mechanisms for the
intracellular release of an agent from these linker groups include cleavage by
reduc'tiori
of a disulfide bond (e.g., U:S. Patent No. 4,489;710, to Spitler), =by
irradiation of a
pho'tolabile bond (e.g., U.S. Patent No. 4,625,014, .to Senter et al.), by
hydrolysis of
25 derivatized..amino acid side chains -(e.g., U:S. ,Patent No. 4,638,045, to
.Kohn et al.), by
serum complement-mediated hydrolysis (e.g., U.S. Patent No. 4,671,958, to
Rodwell
et al.), aild acid-catalyzed hydrolysis (e.g., U.S. Patent No. 4,569,789, to
Blattler et al.).
It may 'be desirable to couple more than one agent to an antibody. In one
embodiment, multiple -molecules of an agent are coupled to .one antibody
molecule. In
30 another embodiment, more than -one type .of .agent may be coupled to one
antibody.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
81
Regardless of-the particular embodiment, immunaconjugates with :more than one
agent
may be .prepared in a variety of ways. For example, more than one agent may be
coupled directly to an antibody molecule; or linkers that provide multiple
sites for
attachmentcan be used. Alternatively, a carrier can be used.
S A carrier may Bear the agents in a variety of Ways, including covalent
bonding ;either directly or via ~ linker group. Suitable .carriers include
:proteins such as
alburriins {e.g:, U.S. Patent No. 4,50'7,234, to Nato et al.), peptides and
polysaccharides
such as aminadextran (e.g., U.S. Patent No. 4,699,784, .to Shih et al.). A
carrier may
also bear ari agent by noncov~lent bonding or -by encapsulation, such as
within a
liposome vesicle (e.g., U.S. Patent Nos. 4,429;008 and 4,8?3,08$). Carriers
specific for
radionuclide agents include radiohalogenated small molecules. and chelating
compounds. For example, U.S. Patent No. 4;735,792 discloses representative
radiohalogenated small molecules and their synthesis. A radionuclide chelate
may be
formed from chelating compounds that include those containing nitrogen and
sulfur
atoms as the donor atoms for binding the metal, or metal oxide, radian~clide.
For
example, U.S. Patent No. 4,673,562, to Davison et al. discloses representative
chelating
compounds and their synthesis.
T=Cell.Compositions
The present invention, in another aspect, provides T cells specific for a
tumor polypeptide disclosed herein, or for a variant or derivative thereof.
Such cells
may .generally be prepared i~ vitro or ex vavo, using standard procedures. For
example,
T cells may be isolated from bone marrow, peripheral blood, or a fraction of
bone
marrow or peripheral blood of a patient, using a commercially available cell
separation
system, such as the IsolexTM System, available from Nexell Therapeutics, Inc.
(Irvine,
°CA; see also U.S. Patent No. 5,240,856; U.S. Patent No. 5,215,926; WO
89/06280; WO
91/161.16 and WO 92/07243). Alternatively, T cells may be derived from related
or
unrelated h~nians, non-human mammals, cell lines or cultures.
T cells may be stimulated with a polypeptide, polynucleotide encoding a
-polypeptide and/or an antigen presenting cell (APC) that expresses such a
polypeptide.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
82
Such stimulation is performed under conditions and for a time sufficient to
permit the
generation of T cells that are specific for the polypeptide of interest.
Preferably, a
tumor polypeptide or polynucleotide of the invention is -present within a
delivery
vehicle, such as a microsphere, to facilitate the generation of specif c T
cells.
T cells are considefed to be specific for a polypeptide :.of the present
invention if the T cells specifically .proliferate, secrete cytokines or kill
target cells
eoa'ted with. -.the .polypeptide or expressing a gene encoding the
polypeptide. T cell
specificity xnay be evaluated using any of a variety of standard techniques.
For
example, witlii~ a chromium release assay :or proliferation assay, a
stimulation index of
more than two fold increase in lysis and/or proliferation, compared to
.negative controls,
indicates T cell specificity. Such assays uiay lie performed, for exatriple,
as described in
Chen et al., -Cancer Res. 5~:10~5-1070; 1994. Alternatively, detection .of the
proliferation of T cells may be accomplished by a variety of known techniques.
For
example, T .cell proliferation can be detected by measuring an increased rate
of DNA
synthesis (e.g., by pulse-labeling cultures of T cells with tritiated
thymidine and
measuring. the amount of tritiated thymidine incorporated into DNA). Contact
with a
tumor-polypeptide (100 ng/ml - 100 ~g/ml; preferably 200 ng/rril - 25 ~g/ml)
for 3 - 7
days will typically result in at least a two fold increase in proliferation of
the T cells.
Contact as described above for 2-3 hours should result in activation of the T
cells, as
measured using standard cytokine assays in which a two fold increase in the
level of
cytokine release (e.g., TNF or IFN-y) is indicative of T cell activation (see
.Coligan et
al., Current Protocols in Immunology, vol. l, Wiley Interscience (Greene
1998)). T
ceps that have been activated in. response to a tumor polypeptide,
polynucleotide or
polypeptide-expressing APC rilay -be CD4* and/or CLl8~. Tumor polypeptide-
specific T
cells may be expanded using standard techniques. Within-preferred embodiments,
the T
cells are derived from a patient; a related donor or an unrelated donor, and
are
administered to the patient following stimulation arid expansion.
For therapeutic purposes, CD4+ or CD8+ T cells that proliferate in
response to a -tumor polypeptide, polynucleotide or APC can -be .expanded in
number
either in vita°o or iya vivo. Proliferation of such T cells in vitro
may be accomplished in a


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
83
variety of ways. For=example, the T cells can be re exposed. to a tumor
polypeptide, .or
a short peptide corresponding to an immunogenic portion of sueh.a polypeptide,
with or
vi~ithout- the addition of T cell growth factors, such as interleukin-2,
and/or ~stirriulator
cells hat synthesize a tumor polypeptide. Alternatively, one or more T cells
that
proliferate in the presence of the tumor polypeptide .can be expanded in
number by
cloning. Methods for cloning cells are well known in the art, and include
limiting
dilution.
Pharmaceutical Compositions
In additional .einbodimients; the present iriventiori. concerns forrriulatiorl
of one or more of the polynucleotide, polypeptide, T-cell and/or antibody
compositions
disclosed herein in. pliarinaceutically-aeceptabHe cairiers far administration
to a cell or
an animal, either alone, or in combination.witli ane or more other
ri~odalities of'therapy.
It will be understood that, if desired, a composition as disclosed herein
may be administered in combination with other agents as well, such as, e.g.,
other
proteins or polypeptides -or various pharmaceutically-active agents. In fact,
there is
virtually no limit to other components that may also be included, given that
the
additional agents do not cause.a significant ~clverse effect upon contact with
the -taxget
cells or host tissues. The compositions may thus be delivered along with
various other
agents as required iri the particular instance. Such compositions may be
purified from
host cells or other .biological sources, or alternatively may be .chemically
synthesized as
described herein. Likewise, such compositions may filrther comprise
substituted or
derivatized RIVA or DNA compositions.
Therefore, 'in another aspect of the present invention, -pharmaceutical
compositions are provided cpmprising one nr more of the polyiucleotide,
polypeptide;
antibody, and/or T-cell compositions described herein .in combination with .a
physiologically acceptable carrier. In certain preferred embodiments, the
pharmaceutical compositions of the invention comprise immunogenic
polynucleotide
and/or polypeptide compositions of the invention for use in prophylactic and
theraputic
vaccine applications. Vaccine preparation is generally described in, for
example, M.F.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
84
Powell and M.J. Newman,, eds., "Vaccine Design (the subunit ~d adj.uvarit
approach},"
Plenum Press (NY, 19:95). Generally, such compositions will comprise one or
more
polynucleotide and/or polypeptide compositions of the present invention in
combination
with one or .more immunostirnulants.
It will be apparent that any of the pharmaceutical compositions described,
herein .can contain pharmaceutically acceptable salts of the polyriucleotides
and
palypeptides of the invention. Such alts can _be prepared, for ~exarriple,
from
pharmaceutically acceptable -non-toxic -bases, including organic base"s (e.g.,
salts of
primary, secondary aid tertiary amines end basic amino acids) and inorganic
bases
(e.g., sodium, potassium, lithium, arilmonium, calcium arid magnesium salts).
Iri another- eriibodiriient, illustrative iriiintuiogeriic compositions, e.g.,
vaccine .compositions, of the present invention corriprise DNA encoding one or
more of
the polypeptides as olescribcd above, such that the°polypeptide is
generated ih situ. As
noted above, .the polynucleoti~le -may be administered within any of a variety
of delivery
systems-known to those of ordinary.skill in the art. Indeed, numerous gene
delivery
techniques are well -known in the art, such as those described by Rolland,
Cr°it. Rev.
Ther°~zp. Drug Cat°rier Systems 15:143-198, 1998, and references
cited therein.
Appropriate polyriucleotide expression systems will; of course, contsin the
necessary
regulatory DNA regulatory sequences: for ,expression in a. patient (such as a
suitable
proino'ter and terminating signal)'. Alternatively, bacterial delivery
syster~is may involve
the administration of.a bacterium (such as Bacillus-Calniette-Guerrih) that
expresses an
immunogenic portion of the rpolypeptide on its cell surface or secretes such
an epitope.
Therefore, in certain embodiments, polynucleotides encoding
imrnunogenic polypeptides described herein are introduced into suitable
mammalian
~5 host cells for expression using any of a number of knov~m viral-'based
systems. In one
illustrative embodiment, retroviruses provide a convenient and effective
platform for
gene .delivery systems. A selected nucleotide sequence encoding a polypeptide
of the
present invention can be inserted into a vector and packaged in retroviral
particles using
techniques -known in the art. The recombiriant virus earl then be isolated and
delivered
to a subject. A number of illustrative retroviral systems have been described
(e.g:, U.S.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
Pat. No. 5,219;740; Miller.arid Rosman.(1989) BioTechniques 7:980-99'0;
Miller, A. D.
(199.0) Human Gene Therapy 1:5-14; Scarpa.et al. (1991) Virology 180:849-852;
Burns
et al. (j993) Proc. Natl. Acad. Sci. USA 90:8033-8037; and Boris-Lawrie and
Temin
(1993) Cur. Opin. Genet. Develop. 3:102-109.
S In addition, a nurriber of.illustrative adenovirus-based systems have also
been described. Unlike' retroviruses vc~f~ich integrate into the host genoW e,
adenoviruses
persist extrachromosornally thus -rriinimizirig the risks associated pith
insertional
mutagenesis (Haj-Ahtnad arid Graham (1986) J. Virol. 57:267-274; Bett et al.
(1993) J.
Virol. 67:5911-S92I; Mittereder et al: .(1994) human Gene Therapy 5:717-729;
Seth et
10 ~1~. (1994).3. Virol. 68:933-940; Barn et al. (1994). Gene Therapy 1:51-S8;
Berkn~r, K. L.
(1988) BioTechniques 6:616=629; arid Rich .et al. (1993) Human gene Therapy
4:461-
476).
Various adeno-associated virus (AAV) vector systems have also been
developed far polynucleotide ;delivery. AAV vectors can be readily constructed
using
1S techniques well known in the art. See, e.g., U.S. Pat. Nos. 5,173,414 and
5,139,941;
International publication NQs. WO 92/01070 .and Vd0 93/03769; Lebkowski et al.
(1988) Molec. Cell. Blot. 8.:3988-3996; Vincent et al. (1'990) Vaccines 90
(Cold Spring
Harbor Laboratory~Press); Carter,:B. J. (1992) Current Opinion in
Biotechnology 3533-
539; IVIuzyczka, N. (1992) Current Topics in- lVIicrobio~. and Irrimunol.
158:97-129;
20 Ko'tin, R. lVt. (1994) Human Gene Therapy 5:793-801; Shelling arid Smith
(1994) Gene
Therapy 1:165-169; and Zhou et al. (1994) J. Exp. Med. 179:1867-1875.
Additional viral vectors useful for delivering the polynucleotides
encoding polypeptides of the present invention by gene transfer include those
derived
from the pox family of viruses, such as vaccini~ virus and ;avian poxvirus. By
way of
2S example, vaceinia virus recombinants expressing the novel molecules can be
constructed as follows. The DNA encoding a polypeptide is first inserted into
an
appropriate vector so that it is adjacent to a vaccinia promoter arid flanking
vaccinia
DNA sequences, such as the sequence encoding thymidine kinase (TK). This
vector is
then used to transfect cells which are simultaneously infected with vaccinia.
30 -Homologous recombination serves to insert the vaccinia promoter plus the
gene


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
86
encoding the polypeptide of interest into the viral genome. The resulting
TK(-}
recombinant can be selected by culturing the cells in the presence of 5-
broinodeoxyuridine acid picking viral plaques resistant thereto.
A vaccinia-based infection/transfection system can be conveniently used
to provide for inducible, .transient expression or -coexpression of one or
more
polypeptides -.described herein in host cells of an organism. Iri this
particular system
cells are first infected in vitro with. a vaccinia virus recombinant that
encodes the
bacteriophage T7 RNA polymexase. This polymerase displays exquisite
specificity in
that it only .transcribes templates bearing T7 promoters, Following infection,
cells are
transfected with the polynucleotide or polynucleotides of interest, driven by
.a T7
promoter. The polymerase expressed in -the cytoplasm from the vaccinia virus
recoW binant transcribes the transfected DNA into RNA which is then translated
into
polypeptide by the =host translational machinery. The method provides for high
level,
transient, ~cytoplasmic production of large quantities of RNA and its
translation
products. See, e.g., Elroy-Stein and Moss, Prcic. Natl. Acad. Sci. USA (1990)
87:6743-
6747; Fuerst:et al. Proc. Natl. Acad. Sci. USA .(1986) 83:8122-8126.
Alternatively, avipoxviruses, such as the fowlpox and canarypox viruses,
can also be used to deliver the coding sequences of interest. Rec,ombinarlt
avipox
viruses, .expressing imriW noggins from mammalian pathogens, are known- to
confer
-protective immunity when administered to non-avian species. The use of arl
Avipox
vector is particularly desirable in human and other mammalian species since
members
of the Avipox genus can only productively replicate in susceptible avian
species and
therefore are not infective in mammalian- cells. Methods -for produciyg
recombinant
Avipoxviruses are known in the art and employ genetic recombination, as
described
above with respect to the production .of vaccinia viruses. See, e.g., WO
91/I2882; yVO
89/03429; .and WO 92/03545.
Any of a number of alphavirus vectors can also be used for delivery of
polynucleotide compositions of the present invention, such as those vectors
described in
U.S. Patent Nas. 5,843,723; 6,015,686; .6,008,035 and 6,015,694. Certain
vectors based


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
87
on Venezuelan Equine -Encephalitis .(VEE) can also be used, illustrative
examples of
which can be found in U.S. Patent Nos: 5,505,947.and 5;643,576.
Moreover, rriolecular conjugate vectors, such as the adenovirus chimeric
vectors described in Michael et al. J. Biol. chem. (1993) 268:6866-68,69 and
Wager et
S al. Proc. Natl. Acad. Sci. USA (1992) 89:6099=6103, can also be used for
gene delivery
under the invention.
Additional illustrative information ari these and .other known viral-based
deliveiy systems can ~be found, for example, in Fisher=Hoch et aL, P~oc. Natl.
Acad Sci.
USA 86:317-321, 1989; Fle~ner et al., Ann. N.Y Acad: Sci. 569:86-103, 1989;
Flexner
et al., Yaccisie 8:17-21, 1990; U.S. .Patent Nos. 46Ø3,112, 4,769,330, and
5,017,487;
WO 89/01973; US.~P;aleritNo, 4,777,127; GB 2,200;651;~EP 0;345,24; WO
91/02805;
Berkrier, Biotecl~niques6:61'6-627, 1988.; Rosenfeld et al., Science 252:431-
434, 199'1;
Kolls et al., P~oc. Natl. Acad. Sci, LISA 91:21 S-219, 1994; Kass-Eisler et
aL, Proc. Natl.
v Acad. Sci. USA 90: 51498-11502, 1993; Guzman et al., Circulation 88:2838-
2848, 1993;
and Guziiian et al., C'ir. Res. 73:1202-1207, 1993.
In certain embodiments, a polynucleotide may be integrated into the
ge'nome of a target. cell. This integration may be in the specific location
and orientation
via homologous recombination (gene replacement) omit rnayvbe integrated in a
random,
non-specif c location (gent augmentation). In yet further embodiments, the
polynucleotide may ~be stably maintained in the cell as a separate, ~pisomal
segment of
DNA. Such polynucleotide segments or "episomes" encode sequences sufficient to
permit maintenance and replication independent of or iri synchronization with
the host
cell cycle. The manner in which the expression construct is delivered to a
:cell and
where in the cell the polynucleotide remains. -is dependent .on ahe type of
expression
2S construct employed.
In another embodiment of the invention, a polynucleotide is
administered/delivered as "naked" DNA, for example as :described in Ulmer et
al.,
Science 259:1745-1749, 1993 .and reviewed by Cohen, Science 259:1691-1692,
1993.
The uptake of naked DNA may be increased by .coating the DNA onto
.biodegradable
beads, which are efficiently transported into the cells.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
88
In still another ernbodirnent, a composition of the -present invention can
be delivered via a particle bombardment approach, yang of which have been
described.
In one illustrative example, gas=driven particle acceleration can. be achieved
with
.devices such as those -manufactured by Powderject PhaxmaceuticaIs PLC -
(Oxford; UI~)
and Powderject Vaccines Inc.-(Madison, VVI), some-examples of which are
described in
U.S. Patent Nos. 5,846,796; 6;010,478; 5;65,'796; 5,584,80f; ayi EP Patent No.
0500
799.. This approach offers a needle-free delivery approach wherein a dry
powder
formulatiot? of rriicroscopic particles, such as polyriucleotide or
polypeptide particles,
are accelerated to high speed within a helium gas jet generated by a hand held
device,
propelling the particles into a target tissue of interest.
In a related eiribodiment, other devices and. rrret~ods that .may be useful
for ,gas-driven needle-less 'injection of compositions. of alie present
invention include
those provided by Bioject, Inc. (Portland, OIL), some examples of which are
described
in U:S. Patent Nos. 4,790;824; 5064,413; 5,312,335; 5,383,851; 5,399,163;
S,S20,639
and 5;993,412.
According to another embodiment, the pharmaceutical .compositions
described herein will .comprise one or more irnmunostimulants in addition to
the
immunogenic polynucleotide, polypeptide, antibody, T-cell and/or APC -
compositions
of this invention. An immunostimulant refers to essentially any substance that
enhances
or potentiates an immune response (aiitiliody and/or cell-mediated) to an
exogenous
antigen. One preferred type of immunostirnulant comprises an adjuvant. Many
adjuvants contain a substance designed to p,'rotect the antigen .from rapid
catabolism,
such as aluminum hydroxide or mineral oil, and a stimulator~of immune
responses, such
as lipid A, Bortadella pe~tiessis or Mycobacterium tuberculosis derived
proteins.
2S Cerkain adjuvants are commercially available as, for ex,~.mple, Freurid's
Incomplete
Adjuvant and Complete Adjuvant -(Difco Laboratories, Detroit, MI); Merck
Adjuvant
65 (Merck and Company, Inc<, Rahway, NJ); AS-2 (SmithKline Beecham,
Philadelphia,
PA); aluminum salts such as alurtiinuni hydroxide gel (alum) or aluminum
phosphate;
salts of calcium, iron or zinc; .an insoluble suspension -of acylated
tyrosine; acylated
sugars; cationically or anionically derivatized polysaccharides;
polyphosphazenes;


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
8.9
biodegradable microspheres; -monophosphoryl lipid A and quil A. Cytokines;
such as
.G1VI-CSF, interleukin-2, -7, -12, and other .like growth factors; may also be
used as
adjuvants.
Within certain embodiments of the invention, the adjuvarit composition
S is preferably one that induces an iW mun~ response predoiniriantly of the
Thl type.
High levels of ThI-type cytokines (e.g:, IFN-y, TNFa, IL-2 and IL-12) tend-to
favor the
iriditction of cell mediated, irrimun~ responses. to an administered- antigen.
In contrast,
high levels of Th2-type cytokines (e.g:, IL-4, IL-5, IL-6 and IL-10) tend to
favor the
induction of huriloral immune -responses. Following application of a vaccine
as
provided herein,.a patient will suppoit an immune ie'sponse that includes Thl-
and Tli2-
type responses. within a preferred..embodiment, in which a response is -
predominantly
Thl=type, the level of Thl~-type cytokines will. increase to a greater oxtei~t
than the level
of Th2-type cytokines. The levels of these cytokines may be readily assessed
using
stanchrd assays. For .a review of the families of cytokines, see lVlosmann and-
Coffman,
Anh. Rev. Immunol. 7:145-173, 1989.
Certain preferred. adjuvarits for .eliciting a predominantly Thl-type
response include, fox example, a combination of monophosphoryl lipid A,
preferably 3-
de-O-acylated inonophosphoryl lipid A, .together with an- aluminuriu salt.
IVIPLm
adjuvants are available from Corixa- Corpofation (Seattle, WA; see, for
example, US
Patent Nos. 4,436,'727; 4,877,611; 4,866,034 .and 4,912,094). CpG-containing
oligonucleotides (in which the CpG dinucleotide is unmethylated) also induce a
predominantly Thl .-response. Such oligoriucleotides are well known and are
described,
for example, in WO 96/02555, WO 99/33488 and U.S. Patent Nos. 6;008,200 and
5,856,462. Immunostimulatory DNA sequences are also .described-, for example,
by
Sato et al-., Science 273:352, 1996: Another preferred adjuvant-,comprises a
saponin,
such as Quil A, or derivatives thereof, including QS21 and QS7 . (Aquila
Biopharmaceuticals Inc., Frainingham, MA); Esciri; Digitonin; or Gypsophila or
Chenopoclium quinoa saponins . Other preferred formulations include more than
one
saponin in -the adjuvant combinations of the present xn~ention, for example


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
combinations of at least two .of 'the fallovving group comp~'ising .QS21, QS7,
Quil A, (3-
escin, or digitonin.
Alternatively the saponin formulations may be combined with vaccine
vehicles composed of chitosari or other polycationic polymers, polylactide
.and
S polylactide-co-glycolide particles, poly-N-acetyl glucosami~e-based polymer
matrix,
particles composed of .polysaccharides or ,chemically modified
polysaccharides,
liposoines and lipid=based particles, particles composed of glycerol
rriorioesters, etc.
The saponins may also be forr°nulated in the presence of .cholesterol
to form particulate
structures 'such- as liposomes .or ISCOMs. Furthermore, the saponins may be
formulated
10 together with a polyoxyethylerle ether or ester, in either a~ non-
particulate sohition or
suspension, -.ot in a particulate structure such as a ~paucilamelar liposome
or ISCOM.
The saporins may also be foitnulated with vexcipients such as CarbopolR -to
increase
viscosity, or may -be formulated in a dry povi~der- form with .a powder
excipient such as
lactose.
15 In one preferred embodirrient, the adjuvant system includes the
combination. of a -monophosphoryl lipid A .arid a saponin. derivative, such as
.the
.combination of QS21 and 3D-MFL° adjuvant, as described in 'WO
94/00153, or a less
reactogenic coinpo~ition where the QS21 is quenched with cholesterol; as
described in
WO 9~13373f. Other preferred formulations- 'comprise an oiI-in-water- emulsion
and
20 tocopherol. Another particularly preferred adjuvant formulation employing
QS21, 3D-
MPL° adjuvant and tocopherol in an oil-in-water emulsion is
described in WO
95/17210.
Another .enhanced.adjuvant system involves the combination of a CpG-
containing :oligonucleotide and a saponiri derivative .particularly the
combination of
25 CpG and QS21 is disclosed in WO 00/09159. Preferably -the formulation
additionally
comprises an.oil in water emulsion and tocopherol.
Additional illustrative adjuvants .for use in the pharmaceutical
compositions of the invention include Moritariide ISA 720 (Seppic, France),
SAF
(Chiron, 'California, United States), ISCOMS .(CSL), 1VIF-59 (Chiron), the
SBAS series
30 of adjuvants (e.g., SBAS-2 or SBAS-4, available from SmithKline Beecham,
Rixensart,


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
91
.Belgium), Detox (Enhanzyn°) (Corixa; Hariiilton, MT), RC-529 (Cprixa;
Hamilton,
MT) and other aminoalkyl glucosaminide 4-phosphates (AGPs), such as those
described
in pending U:S. Patent Application Serial Nos. 08/$53,826 .arid 09/074;720,
the
disclosures of which are incorpprated herein by reference in their entireties,
and
polyoxyethylene ether adjuvants: such as those described in WO 99/52549A1.
Other preferred adjuvants .include adjuvant molecules of the general
formula
(I): ~IO(CHZCH20)p A-R,
wherein, n is 1-SQ, A is a bond or -C(O)-, R is C,_so ~Ikyl or Phenyl C,_so
~lkYl.
One etribodiment of the present invention .consists of a vaccine
formulation. comprising -a polyoxyethylene ether of general formula (I);
whereinv n is
between 1 and 50, -preferabl-y 4-24; most preferably 9; the R component is
Cl_so
preferably C4-CZO alkyl and most preferably C,2 alkyl, and A is a bond. The
concentration of the polypxyethylene ethers should Lie in the range Ø1-20%,
preferably
from '0.1-10%, and mpst preferably in the range 0.1-1%. Preferred
polyoxyethylene
ethers are selected from the following group: polyoxyethylene-9-lauryl ether,
polypxyethylene-9-steoryl ether, .polyoxyethylene-8-steoryl .ether,
polyoxyethylene-4-
lauryl .ether, polyoxyethylcne-35-Iauryl ether, and polyoxyethylene-23-l~uryl
ether.
Polyoxyethylene ethers such as .polyoxyethylene lauryl .ether are de5cribed~
in the Merck
index (12t'' edition: entry 7717). These adjuvant molecules are described in
WO
99/52549.
The polyoxyethylene ether according to the general fornmla (I) above
may, if desired; be combined With another adjuvarlt. For example, a preferred
adjuvant
~coinbination is preferably With CpG ,as described' in the pending UK patent
applicatipn
GB 9820956.2.
According to another embodiment of this invention, an immunogenic
composition described herein is delivered to a host via antigen presenting
cells (APCs),
such as dendritic cells, .macrophages, B cells, monocytes and other cells that
may be
engineered to :be eff cient APCs. Such cells may, but-need npt, be genetically
modified
to increase the capacity for presenting the antigen, to improve activation
and/or


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
92
-maintenance -of the T cell response, to have anti-tumor effects per se and/or
to be
inimunologically compatible with the receiver (i.e., matched HLA haplotype).
APCs
may generally be isolated from any o~ a variety of biological fluids and
.organs,
including tumor and periturrioral tissues, and may be autologous, allogerieic,
syngeneic
S Q~ xencgeneic cells.
Certain- preferred° embodiments of the present invention use
dendritic
cells or progenitors thereof as antigeri~-presenting cells. Dendritic cells
are highly potent
APCs (Banchereau and Steinman, Nature 39:245-251, 199&) and have been shown to
be effective as a physiological adjuvarit for eliciting prophylactic or
therapeutic
antityior irnrrittriity (see Timmerman arid Levy, Anh. Rev. ~Lfed 50:50'7-529,
1999). In
general, :dendritic, cells rnay be identified: based-on their typical shape
(stellate i~ situ,
with marked cytoplasinic processes (deridri'tes) visible in vitro), their
ability to take up,
process arid present antigens with high efficiency and their ability to
activate naive T
cell responses. Dendritic cells may, of course, be engineered to express
specific cell-
surface receptors or ligands that are not commonly found on dendritic cells in
vivo or ex
vivo, and such -modified dendritic cells .are contemplated by the present
invention. As
an alternative to dendritic .Cells, secreted vesicles antigen-loaded
,dendritic cells (called
e~osotnes) may be used within a vaccine (see Zitvogel et al., Nature iLled.
4:594-600,
19.98).
Dendritic cells amd progenitors may be obtained from peripheral blood,
bone marrow, tumor-infiltrating cells, peritumoral tissues-infiltrating cells,
lymph
nodes, spleen, skin, umbilical cord- blood or any other suitable tissue or
fluid. For
example, dendritie cells may be -differentiated .ex vivo by adding a
combination of
cytokines such as GM-CSF, I~,-4, IL-13 and/,or TNFoc to. cultures .of
monocytes
harvested from .peripheral blood. Alternatively, .CD34 positive cells
harvested from
peripheral blood, umbilical cord blood or bone marrow may be differentiated
into
dendritic cells by adding to the culture medium combinations of Gl~I-CSF, IL-
3, TIVFa,
~CD40 ligand, LPS, flt3 ligand and/or other .compound(s) that induce
.differentiation,
maturation and proliferation of dcndritic cells.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
93
Dendritic cells are conveniently categorized. as "immature" and "mature"
cells, which allows a simple way to discriminate between two well
characterized
phenotypes. However; this nomenclature should not be construed- to exclude all
possible intermediate stages of differentiation. Immature dendritic cells are
characterized as. APC with a high capacity for antigen uptake arid processing,
which
correlates v~ith the high-expression of Fcy -receptor.arid mannose receptor.
The mature
phenotype is typically characterized by a lovuer expression of these markers,
but a high
expression of cell surface molecules responsible for T cell activation such as
class I and
class II IVIHC, adhesion molecules (e.g., CD54 arid. CD11) and costirimlatory
molecules
(e:g., CD40~ CD80,'CID86 anc~ 4~-IB.B).
APCs may generally be transfected with a polynucleotide of the
invention (.or :portion or other variant thereof] such that the encoded-
polypeptide, or an
im~nunogenic portion thereof, is expressed on the cell surface. Such
transfection may
take place ex vivo, and a pharmaceutical -composition comprising such
transfected cells
may then be used for therapeutic purposes,. as described herein.
Alternatively, a gene
delivery vehicle that targets a deridritic or other antigen presenting cell
may be
administered to a patient, resulting in transfection that occurs in vivo. In
vivo and ex
vivo tramsfection of dendritic cells, for example, rnay generally be performed
using any
methods known iri the art; such as those described in WO 97/24447, .or the
gene gun
approach described by Mahvi et a~., Immunology and cell Biology 75:45,6-4'60,
1997.
Antigen loading of dendritic cells may be achieved by incubating dendritic
cells or
progenitor cells with.the tumor polypeptide, DNA (naked or within a plasmid
vector) or
RNA; or with antigen-expressing recombinant bacterium or viruses (e.g.,
vaccinia,
fowlpox, adenovirus or lentivirus vectors). Prior to loading, the polypeptide
xnay be
covalently conjugated to an immunological partner that provides T cell help
(e.g., a
carrier molecule). Alternatively, a .dendritic cell may be pulsed vi~ith a yon-
conjugated
immunological partner, separately or in the presence of the polypeptide.
V~Thile any suitable carrier known to those of ordinary skill in the art-may
be employed in the pharmaceutical compositions of this invention, the type of
carrier
will typically vary depending on the mode .of administration. Compositions of
the


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
94
present invention may be formulated -for any appropriate rilanner of
administration,
including for -example, topical, oral, nasal; mucosal, intravenous,
inlracranial,
intraperitoneal, subcutaneous and intrarnuscular administration.
Carriers for use within such pharmaceutical compositions are
-bioEOmpatible, and may also be biodegradable. In certain embodiments, the
formulation preferably provides a relatively constant--level of active
component release.
In other eiiibodiinents, however, a more rapid rate of r~Iease irrimediately
upon
adriiinistration may-be desired. The formulation of such compositions is well
within the
level of ordinary skill ire the art.usirtg known~techniques. Illustrative
carriers useful in
this regard include -microparticles of p'oly(lactide-co=glycalide),
polyacrylate., latex,
tarch, cellulose, dextran and -the like. Otlzcr illustrative delayed-release
,carriers
include supramolecular laiovectors, which comprise a nQri-liquid hydrophilic
core (e.g.,
a cross~linked polysaccharide or oligosaccharide) and, optionally, an external
layer
comprising an amphiphilic compound, such as a phospholipid tsee e.g., U.S.
Patent No.
5,151,254 and PCT applications WO 94/20078, WO/94/23701 and WO 96/06638). The
amount of active -compound ;contained within. a sustained release formulation
depends
upon the site of implantation, the rate and expected-duration of release arid
the nature of
the condition to be treated or prevented:
In another illustrative embodiment, .biodegradable microspheres (e.g.,
polylactate polyglycolat~) are .employed ~.s carriers far the -compositions
.of this
invention. Suitable biodegradable microspheres .are disclosed, for example;
.in U.S.
-Patent Nos.4,897,268; 5,0.75,109; 5,928,647; 5811,128; 5;820883; 5,853,763;
5,814,344, 5;407,609 arid 5,942,252. Modified 'hepatitis B -core .protein
carrier systems.
such as described in WO/99 40934, and references cited therein, will also be
useful for
many applications. Another illustrative carrier/delivery -system employs a
carrier
comprising -particulate-protein complexes, such as those ,described .in U.S.
Patent NQ.
5,928,647, which are capable of inducing a class ~I-restricted cytotoxic T
lymphocyte
-responses in a host:
The pharmaceutical compositions of the invention will often fiu ther
comprise one or more buffers (e.g., neutral buffered saline or phosphate
buffered


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
saline), carbohydrates-(e.g., -glucose, maniaose, sucrose or dextrans)~
maimitol, proteins,
polypeptides or amino. acids such as glycine, antioxidants, ~bacteriostats,
chelating
agents such as EDTA-or glutathione, edjuyants. (e.g:, aluminum, hydroxide),
solutes that
render the formulation isotonic, hypotonic or weakly hypertonic with the blood
of a
5 recipient, suspeyding: agents, thickening agents and/or preservatives.
Alternatively,
compositions of the present invention may be formulated as a lyophi-lizate.
The pharmaceutical compositions .described herein may be presented in
unit-dose or mufti-dose containers, such as~ sealed ampoules ar vials. -Such
containers
are typically sealed in such a way to -preserve the sterility and stability of
the
10 ~ormulatiori until= use. In g~Ireral, formulations may be stored as
suspensions, solutions
-ar emulsions in oily or aqueous vehicles. Alternatively, a pharmaceutical-
composition
may be stored iri a freeae-dried condition requiring only the addition of a
sterile liquid
carrier immediately prior to use.
The developriient of suitable dosing and treatment regimens for using the
15 particular compositions described herein in a variety of treatment
regimens, including
~e.g., oral, parenteral, Intravenous, intranasal, and iritramuscular
adrriinistration and
formulation, is well known in the art, some of which are briefly discussed
below for
general purposes of illustration.
In certain applications, the pharmaceutical compositions disclosed herein
20 may be delivered via oral administration to an animal. As such, these
compositions
may be formulated with an inert diluent or with an assiinilable edible
carrier, or they
may be enclosed in hard- or soft-sliell gelatin capsule, or they may be
compressed into
tablets; or they may be incorporated directly with the food af.tlie diet.
The active compounds may even be incorporated with .~excipients and
25 used in the form of ~ngestible tablets, buccal tables, troches, capsules,
elixirs,
suspensions, syrups, wafers, and the like (see, for example, Mathiowitz et
al., Nature
1997 Mar 27;386(6623):410-4; Hwang et .al., Crit Rev Ther Drug Carrier Syst
1998;15(3):243-84; U. S. :Patent 5,641,515; U. S. Patent 5,580,579 and U. S.
Patent
5,792,451 ). Tablets, troches, pills, capsules and the like may also contain
any of a
30 variety of additional components, for example, a binder, such as gum
tragacanth, acacia,


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
96
cornstarch, or gelatin; excipients, such as dicalcium phosphate; ~
disintegrating agent,
such as corn starch; potato starch; .alginic acid and the like; a lubricant,
such as
magnesium stear~te; and-a sweetening agent, such as sucrose, lactose or
saccharin may
be added- or a flavoring agent, -s~cli as peppermint, oil -of Wintergreen, or
cherry
flavoring. When the dosage unit- form is a capsule, it may contain, in.
addition to
riiaterials of the .above type, a liquid carrier. ~larious other materials may
be present as
coatings or to .otherwise modify the physical form of the dos~.ge unit. For
instance,
tablets, pills, or capsules may be coated With shellac, sugar, or both. Of
course, any
material,used in-prep~iring any .dosage unit form should be pharmaceutically
pure and
substantially .non-toxic irl the arirnounts employed. In addition, -the active
compounds
may .be incorporated into sustained-release preparation and formulations,
Typically, these foi~tulations will contain at least about 0.1% of the
active corizpound or more, although the percentage of the active ingredients)
may, of
. .course, be varied and may conveniently .be between about 1 or 2% ,and about
60% or
70% or more of the weight or volume of the total formulation. Naturally, the
amount of
active compounds) in each therapeutically useful composition may b~ prepared
is such
a Way that a suitable dosage will ,be obtained in any given unit dose of the
compound.
Factors such as solubility, bioav~ilability, biological half life, route
.of.administration,
product shelf life, as Well as other pharmacological consideration's will be
contemplated
by one skilled in the art .of .preparing such pharmaceutical formulations, and
as such, a
variety of dosages and treatment regimens may lie desirable.
For oral administration the compositions of the present invention may
alternatively-be incorporated W ith .one or more excipierits in .the form of a
mouthwash,
dentifrice, buccal tablet, oral spray, or sublingual orally-administered
formulation.
Alternatively, the active ingredient may be incorporated into an .oral
solution such as
-one containing sodium borate, glycerin and potassium bicarbonate, or
dispersed in a
dentifrice, or added in a therapeutically-effective amount to a composition
that may
inclzxde water, binders, abrasives, flavoring agents, foaming agents, and
humectants.
Alternatively the compositions maybe fashioned into a tablet or solution form
that may
be placed under the tongue or otherwise dissolved in the mouth.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
97
In certain circumstances it will be desirable to deliver the pharmaceutical
compositions .disclosed herein parenterally, intravenously, intramuscularly,
or even
intraperiton~ally. Such approaches are well lcnoW to the skilled-artisan, some
of which
are further described, for exaTriPIe, in U. S. Patent 5,543,158; U. S. Patent
5,641,515 and
U. S. Patent 5,399;363. In certain .embodiments; solutions of tYle active
compounds as
free base or pharmacologica~.ly acceptable salts may b~ pxepared in water
suitably
mixed with a surfactant, such as hydroxypropylcellulose. Dispersions may also
be
prepared in. glycerol, liquid polyethylene glycols, and mixtures thereof and
in oils.
Under ordinary conditions of storage and use, ahese preparations generally
will Contain
a preservative tai Prevent the growth of microorganisms.
illustrative -pharmaceutical foims suitable for injectable use include
sterile aqueous solutions or dispersions and sterile powders for the
extemporaneous
preparation of sterile injectable solutions o'r dispersions: (for example, see
U. S. Patent
5,466,468). In all cases the form must be sterile and must be fluid to the
extent that
easy syringability exists. It must be stable under ahe conditions of
manufacture and
storage and -must .be preserved against the coiitarninating action of
microorganisms,
such as bacteria and fungi. The carrier can be a solvent or dispersion medium
containing, for exampie, water, ethanol, Polyal (e.g., glycerol, Propylene
glycol, and.
liquid polyethylene glycol, and the like), suitable mixtures thereof, and/or
vegetable
20' oils. Proper fluidity may be :maintained; for exariiple, by the use of .a
Coating, such as
lecithin, by the maintenance of the required particle size in the case of
dispersion and/or
by the use of surfactants. The prevention of the action of microorganisms can
be
facilitated by various antibacterial and antifungal~ agents; for :example,
parabens,
chlorobutanol, phenol, sorbic acid, thiinerosal~, and the like. In many
cases., it will be
preferable to include isotonic agents, for .example, sugars or sodium
chloride.
Prolonged absorption of the injectable compositions .can be brought about by
the use in
the compositions of agents delaying absorption, for example, aluminum
inoriostearate
and gelatin.
In one embodiment, for parenteral administration in an aqueous solution,
the solution should be suitably buffered if necessary and the liquid diluent
first rendered


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
98
isotonic with sufficient saline or glucose. These particular aqueous solutions
are
especially suitable for intravenous, intramuscular, subcutaneous. and
intraperitoneal
administration. In this connection, a sterile,.aqueous rimdiuiri that can -be
employed will
be known to those.of skill in the art in light .of the present disclosure. For
example, one
.dosage may be dissolved in 1 ml of isotonic NaCI solution arid either added
to 1000 mI
:of hypoderrnoclysis fluid or injected at the proposed site of infusion, (see
for .example,
"Reriiirigton's Pharmaceutical Sciences" 15th Edition, .pages 1035-103 and
1570-
15$p). Some variation iri dosage will rreces-sarily occur deperldirrg .on the
condition of
the subject being treated. Moreover, for human administration, preparations
will .of
1 Q course preferably meet sterility, .pyrogenicity, and the general safety
and purity
standards as required-liy FIfA Office of Biologics standards.
In another embodiment of the invention; the ~cotnpositioris disclosed
herein may be formulated in a neutral or salt form. Illustrative
pharmaceutically-acceptable salts include the acid addition salts (formed.
with the free
amino groups of the protein) and which are .formed with -inorganic acids such
as, for
example, hydrochloric or phosphoric acids, or such organic acids as acetic,
oxalic,
'tartaric, mandelic, and the like. Salts formed with the free carboxyl .groups
can also be
derived from inorganic bases such, as, for example, sod~uin, potassium,
ammonium,
calcium, or ferric hydroxides, and . such organic bases as isopropylamine,
20: trimethylarnine, histidine, procaine and. the like. Upon formulation,
solutions will lie
administered in a rrianner compatible with the dosage formulation and in such
amount
as is therapeutically effective.
The carriers can further comprise any arid all solvents, dispersion media;
vehicles; coatings, ,diluents, antibacterial .and .antifurigal agents,
isotonic and absorption
delaying agentsi buffers, carrier solutions, suspensions, colloids, and the
like. The use .
of such media and agents for pharmaceutical .active substances is well known
in the art.
Except -insofar- as .any -conventional media ~or agent is incompatible with
the active
ingredient, its use in the therapeutic compositions is contemplated.
Supplementary
active ingredients can also be incorporated into he compositions. The phrase


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
99
"phai~ilaceutically-acceptable" refers to molecular entities and= compositions
that do not
produce an allergic or similar untovi~ard reaction when administered to a
human.
In certain erribodiments, the pharrriaceutical coriipositious may be
delivered by intranasal sprays, inhalation, and/or other aerosol delivery
vehicles.
Methods for delivering genes, .nucleic acids, and peptide .compositions
directly to the
lungs via nasal aerosol sprays has been described; e.g., in. IJ. S. ~l'~ ent
5;756,353 and U.
S. Patent 5,804,212. Likewise, the -delivery of thugs using intranasal
microparticle
resins (Takenaga .et al., J :Controlled Release 1998 Mar 2;52(1-2):81-7) and
lysophosphatidyl-glycexol compounds (U. S. Patent 5,725,$71) are also well-
known in
.the -pharmaceutical arts. Likewise, illustrative transrr~ucosal arug~
delivery in the form of
a polytetrafluoroetheylene suppoit matrix is describee~ in U. S. Patent
5,780,045.
I~ certain embodiments, liposomes, nanoeapsules, rriicroparticles, lipid
particles, vesicles, and the like, are used for the introduction of the c,
ompositions of the
present invention into suitable host cells/organisms. ~In particular, the
compositions of
the present invention .may be formulated for -delivery either encapsulated in
a lipid
particle, a liposoye, a vesicle, a nanosphere, or a nanoparticle or the like.
Alternatively,
compositions of the present invention can be bound, either covalently or non-
covalently, to the surface.of such carrier vehicles.
The forrriation and use of liposome and lipasorne-like preparations as
potential drug carriers is generally .known to those of skill in the art {see
for example,
Lasic, Trends Biotechnol 1998 Ju1;16(7):307-21; Takakura, Nippun Rinsho 1998
Mar;56(f):691-5; Chandran et al., Indian J Exp Biol. 1997 Aug;35(8):801-9;
Margalit,
Crit 'Rev Ther Drug Carrier Syst. 1995;12(2-3):233-61; IJ.S. Patent 5,567,434;
U.S.
Patent 5,552,157; U.S. -Patent 5,565,213; U.S, Patent 5,738,868 and U:S.
Patent
5,795,587, each specifically incorporated herein by-reference in its
entirety).
Liposomes have been used successfully with a. niurriber .of cell types that
are normally difficult to transfect by :other procedures, including T cell
suspensions,
primary hepatocyte cultures and PC 12 cells (Renneisen et al., J°Biol
Chem. 1990 Sep
25;265(27):16337-42; Muller et al., DNA CeII Biol. 1990 Apr;9(3):221-9). In
addition,
liposomes are free of the DNA length constraints that are typical of viral-
based delivery


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
loo.
systems. Liposomes have been used effectively to introduce -geries, various
drags,
radiotherapeutic agents, enzymes, viruses, transcription factors,.allosteric
.effectors and
the like, into. a .variety of cultured cell lines arid animals. Furthermore,
he use of
liposomes does not appear to be associated with;autoimmune responses or
unacceptable
toxicity after systemic delivery.
In certain embodiments, liposomes are formed from' phospholipids -that
are dispersed in an aqueous medium arid-sporitaneously form multilamellar
coycentris
-bilayer vesicles (also termed multila~el~ar vesicles (1VILVs).
Alternatively, -in other embodiments, the invention provides for
pharmaceutically-acceptable nanocapsule formulations of the .compositions of
the
present invention. Nanocapsules can generally entrap compounds in a stable
arid
reproducible way (see, for. example, Quintanar-Guerrero- et a~., Drug Dev Ind
Pharm.
1998 Dec;24{12):1113-28). To avoid side effects due to intracellular polymeric
overloading, such ultrafine particles {sized around 0.1 Vim) may be designed
using
polymers able to be degraded its vivo. Such particles can be made as
described, for
example, by .Couvreur .et al., Crit Rev Then =Drug Carrier Syst. 1988;5(1):1-
20; zur
IVIuhlen et al., Eur J -Pharrn Biopharm. 1998 Mar;45(2):149-55; Zambaux et
cal. .J
Controlled Release. 1998 Jan 2;50(1-3):31-40; and U. S. Patent 5,145,684.
Cancer Therapeutic Methods
In further aspects of the present invention, the pharmaceutical
cornpositians described herein may be used for the treatment of cancer,
particularly for
the inimiunotherapy of lung canceir. Within such methods, the pharmaceutical
compositions described herein are .administered to a patient, typically a warm-
blooded'
animal, preferably a human. A patient W ay -or may not be afflicted with
cancer.
Accordingly, the above pharmaceutical compositions may be used to prevent the
development of a cancer or to treat a patient afflicted with a cancer.
Pharmaceutical ,
compositions and vaccines may be administered either prior to or following
surgical
removal of -primary tumors and/or treatment such as administration of
radiotherapy or
conventional .chemotherapeutic .drugs. As discussed above, administration of
the


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
101
pharmaceutical corripositions niay be by any suitable method, including.
administration
by intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal,
intradermial,
anal, vaginal, topical and oral routes.
Within certain embodiments, imrriunotherapy may be active
iinrnunotherapy, in which treatment relies on the in viyo stimulation of the
endogenous
host immune system to -react against :tumors with the admiriistratiori of
.irrimune
response=W odifying~ agents (such as polypepxides arid polynucleotides as
provided
herein).
V~ithin other embodiments, irnnTUnothe~apy may be passive
imrimnotherapy, in which treatment involves the delivery of agents with
established
tumor-iriimune reactivity :(such as effec'tor .cells or antibodies), that can
directly or
indirectly mediate aritihzirior effects and does not necessarily depend on an
intact host
immune system. Examples of effector cells include T cells as discussed above,
T
lymphocytes (such as CDB~ cyto'toxic T lymphocytes and .CD4+ T-helper tumor-
infiltrating lymphocytes), killer cells (such as Natural Killer cells and
lymphokine-
activated killer cells), B cells and antigen-.presenting cells (such
as,dendritic cells and
macrophages) expressing :a polypeptide provided herein. T cell receptors and
antibody
receptors specific fcsr the _polypeptides recited herein may be cloned,
expressed and
transferred into other vectors or effector .cells for :adoptive immunotherapy.
The
polypeptides provided herein may also be used to generate ~antibpdies or anti-
idiotypic
antibodies (as described above and in U.S. Patent No. 4,918;164) for .passive
immunotherapy.
Effector cells, may generally be obtained in sufficient quantities for
adoptive imyunothei~apy ~by .growth i~ vitr°o, as described herein.
Culture conditions for
expanding single antigen-specific effector cells to several billion in number
with
retention of-antigen recognition in vivo are well known in the art. Such ih
vitro culture
conditions typically use intermittent stimulation with antigen, often in the
presence of
cytokines (such as 'IL-2) and non-dividing feeder cells. As noted above,
iinmunoreactive .polypeptides as provided herein may be used to rapidly expand
antigen-specific T cell cultures in order to generate a sufficient number of
cells for


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
102
iiiimunotherapy. In particular, antigen-presenting cells, such as dendritic,
macrophage,
rrionocyte, fibroblast and/or B cells, may be pulsed with immunoreactive
polypeptides
or transfected with one or more polynucleotides using standard techniques well
.know n
in the art. For example, antigen-presenting cells can be transfected with a
polynucleotide having a promoter appropriate for increasing expression in a
recombinant virus or other expression system. -Cultured- effector cells for
use in therapy
must be able ~to grow and distribute vi~idely; and to survive long term ih
vivo. Studies
have shown that cultured effector cells can be induced to grow in vivo and to
survive
fang term in .substantial numbers by repeated stimulation with antigen
supplemented
with IL-2 (see, for cxaniple,=Cheever et al., Immu~olagical Reviews 157:177;
1997).
Alternatively, .a vector expressing a polyp,eptide recited -herein may be
introduced into antigeypresenting cells taken from a patient-arid clonally
propagated ex
vivo for transplant back into the same patient. Transfected cells may be
reintroduced
into the patient using any means ~lc~own in the art, preferably :in sterile
form by
~intravei~ous, intracavitary, ~irltraperitoneal or intratumor administration.
Routes and frequency of administration of the therapeutic compositions
described herein, as well as dosage, will vary from individual to individual,
and may be
readily established. .using standard techniques. In general, the
.pharmaceutical
.compositions and vaccines may be administered- by injection :(e.g.,
intracutaneous,
intramuscular, intravenous or subcutaneous), intranasally (e.g.,--
by.aspiration) or orally.
Preferably, between 1 and 10~ doses may be administered over a 52 week period.
Preferably, 6 doses are .administered, at intervals of 1 month, amd booster
vaccinations
may be given periodically thereafter. Alternate protocols ,may be appropriate
for
individual patients. A suitable dose is an. ariipunt of a compound that, when
administered .as described ,above, is capable of :promoting an anti-tumor
immune
response, and is at least 10-50% above the basal (i. e., untreated) level.
Such response
can be monitored -by measuring the anti-tumor antibodies in a patient or by
vaccine-
dependent generation of cytolytic effector cells capable of killing the
patient's tumor
cells i~ vitro. Such vaccines should also be capable of causing an immune
response that
leads to an improved clinical outcome (e.g., more frequent remissions,
complete or


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
103
partial or longer disease-free survival) in. vaccinated patients as compared
to non-
vaccinated patients. In general; for pharriiaceutical compositions and
vaccines.
comprising one or more polypeptides; the amount of each polypeptide .present-
in a dose
ranges from about 25 ~.g to 5 rrig per kg of host. Suitable dose sizes will
vary with the
size of the patient, but will typically range from about 0:1 rriL to abdut 5
mL.
In generali axi appropriate dosage and treatment .regimen provides the
active -compounds) in an amount stiff dent to provide therapeutic and/or
prophylactic
benefit. Such a response can be monitored by establishing an improved clinical
outcome (e.g:, more frequent ~erriissions, ,corilplete or partial, or longer
disease-free
survival). in -treated .patients as compared to .nori-treated patieiifis.
Increases in
preexisting immune responses to a tumor protein generally correlate with an
improved
clinical outcorxie. Such immune responses W ~y generally be evaluated using
standard
prolife~at~ari, cytatdxicity or cytokine assays, which may be performed using
samples
obtaived from a patient before and after treatment.
Cancer Detection and Diagnostic Compositions, Methods and Kits
In general, a ;canceir may be detected in a patient based on the presence of
one or more lu~i~ tumor proteins and/or poly~iucleotides encoding such
proteins in a
biological sample (for .exampte, blood, sera, sputum urine and/or tumor
biopsies)
obtained from the patient. In other words, such proteins may be used as
markers to
indicate the presence or absence of a cancer such as lung cancer. In addition,
such
proteins may be useful for the detection of other cancers. The binding agents
provided
herein generally permit detection of the level of antigen that .binds to the
agent in the
biological sample. Polynucleotide primers ayd- probes may be used to detect
the level
of mRNA encoding a tumor protein, which is also' indicative of the presence or
absence
of a cancer. In general, a lung tumor sequence should be present at a level
that is at
least three fold higher in tumor tissue than in normal tissue
There axe a variety of assay formats known to those of ordinary skill in
the art for using a binding .agent to detect polypeptide markers in a sample.
See, e.g.,
Harlow and Lane, Antibodies: A Laboratory ~l%Ta~ual, Cold Spring Harbor
Laboratory,


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
10.4
198$, In general, the presence or absence of a cancer in a patient may be
determined by
(a) contacting a =biological sample obtained from a patient with a binding
agent; (b)
detecting in the sainpie a =level of polypeptide that binds to the binding
agexit; and (e)
comparing the .level of polypeptide with a predeterrriined cut-off value.
In a preferred embodiment, the assay inyalves the use of binding agent
immobilized on :a solid- support to bind to and . reW ove the polypeptide from
the
remainder of the sample. The bound polypeptide may then be detected using a
detection reagent that contains a reporter group and specifically binds to the
binding
agent/palypepticle corriplex. Such detection- reagents may .comprise, for
example, a
binding agent that speeif tally binds to. the polypeptide or an antibody or
other agent
that specifically binds ta-the binding agent, such as an anti-iminunoglobulin,
protein G,
protein ~. or a lectin. Alternatively, a cW ripetitive assay may be utilized,
in whych a
polypeptzde is labeled with a reporter group .and allowed to bind to the
immobilized
binding agent after incubation of the binding agent with the sample. The
extent to
which components of the sample inhibit the binding flf -the labeled
polypeptide to the
=binding agent .is indicative of the -reactivity of the sample with the
immobilized binding
agent. Suitable -polypeptides for use within such assays include full length
lung tumor
proteins arid polypeptide portions thereof to which the binding agent binds,
as described
above.
The solid. support may ~be any material known to those of ordinary skill
in the art to which .the tumor protein may be attached. For example, the solid
support
may be a test well in a microtiter plate or a nitrocellulose or other suitable
membrane.
Alternatively, the support may be a bead .or .disc, such as glass, fiberglass,
latex or a
plastic material such as polystyrene or polyvznylchloride. The support may
also be a
magnetic .particle or a fiber optic sensor, ueh as those disclosed, for
example, in U.S.
Patent No. 5,359,681. The binding .agent may be immobilized on the solid
support
using a vaxiety of techniques known to those .of skill in the art, which are
amply
described in the patent and scientific literature. In the context of the
present invention,
the term "immobilization" refers to both noncovalent association, such as
adsorption,
and covalent attachment (which may be a direct linkage between the agent and


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
10S
ftinctional groups on the support or may be a linkage by way of a cross-
linking agent).
Immobilization by adsorption to a well in a microtiter plate or to a membrane
is
preferred: In such cases, adsorption may be achieved lay .contacting the
binding agent,
in a suitable buffer, with the solid support for a suitable amount of time.
The contact
time varies with temperature, but is typically between about l hour and about
1 day. In
:general, .contacting a well of a plastic mzcrotiter plate (such as
polystyrene or
polyvinylchloride) with ,an amount of binding agent ranging from about 10 ng
to about
1'0 fig, and preferably about 100 ng to about 1 fig, is sufficient to
immobilize an
adequate amount of binding agent.
1.0 -Covalent atta~l~irieiit of binding agent .to a solid support may
generally be
achieved by -f xst reacting 'the support with a ~ bifunetional reag~i~t that
will react with
both the support and a functioriah- group, such as a hydroXyl or amino group,
on the
binding agent, For exar~iple, the binding-agent may be covalently attached to
supports
having an .appropriate polymer coating using benzoquinone or by condensation
~f an
1 S aldehyde group on the support with an amine and an active hydrogen on the
binding
partner (see, e.g., 'Pierce Immurlotechnology Catalog and .Handbook, 1991, at
A12-A13).
In certain embodiments, the assay is a two-antibody sandwich assay.
This assay may be perforrized by first contacting an antibody that has been
immobilized
20 on ,a solid support, commonly the well of a microtiter plate, with the
Sample, such that
polypeptides within the sample' are allowed to bind to the .immobilized
antibody.
Unbound sample' is .then removed from the immobilized _polypeptide-antibody
complexes arid a detection reagent (preferably a second .antibody capable .of
binding to a
different site on the polypeptide) containing a reporter group is added. The
amount of
25 detection. reagent that remains bound to the' solid support is then.
determined using a
method appropriate for the specific reporter group.
More specifically, once the antibody is immobilized on the support as
described above, the remaining protein -binding sites on the support are
typically
blacked. Any suitable blocking agent known to those of ordinary skill in the
art, such
30 as bovine serum albumin or Tween 20TM (Sigma Chemical Co., St. Louis, MO).
The


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
106
immobilized antibody is then irieubated with the sample, and polypeptide is
allowed to
bind to the antibody., The sample may be diluted W ith a~ suitable diluent,
such as
phosphate-buffered saline (PBS) prior to, incubation. In general, an
appropriate contact
time (i.e., incubation time) is-a period of time that is sufficient to detect
the presence of
_polypeptide within ~ sample .obtained from an individual with lung cancer.
Preferably,
the corit~ct time is sufficient to -achieve a level of binding that is at
least about 95% of
'that achieved at equiiibrium between bound. and unbound- polypeptide. Those
of
ordinary skill in the art will recognize that the time necessary to achieve
equilibrium
rriay be readily determined °by assaying the level of binding that
occurs over a period of
tiriie. At -room terfiperat~zre, .an .i~icubation time of .about 30 minutes is
generally
sufficient.
Unbound sariiple riiay then be removed by washing the solid support
with an appropriate buffer, such as P$S containing 0:1 % Tweera 2OTM. The
second
antibody, which contains a reporter group; may then be added to the solid
support.
Preferred reporter groups include those groups recited above.
The detection reagent is then incubated with the immobilized antibody-
polypeptide complex for an amount -of time sufficient to detect the bound
polypeptide.
An appropriate arriount of -time may generally be determined by assaying the
level of
binding that occurs .over a period of time. Unbound detection reagent is then
removed
and bound detection reagent is detected using the reporter group. The method-
employed for detecting the reporter group depends upon the nature of the
reporter
group. For radioactive groups, scintillation counting or autoradiographic
methods are
generally appropriate.Spectroscopic methods may be used to detect dyes,
luminescent
groups and fluorescent groups. ~B,iotin may be detected using avidiri, coupled
to a
different repor-ter group (commonly .a radioactive or fluorescent group ox an
enzyme).
Enzyme reporter groups rnay generally be detected by the addition of substrate
~(gerierally for a specific period of time), followed by spectroscopic or
other analysis of
the reaction products.
To .determine the presence or absence of a cancer, such as lung cancer,
the signal detected from the reporter group that .remains bound to the solid
support is


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
107
generally compared to a signal- that corresponds to a predetermined cut-off
value. In
one preferred embodiment, the cut-off vahte for the detection of a cancer is
the average
mean signal obtained when :the iriimobilized antibody is incubated with
samples from
patients without the cancer. In general, a sample generating a signal that is
three
standard deviations-above the predetermined cut-off value is considered
positive for the
camcer. In an alte .mate preferred embottiment, the cut-off value is
detei~ined . using a
Receiver Qperator Curve, according to -the method of Sackett et al., Clinical
Epidemiol~ogy: A Basic Science for vClihical Medicine, Little Brown arid Co.,
1985,
p. 106-7. Briefly, in this-embodiment, the .cut-off value may be determined
from a plot
of pairs of true.pcssitive rates (i.e., sensitivity) and false positive rates
(1.00%-specif city)
that correspond to each possible cut-off value for the diagnostic test result.
The cut-off
value 'on he :plot that is the closest to the upper left-hand: corner (i.e.,
the value that.
encloses the largest area) is the most accurate cut-off value, and a sample
generating a
signal that is.higher than the cut-off value determined by this method riiay-
be considered
.positive. Alternatively, the cut-off value .may be shifted to the left along
the plot, to .
:minimize the false positive rate, ..or to. the right, to minimize the false
negative rate. In:
general, a sample generating a signal that is higher than the .cut-off value
determined by
this method is considered positive far a cancer.
Iu a related- embodiment; the assay is performed in a flaw-through or
strip test format, wherein the binding agent is immobilized on a ~nembrarie,
such as
nitrocellulose. In the flow-through test, -polypeptides within the sample bind
to the
immobilized binding agent as the sample passes through the -membrane. A
second,
labeled binding agent then binds to the binding agent-polypeptide complex as a
solution
containing the second- binding agent flaws through the membrane. The detection
of
bound second binding agent may then be performed- as described above. In the
strip test
format, one end -of the membrane to which binding agent is bound is iimmersed
in a
solution :containing the sample. The sample migrates along the membrane
through a
region containing second binding agent and to the area of immobilized -binding
agent.
=Concentration of second binding agent- a't the area of immobilized antibody
indicates the
presence .of a cancer. Typically, the concentration of second binding agent at
that site


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
lOS
generates a pattern, ,such as a line, that can be read visually. The absence
of such a
pattern indicates a negative result. In general, the amount of binding agent
iininobilized~
on the membrane is selected to generate a visually discernible pattern when
the
biological sample contains a level of polypeptide that would be sufficient to
generate a
positive signal in the two-antibody sandwich: assay, ~in the forrriat
discussed above.
Preferred bindirig~ agents for use in such assays axe antibodies and antigen-
binding
fragments thereof-. Preferably, the amo'.urit of antibody immobilized on the
membrane
ranges from about 25 ng o about 1 ~,g, and more preferably from about 50 ng to
about
500 ng. Such tests can typically be performed with ~ very small amount. of
biological
1.0 sample.
'~f course, numerous other assay protocols. exist. that are suitable for use
with the tnma~' proteins or binding agents of -.the present invoi~tion. The
above
descriptions aie intended to be exemplary only. . For -example, it will be
apparent to
those ~of o~dirl~.ry skill in the art that the above protocols may be readily
modified to use
tumor polypeptides to .detect antibodies that bind to such polypeptides. in .a
biological-
sample: The detection of such tumor protein specific antibodies may correlate
with the
presence of a cancer.
A cancer -may also, or alternatively, be detected based on the presence of
T cells that specifically react with a tumor protein in a .biological sample.
Within
certain methods, a biological sample comprising CD4+ and/or CD8~" T cells
isolated
from a patient is incubated. with a tumor polypeptide, a ,polynucleotide
encoding such a
polypeptide and/or an APC that expresses at least ari iW munogenic .portion of
such a
polypeptide, and the presence or absence of specific activation of the T cells
is detected.
Suitable biological samples include, but are not limited to, isolated T cells.
'For
example, T -cells may be isolated from a patient ~by .routine techniques (such
as by
Ficoll/Hypaque density gradient centrifugation of peripheral blood
lymphocytes). T
cells may be incubated in vitro for 2-9 days (typically .4 days) at
37°C with polypeptide
(e.g., 5 - 25 ~,g/ml). It maybe desirable to incubate another aliquot of a T
cell sample in
the absence of tumor polypeptide to serve as a .control. For :CD4+ T cells,
activation is
preferably .detected by evaluating proliferation of he T:cells. For .CI~8+ T
cells,


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
109
activation is preferably detected by evaluating cytolytic activity. A level of
proliferation that is at least two fold greater and/or a level of cytolytic
activity that is at
least 20% greater than in .disease-free patients indicates the presence -of a
cancer in the
patient.
As noted above, a cancer may also or alternatively, 'be detected based on
the level of mI~NA eneodir~g a tumor protein in a biological sample. For
example, at
least two oligonucleotide primers niay be employed in ,a polyrnerase chain
reaction
(FCR) based assay to amplify a portion of a tumor cDNA derived from a
biological
sample, wherein at least one of the oligonucleotide primers, is specif c for
(i. e.,
hybridizes to) a polyriucleotide .encoding the tuiiior protein. The amplified
cDNA is
then separated and detected .using techniques well =known in the art, such a's
gel
electrophoresis. Similarly, oligonucleoticle probes than specif cally -
hybridize to a
polynucleotide emcoc~ing a ttiriior protein may b;e =used in a hybridization
assay to detect
the presence of polynucleotide encoding the tumor protein in a biological
sample.
To permit hybridization under assay conditions, oligonucleotide primers
and probes should cori~prise an oligonucleotide sequence-that has at least
about 60%,
preferably at least about 75% and more preferably at least about 90%, identity
to a
portion of a polynucleotide encoding a tumor protein of the invention that is
at least 10
nucleotides, arid preferably at least 20 nucleotides, in length. Preferably,
oligonucleotide pximers and/or probes hybridize to a .polynupleotide encoding
a
polypeptide described herein under moderately stringent .conditions, as
defined above.
Oligoriucleotide primers and/or probes which may be usefully employed in the
diagnostic methods described herein preferably are at least 10-4I7 nucleotides
in lengt~i.
In a preferred embodiment, the oligonucleo'tide primers compiise at least 10
contiguous
-nucleotides, more preferably at least I S contiguous nucleotides, :of a DNA
molecule
having a sequence as disclosed herein. Techniques for both PCR based assays
.arid
hybridization assays are well known in the art (see, for example, Mullis et
al., Cold
Spring Harbor Symp. Quant. Biol., 51:263, 1987; Erlich ed., PCR TecFtnology,
Stockton
Press, NY, 1989).


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
110
:One preferred assay employs RT-PCR, in which- PCR is applied in
conjunction with reverse transcription. Typically, RNA is extracted from a
biological
sample, such as. biopsy tissue, arid is revexse transcribed to produce cDNA
molecules.
PCR arriplification using at Least one specific primer generates a cDNA
rriolecule, which
may .be separated and visualized using, fog example, gel electrophoresis.
Amplification
rriay be performed .onbiological sa~riples taken from a test patient and from
an
lndivi~ual who -is not afflicted with a cancer. Tl~e amplification reaction
may be
performed on several dilutions of.cI7NA spaririir~g two orders of magnitude. A
two-fold
or greater increase in expression in several dilutions of the west patient
sample as
compared to the same diltitioiis of the non-cancerous sample is typically
considered
positive.
In another erribodirrient~ the corripositioms described herein may be used
:as marl~ers for the progression of cancer. In this embodiment, assays as
described
above for the diagnosis of a cancer may-be,performed over time, .and the
change in the
:level of reactive polypeptide(s) or :polynucleotide(s) evaluated. For
example, the assays
may be performed every 24-72 hot~t~s for a peiiod .of 6. months -to 1 year,
and thereafter
performed as needed. In general, a cancer is progressing in those patients in
whom the
level of :polypeptide or polynucleotide detected increases over time. In
contrast, the
-cancer is :not progressing wheel the level of reactive polypeptide or
polynucleotide either
rerriains constant or decreases with time.
.Certain in vivo .diagnostic .assays may be performed directly on a tumor.
-One such assay involves contacting tumor cells with a binding agent. The
bound
binding agent may them be detected directly or indirectly via .a reporter
group. Such
binding agents may .also. be used in histological applications. Alternatively,
polyriucleotide probes may be used within such. applications.
As noted.above, to improve sensitivity, multiple tumor protein markers
may be assayed within. a given: sample. It will- be apparent that binding
agents specific
for different proteins provided herein may be combined within a single assay.
Further,
multiple primers or probes may be used concurrently. The selection .of tumor
protein
markers may be based on routine experiments to determine combinations that
results in


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
111
optirizal sensitivity. In addition, or alternatively, assays for tumor
:proteins provided.
hereinmay be.cornbiried with assays. for other known tumor antigens.
The -present iriverition furthex provides .kits for use within any of the
above diagnostic methods. Such kits typically :comprise two .or more
components
necessary for performing ,a diagnostic assay. Components ri~ay be compounds,
reagents, containers aridlor equipment. F.or eXample, :one container within a
kit may
contain a rriorioclonal antibody -or fragment thereof that specifically Binds
to a tumor
protein. Such antibodies or fragrr~ents may be provided attached to a support
material,
as desGribed~ above. Orie or more additional containers may enclose elements,
such as
reagents. or -bt~ffe'rs, .to be used in.the assay. Such kits may also; or
altel=riatrvely, contain
a detection reagent as described above=tllat contains a reporter group
suitable for direct
or indirect detection of antibody binding.
Alternatively, a kit may be designed to detect the level of mRNA
encoding a tumor protein iii a biological sample. Such kits generally comprise
at least
one oligonucleotide probe or primer, as described above, that hybridizes to a
polynucleotide encoding a tumor protein. Such an oligonucleotide may be used,
for
example, within a PCR or hybridization assay. Additional components that may
be
present within such kits include a second oligonizcleotide andlor .a
diagnostic reagent or
coil'tainer to facilitate the detection of a polynucleotide encoding a tumor
protein.
The follo~uimg Examples are offered by way of illustration and not by
way of limitation.
EXAMPLE 1
PREPARATION OF LUNG TUMOR-SPECIFIC CDNA SEQUENCES USING
DIFFERENTIAL DISPLAY RT-PCR
This example illustrates tl~e .preparation of cDNA molecules encoding
lung tumor-specific polypeptides using a differential display screen.
Tissue samples were prepared from lung tumor and normal tissue of a
patient with lung cancer that was confirmed 'by pathology after removal of
samples
from the patient. Normal RNA ,and tumor RNA was extracted from the samples and
mRNA was isolated and converted into cDNA using a (dT)IZAG (SEQ ID NO: 47)


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
112
anchored 3' primer. Differential display .PCR was then- executed using a
randomly
chosen primer (S-EQ. ID NO: 48). Amplification conditions were standard buffer
containing 1.f mlVl MgCl2; 20 pmol of primer, 500 priiol dNTP and 1 unit of
Taq DNA
polymerase (Perkin-Elmer, granchburg, NJ). Forty cfcles of amplification were
performed using 94 °C denaturation for 30 seconds, 42 °C
annealing for 1 minute and 72
°C exterisiorl for 30 seconds-. Bands that were repeatedly observed to
be specific to. the
RNA fingerprint ,pattern of~the tumor were cut out .of a silver stained gel,
subcloned into
the pGEM-T vector (Profnega, Madison, WI) and sequenced. The isolated 3'
sequences
are provided in SEQ ID NO: ~1-1.6~
1:0 Cc~iriparison of.these sequences to those in 'the public databases using
the
BLASTI~ prograti~, revealed ao significant ho 'rnologies to -the sequences
provided in
SEQ ID IVO: 1-11. To the best- of the inventors' knowledge none of the
isolated DNA
sequences have previously been shown to be expressed at a greater .level in
human lung
tumor tissue -than in norriial lung tissue.
EXAMPLE 2
USE OF PATIENT SERA TO IDENTIFY DNA SEQUENCES ENCODING
LUNG TUMOR ANTIGENS
This example illustrates the isolation of cDNA sequences encoding lung
tumor antigens by expression screening of lung tumor samples with autologous
patient
sera.
A human lung tumor directiønal :cDNA .expression library was
cotistructed employing .the Lambda ZAP Express expression system (Stratagene,
La
Jolla, CA). Total =RNA for the library was taken from- a late SLID mouse
passaged
human squamotis epithelial lung carcinoma and poly A+ :RNA was isolated using
the
Message Maker kit (Gibco BR:L, Gaithersburg; MD). The resulting library was
screened using E. coli-absorbed autologous patient serum, .as described in
Sambrook et
al., (Molecular .Cloning: A Laboratory Manual, .Cpld 'Spring Harbor
Laboratories, Cold
Spring Harbor, NY, 1989), with the secondary antibody being goat anti-human
IgG-A-
1VI (H + L) conjugated with alkaline phosphatase, developed with NBT/BCIP
(Gibco


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
113
BRL). Positive plaques expressing irivnunoreactive antigens were purified.
Phagemid
from the plaques was rescued and- the nucleotide sequences of the clones was
determined.
Fifteen clones were isolated, referred to hereinafter as LT86-1 - LT86-
15. The isolated cDNA sequences for LT86-1 - LT86-8 and LT86-10 - LT86-15 are
provided in SEQ :ID NO: 17-2~ end 26-31, _respectively, with the corresponding
predicted amino acid sequences being provided in SEQ ID' NO.: 32-39 and 41-46,
respectively. The determined cDNA see~ue~ce for LT86-9 is provided in SEQ ID'
NO:
~5, with the corresponding pr,~dicted amino acid sequences from the 3' and 5'
ends
being provided in SEQ ID' NO: 4Q and =~5, reSpec'tively. These sequences were
compared to those in .tl~e -gene 'baizk as described above. Clones LT86-3,
LT86-6 -
LT86-9; LT86-11 - LT86-13 and LT86-15- (SEQ ID' NO: -19, 22-25, 2'7-29 and 31,
respectively) were found :to show some homology to previously identified
expressed
sequence tags (ESTs), with .dories LT86-6, LT86-8, LT86-11, LT86-12 and
LT86~15
appearing to be similar or identical to each -other. Clone LT86-3 was found to
show
some homology with .a 'human transcription repressor. Clones LT86-6, 8, 9, 1l,
12 and
15 were found to show some homology to a yeast RNA -Pol II transcription
regulation
mediator. Clone LT.86-13 was found to show some horriology with a C. elegans
leucine
aininopeptic~ase. Clone LT86-9 appears to contain two inserts, with .the 5'
sequence
~0 showing homology to the previoixsly .identified ant~sense sequence .of
interferon alpha-
induced P27, and the 3' sequence -being similar tci LT86-6. Clone LT86-14 (SEQ
ID
NO: 30) was found to show some horiiology to the trithorax gene and has an
"RGD"
cell attachment sequence and a beta-Lactamase A site which functions in
hydrolysis of
penicillin. Clones LT86-1, LT86-2, ~LT$6-4, LT86-5 arid LT86-10 (SEQ ID NOS:
17,
18, 20, 21 and 26, respectively) were found to show homology to previously
identified
genes. A subsequently determined extended cDNA sequence for LT86-4 is provided
in
SEQ ID NO: 66, with the corresponding predicted amino acid sequence being
provided
in SEQ ID NO: 67.
Subsequent studies. led to the isolation of f ve additional clones, referred
to as LT86-20, LT86-21, LT86-22, LT86-26 and LT86-2'7. The determined 5' cDNA


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
114
sequences far LT86-20; LT86-22, LT86-26 and LT86-27 are provided in SEQ ID NO:
68 and 70-72, respectively, with the determined 3' cDNA sequences for LT86-21
being
provided in SEQ II? NO: .69. The corresponding predicted amino -acid sequences
far
LT86-20, LT86-21, LT86-22, LT$6-26 and- LT86-27 are provided in SEQ. ID NO: 73-

77, respectively. LT86-22 anc~ LT8.6-27 were found= to be highly similar to~
each other.
Cofriparisari of these sequences to. those in the ,gene bank as described
above, revealed
no significant homologies to LT$6-22 arid LT86-27. LT86-20, LT86=21 and LT86-
26
were found to show homology to previously ifentif ed genes.
In further studies, a cDNA expression library was prepared using mRNA
from a lung small cell carcinoma cell line in the laybda ZAP Express
expression vector
yStratagene), and screened- as described above, with- a pool of tv~o lung
small cell
caxcirrorr~a- patierit sera. The sera- pool was adsorbed with. E. coli lysate
and -human
PBM.C lysate was added to the serum to black antibody to p~ateins found in
normal
tissue. 'Seventy-three clones were isolated. The determined cDNA sequences of
these
1S -Tones are provided in SEQ. ID NO: 290-362. The sequences of SEQ TD NO: 289-
292,
294, 296-297, 300; 302, 303, 305, 307-315, 317-320, 322-325, 3~7-332, 334,
335, 338-
341, 343-352, 354-358, 360.and 362 were found to show some homology to
previously
isolated genes. The sequences of SEQ ID NO: 293, 295, 298, 299, 301, 304, 306,
316,
321, 326, 333, 336, 337, 342, 353, 359 and 361 were found to show some
homology to
previously identified ESTs.
EXAMPLE 3
USE OF MOUSE ANTISERA TO IDENTIFY DNA SEQUENCES ENCODING
LUNG TUMOR ANTIGENS
This example illustrates the isolation of cIDNA sequences encoding lung
tumor antigens by screening of lung tumor -cDNA libraries with mouse anti-
tumor sera.
A directional cDNA -lung tumor expression library was prepared as
_described above in Example 2. Sera was obtained from SCID mice containing
late
passaged human squamous cell and adenocarcinoma tumors. These sera were pooled
and injected into normal mice to produce anti-lung tumor serum. Approximately
200,000 PFUs were screened from the unamplified library using this antiserum.
Using


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
115
a goat anti-mouse IgG-A=1~I (H+L) alkaline phosphatase second antibody
developed
with NBTB'~IP (BR.L Labs.), approximately ~0 positi~Ve plaques were
identified.
Phage was purified anal phagemid excised 'for 9 clones with inserts in a pBI~-
CMV
vector for expression in prokaryotic or eukaryotic cells.
The determined cI7NA sequences for 7 of the isolated-clones (hereinafter
referred to as' a;86S-3, L86S-12, L86S-16, L86S-25, L&6S-36; L868-40 and L86S-
46)
are provivded in SEQ LD~ NO: 49-55, with the corresponding predicted amino
acid
sequences being provided in SEQ. ID NQ: 56-62, respectively. The 5' cDNA
sequences
for the xemairiirig 2 clones (hereinafter ~refe~ed to as L86S-30 and L86S-41)
are
provided in, SEQ -ID. N(O: 63 arid 64. L86S-36 and L86S-46 vveie subsequently
determined to. represeu~ the same gene. Comparison of these sequences with
those in
the public .database as described above, revealed rio siguificarit. homologies
to clones
L86S~30, L86S-36 and L86S-46 (SEQ. ID NO: 63, 53 and 55, respectively). L86S-
16
(SEQ ID NO: 51) was fourid to show some homology to an EST previously
identified in
.fetal lung arid .germ cell tumor. The remaining clones were found to show at
least some
degree of homology to previously identified -human genes. Subsequently
determined
extended.cI~NA sequences for L86S-12, L86S-36 and LB~S-46 are provided in SEQ
ID
NO: 78-80, respectively, with the corresponding .predicted amino acid
sequences being
provided in SEQ ~I,D NO: 81-83.
Subsequent studies led to the determination of 5 ° cDNA sequences
for ari
additional mine clones, referred to as L86S-6, L86S-11, L86S-14, L86S-29, L86S-
34,
L86S-39; L86S-47-, L86S-49 and L86~-~1 (SEQ IID NO: 84-92, respectively). The
corresponding predicted amino acid -sequences are provided in SEQ °ID
NO: 93-101,
respectively. L86S-30, :L86S-39 and L86S-47 were found to lie similar to each
other.
Comparison -of these sequences. with those iri the .gene bank as described
above,
revealed no significant homologies to L86S-14. L86S-29 was found to show some
homology to a previously identified EST. L86S-6, L86S-11, L86S-34, L86S-39,
L86S-
47, L86S-49' and L86S-51 were found to show some homology to previously
identified
genes.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
116
In further studies; a directional cDNA library was constructed using a
Stratagene kit with ~ Lambda Zap Express vector. Total RNA for the library was
isolated from t'?vo. primary squam~us lung turlaors and poly A+.RNA was
isolated using
an oligo dT column. Antiserum was developed in normal mice using a pool of
sera
from three SCID mice implanted with human squainous lung carcinomas.
Approximately 700000 PFUs were screened- from. the :unayplified library with
E. coli
absorbed mouse anti-SCID tumor serum. Positive plaques. were identified as
described
above. Plia~e was purified and phagemid excised for 180-clones with inserts in
apBK-
CMV vector for expression in prokaryotic o~ .eukaryotic cells.
The .deterniined. -cDNA seguences for 23 of the isolated clones are
provided in SEQ ID NO: 126-14&. .Comparison of these sequences with those in
the
public database as described above revealed no significant horriologies to the
sequence's
of SEQ ID NO: 139 and 143-148. The sequences of SEA ID NO: 126-138 and 140-142
were found- to show homology to previously identif ed -.human polynucleotide
sequences.
EXAMPLE 4
USE OF'MOUSE ANTISERA TO SCREEN LUNG TUMOR LIBRARIES
PREPARED FROM SLID MICE
This .example illustrates the' isolation of cDNA sequences encoding Lung
tumor antigens by screening .of lung tumor cDNA libraries prepared from SLID
mice
with mouse anti-tumor sera.
A directional- cDNA lpng tumor expression library was prepared using a
Stratagene kit with a Lambda Zap -Express vector. Total RNA for-tlie library
was taken
from a late passaged lung adenocarcinoma grown in SLID mice. Paly A+ RNA was
isolated using a Message Maker Kit.(Gibco BRL). Sera was obtained from two
SCID
mice implanted with lung adenocarcinomas. These sera were pooled and injected
into
normal mice to produce anti-lung tumor serum. Approximately 700,000 PFUs were
screened from the unamplified library with E. coli-absorbed mouse anti-SLID
tumor
serum. Positive plaques were .identified with a goat- anti-mouse IgG-A-M (H+L)
alkaline phosphatase second antibody developed with NBT/BCIP (Gibco BRL).
Phage


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
117
yeas purified and phagemid .excised for 100 clones with insert in a pBK-CMV
vector for
-expression in prokaryotic or eul~a~yotic cells.
The determined- S' cDNA s,equerices for 33 of the isolated clones are
provided in SEQ ID NO: 149=18~I. The corresponding predicted ayino acid
sequences
for SEQ ID NO: 149; 150, 152-154, 156-15$ arid 160-181 are.provided in SEQ ID
NO:
182, .183, 185, 1 ~8-193 and 194-215; respectively. The clone of SEQ ID NO:
151
(refexred to as SAL-25) .was found o~ .contain two op,er! reading frames
:(ORFs). The
:predicted amino acid sequences encoded .by these ORFs are provided in~ SEQ ID
NO:
1.84 and 185. The clone of SEQ ID NO: 153 (referred to as SAL-50) was found to
contain two open reading frames encoding the predicted amino acid sequences of
SEQ
ID NO: l'87 and 216. Similarly, the clone of SEQ ID NO: 155 (referred to as
SAL-66)
was found -to contain two .open reading frarries encoding the predicted
ariiino acid
sequences of SEQ III NO: 189 .and 190. Comparison of the isolated sequences
with
those in the public database revealed no significant homologies to the
sequences of SEQ
ID NO: 151, 153 and 154. The sequences of SEQ ID NO: 149, 152, 156, 157 and
158
were found to show some homology -to previously .isolated ~Xpress,ed sequence
tags
(ESTs). The sequences of SEQ ID NO: 150, 155 and 159-181 were found to show
homology to sequences previously identified in humans.
Using the procedures described above, =two .directional cDNA libraries
(referred to as LT46-90 and LT86-21 ) were prepared fr~W two late ,passaged
lung
squamous carcinomas grown in SCID mice and screened with sera obtained from
SLID
mice implanted with human squamous lung carcinomas. The determined cDNA
sequences -for the isolated clones- are provided in SEQ 'ID NO: 217-237 and
286-289.
SEQ ID NO: 286 was found to be a longer sequence of LT4690-71 (SEQ ID' NO:
237).
Comparison of these sequences with those in the public .databases: revealed no
known
homologies to the sequences of SEQ ID NO: 219, 220, 225, 226, 287 and 288. The
sequences of SEQ ID NO: 218, 221, 222 and 224 were found to show some
horriology
to previously identif ed sequences of unknown function. The sequence of SEQ ID
NO:
236 was found to show homology to a known mouse mRNA sequence. The sequences


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
118
of SEQ ID NO: 217, 223, 227-23?, 286 arid 289 showed some homology to -known
-human DNA and/or RNA sequences.
In fiuther studies using the techniques :described above, one of the cDNA
libraries described above (LT86-21) was screened with E coli-absorbed mouse
anti-
s SCID tumor serum. This serum was. obtained from normal mice immunized with a
pool
of 3 -sera takers frorrr 'SCII~ mice implanted ~?vith hurray. squanious lung
carcinomas.
T'he determined cDNA sequences for-vhe isolated clones are provided in SEQ ID
NO:
238-285. Comparison of these sequences with those in the public databases
revealed no
significant homologies to the sequences of SEQ ID NO: 253, 260, 27T and 285.
The
sequences of SEQ ID NO: 249; 250, 256; 266, 276 arid 282 ~v~re foui~c~ to show
some
horriology to previously isolated expressect~ sequence tags (E~Ts)-. The
sequences of
SEQ ID NO: 23f-248; 251, 25~, 254, 255, 257-25.9, 261-263, 265, 267-275, 278.-
281,
283 arid 28~ were found to show some homology to previously identified DNA or
RNA
sequences.
The expression levels of certain of the isolated antigens in lung tumor
issues compared to .expression levels in normal tissues was determined by
microarray
technology. The results of these studies are shown below in Table 2, together
with the
databank analyses for these sequences.
TABLE Z
Clone vSEQ. Description :LT+F/N SCC+lVIINSqua/ Aden~o/N
ID NO: N-


2LT-3 23 8 Unknown 2.2 3.8 3.3 -
(KIAA0712


2LT-6 239 Lactate DH 2.3 3.8 4.1 -
B


2LT-22 240 Fumarate - 3.0 - -
hydratase


2LT-26 242 CGl-39 - - 12:8 -


2LT-31 243 ADH7 - - 8.4 2.2


2LT-36. 244 ADH7 - 2.4 2.0 -


2LT-42 245 HMG-CoA 2.2 2.6 2.2 -
synthase


2LT-54 247 (Mus) ninein - 2.1 - -


2LT-55 248 Ubiquitin 2.2 - 2.5 2.0


2LT-57 249 Novel 2.1 2:9- 2.4 -




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
119
2LT-58 250 Novel 2.3 4.0 2.9 -


2LT-59 251 Unknown 2.4 3.0 2.3 2.0


KIAA0.784


2LT 62 X52 Nuc Pore Cmplx-- - - 2.1


ass, pro TPR


2LT-70 256 Unknown - 2.5 2.2 2.1


KIAA0871


2LT-73 2'57 Mus - 2.0 - -


poly~denylate-


binding


2LT-76 259 Trans-Golgi 2.1 - 2.6 -
p230


ZLT-85 263 Ribosomal protein- - - 2.1


(L X29.)


2LT-89 265. Unknown - 2.0 - -


PAC212G6


2LT-98 268 1~!Ielai~oma - - - 2.2
cliff


assoc pro 9


2LT-100'269 Mus Collagen - - - 2.1


alpha. UI


2LT-105 271' NY-CO-7 antigen- 3.2 -


2LT-108 273 Unknown - 3.1 - -


RG363M04


2LT-124 279 ~Galectin-9 2.3 2,7 2.0 -


(secreted)


2LT-126 280 Ll element 2.5 - 3.1 -
L1.33


p~0


2LT-128 282 Novel (kappa 2.3+ - 20.4 2.5
B'-


ras 2)


2LT-133.284 alpha ~I spectrin- 2.3 - -


LT+F/N = Lung Tumor plus Fetal tissue over Normal tissues
SC+M/N = Lung ~Smal-1-Cell carcinoma plus Metastatic over Normal tissues
Squa/N = Squamous lung turrior over Normal tissues,
S Aden/N = Adenocarcirlorria over Normal tissues
Full-length sequencing studies on :antigen 2LT-128 (SEQ ID NO: 282)
resulted in the isolation of the full-length cDNA sequence provided in SEQ ID
NO:
392. This amino acid sequence encoded by this full-length cDNA sequence is
provided
in SEQ ID NO: 393. This antigen shows 20-fold over-expression in squamous cell
carcinoma and 2.5-fold over-expression in -lung adenocarcinoma. This gene has
been
described as a potential ras oncogene (Fenwick,et al. Scievtce, 287:869-873
2000).


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
120
Extended sequence information was obfained for clones 2LT-3 (SEQ ID
N0:238), 2LT-26 (SEQ- ID N0:242), 2LT-57 (SEQ ID'. NO: 249), 2LT-58 (SEQ ID
N0:250), 2LT-98 (SEQ ID N0:268) and 2LT-124 (SEQ ID. N0:279): The extended
cDNA sequences. for these clones ire set forth in sEQ ID NOs:428-433,
respectively,
encoding the polypeptide s'equenees set forkh in SEQ ID NOs: 434-439,
respectively.
EXAMPLE 5
DETERMINATION OF TISSUE SPECIFICITY Oh LUNG TUMOR POLYPEPTIDES
Using gene specific primers, mRNA.expression levels for representative
lung tumor polypeptides were -examined in a variety of normal axid tumor
tissues using
RT.~PCR.
Briefly; total -RNA was extracted from a variety of normal and tumor
tissues using Trizol reagent. First strand synthesis was carried out using 2
p,g of total
RNA with Superscript II reverse transcriptase (BRL Life Tech~iologies) at
42°C for one
hour. The cDNA was-theri.arnplified by PCR with gene-specific primers. To
ensure the
semi-quantitative mature of the RT-PCR, (3-actin was used, as an internal
control for each
of the tissues examined. 1 ~,1 of 1:30 dilution of cDNA was employed to enable
the
linear range amplification of the (3-actin template and was sensitive enough-
to reflect the
differences in the initial -copy numbers. Using these corlditioris, the :(3-
actin levels were
determined for each reverse transcription reaction from each -tissue. DNA
contamination was minimized by DNase treatment and by assuring, a negative PCR
result when using first strand cDNA that was prepared' without- adding reverse
transcriptase.
mRNA Expression levels were examined in five .~tifferent types of tumor
tissue (lung squamous tumor .fro~ri 3 patients, lung adenocarcinorim, prostate
tumor,
:colon tumor and lung tumor), .and different normal tissues, including lung
from four
patients, prostate, brain, kidney, liver, ovary, -skeletal muscle, skin, small
intestine,
myocardium, retina and testes. L86S-46 was found to be expressed at high
levels in
lung squamous tumor, colon tumor and prostate tumor, and -was undetectable in
the
other tissues examined. L86S-5 was found to ~be expressed in the lung tumor
samples
and in 2 out of 4 normal lung samples, but not in the other normal or tumor
tissues


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
121
tested. L86S-16 was found to-be expressed in all tissues except normal liver
and normal
stomach. Using real-time PCR, L86S-46 was found to be over-expressed in lung
squamous tissue and- noirilal -tonsil, with. expression being Iow or
undetectable in all
other tissues examined.
E~AlVIPLE 6
ISOLATION-OF DNA SEQUENCES ENCODING LUNG TUMOR ANTIGENS
DNA sequences encoding antigens potentially involved in squainous cell
-lung. tumor formation wexe isolated as follows.
A lung tumor directional cDNA expression library was constructed
employing the Lambda CAF Express expression system :(Stratagene, La Jolla,
CA.).
Total RNA for the library was taken from a pool. of two human' squamous
epithelial
lung carcinomas and poly A+ RNA was isolated- using oligo-dT cellulose (Gibco
BRL,
Gaithersburg, MDT. Phagemid were rescued at random and the cDNA sequences of
-isolated clones were determined:
The determined cDNA sequence for the clone SLT-Tl is provided in
SEQ ID NO: 102, .With the determined 5 ° cDNA sequences for the clones
SLT-T2,
SLT-T3, SLT-TS, SLT-T7, SLT-~9~ S-LT-T10, SLT-T11 and SLT-T12 being provided
.in SEQ ID NO: 103-110 respectively. The corresponding predicted amino acid
sequence for SLT-T1, SLT-T2, SLT-T3~ SLT-T10 and SLT-T12 are provided in SEQ
2Q ID NO: 111-115, -respectively. Comparison of the sequences for SLT-T2, SLT-
T3,
SLT-T5, SLT-T7, SLT-T9 and SLT-T11 with those in the public databases as
described
above, revealed no significant homologies. The sequences for SLT-T10 and SLT-
T12
were found to show some hoW orgy to sequences previously identified in humans.
The sequence of rLT-T1 was determined to show some homology to a
-f~A,C ,clone of unknown pretein functibii. The cDNA seguence of SLT-T1 (SEQ
ID
NO: 102) was found to contain a-mutator (MUTT) domain. Such domains are known
to
function in removal of damaged guanine from DNA that can cause A to G
transversions
(see, =for example, el-Deiry, W.S., 1997-Curr. Opin. Oncol. 9:79-87; Okamoto,
K. et al.
1996 Int. J. Cancer 65:437-41; Wu, C. et al. 1995 Biochem. Biophys. Res.
Comrnun.
214:1239-45; Porter, D.W. et al. 1996 Chena. Res. Toxicol. 9:1375-81). SLT-Tl
may


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
122
thus be of use in the treatment, by -gene therapy, of lung cancers caused by,
or
associated with; a disruption in DNA repair.
In fui ther stud.i~s, DNA sequences. -encoding antigens potentially
involved in a~enocarcinoya lung tumor formatiyn were isolated as: follows. ~
human
lung turrior .directional cDNA eXpression .library was constructed employing
the
LaiTibda Z~.P -Express expression system (Stratagene; La Jolla, CA). Total RNA
for the
library was takeri fro~n° a late SCID mouse passaged human
adenocarcinomia and poly
A+ RNA was isolated= using the Message Maker :kit (Gibco BRL, Gaithersburg,
MD).
Phagemid were rescued at random and the cDNA sequences of isolated clones were
determined:
The determined 5' cDNA sequences for five isolated clones (referred to
as -SALT,'F3, SALT-T4, SALT-T7, SALT-T8, and SALT-T9) are provided in SEQ ID
NO: 116='120, with the corresponding predicted amino acid sequences being
provided in
SEQ ID NO: 121-125. SALT-T3 was found -to show 98% identity to the previously
identified rhurrian transducin-like enhances protein TLE2. SALT-T4 appears to
be the
human homologue of the mouse H :beta 58 gene. SALT-T7 was found to have 97%
identity to human 3-mercaptopyruvate sulfurtransferase and SALT-T8 was found
to
show homology to human interferon-inducible protein 1-8U. SALT-T9. shows
approxiiiiately 90% identity to human mucin MtJC SB.
,cDNA sequences encoding antigens potentially involued in syall cell
lung carcinoma development were isolated as follows. eDNA expression libraries
were
constructed with mRNA from the small cell lung carcinoma cell lines NCIH69,
NCIH128 and DMS79 .(all available from the American Type Culture Collection,
Manassas, VA) .employing the Lambda ZAP Express expression system (Stratagene,
La
Jolla, CA). Phagemid were rescued at- random and the cDNA sequences of 27
isolated
clones were determined. Comparison of the determined cDNA sequences revealed
no
significant homologies to the sequences of ~EQ ID NO: 372 and 373. The
sequences of
SEQ ID NO: 364, X69, 377, 379 and 386 showed some homology to previously
isolated
ESTs. The sequences of the remaining 20 clones showed some homology to
previously
identified genes. The cDNA sequences of these clones are provided in SEQ ID
NO:


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
123
363, 365-368, 370, 371, 374-376, 378, 380-385 and 387-3.89, wherein SEQ ID~
NO:
363, 366-36$; 370 375, 376, 378, 380-382, 384 and 385 .are hill-length
sequences.
Comparison of the cDNA sequence of SEQ ID NO: 372 indicated that
this clone (referred to as 128'TI) is a novel member of a family of putative
seven pass
transmembrane proteins. Specifically, using the computer algorithm PSOR'~, the
protein was predicted ao -lie a type IIIA plasma membrane seven pass
trarismembrane
protein. A genemic clone was identified in the ~Genbarik database which
contained the
predicted N-terminal 58 arlaino acids missing from the amino .acid sequence
encoded by
SEQ ID NO: 372. The determined full-length cDNA sequence for the 128TI clone
is
provided in SEQ ID N,O: 390, with the ,corresponding ariiino acid sequence
being
provided-in SEQ ID NO: 39:1.
The e~pressiorl levels of certain of the isolated antigens in lung tur~ior
tissues compared to expression levels in normal tissues was determined by
microarray
technology. The results of these stud-ies axe shown below in Table 3, together
with the
databank analyses for these sequences.
TABLE 3
Clone SEQ~ Description LT+F/N SCC+MIN Squa/ Adeno/N


ID N


NO


DMS79- 363 STAT-ind inhib- 2.0 - -
of


T l cytokirie


DMS79- 367 Neuronal-cell - 2.2 - -


T6 death related


DMS79- 369 Novel - 2.2 - -


T9


DIVIS79-370 Ubiquitin carrier- 3.9 2.2 -


T10 protein


DMS79- 371 HPVI6E1 pro - 2.1 - -


T11 binding protein


128-T9 378 Elongation - 2.7 - -
factor 1


alpha


128T11 380 Malate - 2.3 2.0 -


dehyrogenase


128-T12 381 Apurinic/apyrim- 5.4 - -


endoW clease


NCIH69- 382 Sm-like protein- - 2.4 -




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
124
T3 CaSm


NCIH69- 3 84 Transcription - 2.5 - -


T6 factor BTF3a


LT+F/N = Lung Turrior plus Fetal :tissue over Normal. tissues
SC+M/N = Lung Small Cell carcinoma plus- Metastatic over Normal tissues
Squa/N = Squamous lung tumor over Normal tissues
Aden/N = Adenocarcinama over Normal tissues
EXAMPLE 7
SYNTHESIS DF POLYPEPTIDES
Polypeptides may be synthesized on a Perkin Elmer/Applied Biosystems
Division 430A peptide synthesizer using F1VIOC chemistry with HPTU (O.-
B.enzotriazole-N,N,N',N'-tetramethyluroriizuri heXa~luorophosphat~)
activation. A Gly-
Cys-Gly sequence may be aftached to the amino terminus of the peptide to
provide a~
method of conjugation, -binding to an immobilized surface, -or labeling of the
peptide.
Cleavage of the peptides from the solid support may be carried out using the
following
cleavage mixture: trifluoroacetic acidethanedithiolal~ioanisole:water:phenol
(40:1:2:2:3). After cleaving fox 2 hours, the peptides may be precipitated in
cold
methyl-t-butyl=ether. The peptide pellets may then be dissolved in iwater
containing
Q.1 % trifluoroacetic acid (TFA} arid lyophilized prior to .purification by C
18 rever se
phase HPLC. A gradient of '0%-60% acetonitrile {containing 0.1 % TFA) in water
(containing 0.1 % TFA) may be used to elute the peptides. FollovVirig
lyophilization ,of
the pure fractions, the peptides may be characterized using electrospray or
other types
pf mass spectrometry and by ammo acid analysis.
EXAMPLE 8
ISOLATION AND CHAKACTERIZATION OF DNA SEQUENCES ENCODING LUNG TUMOR
ANTIGENS BY T-CELL EXPRESSION CLONING
Lung turrior antigens may also be identified by T cell eXpression cloning.
One source of tumor specific T cells is from surgically excised tumors from
human
patients.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
125
A non-small cell lung carcinoma was minced and eiazymatically digested
for several hours to release tumor cells and infiltrating lymphocytes -(tumor
infiltrating
T cells, or TILs). The cells were washed in HBSS buffer and passed .over a
Ficoll
(100%/75%/HBSS) discontinuous, gradient to separate tumor cells and
lymphocytes
from hOn-viable cells. Twa bands were harvested from the -interfaces; the
upper band at
the ~5%/HBSS interface contained. predominantly tumor cells while- the lower
band at
the 100%/75%/HBSS interface contained a majority of lyW phocytes. The TILs
were
expanded in ,culture, either in 24-well plates with culture media supplemented
with 10
ng/ml IL-7.and 100 U/ml IL-2, or alternatively, 24.-well plates that have been
pre-coated
with the anti-CD3 monoclorial antibody OKT3. The -resulting TIL cultures were
ar?alyzed. by FACS to confirm that a high percentage were CD~+ T.~cells (>90%
of gated
population) with oily a sriiall percentage of CD4+ cells.
Iri addition, -non-small .cell lung carcinoma cells were expanded in
culture .using standard techniques to est~:blish a tumor cell line (referred
to as LT391-
06), which was later confirmed to be a lung carcinoma cell line by
immunohistochemical analysis. This tumor cell line was transduced with a
retroviral.
vector to express human CD80, and characterized by FACS analysis to confirm
high
expression levels of CD80, class L 1VIHC and class iI MHC molecules.
The ability of the TIL lines to specifically recognize autologous lung
tumor was demonstrated by cytokirie release assays (IFN-~y arid TNF-a) as well
as 5'Cr
release assays. Briefly, TIL cells from day 21 cultures were co-cultured with
either
autologous or allogeneic tumor cells, EBV-iiW iortalized LCL, :or control cell
lines
Daudi and K562, and the culture supernatant monitored by ELISA for the
presence of
cytokiries. The TIL specifically recognized autologous tumor but not
allogeneic tumor.
In addition, there was no recognition of EBV-immortalized LCL or the control
cell
lines, indicating that the TIL lines are tumor specific and are potentially
recognizing a
tumor antigen presented by autologous MHC molecules.
The characterized tumor-specific TIL lines were expanded to suitable
nuiribers for T cell expression cloning using soluble anti-CD3 antibody in
culture with
irradiated EBV transformed LCLs ,and PBL feeder cells in the presence of 20
LT/ml IL-


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
12f
2. Clones from the expanded TIL lines were generated by standard limiting
dilution
techniques. Specifically, TIL cells were seeded at 0.5 cells/well in a 96-well
U bottom
plate and stimulated wi.'th CD-80-transduced autologous, tumor .cells, EBV
transformed
LCL, and PBL feeder cells in the presence of 50 U/~nl IL-2. The specificity of
these
clones fox autologous tumor was confirmed by SICr microcytotoxicity and IFN-y
bioassays.
These CTL clones were demonstrated to be HLA-B/C restricted by
antibody blocking experiments. A representative CTL clone was tested on a
panel of
allogeneie -lung .carcinomas and it recognized both autologous tumor and a
lung
squarnous cell carcinoma (936T), As the only class I 1VIHC molecule shard
among
these tumors was HLA-Cw1203, this indicated that this -was the restriction
element used
by the CTL. 'This finding was confirmed by -the vecognition of a number of
allogeneic
Lung carcinomas transduced with a retroviral vector encoding HLA-CwI203 by the
CTL.
PolyA mRNA was prepared from 'a lung tumor cell line referred to as
LT391-06 using Message Maker (Life Technologies;-Rockville, MD). The
subsequent
step's involving cDNA synthesis were performed according to Life Technologies
cloning manual (Superscript Plasmid System for cDNA Synthesis and Plasriiid
Cloning). ~IVIodifications tp. the protocol were made as follows. At the
adapter addition
step, EcoRI-Xmi~I adapters (New England Biolabs; Beverly, MA) were
substituted.
Size fractionated cDNAs were ligated into the expression vector system HisMax
A, B,
C (Invitrogen; -Carlsbad, CA) to optimize for protein expression in all three
coding
frames. Library plasmids were then aliquotted at approximately 100 :CFU/well
into a
96-well block for -overnight Liquid amplificatiQri. From these .cultures,
glycerol stocks
were made and :pooled plasmid was prepared by .autorriated robot (Qiagen;
Valencia,
CA). The concentration of the plasmid DNA in .each well of the library plates
was
determined to be approximately 150 ng/ul. Initial characterization of the cDNA
expression library was performed by randomly sequencing 24 primary
transformants
arid subjecting the resulting sequences o BLAST searches against available
databases.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
127
The determined cDNA sequences are provided in SEQ ID NO: 443-4-80, with the
results
of the BLAST searches~be'irig provided-iri Table 4.
TABLE ~
CloneSEQ~ID:=NO:GenBank Descriptiow
Aa_ccession-


55163458; 459 Novel in Gehbai~k


55158' 452 Novel i~zGe~ba~k


Hctrizology
ao
k~iawn
sequences
vwitH
unknown-function


55153443 444 7018516 H. Sapiens mRNA; cDNA DKFZp434M035


55154.445, 446 6437562 H. Sapiens Chr 22q11 PAC Clone
p393


5517'450, 451 2887408 H. sapiens KIAA0417 rinRNA


55165462, 463 3970871 H. Sapiens HRIHFB2122 mRNA


Hoinol-ogy
to
known
segtie~ices
with
known.
furi~tiori


55155447 7677405 H. Sapiens=F-box protein FBS
(FBS)


55156448, 449 3929584 H. Sapiens EEN pseudogene


55161454, 455 450335Q H. sapiens DNA (cytosine-S-)-
methyltransfera.se 1 (DNMT1)


55162456, 457 31220 ' ERI~l mRNA for protein serine/threonine
kinase


55164460, 461 6677666 H. sapiens RNA-binding protein
(autoantigenic) (RALY)


55166464, 465 3249540 H: sapieris ribonuclease P .protein
subunif
p40 (Rl'F~40)


S 466, 467 7657497 H. Sapiens. renal turiyor antigen
S (RAGE)
167


55168468, 469 2873376 H, sapiens exportin t~riiRNA


SSI69470, 471 3135472 H, sapiens-Cre binding protein-like
2
mRNA


55171474 4759151 H. sapiens sperinine synthase
(SMS)


55173476, 668&148 H. sapiens partial mRNA for NICE-3
protein


55174:477, 478 531394 Human transcriptiorial coactivator
PC4


55175479 6563201 H. Sapiens translation initiation
factor eIF-
2b delta subun~t


55176480 298.60 hCENP-Bgene, for centromere autoantigen
B .(CENP-B)


Homology
to
Riliosoinal
l~rote'iri


55159453 337494 Ribosomal protein L7a (surf 3)
large suburiit
mRNA


55170472, 473 4506648 H.sapiens mRNA for ribosomal
protein L3




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
128
Clone SEQ ID NO: GenB:ank Description'


Accession


55172 47S 388031 H. Sapiens ribosomal protein
L11


For T cell screening, approximately 80 ng of the library plasW id DNA
and. 80 rig of HLA-Cw1203 plasrnid -DNA was mixed with the lipid Fugene
according
to the manufacturers' instructions and ~transfected~ in duplicate into CQS=T
cells. After
incubation at 37 °C for 4,8 hours, the transfection mixture was
xeinoved and 10,000
LT391-06 CTL were added~to each well in fresh media containing human serum.
The ability of T cells to recognize an antigen in the library was assessed
by =cytokine release aftex .6rhours (TNF-alpha, WEHI bip-assay) or after 24
hours (IFN-
gamma, ELISA.). Approximately 2:0 x 105 clones (in plasiriid pools of 100)
were
screened. °using this systerii iri COS-7 cells. Three plasmid pools
were identified
(referred to as 14F10, 19A4, andT 20E10) that were recognized by LT391-06 CTL.
Transfectian of these plasmid pools into COS-7 cells led .to production of
bath IFN-
gamma and TNF-alpha from the LT391-06 CTL at levels significantly above
'background. 'Pools 1.4F10, 19A4 and 20E10 were "broken down" into several
hundred
individual plasmid DNAs and retested. The sequences of 24 novel clones
isolated from
pool 14F10 are provided in SEQ Ip NO: 481-511.
One plasmid (3D9). from pool 14F10, ono plasmid from pool 20E10 and
S plasmids (2A6, 2E11, Zfl2, 3F4, 3H8) from pool 19A4 wore capable of
reconstituting T cell recognition. Sequencing of these plasriiids led to the
identification
of a 7:8 kB. cDNA insert (referred to as clone 14F 10), a 2.2 kB cDNA insert
(referred to
as clone 19A4, SEQ ID NQ:44,0), and a clone referred' to as 20E10. The full-
length
cDNA sequence for 14F 10 is :provided in SEQ ID NO: 44.1. Gione 14F 10 does
not
contain .tlie first two "G" nucleotides found at the S' end of 19A4, and the
3'-proximal
24 by of 19A4 differ from the corresponding region of 14F1'0 (nucleotides 2145-
2165).
2S Furthermore, 3837 by of 3' additional sequence was isolated for clone
14F10. The S'
erminal cDNA sequence (337 bp) .of clone 20E10 is provided in SEQ ID NO: 442.
20E10 contains an additional 3 .nucleotides '(as compared to 19A4) at he S'-
most end.
The additional sequence from the S' :end of clone 20E10 contains an "ATG" and


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
129
therefore appears to contain the translational start site of a novel open
reading frame.
BLAST search analysis against the ~GenBarik database identified these
sequences as
having significant homology with a truncated- human cystine/glutamate
transporter
gene. Unlike the published sequence, however, clones 14F1-0 and 19.A4 contain
a
unique S' terminus consisting of 1.81 nucleotides. This novel sequence
replaces the
published. S' -region and results irr the removal of the reported initiating
rriethiorline
(start ,codon} and an additional two amino acids of the reported transporter
protein.
Therefore, the translated product of clones ~lA~FlO and 19A4 is different than
the
cystine/glutamate .transporter protein. Furthermore, T cell recognition of
other lung
tumors ;demonstrates that this antigen is expressed by other tumors as v'vell.
The epitope and amino acid sequeriee encoded within clones, 19A4 and
14F10 which reconstitutes T cell recognition of ariti~LT391-06. cells were
mapped as
follows. Cos-7 cells were transfected with 80 ng/well HLA-Cw1203 along with
titrated
amounts of cDhTA encoding clone 19A4, a potential open reading frame located
in the
unique 5' terminus of 19A4, ox the open reading frame frorr~ the
cystine/glutamate (Cys-
-Glu) transporter :gene, cloned into a -etikaryotic expression vector and
tested for
stimulation of anti-LT391-06 T cells ixr a TNF assay. As a positive control
Cos-7 cells
were .co-transfected with HLA-Cw1203 and the positive plasmid clone 19A4
described
:above-. The Cys-Glu .transporter expression construct was isolated by -PCR
using 5' and
3' primers ~pecif c for the known ORF of the transporter with 19A4 as
template. In
addition, .each 5 ° primer contained a Kozak translation initiation
site and starting
methionirle to drive translation of the polypeptide. CTL against LT391-06 .did
not
recognize transfectants expressing the Cys-Glu transporter construct, but did
recognize
transfectants expressing 19A4 and the 5' ORF from 19A4.
In subsequent experiinerits, Cos-7 cells were co-transfected with 80
ng/well HLA-Cw1203 along with titrated amounts of DNA of transposition mutants
F 10 .and C 12, respectively, and tested. for simulation of anti-LT391-06 T-
cells in a TNF
assay. As a positive control, Cos-7 cells were co-transfected with HLA-Cw1203,
and
clones .of the 5' ORF of 19A4. Transposition mutants F10 and C12 vl~ere
obtained by
transposon-mediated mutation of .the 14F10 clone and screening for insertion
site by


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
130
sequence analyses. The transposon of -:mutant F10 is inserted approximately
304 by
from the 5' EcoRI cloning site of the 14F10 cDNA. This mutation did not
disrupt
translation -of the T -cell epitope. By contrast, the transposon of mutant C
1,2, which is
ins~rted~ approximately 116 by from the 5' EcoRI cloning site of the 14F10
cDNA, was
found to interrupt translation of the T .cell eptiope. Thus 'the epitope in-
14F10 maps
between these 'two trarlsposon insertion sites. Tile amino acid sequence of
the region
betweeythe-.C12 and F-10 tr~nsposon insertion sites is provided in SEQ ID' NO:
5$6.
series ~f 11 .overlapping 16-mer and= 15-mer peptides for the region
slzowri in SEQ ID NO: 586-were prepared and~.tested for stimulation of anti-
LT391-0'6
1,0 cells, as deteniiined by cytokirie release .in TNF and IFN-y .assays.
Oilly .the peptide
provided in SEQ- ID~ NO: 587 -(corresponding to residues 5-20 -of S~Q ID NO:
586)
stimulated cytol~ine release. These studies .demonstr to that the HLA-Cw1203
restricted epitope ofthe L'T391-06 antigen is contained within SEQ IDvNO: 587.
EXAMPLE 9
1 S ISOLATI01~ AND CHARACTERIZATION OF DNA SEQUENCES ENCODING
LUNG TUMOR ANTIGENS BY PCR SUBTRACTION
This example describes the isolation and characterization. of cDNA
clones from a P.Cl~ subtracted expression library ,prepared from the human
lung tumor
cell line LT391-06 described above.
20 Tester poly A mRNA was prepared from the cell line LT391-06 as
described above. Driver poly A mRNA was isolated from a human acute .T :cell
leukeinia/T lymphocyte cell .line (Jurkat) which is derived from non-lung
cells and is
not recognized by LT391-06 reactive T cells. 'The subtraction Was performed
according
to the -rilethod of Cloritech (Palo Alto, CA) with the 'following changes: 1)
a second
25 restriction digestion reaction of cDNA was completed using a pool of
enzymes (MscI,
PvuII, ~StuI and DraI). This was in addition to, and separate from, the
Clontecli
reconimerided single restriction enzyme digestion with RsaI. Each restriction
digest set
was treated as a separate library to ensure -.that the -final mixed library
contained
overlapping fragments. Thus, the epitope recognized by the T cells should be
30 represented on a fragment within the library ,and not destroyed by the
presence of a


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
131
single restriction site within it. 2) The ratio of .driver to tester cDNA was
increased in
the hybridization ste~ss to increase subtraction stringency. To axlalyze the
efficiency of
the subtraction, actin. was PCR amplified from dilutioris of subtracted, as
well as
unsubtracted, PCR samples. The second arilplification step utilized primers
that were
rriodified from those normally used. Three nested. PC1Z primers were
engineered to
con°tain a cleavable EcoRI- site (not utilized during cloning) that was
in one of three
-frames. Thus, secondary ampIi~cation with these priznexs resulted in products
that
could be ligated directly into the cukaryo'tic expression plasmid
pcDNA4His%Max-Topo
(Invitrogen). This -result~c~ irl the PCR subtracted and amplified fragments
being
represented iri-fr~ine ~omewliere within the library. pue to the :mechanics of
the
subtraction only 5Q% of fragments will be in the correct orieritatian, The
complexity
and redundancy of tl~e library was characterized by sequencing 9C randomly
picked
clones from the final pooled PCR subtraction expression library, referred to
as LT391-
06PCR. These sequences (SEQ ID NO: 512-581) were analyzed by comparison to
sequences in publicly available databases (Table 5).
TABLE 5
Clone SEQ~ID.l~TOGenBanl~ Description
Accession


57235.532 Novel in Gehliartk


57255 54'7 Novel in Ge~batik


57264 554 Novel in Genbai~k


Homology
to
kriowii
sequences
with
unknown
function


57215 518 5689540 H. sapiens.mRNA for K,IAAl 102
protein


57223 522 2341006 Human Xq.I3 3' end of PAC-92E23


57227'S24 7022540 H. Sapiens cDNA FLJ10480 fis,
clone
NT2RP2000126:


57238 535 6807795 H. Sapiens mRNA; cDNA
DKFZp76 ~ G02121


57239 536 5757546 H. sapiens clone DJ0~23F17


57243 539 7023805 H. Sapiens cDNA FLJl 1259 fis,
clone
PLACE1009045


57245 540 4884472 H. Sapiens mRNA; .cDNA DKFZp586O2223


57267 557 6808218 H. sapiens mRNA; cDNA DKFZp434O1519


57268 558 10040400- Sequence 12 from Patent W09954460




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
132
CloneS~Q-ID NO: GenBank -Descriptiari.
Accession


57270560 7959775 H. sapiens PROI489 mRNA


57271561 ~500:1~58 H. sapiens mRNA; cDNA DKFZp586B0.918


57281S67 656020. H. sapiens clone RPI 1- 50107


57283569 28~96~ Human mRNA for KIAA0108 gene


57285570 7019813. H, Sapiens cDNA FLJ200Q2 fs,
clone
ADKA015'7'7


.~H~inology
tai
known
sequences
with.
known
function


5720'7512 517176. H: sapiens YAP6S mRNA


57210S14 6841233' H. Sapiens HSFC292~ mRNA


57211S15 260609f H~. sapiens Cyr61 protein (CYR61)-mRNA


57212516 33964& Hurnan-thioredoxin (TXN) mRNA


57219519 4504616 H. Sapiens insulin-.like growth
facto
binding protein 3 (IGFBP3)


57.221520. 72'74241 H. Sapiens novel retinal pigment-epithelial
cell protein (NORPEG)


S7222S21 18956 Human, plasminogen activator
inhibitor- 1
gene


572285~5 4757755 H. sapiens annexin A2 (ANXA2)
57230527 1-80800 Human alpha- 1 collagen type
IV gene, exori
52


57232529 6729061 H. Sapiens clone RPC11- 98D12
from 7q31


57233530 338391 Spermidine/ spermine N1- acetyltrarisferase


57234X31 7305302 H. Sapiens NCK- associ~.ted protein
1
(NCKAP 1 )


57236533 4929722 H. Sapiens CGI- 127 protein


57242538 4503558 H, Sapiens epithelial membrane
. protein 1
(EMP 1 ).
~


57248541 18=3585 . Huinan~ pregnancy- specific
beta-
glycoprotein c


57250543 4759283 H. Sapiens ~xbiquitin carboxyl-terminal
esterase L~ (UCHL1)


57251544 1236321 Human laW inin gamrrta2 chain
gene
(LAlVIC2)


57253545 213831 H, Sapiens lysyl hydroxylase
isoform 2
(PLOD2)


57254546 536897 Human follistatin- related protein
precursor
mRNA


57257548 339656 Human endothelial-.cell-thrombomodulin


57258549 190467 Human prion protein (PrP) .mRNA


57261551 338031 Human serglycin gene


57262552 178430 Human alphoid DNA (alphoid repetitive




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
133
CloneSEQ ID.:NO:GenBank Description
A ccession


sequence)


57265SSS 4S02S62 H. sapiens calpain, large polypeptide
L2
(CAPN2)


57266SS6 398163 H. Sapiens mRNA fox insulin-
like growth
factor binding protein- 3


57269SS9 7262375 H. carboxylesteras~ 2 (intestine,
liver)
(CE~~)


57272S62 467560' H, sapiens mRNA for cysteine
dioxygenase
type 1


57274563 482664 H. sapiens atniexin A3 (ANXA3)


S727S564.- 22.8'1904. -H. sapiens B:ruton's ty~. kinase
(B'TK),
alpha.- D- galactosidase A (GLA)-


57277565 4557498- H. sapieris C- terrninal~ binding
protein 2
(CT~P2)


57282568; 1.89245 Human; NAD( P) H: menadione
axidoredttctase mRNA


57287571 28S2S Human mRNA for azriyloid A4
precursor of
57288S72 47S77S5 Alzheimer's disease
H. sapieris annexin A_2 (ANXA2)


57289573 5729841 -I-~. sapietis glyoxalase I
(GLO1) mRNA


57290574 -6103642 H. sapiens F- box protein FBX3
mRNA


S729S57'6 182513 Human ferritin L chain mI~NA


57299579 37137 Human mRNA for thrombospondin


57301S80 179682 Human (clorie A12) C4b-,binding
protein
beta- chain
~


5730258.1 6042205. ~H.
,. sapiens membrane metallo-
endopeptidase (neutral
endopeptidase,enkephalinase,
CALLA,
CI710). (1VIME).


57213S17 2665791 ~ H. sapiens.caveolin- 2 mRNA


S72S9SSO 2665791 H. Sapiens caveolin- 2 mRNA


S722SS23 179765 Human caleyclin gene


57229'S26 179765 Human calcyclin gene


57237S34 186962 Human lanTinin B2 chain gene


57249S42 186962 Huizian laminin B2 chain gene


57231S28 4972626 H. Sapiens caveolin 1 (CAVl)
gene


57296S77 4972626 H. Sapiens caveolin I (CAV 1
) gene


57297S78 4972626 H. Sapiens caveolin 1 (CAV1)
gene


57240S37 266237 insulin- like growth factor
binding protein 3


57292S7S ~ 184522 Human insulin- like growth-factor-
binding
protein- 3 gene


57263SS3 4504618 I~. Sapiens insulin- like growth
factor




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
134
Clone SEQ ID NO: ~~enBank Description.
Accession


binding protein 7 (IGFBP7)


57280 ~6&. 4504618 H. Sapiens insulin- .like growth
factor
binding protein 7 (IGfBP7)


Homology-to
RibosomalvProteiri


57209 513 337504 Human. ribosomal protein S24
mRNA


EXAI~~IPLE I0
ISOLATION AND CHARACTERIZATION OF T CELL RECEPTORS FROM T CELL CLONES
SPECIFIC FOR LUNG T'UM -OR ANTIGENS
This exarmple describes the cloning arid sequencing 'of T cell' receptor
(TCR) alpha and beta chains frorii a CD8 T cell clone specific for an. antigen
expressed
by the lung tumor celh line LT391=06: T cells lave, a liriaited lifespan.
Cloning of TCR
chains any subsequent transfer would essentially enable infinite propagation
of the' T
cell specificity. :Cloning of tumor antigen TCR .chains allows the transfer -
of the
specificity into T cells isolated from patients that share TCR MHC-restricting
alleles.
such T.cells can there be expanded and used in adoptive transfer techniques to
introduce
the tumor antigen specificity into .patients carrying tumors that express the
antigen (see,
for example, Clay et al. J Immunol. 163:507 (1999)).
Cytotoxic T lymphocyte (CTL) clones specific for the lung tumor cell
line LT391-06 were generated. Total mRNA fr, oin 2 x 106 cells from 15 such
clones
was isolated using Trizol reagent and cDNA was synthesized- using Ready-to-Go
kits
(Phariilacia). To-deternline Va and Vb sequences iri:these clories,.a panel of
Va and Vb
subtype-specific primers was synthesized and used in RT-PCR reactions with
cDNA
generated from each of the clones. The RT-PCR reactions demonstrated that each
of
the clones expressed 'a common Vb sequence that corresponded to 'the Vbl3
subfamily.
Using cDNA generated from one of the clones (referred o as 1105), the Va
sequence
expressed was.deterriiined to be Va22. To clone the full TCR alpha and beta
chains
from clone 1105, -primers were :designed :teat spanned the initiator and
terminator-
coding TGR -nucleotides. 'Standard 35-cycle ~T PCR reactions, were established
using
cDNA synthesized from the CTL clone and the primers, with PWO (BMB) as the


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
135
thermostable polymerase. The resultant speeif c bands (approximately $50~ by
for the
alpha chain and approximately 950 by for the beta chain) were Iigated into the
PCR
blunt vector (Invitrogen). and ransformed into E. coli. E. coli transformed
with
plasmids containing the full-length alpha and beta ,chains were identified,
and large
scale preparations of the cor~espondirig plasmids were generated. Plasniids
containing
full-length TCR alpha .and beta chains were sequenced: The >deterinined cDNA
sequences for the alpha and beta chains are provided in SEQ ID NO: 583 and
582,
respectively, with the corresponding arilino acid sequences being provided in
SEQ ID
NO: 58 ,4 and 585, respectively.
From tlie. foregoing it will be appreciated. that, although specific
embodiments of the invention Have been described herein for pizrpases of
illustration,
various rriodifications may be made without deviating fraril the spirit and
scope of the
invention. Accordingly; 'the invention is not limited except as'by the
appended claims.


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
., 1
SEQUENCE LISTING
<110> Coxixa Corporation
Reed, Steven G.
Henderson, Robert A.
Z,odes, Michael J.
Fling, Steven P.
Mohamath, Raodoh
Algate, Paul A.
Secrist, Heather
Indirias, Carol Yoseph
Benson, Darin R..
Elliot, Mark
Mannion, Jane
Kalos, Michael D.
<120> COMPOSITIONS AND METHODS FOR
THE THERAPY AND DTAGNOSIS OF LUNG CANCER
<130> 210121.47501PC
<140> PCT
<141> 2001-03-38
<160> 587
<170> FastSEQ for Windows Version 3.0
<210> 1
<21i> 339
<212> DNA
<213> Homo sapien
<400> 1


gtactcagacaggatagtcatcatgtagcacaaagcamatcctgtttctatacttgtagt 60


ttgctctcactcagtggcatratcattactatacagtgtagaatgttrttatgtagcata 120


gatgtggggtctctagcccacagctctstacctttgtctagcactcctgtcctcatacct 180


ragtggcctgtccatcagcatgtttctcatctactttgcttgtccagtccactgtggtcc 240


tcccttgccctctcccttatgtggcagagtggaaccagctgtcctgagacttgagttcaa 300


catctggttcgcccatytgcatgtttgtggtctgagtac 339


<210> 2
<211> 698
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1)...(698)
<223> n = A,T,C or G
<400> 2
gtactcagac cacgactgca ttttctccac tgctgacggg tctaatacca gctgcttccc 60
tttcttggag gcagagctng tgaccttgag aaagtgacct gtgaccatca tgtgggtagt 120
gagctgctgc aaggtgtcat gggagctccc acactccatg cactttwaga tctgggactt 180


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
2
gcaggcctca ractgccagg tgtagctcgc tccattttgg tagccatagc gsttgttgga 240
ggacaactgcaagttggcgttcttctgagaagaaaaagaatctgcaaaagatcctgtggt 300


tgaatcgggggaacacggccgattgacatcaaaaacgcgtttcttagcccgggtgaccat 360


tttcgaggaaatggttggggactggctccttcaaaggcactttttggttatgttttgttt 420


yaatcatgtkgacgctccaatcttggragggaatcgaangrantcnccnccaaaacatrc 480


stttcagraaccttttgarcatcctcttttttccgtrtcccggmaargcccytttccckg 540


ggctttgaaawyagcctsgttgggttcttaaattaccartccacnwgttggaattccccg 600


ggccccctgcccggktccaaccaattttgggraaaacccccncansccgttkggantgcn 660


acaacntggnntttttcntttcgtgntcccctngaacc 698


<210> 3
<211> X97
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1). .(697)
<223> n = A,T,C or G
<400> 3
gtactcagacccccaacctcgaacagccagaagacaggttgtctcctgggccttggacac 60


agccngccaggccattgaagganaagcaaagacgaagcgaaccatctctctccattgtgg 120


gggccaagtagctgcantanccttcagtcccagttgcattgggttaaagagctcatacat 180


actatgtgtnaggggtacagaagcttttcctcatagggcatgagctctccnagagttgac 240


cttttgcctnaacttggggtttctgtggttcataaagttnggatatgtattttttttcaa 300


atggaanaaaatccgtatttggcaaaaagactccagggggatgatactgtccttgccact 360


tacagtccaaangatnttccccaaagaatagacattttttcctctcatcacttctggatg 420


caaaatcttttatttttttcctttctcgcaccnccccagaccccttnnaggttnaaccgc 480


ttcccatctcccccattccacacgatnttgaattngcannncgttgntggtcgggtcccn 540


nccgaaagggtntttttattcggggtnctganttnnnaaccnctnagttgaatccgcggg 600


gcggccnngngggttnnaccatgntgggganaactncccnccgcgnttggaatgccanag 660


ccttgaaanttttcttttggtcgccccccngagattc 697


<210> 4
<211> 712
<212> DNA
<213> Homo sapien
<220>
<221> misc feature
<222> (1) .-. . (712)
<223> n = A,T,C or G
<400> 4
gtactcagacaaccaataggtgtgttyctcanatctgaaacacaaaaagattctagctna 60


taatgttsaatggttgagggtttaagtgatcttggtatgttngatttagcagcgatnggc 120


cgggtgcggtggctcacgcatgtatcccagcactttgggaggccgaggcaggaggatcac 180


ctgaggtcaggagtttgagaccagcctggccgacatggtnaaaccccgtctctactanga 240


atacanaaattagcccgggcatagtggcgcgtgcctrtgacctcsgctactttggggatt 300


ctcctgaggaagaattgcttgaactcagggaagtggargtttgcagtgagcttaaatcaa 360


gccactggcactcccagcctgggktaacagagccamgactctkgccgaaaaaaaaraama 420


cgacggagaanmagntctgttattccatgggaaattkgaatttccttcyttkaaatatct 480


taaaatnggtcctcctwaaaaaagttcggctggggcccgktggctcacattttkttaycc 540


cycccccttttggggarggccaarggccggkttgawtnncccttgaggggccanaactcc 600


agnaaccrgncccgggccarsmgwkgkstrarmccctttccyyccmaraaaawwcsmaaa 660


wwttycccsccygsykggctggkasckgttmyyyyygmtmcsyagcttgctt 712




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
3
<210> 5
<2l1> 679
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1)...(679)
<223> n = A,T,C or G
<400> 5


gtactcagaccacctcacatgcagggtnagaaacatggagtgtgcggcagcatcctcctc 60


acatccctttgtgagcacggctgctccggaatactgaccatctgggctagcacgacctaa 120


cagagggttctgcaggatgtgctattttaaagcagctgggtgcaacttgtgaaaacggga 180


atctngaagcagaacatgtnatcagcgatggctgggattggtggacaggattgacaggag 240


tatttgaggctctaccaggcctgtctacaggacagcttcatcgaagggacattttttaac 300


ctgttattttanatnccacatatnttttttaatgctnaagcatacaggttgaatttctgg 360


atcgtaactactagtgacttctgaggtttacagttngaatatgttctcnnaggtttatca 420


agttntgttattgatgatnggtaatctacacctctggaagctgtngaatgtgaaaaagat 480


ncntncanctgaccagtttgnagggcactctcttctggnaagnaatccgnccaaaaaaat 540


tgtttcnagggggcntggggggtttaaaaaaatgtttctnttnccntaaaaatgtttacc 600


cnnctattgaaaaaatgggggtcgnggggggcttnaaatccccnanttntgaatnttnta 660


tccggaancttggtttccc 679


<210> 6
<211> 369
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1). .(369)
<223> n = A,T,C or G
<400> 6


tcagtccagtcatgggtcctataagagaagtcactctgtgagtttccatggaggaagaaa 60
~


aagcttcatttctttaccctgcagcaacagcggagggagggagagcctatcttctttgca 120


aattcattaactttgtggttgaagggagcagcgtcngaaactgctttagcacagtgggag 180


gaaaacaaacagattcatctccggaaaccaaaggaaagggtragtgggtttttattagcc 240


agctgtatcctagatggtcaatttccagtggatgaatacaccttacgtacgtttctcttg 300


cttcctacctnggcctgatcagctnggcacttraatcattccgtnggggtwgctgtnaca 360


ctggactga 369


<210> 7
<211> 264
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature -
<222> (1)...(264)
<223> n = A,T,C or G
<400> 7
tgctggatra gggatggggc acgggagcac agatmgactt taactgcccc cacgttntcm 60
aggaaaggat tacaggcgtg agccactgcg cccggcctct tctccacttt cataggttcc 120
agtctctggt tcttctttct cagtttgttg tttttgcttc ttaaatmatg gagatnagaa 180
tgaacactac actcggaatc aggaagccct gcctggcgcc tctgtcacct gtctaggggc 240


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
4
ttcttctcac tgagtcatcc agca 264
<210> 8
<211> 280
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1). .(280)
<223> n = A,T,C or G
<400>
8


acctcaactgcccanaacanaactgttgtacaagatttgaggatttaacaatatttcaca 60


tgaaatatttcagacctacgngagggcttaaagacnaattaaatgagcaccngtgtgccc 120


accgccccnattaagaattagagcaagcagtgaggtgaagccttgtccttgcttttaaca 180


tagaaagtgatccaaattcaccaaacttgacttnnggttttgcagtgtggcctcctgatt 240


ctagacnctggcgaaacatttgatgggcaaaaaaaaaaaa 280


<210> 9
<211> 449
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1). .(449)
<223> n = A, T, C or G
<400>
9


tcgtcaactccaggatggctttgaaaatnaatggacacagatctctcctgttttgatrat 60


ntgcagtgctnatgactggctttgcagttnattttgattcaggcaacagatgttcctttt 120


ggttccctgtctcccatgggcgtcatttcatgttgtcctctgccttcccccagatattct 180


aagttcaggacacaagcttctggcccatgcagagcagaggccatgaggggtcacagcatg 240


ggtacgggaggaaacactgggctnacccagatnctggacttgagtcttgcctctgctgct 300


tgctgcacagcttctgtcatggtgctaaacctgtgacctgcctcacaggcttagagcatg 360


cccgtagaagtactctnaactaaratgctttccacaaatgagatggtttcatgaaaactt 420


caaatagagggcctgggcaaaaaaaaaaa 449


<210> 10
<211> 538
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> ( 1 ) . . ( 538 )
<223> n = A,T,C or G
<400>



ttttttttttttcccaaaggcctcaraacactagtcttctaattccaagcagaaagttac 60


atccgccgggatacatgccacttggtttgataaatcaaaatacagcatccttcagatccc 120


tttgctgagcaatacaattatttgtatatgttacttttttttctgtttggctnaaagatt 180


tgatatgagctgaggaaaatgaagccnttactgctatnagatctnatccctttccaccac 240


ctttcagggatnttggcactgcayatattcagaattccccnnagtcgctngtgataaaaa 300


tgtcttcagagatggcagaatatgtttcctttggtacatgttcattaaaaatatacacgt 360


gctcactacgtggatatgtatgtnttgaccgatnacacaggctgatttagggaagagat 420
t


aaaagcacacttngaatttattagcctttcaccnagactaanattctgaaattaagaatg 480




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
S
tattccttgg tcaacaattt tcctcttctc ttagccctct tacattgtan tggactga 538
<210> 11
<211> 543
<2l2> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1). .(543)
<223> n = A,T,C or G
<400>
11


ttttttttttttgcccacagctgccatctttgtgtgataaggccaaccttctatgggaat 60


caaccctcgccatcccagcaaatcccctctctcccttctcatgggagtgccttgtattca 120


tcaggcatctgggacttgatgtgggtntgggatttgaaatcagagcacctnggtctctst 180


caccattctntcacttattagctctnaccttgggtnaatacctgccttagtgtcntaggt 240


acaatatgaatattgtctatttctcagggattgcaatgacnagtnnatnagtgcatgaga 300


gggtaaaaccacagggtactccgctcctccnaagaatggagaattttttctagaagccca 360


natntgcttggaaggttggccaccnagagccnnaatcttcttttatttnccactgaangc 420


ctaagaggnaattctgaactcatccccnnatgacctctcccgaatmagaatatctctggc 480


acttaccatattttcttgccctcttccacttacnaaactcctttattccttaacnggacg 540


aaa 543


<210> 12
<211> 329
<212> DNA
<213> Homo sapien
<400>
12


cgatgacttgggcagtgagtgggcctcctgccaggtggcagggcacagcttagaccaaac 60


ccttggcctcccccctctgcagstacctctgaccaagaaggaaactagcaagcctatgct 120


ggcaagaccataggtggggtgctgggaatcctcggggccggctggcacccactcctggtg 180


ctcaagggagagacccacttgttcagatgcatrggcctcaggcggttcaaggcrgtctta 240


gagccacagagtcaaataaaaatcaattttgagagaccacagcacctgctgctttgatcg 300


tgatgttcaaggcaagttgcaagtcatcg 329


<210> 13
<211> 314
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1). .(314)
<223> n = A,T,C or G
<400> 13


cgatgacttgcacccgggagctgtgacagtggcctggaagcagatggcagccccgtcaag 60


gcgggagtggagaccaccaaaccctccaaacagagcaacaactagtacgcggccagcagc 120


tacctgagcctgacgcccgagcagtggaagtcccacagaagctacagctgccaggtcacg 180


catgaagggagcaccgtggagaagacagtggcccctacagaatgttcataggttcccnac 240


tctnaccccacccacgggagcctgganctgcangatcccgggggaagggtctctctcCCC 300


atcccaagtcatcg 314


<210> 14
<211> 691
<212> DNA


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
6
<213> Homo sapien
<220>
<221> misc feature
<222> (1).x.(691)
<223> n = A,T,C or G
<400>
14


cgattacttgcacaatgcanattagaacccaaatgaagggtacaacccagatcttctggc 60


ttccagttcagtgctgctgggtttttcttactaaaccaaaacaatkaagagcatagaagg 120


gaagagaagaataaagtctattttggtctttggtagcchgggtaangagaatgctstcac 180


tctacnagaaaacccnaagtgaacccggctaatcaggaccgtgcttgggaagggagcagg 240


ggcattacctttcaacaccagaggttctttgcCttctctctgcagggactcgargactat 300


gtgaagtggctgggarggcatcactcggcttggttcattggtrttctcatcataaactat 360


natttctttggaaaaagatcctcttgaaagartccttgccttccctacaggaaatcaagt 420


ctaggacagtgatcttgcccctgcttgcastctccgccggctgatcttatcsgscccagt 480


tkatgtgsamcgctccttggatrtkactcttgttttwctccvaggaaggggcytgcmagt 540


ccnwtnaatgamssgggcccttaactccggscrggtnamyncttgsctscrattttgggt 600


ycytcttcytttgsccmggttcktcnaaaccacttngttraattccccggsccgcctkgc 660


nggtycaaccwttttgggaamamcycccccc 691


<210> 15
<211> 355
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1). .(355)
<223> n = A,T,C or G
<400> 15
acctgaactgtgtgttgaagagtgatgtcctgctgcctggagctcaagtcactactgatg 60


accgtgcctatgtccgacagctagttncctccatggatgtgactgagaccaatgtcttct 120


tcyaccctcggctcttacctttgacnaagtctcccgttgagagtactaccgaaccaccag 180


cagttcgagcctctnaagagcgtctaagcgatggggatatatatttactggagaatgggc 240


tcaacctcttcctctgggtgggagcaagcgtccagcagggtgttgtccagagccttttca 300


gcgtctcctccttcagtcagatcaccagtggtntgagtgttctgccagttcaggt 355


<210> 16
<211> 522
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1)...(522)
<223> n = A,T,C 'or G
<400> 16


tcagtccagtgaggtggaagacttcgaggctcgtgggagccgcttctccaagtctgctga 60


tgagagacagcgcatgctggtgcagcgtanggacgaactcctccagcaagctcgcagacg 120


tttcttgaacaaaagttctgaagatgatgcggcctcagagagcttcctcccctcggaagg 180


tgcgtcctctgaccccgtgaccctncgtcgaangatgctggctgccgccgcggaacggan 240


gcttcagaagcagcagacctcctngcgctcccttgccttcctcagctgcctcctgcgccc 300


tgtgcccggctgactggaggaggcctgtccaattctgcccgccccatggaaaagcgggct 360


tgactgcattgccgctgtatnaaagcatgtggtcttacagtgttnggacngctnatnaat 420


ttnatcctnctntgtaatacttcctatgtgacatttctcttccccttggaaacactgcan 480




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
attttaactg tgagtttgat ctcttctngt gttactggac tg 522
<210> 17
<211> 317
<212> DNA
<213> Homo sapien
<400> 17


gtgtcgcgaattcgcggtggtgctaagaaaaggaagaagaagtcttacaccactcccaag 60


aaggataagcaccagagaaagaaggttcagccggccgtcctgaaatattataaggtggat 120


gagaatggcaaaattagttgccttcgtcgagagtgcccctctgatgaatgtggtgctggg 180


gtgtttatggcaagtcactttgacagacattattgtggcaaatgttgtctgacccactgt 240


ttcaactaaccagaagacaagtaactgtatgagttaattaaagacatgaactaaaaaaaa 300


aaaaaaaaaaactcgag 317


<210> 18
<211> 392
<212> DNA
<213> Homo sapien
<400> 18


tggagatttctaatgaggtgaggaagttccgtacattgacagaattgatcctcgatgctc 60


aggaacatgttaaaaatccttacaaaggcaaaaaactcaagaaacacccagacttcccca 120


agaagcccctgaccccttatttccgcttcttcatggagaagcgggccaagtatgcgaaac 180


tccaccctcagatgagcaacctggacctgaccaagattctgtccaagaaatacaaggagc 240


ttccggagaagaagaagatgaaatatgttccggacttccagagaagagaaacaggagttc 300


gagcgaaacctggcccgattcagggaggatcacccccaccttatccagaatgccaagaat 360


cggacatcccagagaagccccaagaccccccg 392


<210> 19
<211> 2624
<212> DNA
<213> Homo sapien
<400> 19


gaaacagtgagaaggagattcctgtgctcaatgagctgccagtccccatggtggcccgct 60


acattcgcataaaccctcagtcctggtttgataacgggagcatctgcatgaggatggaga 120


tcttgggctgcccactgccggatcctaataactattatcaccgacgtaatgagatgacca 180


ccacggatgacctggattttaagcaccacaactattaggaaatgcgccagttgatgaagg 240


ttgtcaatgaaatgtgccccaatattaccaggatttacaacattggcaaaagccaccagg 300


gcctgaaattgtatgcggtagagatctctgaccatcctggggaacatgaagttggtgagc 360


ccgagttccactacatcgcaggggcccacggcaatgaggttctgggacgagaactgctgc 420


tgctgctgctgcacttcctctgccaggaatactcggcgcagaacgcacgcatcgtccgct 480


tggtggaggagactcgaatccacattctaccctccctcaatcctgatggctatgagaagg 540


cctatgaaggaggttccgagttgggaggctggtccctgggacgttggacccatgatggca 600


tcgatatcaacaacaactttccggatttaaactcgctgctctgggaggcagaggaccagc 660


agaatgccccaaggaaggtccccaaccactacattgccatccctgagtggtttctgtctg 720


agaatgccacagtggccacagagaccagagccgtcatcgcctggatggagaagatcccgt 780


ttgtgctgggaggcaacctacaggggggtgagctggtcgtggcatacccctatgacatgg 840


tgcggtccctgtggaagacccaggagcacaccccaacacctgatgatcatgtgttccgct 900


ggctggcgtattcctacgcctccactcaccgcctcatgacagatgccaggaggcgagtgt 960


gccacacggaagattttcagaaggaggagggcaccgtcaatggggcttcctggcacacag 1020


tggctggaagtctaaacgatttcagctacctccatacaaactgctttgagctgtccatct 1080


acgtgggctgtgataaatacccacacgagagcgagctgccggaggaatgggagaataacc 1140


gggagtctctgattgtgttcatggagcaggttcatcgaggcatcaaaggcatagtgagag 1200


atttacaagggaaagggatttcaaatgctgtcatctctgtggaaggtgttaaccatgaca 1260


tccggacagccagcgatggggattactggcgtctactgaaccctggcgaatatgtggtca 1320


cagccaaggcggaaggctttatcacttccaccaagaactgcatggttggctatgatatgg.1380




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
8
gagctactcggtgtgacttcaccctcacaaagaccaacctggctaggataagagaaatta 1440


tggagacatttgggaagcagcctgtcagcctaccctccaggcgcctgaagctgcggggac 1500


ggaaaaggcggcagcgtgggtgaccctgtcggacacttgagacataccccagaccgtgca 1560


aataaaaatccactccagtagtaactctgtagcaggctttccctgttgttttgactgtaa 1620


ttcaagagacactcaggagcatacctgcatggcttggctgaccccaaaggggagggctgg 1680


tggctcagggtgttttgttttttgttttttgttttttcctttgttctcatttatccaaat 1740


accttgaacagagcagcagagaaaggccggtggcagtgagggaattaattcagtgagtca 1800


gtctgagattctaaaaagggtgcttgaccactggccaggaagggaaatcaggccttcccc 1860


catttgcgtgacattcaagcttcccagtgcatttgcaagtggcacagttgacattgcagc 1920


acccagggaatcctttgccccagatgttatcatttgagatgctcttatgcagcctaagaa 1980


aatccatcctctctggccccaggggacaagccaagctgctatgtacacactcggtgttct 2040


attgacaatagaggcatttattaccaagtgtgcatcgctgagtcctaaat'cagctctgtt 2100


cctttttccaacaaagcttgtcttcctaagagcagacagaagtggagagcacccaagaat 2160


gagtgctgggcagcagaccctgggggagggggcttgctatcccagaaagcccctaaaccc 2220


tttgctgctccattagccctggggtgaggagagccagacatgttaggaggccagagcagt 2280


cagtcagggcatcttggaaaagaccttgaaggaagcaaaccctgggttccttttgctcca 2340


gaatgtgagagctccaagttggccccaatcaggaggggagtaatgatgaacatacagacg 2400


gccacatcttgccaatcaagcatcatctgatgaaaaagaaagcaatcttaggattacctg 2460


ggacacgtcagtctgggagaggtggttgaatcattgtgtaagggaatagtgtatctaatc 2520


tgtgttgatcctgctgccttgttgacctggagagaatgaaacaaacaaacacataaacaa 2580


ataaagcaaatggtaagattaaaaaaaaaaaaaaaaaactcgag 2624


<210> 20
<211> 488
<212> DNA
<213> Homo sapien
<400> 20
CtttCaaCCCgCgCtCgCCggctccagcccCgCgCgCCCCCdCCCCttgCCCtCCCggCg 60


gctccgcagggtgaggtggctttgaccccgggttgcccggccagcacgaccgaggaggtg 120


gctggacagctggaggatgaacggagaagccgactgccccacagacctggaaatggccgc 180


ccccagaggccaagaccgttggtcccaggaagacatgctgactttgctggaatgcatgaa 240


gaacaaccttccatccaatgacagctcccagttcaaaaccacccaaacacacatggaccg 300


ggaaaaagttgcattgaaagacttttctggagacatgtgcaagctcaaatgggtcgagat 360


ctctaatgaggtgaggaagttccgtacattgacagaattgatcctcgatactcaggaaca 420


tgtttaaaatccttacaaaggcaaaaaatcaagaaacaccccgacttccccgagaaagcc 480


cctaaccc 488


<210> 21
<211> 391
<212> DNA
<213> Homo sapien
<400> 21


atggaattgtggttttctctttgggatcaatggtctcagaaattccagagaagaaagctg 60


tggcgattgctgatgctttgggcaaaatccctcagacagtcctgtggcggtacactggaa 120


cccgaccatcgaatcttgcgaacaacacgatacttgttcagtggctaccccaaaacgatc 180


tgcttggtcacccaatgacccgtgcctttatcacccatgctagttcccatggtgttaatg 240


aaagcatatgcaatggcgttcccatggtgatgatacccttatttggtgatcagatggaca 300


atgcaaagcgcagggagactaagggagctggagtgaccctgaatgttctggagatgactt 360


ctgaagatctagaagatgctctgaagagcag 391


<210> 22
<211> 1320
<212> DNA
<213> Homo sapien
<400> 22


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
9
aatctgctgggaatttcttgggttgacagctcttggatccctattttgaacagtggtagt 60


gtcctggattacttttcagaaagaagtaatcctttttatgacagaacatgtaataatgaa 120


gtggtcaaaatgcagaggctaacattagaacacttgaatcagatggttggaatcgagtac 180


atccttttgcatgctcaagagcccattcttttcatcattcggaagcaacagcggcagtcc 240


cctgcccaagttatcccactagctgattactatatcattgctggagtgatctatcaggca 300


ccagacttgggatcagttataaactctagagtgcttactgcagtgcatggtattcagtca 360


gcttttgatgaagctatgtcatactgtcgatatcatccttccaaagggtattggtggcac 420


ttcaaagatcatgaagagcaagataaagtcagacctaaagccaaaaggaaagaagaacca 480


agctctatttttcagagacaacgtgtggatgctttacttttagacctcagacaaaaattt 540


ccacccaaatttgtgcagctaaagcctggagaaaagcctgttccagtggatcaaacaaag 600


aaagaggcagaacctataccagaaactgtaaaacctgaggagaaggagaccacaaagaat 660


gtacaacagacagtgagtgctaaaggcccccctgaaaaacggatgagacttcagtgagta 720


ctggacaaaagagaagcctggaagactcctcatgctagttatcatacctcagtactgtgg 780


ctcttgagctttgaagtactttattgtaaccttcttatttgtatggaatgcgcttatttt 840


ttgaaaggatattaggccggatgtggtggctcacgcctgtaatcccagcactttgggagg 900


ccatggcgggtggatcacttgaggtcagaagttcaagaccagcctgaccaatatggtgaa 960


accccgtctctactaaaaatacaaaaattagccgggcgtggtggcgggcgcccatagtcc 1020


cagctactcgggaggctgagacaggagacttgcttgaacccgggaggtggaggttgccct 1080


gagctgatcatcctgctgttgcactccagcttgggcgaaagagcgagactttgtctctat 1140


aaagaaggaaagatattattcccatcatgatttcttgtgaatatttgtaatatgtttttt 1200


gtaacctttcctttcccggacttgagcaacctacacactcacatgtttaatggtagatat 1260


gttttaaagcaagataaaggtattggttttaaaaaaaaaaaaaaaaaaaaaaaactcgag 1320


<210> 23
<211> 633
<212> DNA
<213> Homo sapien
<400> 23
ctaagggcagtgaaggtgaaaaccctctcacggtcccagggagggagaaggaaggcatgc 60


tgatgggggttaagccgggggaggacgcatcggggcctgctgaagaccttgtgagaagat 120


ctgagaaagatactgcagctgttgtctccagacagggcagctccctgaacctctttgaag 180


atgtgcagatcacagaaccagaagctgagccagagtccaagtctgaaccgagacctccaa 240


tttcctctccgagggctccccagaccagagctgtcaagccccgacttcatcctgtgaagc 300


caatgaatgccacggccaccaaggttgctaactgcagcttgggaactgccaccatcatcg 360


gtgagaacttgaacaatgaggtcatgatgaagaaatacagcccctcggaccctgcatttg 420


catatgcgcagctgacccacgatgagctgattcagctggtcctcaaacagaaggaaacga 480


taagcaagaaggagttccaggtccgcgagctggaagactacattgacaacctgctcgtca 540


gggtcatggaagaaacccccaatatcctccgcatcccgactcaggttggcaaaaaagcag 600


gaaagatgtaaattagcagaaaaaaaactcgag 633


<210> 24
<211> 1328
<212> DNA
<213> Homo sapien
<400> 24


gtaaacgctctcggaattatggcggcggtggatatccgagacaatctgctgggaatttct 60


tgggttgacagctcttggatccctattttgaacagtggtagtgtcctggattacttttca 120


gaaagaagtaatcctttttatgacagaacatgtaataatgaagtggtcaaaatgcagagg 180


ctaacattagaacacttgaatcagatggttggaatcgagtacatccttttgcatgctcaa 240


gagcccattcttttcatcattcggaagcaacagcggcagtcccctgcccaagttatccca 300


ctagctgattactatatcattgctggagtgatctatcaggcaccagacttgggatcagtt 360


ataaactctagagtgcttactgcagtgcatggtattcagtcagcttttgatgaagctatg 420
.


tcatactgtcgatatcatccttccaaagggtattggtggcacttcaaagatcatgaagag 480


caagataaagtcagacctaaagccaaaaggaaagaagaaccaagctctatttttcagaga 540


caacgtgtggatgctttacttttagacctcagacaaaaaatttccacccaaatttgtgca 600


gtggatcaaacaaagaaagaggcagaacctataccagaaactgtaaaacctgaggagaag 660




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
1~
gagaccacaaagaatgtacaacagacagtgagtgctaaaggcccccctgaaaaacggatg 720


agacttcagtgagtactggacaaaagagaagcctggaagactcctcatgctagttatcat 780


acctcagtactgtggctcttgagctttgaagtactttattgtaaccttcttatttgtatg 840


gaatgcgcttatttttttgaaaggatattaggccggatgtggtggctcacgcctgtaatc 900


ccagcactttgggaggccatggcgggtggatcacttgaggtcagaagttcaagaccagcc 960


tgaccaatatggtgaaaccccgtctctactaaaaatacaaaaattagccgggcgtggtgg 1020


cgggcgcccatagtcccagctactcgggaggctgagacaggagacttgcttgaacccggg 1080


aggtggaggttgccctgagctgattatcatgctgttgcactccagcttgggcgacagagc 1140


gagactttgtctcaaaaaagaagaaaagatattattcccatcatgatttcttgtgaatat 1200


ttgtgatatgtcttctgtaacctttcctctcccggacttgagcaacctacacactcacat 1260


gtttactggtagatatgtttaaaagcaaaataaaggtatttgtataaaaaaaaaaaaaaa 1320


aaactcga 1328


<210> 25
<211> 1758
<212> DNA
<213> Homo sapien
<400>
25


gtttttttttttttttttttaaagagttgcaacaattcatctttatttcttattttcctc 60


tggagatgcagaatttggtatatttcaccccaagtatatttgggatagttggctcctcgc 120


tgggtcaggatggctgggtgccttctcccctggcatggttctcttctctgcagggcgagg 180


ggcagggagctagtaaaacctcgcaatgacagccgcaatggcagacccaatggagcccag 240


gatgaacttggtcaatccggagagtccagttgctcccagtgactgcagagtagccacaag 300


gctgcccgaggcaactccacccccattggcaatggccgccgcggacatcatcttggctgc 360


tatggaggacgaggcgattcccgccgcagtgaagcccatggcactgagtggcggcggtgg 420


atatccgagacaatctgctgggaatttcttgggttgacagctcttggatccctattttga 480


acagtggtagtgtcctggattacttttcagaaagaagtaatcctttttatgacagaacat 540


gtaataatgaagtggtcaaaatgcagaggctaacattagaacacttgaatcagatggttg 600


gaatcgagtacatccttttgcatgctcaagagcccattcttttcatcattcggaagcaac 660


agcggcagtcccctgcccaagttatcccactagctgattactatatcattgctggagtga 720


tctatcaggcaccagacttgggatcagttataaactctagagtgcttactgcagtgcatg 780


gtattcagtcagcttttgatgaagctatgtcatactgtcgatatcatccttccaaagggt 840


attggtggcacttcaaagatcatgaagagcaagataaagtcagacctaaagccaaaagga 900


aagaagaaccaagctctatttttcagagacaacgtgtggatgctttacttttagacctca 960


gacaaaaatttccacccaaatttgtgcagctaaagcctggagaaaagcctgttccagtgg 1020


atcaaacaaagaaagaggcagaacctataccagaaactgtaaaacctgaggagaaggaga 1080


ccacaaagaatgtacaacagacagtgagtgctaaaggcccccctgaaaaacggatgagac 1240


ttcagtgagtactggacaaaagagaagcctggaagactcctcatgctagttatcatacct 1200


cagtactgtggctcttgagctttgaagtactttattgtaaccttcttatt.tgtatggaat1260


gcgcttattttttgaaaggatattaggccggatgtggtggctcacgcctgtaatcccagc 2320


actttgggaggccatggcgggtggatcacttgaggtcagaagttcaagaccagcctgacc 1380


aatatggtgaaaccccgtctctactaaaaatacaaaaattagccgggcgtggtggcgggc 1440


gcccatagtcccagctactcgggaggctgagacaggagacttgcttgaacccgggaggtg 1500


gaggttgccctgagctgattatcatgctgttgcactccagcttgggcgacagagcgagac 1560


tttgtctcaaaaaagaagaaaagatattattcccatcatgatttcttgtgaatatttgtt 1620


atatgtcttctgttacctttcctctcccggaattgagcaacctacacactcacatgttta 1680


ctggtagatatgtttaaaagcaaataaaggtattggtatatattgcttcaaaaaaaaaaa 1740


aaaaaaaaaaaactcgag 1758


<210> 26
<211> 493
<212> DNA
<213> Homo sapien
<400> 26
gaggcgagcg gcagggcctg gtggcgagag cgcggctgtc actgcgcccg agcatcccag 60
agctttccga gcggacgagc cggccgtgcc gggcatcccc agcctcgcta ccctcgcagc 120


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
11
acacgtcgagccccgcacaggcaagggtccggaacttagcccaaagcacgtttcccctgg180


cagcgcaggagacgcccggccgcgcgccggcgcacgcccccctctcctcctttgttccgg240


gggtcggcggccgctctcctgccagcgtcgggatctcggccccgggaggcgggccgtcgg300


gcgcagccgcgaagattccgttggaactgacgcagagccgagtgcagaagatctgggtgc360


ccgtggaccacaggccctcgttgcccagatcctgtgggccaaagctgacc.aactcccccg420


ccgtcttcgtcatggtgggcctcccccgcccggggcaagacctacttctccacgaaagct480


tactcgctgcctc 493


<210> 27
<211> 1331
<212> DNA
<213> Homo sapien
<400> 27


ggtggatatc cgagacaatctgctgggaatttcttgggttgacagctcttggatccctat 60


tttgaacagt ggtagtgtcctggattacttttcagaaagaagtaatcctttttatgacag 120


aacatgtaat aatgaagtggtcaaaatgcagaggctaacattagaacacttgaatcagat 180


ggttggaatc gagtacatccttttgcatgctcaagagcccattcttttcatcattcggaa 240


gcaacagcgg cagtcccctgcacaagttatcccactagctgattactatatcattgctgg 300


agtgatctat caggcaccagacttgggatcagttataaactctagagtgcttactgcagt 360


gcatggtatt cagtcagcttttgatgaagctatgtcatactgtcgatatcatccttccaa 420


agggtattgg tggcacttcaaagatcatgaagagcaagataaagtcagacctaaagccaa 480


aaggaaagaa gaaccaagctctatttttcagagacaacgtgtggatgctttacttttaga 540


cctcagacaa aaatttccacccaaatttgtgcagctaaagcctggagaaaagcctgttcc 600


agtggatcaa acaaagaaagaggcagaacctataccagaaactgtaaaacctgaggagaa 660


ggagaccaca aagaatgtacaacagacagtgagtgctaaaggcccccctgaaaaacggat 720


gagacttcag tgagtactggacaaaagagaagcctggaagactcctcatgctagttatca 780


_ _ tacctca~tactgtggctcttgagctttgaagtactttattgtaaccttcttatttgtat 840


ggaatgcgc t tattttttgaaaggatattaggccggatgtggfggct-cacgcctgtaatc 900


ccagcacttt gggaggccatggcgggtggatcacttgaggtcagaagttcaagaccagcc 960


tgaccaatat ggtgaaaccccgtctctactaaaaatacaaaaattagccgggcgtggtgg 1020


cgggcgccca tagtcccagctactcgggaggctgagacaggagacttgcttcjaacccggg1080


aggtggaggt tgccctgagctgattatcatgctgttgcactccagcttgggcgacagagc 1140


gagactttgt ctcaaaaaaagaagaaaagatattattcccatcatgatttcttgtgaata 1200


tttgttatat gtcttctgtaacctttcctctcccggacttgagcaacctacacactcaca 1260


tgtttactgg tagatatgtttaaaagcaaaataaaggtattggtataaaaaaaaaaaaaa 1320


aaaaactcga g 1331


<210> 28
<211> 1333
<212> DNA
<213> Homo sapien
<400> 28


cggcggtggatatccgagacaatctgctgggaatttcttgggttgacagctcttggatcc60


ctattttgaacagtggtagtgtcctggattacttttcagaaagaagtaatcctttttatg120


acagaacatgtaataatgaagtggtcaaaatgcagaggctaacattagaacacttgaatc180


agatggttggaatcgagtacatccttttgcatgctcaagagcccattcttttcatcattc240


ggaagcaacagcggcagtcccctgcccaagttatcccactagctgattactatatcattg300


ctggagtgatctatcaggcaccagacttgggatcagttataaactctagagtgcttactg360


cagtgcatggtattcagtcagcttttgatgaagctatgtcatactgtcgatatcatcctt420


ccaaagggtattggtggcacttcaaagatcatgaagagcaagataaagtcagacctaaag480


ccaaaaggaaagaagaaccaagctctatttttcagagacaacgtgtggatgctttacttt540


tagacctcagacaaaaatttccacccaaatttgtgcagctaaagcctggagaaaagcctg600


ttccagtggatcaaacaaagaaagaggcagaacctataccagaaactgtaaaacctgagg660


agaaggagaccacaaagaatgtacaacagacagtgagtgctaaaggcccccctgaaaaac720


ggatgagacttcagtgagtactggacaaaagagaagcctggaagactcctcatgctagtt780


atcatacctcagtactgtggctcttgagctttgaagtactttattgtaaccttcttattt840




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
12
gtatggaatgcgcttattttttgaaaggatattaggccggatgtggtggctcacgcctgt900


aatcccagcactttgggaggccatggcgggtggatcacttgaggtcagaagttcaagacc960


agcctgaccaatatggtgaaaccccgtctctactaaaaatacaaaaattagccgggcgtg1020


gtggcgggcgcccatagtcccagctactcgggaggctgagacaggagacttgcttgaacc1080


cgggaggtggaggttgccctgagctgattatcatgctgttgcactccagcttgggcgaca1140


gagcgagactttgtctcaaaaaagaagaaaagatattattcccatcatgatttcttgtga1200


atatttgtgatatgtcttctgtaacctttcctctcccggacttgagcaacctacacactc1260


acatgtttactggtagatatgtttaaaagcaaaataaaggtatttgtataaaaaaaaaaa1320


aaaaaaactcgag 1333


<210> 29
<211> 813
<212> DNA
<213> Homo sapien
<400> 29


ctgagctgca cttcagcgaattcacctcggctgtggctgacatgaagaactccgtggcgg 60


accgagacaa cagccccagctcctgtgctggcctcttcattgcttcacacatcgggtttg 120


actggcccgg ggtctgggtccacctggacatcgctgctccagtgcatgctggcgagcgag 180


ccacaggctt tggggtggctctcctactggctctttttggccgtgcctccgaggacccgc 240


tgctgaacct ggtatccccgctggactgtgaggtggatgcccaggaaggcgacaacatgg 300


ggcgtgactc caagagacggaggctcgtgtgagggctacttcccagctggtgacacaggg 360


ttccttacct cattttgcactgactgattttaagcaattgaaagattaactaactcttaa 420


gatgagtttg gcttctccttctgtgcccag,tggtgacaggagtgagccattcttctctta 480


gaagcagctt aggggcttggtggggtctggagaaaattgtcacagaccccataggtctcc 540


atctgtaagc tctgtcccttgtcctccaccctggtctttagagccacctcaggtcaccct 600


ctgtagtgag tgtacttcctgacccaggcccttgctcaagctggggctccctggggtgtc 660


__ taaccagccc gggtaga~ ~actggctgttagggaccccattctgtgaagcaggagac 720
t


cctcacagct cccaccaacccccagttcac_ attaaa~at-g'gccacaacat - 78-0-----

ttgaagttga -


aaaaaaaaaa aaaaaaaaaaaaaaaaactcgag 813


<210> 30
<211> 1316
<212> DNA
<213> Homo sapien
<400> 30
caggcgcccagtcatggcccaagagacagcaccaccgtgtggcccagtctcaaggggtga60


cagtccaatcatagaaaagatggaaaaaaggacatgtgccctgtgccctgaaggccacga120


gtggagtcaaatatacttttcaccatcaggaaatatagttgctcatgaaaactgtttgct180


gtattcatcaggactggtggagtgtgagactcttgatctacgtaatacaattagaaactt240


tgatgtcaaatctgtaaagaaagagatctggagaggaagaagattgaaatgctcattctg300


taacaaaggaggcgccaccgtggggtgtgatttatggttctgtaagaagagttaccacta360


tgtctgtgccaaaaaggaccaagcaattcttcaagttgatggaaaccatggaacttacaa420


attattttgcccagaacattctccagaacaagaagaggccactgaaagtgctgatgaccc480


aagcatgaagaagaagagaggaaaaaacaaacgcctctcatcaggccctcctgcacagcc540


aaaaacgatgaaatgtagtaacgccaaaagacatatgacagaagagcctcatggtcacac600


agatgcagctgtcaaatctccttttcttaagaaatgccaggaagcaggacttcttactga660


actatttgaacacatactagaaaatatggattcagttcatggaagacttgtggatgagac720


tgcctcagagtcggactatgaagggatcgagaccttactgtttgactgtggattatttaa780


agacacactaagaaaattccaagaagtaatcaagagtaaagcttgtgaatgggaagaaag840


gcaaaggcagatgaagcagcagcttgaggcacttgcagacttacaacaaagcttgtgctc900


atttcaagaaaatggggacctggactgctcaagttctacatcaggatccttgctacctcc960


tgaggaccaccagtaaaagctgttcctcaggaaaactggatggggcctccatgttctcca1020


aggatcgaggaagtcttcctgcctaccctgcccaccccagtcaagggcagcaacaccaga1080


gctttgctcagccttaaatggaatcttagagctttctcttgcttctgctactcctacaga1140


tggcctcatcatggtctccactcagtattaataactccatcagcatagagcaaactcaac1200


actgtgcattgcacactgttaccatgggtttatgctcactatcatatcacattgccaata1260




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
13
tttagcacac ttaataaatg cttgtcaaaa cccaaaaaaa aaaaaaaaaa ctcgag 1316
<210> 31
<211> 1355
<212> DNA
<213> Homo sapien
<400>
31


cggcggtggatatccgagacaatctgctgggaatttcttgggttgacagctcttggatcc 60


ctattttgaacagtggtagtgtcctggattacttttcagaaagaagtaatcctttttatg 120


acagaacatgtaataatgaagtggtcaaaatgcagaggctaacattagaacacttgaatc 180


agatggttggaatcgagtacatccttttgcatgctcaagagcccattcttttcatcattc 240


ggaagcaacagcggcagtcccctgcccaagttatcccactagctgattactatatcattg 300


ctggagtgatctatcaggcaccagacttgggatcagttataaactctagagtgcttactg 360


cagtgcatggtattcagtcagcttttgatgaagctatgtcatactgtcgatatcatcctt 420


ccaaagggtattggtggcacttcaaagatcatgaagagcaagataaagtcagacctaaag 480


ccaaaaggaaagaagaaccaagctctatttttcagagacaacgtgtggatgctttacttt 540


tagacctcagacaaaaatttccacccaaatttgtgcagctaaagcctggagaaaagcctg 600


ttccagtggatcaaacaaagaaagaggcagaacctataccagaaactgtaaaacctgagg 660


agaaggagaccacaaagaatgtacaacagacagtgagtgctaaaggcccccctgaaaaac 720


ggatgagacttcagtgagtactggacaaaagagaagcctggaagactcctcatgctagtt 780


atcatacctcagtactgtggctcttgagctttgaagtactttattgtaaccttcttattt 840


gtatggaatgcgcttattttttgaaaggatattaggccggatgtggtggctcacgcctgt 900


aatcccagcactttgggaggccatggcgggtggatcacttgaggtcagaagttcaagacc 960


agcctgaccaatatggtgaaaccccgtctctactaaaaatacaaaaattagccgggcgtg 1020


gtggcgggcgcccatagtcccagctactcgggaggctgagacaggagacttgcttgaacc 1080


cgggaggtggaggttgccctgagctgattatcatgctgttgcactccagcttgggcgaca 1140


gaacgagactttgtctcaaaaaaagaagaaaagatattattcccatcatgatttcttgtg 1200


aatatttgttatatgtcttctggtaacctt_ gacttgaagcaacctcacac--1260
tcctctcccg


actcacatgtttactggtagatatgttttaaaagcaaaataaaggtatttgtttttccaa 1320


aaaaaaaaaaaaaaaaaaaaaaaaaaaaactcgag 1355


<210> 32
<211> 80
<212> PRT
<213> Homo sapien
<400> 32
Val Ser Arg Ile Arg Gly Gly Ala Lys Lys Arg Lys Lys Lys Ser Tyr
1 5 10 15
Thr Thr Pro Lys Lys Asp Lys His Gln Arg Lys Lys Val Gln Pro Ala
20 25 30
Val Leu Lys Tyr Tyr Lys Val Asp Glu Asn G1y Lys Tle Ser Cys Leu
35 40 45
Arg Arg Glu Cys Pro Ser Asp Glu Cys Gly Ala Gly Val Phe Met Ala
50 55 60
Sex His Phe Asp Arg His Tyr Cys Gly Lys Cys Cys Leu Thr His Cys
65 70 75 80
<210> 33
<211> 130
<212> PRT
<213> Homo sapien
<400> 33
Glu Ile Ser Asn Glu Val Arg Lys Phe Arg Thr Leu Thr Glu Leu Ile
1 5 10 15
Leu Asp Ala Gln Glu His Val Lys Asn Pro Tyr Lys Gly Lys Lys Leu


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
14
20 25 30
Lys Lys His Pro Asp Phe Pro Lys Lys Pro Leu Thr Pro Tyr Phe Arg
35 4Q 45
Phe Phe Met Glu Lys Arg Ala Lys Tyr Ala Lys Leu His Pro Gln Met
50 55 60
Ser Asn Leu Asp Leu Thr Lys Ile Leu Ser Lys Lys Tyr Lys Glu Leu
65 70 75 80
Pro G1u Lys Lys Lys Met Lys Tyr Val Pro Asp Phe Gln Arg Arg Glu
85 90 95
Thr Gly Val Arg Ala Lys Pro Gly Pro Ile Gln Gly Gly Ser Pro Pro
100 105 110
Pro Tyr Pro Glu Cys Gln Glu Ser Asp Ile Pro Glu Lys Pro Gln Asp
215 120 125
Pro Pro
130
<210> 34
<211> 506
<212> PRT
<213> Homo sapien
r
<400> 34
Asn Ser Glu Lys Glu Ile Pro Val Leu Asn Glu Leu Pro Val Pro Met
1 5 10 15
Val Ala Arg Tyr Ile Arg Ile Asn Pro Gln Ser Trp Phe Asp Asn Gly
20 25 30
Ser Ile Cys Met Arg Met Glu Ile Leu Gly Cys Pro Leu Pro Asp Pro
35 40 45
Asn Asn Tyr Tyr His Arg Arg Asn Glu Met Thr Thr Thr Asp Asp Leu
50 55 60
Asp Phe Lys His His Asn Tyr Lys Glu Met Arg Gln Leu Met Lys Val
65 70 75 80
Val Asn Glu Met Cys Pro Asn Ile Thr Arg Ile Tyr Asn Ile G1y Lys
85 90 95
Ser His Gln Gly Leu Lys Leu Tyr Ala Val Glu Ile Ser Asp His Pro
200 105 110
Gly Glu His Glu Val Gly Glu Pro G1u Phe His Tyr Ile A1a Gly Ala
115 120 125
His Gly Asn Glu Val Leu Gly Arg Glu Leu Leu Leu Leu Leu Leu His
130 135 140
Phe Leu Cys Gln Glu Tyr Ser Ala Gln Asn Ala Arg Ile Val Arg Leu
145 150 155 160
Val Glu Glu Thr Arg Ile His Ile Leu Pro Ser Leu Asn Pro Asp Gly
165 170 175
Tyr G1u Lys Ala Tyr Glu Gly Gly Ser Glu Leu Gly G1y Trp Ser Leu
180 185 190
Gly Arg Trp Thr His Asp Gly Ile Asp Ile Asn Asn Asn Phe Pro Asp
195 200 205
Leu Asn Ser Leu Leu Trp Glu Ala Glu Asp Gln Gln Asn Ala Pro Arg
210 215 220
Lys Val Pro Asn His Tyr I1e Ala Ile Pro Glu Trp Phe Leu Ser Glu
225 230 235 240
Asn Ala Thr Val Ala Thr Glu Thr Arg Ala Val Ile Ala Trp Met Glu
245 250 255
Lys Ile Pro Phe Val Leu Gly Gly Asn Leu Gln Gly Gly Glu Leu Val
260 265 270
Va1 Ala Tyr Pro Tyr Asp Met Val Arg Ser Leu Trp Lys Thr Gln Glu
275 280 285


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
His Thr Pro Thr Pro Asp Asp His Val Phe Arg Trp Leu AIa Tyr Ser
290 295 300
Tyr Ala Ser Thr His Arg Leu Met Thr Asp Ala Arg Arg Arg Val Cys
305 310 315 320
His Thr Glu Asp Phe Gln Lys Glu Glu G1y Thr Val Asn Gly Ala Ser
325 330 335
Trp His Thr Val Ala Gly Ser Leu Asn Asp Phe Ser Tyr Leu His Thr
340 345 350
Asn Cys Phe Glu Leu Ser Ile Tyr Val Gly Cys Asp Lys Tyr Pro His
355 360 365
Glu Ser Glu Leu Pro Glu Glu Trp Glu Asn Asn Arg Glu Ser Leu Ile
370 375 380
Val Phe Met G1u Gln Val His Arg Gly Ile Lys Gly Ile Val Arg Asp
385 390 395 400
Leu Gln GIy Lys Gly Ile Ser Asn A1a Val Ile Ser Val Glu Gly Val
405 410 415
Asn His Asp Tle Arg Thr Ala Ser Asp Gly Asp Tyr Trp Arg Leu Leu
420 425 430
Asn Pro Gly Glu Tyr Val Val Thr Ala Lys Ala Glu Gly Phe Ile Thr
435 440 445
Ser Thr Lys Asn Cys Met Val Gly Tyr Asp Met Gly A1a Thr Arg Cys
450 455 460
Asp Phe Thr Leu Thr Lys Thr Asn Leu Ala Arg Ile Arg Glu Ile Met
465 470 475 480
Glu Thr Phe Gly Lys Gln Pro Val Sex Leu Pro Ser Arg Arg Leu Lys
485 490 495
Leu Arg Gly Arg Lys Arg Arg Gln Arg Gly
500 505
<210> 35
<211> 96
<212> PRT
<213> Homo sapien
<400> 35
Met Asn Gly Glu Ala Asp Cys Pro Thr Asp Leu Glu Met Ala Ala Pro
1 5 l0 15
Arg Gly Gln Asp Arg Trp Ser Gln Glu Asp Met Leu Thr Leu Leu Glu
25 30
Cys Met Lys Asn Asn Leu Pro Ser Asn Asp Ser Ser Gln Phe Lys Thr.
35 40 45
Thr Gln Thr His Met Asp Arg Glu Lys Val Ala Leu Lys Asp Phe Ser
50 55 60
Gly Asp Met Cys Lys Leu Lys Trp Val Glu I1e Ser Asn Glu Val Arg
65 70 75 80
Lys Phe Arg Thr Leu Thr Glu Leu Tle Leu Asp Thr Gln Glu His Val
85 90 95
<210> 36
<211> 129
<212> PRT
<213> Homo sapien
<400> 36
Gly Ile Val Val Phe Ser Leu Gly Ser Met Val Ser Glu Ile Pro Glu
1 5 10 15
Lys Lys Ala Val Ala Ile A1a Asp Ala Leu Gly Lys Ile Pro Gln Thr
20 25 30


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
16
Val Leu Trp Arg Tyr Thr Gly Thr Arg Pro Ser Asn Leu Ala Asn Asn
35 40 45
Thr Ile Leu Val Gln Trp Leu Pro Gln Asn Asp Leu Leu Gly His Pro
50 55 60
Met Thr Arg Ala Phe Ile Thr His Ala Ser Ser His G1y Val Asn Glu
65 70 75 80
Ser Ile Cys Asn Gly Val Pro Met Val Met Ile Pro Leu Phe Gly Asp
85 90 95
G1n Met Asp Asn Ala Lys Arg Arg Glu Thr Lys Gly Ala Gly Val Thr
100 105 110
Leu Asn Val Leu Glu Met Thr Ser Glu Asp Leu Glu Asp Ala Leu Lys
115 120 125
Ser
<210> 37
<211> 238
<212> PRT
<213> Homo sapien
<400> 37
Asn Leu Leu Gly Tle Ser Trp Val Asp Ser Ser Trp Ile Pro Ile Leu
1 5 10 15
Asn Ser Gly Ser Val Leu Asp Tyr Phe Ser Glu Arg Ser Asn Pro Phe
20 25 30
Tyr Asp Arg Thr Cys Asn Asn Glu Val Val Lys Met Gln Arg Leu Thr
35 40 45
Leu Glu His Leu Asn Gln Met Val Gly Ile Glu Tyr Ile Leu Leu His
50 55 60 --
Ala Gln G1u Pro Ile Leu Phe I1e Ile Arg Lys Gln Gln Arg Gln Ser
65 70 75 80
Pxo Ala G1n Va1 Ile Pro Leu Ala Asp Tyr Tyr Ile Ile Ala Gly Val
85 90 95
Ile Tyr Gln Ala Pro Asp Leu Gly Ser Val I1e Asn Ser Arg Val Leu
100 105 110
Thr Ala Val Hi.s Gly Ile Gln Ser Ala Phe Asp Glu Ala Met Ser Tyr
115 120 125
Cys Arg Tyr His Pro Ser Lys Gly Tyr Trp Trp His Phe Lys Asp His
130 135 140
Glu Glu Gln Asp Lys Val Arg Pro Lys Ala Lys Arg Lys Glu Glu Pro
145 150 155 160
Ser Ser Ile Phe Gln Arg Gln Arg Val Asp Ala Leu Leu Leu Asp Leu
165 170 175
Arg Gln Lys Phe Pro Pro Lys Phe Val Gln Leu Lys Pro Gly Glu Lys
180 185 190
Pro Val Pro Val Asp Gln Thr Lys Lys Glu Ala Glu Pro I1e Pro G1u
195 200 205
Thr Val Lys Pro Glu Glu Lys Glu Thr Thr Lys Asn Val Gln Gln Thr
210 215 220
Val Ser Ala Lys Gly Pro Pro Glu Lys Arg Met Arg Leu Gln
225 230 235
<210> 38
<211> 202
<212> PRT
<213> Homo sapien
<400> 38


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
17
Lys Gly Ser Glu Gly Glu Asn Pro Leu Thr Va1 Pro Gly Arg Glu Lys
1 5 10 15
Glu Gly Met Leu Met Gly Val Lys Pro G1y Glu Asp Ala Ser Gly Pro
20 25 30
A1a G1u Asp Leu Val Arg Arg Ser Glu Lys Asp Thr Ala Ala Val Val
35 40 45
Ser Arg Gln Gly Ser Ser Leu Asn Leu Phe Glu Asp Val Gln Ile Thr
50 55 60
Glu Pro Glu Ala Glu Pro Glu Ser Lys Ser Glu Pro Arg Pro Pro Ile
65 70 75 80
Ser Ser Pro Arg Ala Pro Gln Thr Arg A1a Val Lys Pro Arg Leu His
85 90 95
Pro Va1 Lys Pro Met Asn Ala Thr Ala Thr Lys Val Ala Asn Cys Ser
100 105 110
Leu Gly Thr Ala Thr Ile Ile Gly Glu Asn Leu Asn Asn Glu Val Met
115 120 125
Met Lys Lys Tyr Ser Pro Ser Asp Pro Ala Phe Ala Tyr Ala Gln Leu
130 135 140
Thr His Asp Glu Leu Ile G1n Leu Val Leu Lys Gln Lys Glu Thr Ile
145 150 155 160
Ser Lys Lys Glu Phe Gln Val Arg Glu Leu Glu Asp Tyr I1e Asp Asn
165 170 175
Leu Leu Val Arg Val Met Glu Glu Thr Pro Asn Ile Leu Arg Ile Pro
180 185 190
Thr Gln Va1 Gly Lys Lys Ala Gly Lys Met
195 200
<210> 39
<211> 243
<212> PRT
<213> Homo sapien
<400> 39
Va1 Asn Ala Leu Gly Ile Met Ala Ala Val Asp Ile Arg Asp Asn Leu
1 5 10 15
Leu Gly Ile Ser Trp Val Asp Ser Ser Trp Ile Pro Ile Leu Asn Ser
20 25 30
Gly Ser Val Leu Asp Tyr Phe Ser Glu Arg Ser Asn Pro Phe Tyr Asp
35 40 45
Arg Thr Cys Asn Asn Glu Val Val Lys Met Gln Arg Leu Thr Leu Glu
50 55 60
His Leu Asn Gln Met Val Gly Ile Glu Tyr Tle Leu Leu His Ala Gln
65 70 75 80
Glu Pro I1e Leu Phe Ile Ile Arg Lys Gln Gln Arg Gln Ser Pro Ala
85 90 95
Gln Val Ile Pro Leu A1a Asp Tyr Tyr Ile Ile Ala Gly Val Ile Tyr
100 105 110
Gln Ala Pro Asp Leu Gly Ser Val Tle Asn Ser Arg Val Leu Thr Ala
115 120 125
Val His Gly Ile Gln Ser Ala Phe Asp Glu Ala Met Ser Tyr Cys Arg
130 135 140
Tyr His Pro Ser Lys Gly Tyr Trp Trp His Phe Lys Asp His Glu Glu
145 - 150 155 160
Gln Asp Lys Val Arg Pro Lys Ala Lys Arg Lys Glu Glu Pro Ser Ser
165 170 175
Ile Phe Gln Arg Gln Arg Val Asp Ala Leu Leu Leu Asp Leu Arg Gln
180 185 190
Lys Ile Ser Thr Gln Ile Cys Ala Val Asp Gln Thr Lys Lys Glu Ala


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
195 200 205
Glu Pro Ile Pro G1u Thr Val Lys Pro Glu Glu Lys Glu Thr Thr Lys
210 215 220
Asn Val Gln Gln Thr Val Ser Ala Lys Gly Pro Pro Glu Lys Arg Met
225 230 235 240
Arg Leu Gln
<210> 40
<211> 245
<212> PRT
<213> Homo sapien
<400> 40
Ala Ala Val Asp Ile Arg Asp Asn Leu Leu Gly Tle Ser Trp Val Asp
1 5 10 15
Ser Ser Trp Ile Pro Ile Leu Asn Ser Gly Ser Val Leu Asp Tyr Phe
20 25 30
Ser Glu Arg Ser Asn Pro Phe Tyr Asp Arg Thr Cys Asn Asn Glu Val
35 40 45
Val Lys Met Gln Arg Leu Thr Leu Glu His Leu Asn Gln Met Val Gly
50 55 60
Ile G1u Tyr Ile Leu Leu His Ala Gln Glu Pro Ile Leu Phe Ile Ile
65 70 75 80
Arg Lys Gln Gln Arg Gln Ser Pro Ala Gln Val Ile Pro Leu Ala Asp
85 90 95
Tyr Tyr Ile T1e Ala Gly Val Tle Tyr Gln Ala Pro Asp Leu Gly Ser
100 105 110
Val Ile Asn Ser Arg Val Leu Thr Ala Val His Gly Ile G1n Ser Ala
115 120 125
Phe Asp Glu Ala Met Ser Tyr Cys Arg Tyr His Pro Ser Lys Gly Tyr
130 135 140
Trp Trp His Phe Lys Asp His Glu Glu Gln Asp Lys Val Arg Pro Lys
145 150 155 160
Ala Lys Arg Lys Glu Glu Pro Ser Ser Ile Phe Gln Arg G1n Arg Val
165 170 175
Asp Ala Leu Leu Leu Asp Leu Arg Gln Lys Phe Pro Pro Lys Phe Val
180 185 190
Gln Leu Lys Pro Gly Glu Lys Pro Val Pro Val Asp Gln Thr Lys Lys
195 200 205
Glu Ala Glu Pro Ile Pro Glu Thr Val Lys Pro GIu Glu Lys Glu Thr
210 215 220
Thr Lys Asn Val Gln Gln Thr Va1 Ser Ala Lys Gly Pro Pro GIu Lys
225 230 235 240
Arg Met Arg Leu Gln
245
<210> 41
<211> 163
<212> PRT
<213> Homo sapien
<400> 41
Gly Glu Arg Gln Gly Leu Val Ala Arg Ala Arg Leu Ser Leu Arg Pro
1 5 10 15
Ser Ile Pro Glu Leu Ser Glu Arg Thr Ser Arg Pro Cys Arg Ala Ser
20 25 30
Pro Ala Ser Leu Pro Ser G1n His Thr Ser Ser Pro Ala Gln Ala Arg


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
19
35 40 45
Val Arg Asn Leu Ala Gln Ser Thr Phe Pro Leu Ala Ala Gln Glu Thr
50 55 60
Pro Gly Arg Ala Pro Ala His Ala Pro Leu Ser Ser Phe Val Pro Gly
65 70 75 80
Val Gly Gly Arg Ser Pro Ala Ser Val Gly Ile Ser Ala Pro Gly Gly
85 90 95
G1y Pro Ser Gly Ala Ala Ala Lys Ile Pro Leu G1u Leu Thr Gln Ser
100 105 110
Arg Va1 G1n Lys Ile Trp Val Pro Val Asp His Arg Pro Ser Leu Pro
115 120 125
Arg Ser Cys Gly Pro Lys Leu Thr Asn Ser Pro Ala Val Phe Val Met
130 135 140
Val G1y Leu Pro Arg Pro Gly Gln Asp Leu Leu Leu His Glu Ser Leu
145 150 155 160
Leu Ala Ala
<210> 42
<211> 243
<212> PRT
<213> Homo sapien
<400> 42
Val Asp Ile Arg Asp Asn Leu Leu Gly Ile Ser Trp Val Asp Ser Ser
1 5 10 15
Trp Ile Pro Ile Leu Asn Ser Gly Ser Val Leu Asp Tyr Phe Ser Glu
20 25 30
Arg Ser Asn Pro Phe Tyr Asp Arg Thr Cys Asn Asn Glu Val Val Lys
35 40 45
Met Gln Arg Leu Thr Leu Glu His Leu Asn Gln Met Val Gly Ile Glu
50 55 60
Tyr Ile Leu Leu His A1a Gln G1u Pro Ile Leu Phe Ile Ile Arg Lys
65 70 75 80
G1n Gln Arg Gln Ser Pro Ala Gln Val Ile Pro Leu A1a Asp Tyr Tyr
85 90 95
Ile Ile Ala Gly Val Ile Tyr Gln Ala Pro Asp Leu Gly Ser Val Ile
100 105 110
Asn Ser Arg Va1 Leu Thr Ala Val His Gly Ile G1n Ser Ala Phe Asp
115 120 125
Glu Ala Met Ser Tyr Cys Arg Tyr His Pro Ser Lys Gly Tyr Trp Trp
130 135 140
His Phe Lys Asp His Glu Glu Gln Asp Lys Val Arg Pro Lys A1a Lys
145 150 155 160
Arg Lys Glu Glu Pro Ser Ser Ile Phe Gln Arg Gln Arg Val Asp Ala
165 170 175
Leu Leu Leu Asp Leu Arg Gln Lys Phe Pro Pro Lys Phe Val Gln Leu
180 185 190
Lys Pro Gly Glu Lys Pro Val Pro Val Asp Gln Thr Lys Lys Glu Ala
195 200 205
G1u Pro I1e Pro Glu Thr Val Lys Pro Glu Glu Lys Glu Thr Thr Lys
210 215 220
Asn Val Gln Gln Thr Val Ser Ala Lys Gly Pro Pro Glu Lys Arg Met
225 230 235 240
Arg Leu Gln
<210> 43


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
2U
<211> 244
<212> PRT
<213> Homo sapien
<400> 43
Ala Val Asp Ile Arg Asp Asn Leu Leu Gly Ile Ser Trp Va1 Asp Ser
1 5 10 15
Ser Trp Ile Pro Ile Leu Asn Ser Gly Ser Val Leu Asp Tyr Phe Ser
20 25 30
Glu Arg Ser Asn Pro Phe Tyr Asp Arg Thr Cys Asn Asn Glu Val Val
35 40 45
Lys Met Gln Arg Leu Thr Leu Glu His Leu Asn G1n Met Val G1y Ile
50 55 60
G1u Tyr Tle Leu Leu His Ala Gln Glu Pro Ile Leu Phe Ile I1e Arg
65 70 75 80
Lys Gln Gln Arg Gln Ser Pro Ala Gln Val Ile Pro Leu Ala Asp Tyr
85 90 95
Tyr Ile Ile Ala Gly Val Ile Tyr Gln Ala Pro Asp Leu Gly Ser Val
100 105 110
Ile Asn Ser Arg Val Leu Thr Ala Va1 His Gly I1e Gln Ser A1a Phe
115 120 125
Asp Glu Ala Met Ser Tyr Cys Arg Tyr His Pro Ser Lys Gly Tyr Trp
130 135 140
Trp His Phe Lys Asp His Glu Glu Gln Asp Lys Val Arg Pro Lys Ala
145 150 155 160
Lys Arg Lys G1u Glu Pro Ser Ser Ile Phe Gln Arg Gln Arg Val Asp
165 170 175
Ala Leu Leu Leu Asp Leu Arg Gln Lys Phe Pro Pro Lys Phe Val G1n
180 185 190
Leu Lys Pro Gly Glu Lys Pro Val Pro Val Asp Gln Thr Lys Lys Glu
195 200 205
Ala Glu Pro Ile Pro Glu Thr Val Lys Pro Glu Glu Lys Glu Thr Thr
210 215 220
Lys Asn Val Gln G1n Thr Val Ser Ala Lys Gly Pro Pro Glu Lys Arg
225 230 235 240
Met Arg Leu Gln
<210> 44
<211> 109
<212> PRT
<213> Homo sapien
<400> 44
Glu Leu His Phe Ser Glu Phe Thr Ser Ala Val Ala Asp Met Lys Asn
1 5 10 15
Ser Val Ala Asp Arg Asp Asn Ser Pro Ser Ser Cys Ala G1y Leu Phe
20 25 30
Ile Ala Ser His Ile Gly Phe Asp Trp Pro Gly Val Trp Val His Leu
35 40 45
Asp I1e Ala Ala Pro Va1 His Ala Gly Glu Arg Ala Thr Gly Phe Gly
50 55 60
Val Ala Leu Leu Leu Ala Leu Phe GIy Arg Ala Ser G1u Asp Pro Leu
65 70 75 80
Leu Asn Leu Val Ser Pro Leu Asp Cys Glu Val Asp Ala Gln Glu Gly
85 90 95
Asp Asn Met Gly Arg Asp Ser Lys Arg Arg Arg Leu Val
100 105


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
21
<210> 45
<211> 324
<212> PRT
<213> Homo sapien
<400> 45
Arg Arg Pro Va1 Met Ala Gln Glu Thr Ala Pro Pro Cys Gly Pro Val
1 5 10 15
Ser Arg Gly Asp Ser Pro Ile Ile Glu Lys Met Glu Lys Arg Thr Cys
20 25 30
Ala Leu Cys Pro Glu Gly His Glu Trp Ser Gln Ile Tyr Phe Ser Pro
35 40 45
Ser Gly Asn Tle Val Ala His Glu Asn Cys Leu Leu Tyr Ser Ser Gly
50 55 60
Leu Val Glu Cys Glu Thr Leu Asp Leu Arg Asn Thr Ile Arg Asn Phe
65 70 75 80
Asp Va1 Lys Ser Val Lys Lys Glu Ile Trp Arg Gly Arg Arg Leu Lys
85 90 95
Cys Ser Phe Cys Asn Lys Gly G1y Ala Thr Val Gly Cys Asp Leu Trp
100 105 110
Phe Cys Lys Lys Ser Tyr His Tyr Val Cys Ala Lys Lys Asp Gln Ala
115 120 125 ,
Ile Leu Gln Val Asp Gly Asn His Gly Thr Tyr Lys Leu Phe Cys Pro
130 135 140
Glu His Ser Pro G1u Gln Glu Glu Ala Thr Glu Ser Ala Asp Asp Pro
145 150 155 160
Ser Met Lys Lys Lys Arg Gly Lys Asn Lys Arg Leu Ser Ser Gly Pro
165 170 175
Pro Ala Gln Pro Lys Thr Met Lys Cys Ser Asn A1a Lys Arg His Met
180 185 190
Thr G1u Glu Pro His Gly His Thr Asp A1a Ala Val Lys Ser Pro Phe
l95 200 205
Leu Lys Lys Cys Gln Glu Ala Gly Leu Leu Thr Glu Leu Phe Glu His
210 215 220
Ile Leu G1u Asn Met Asp Ser Val His Gly Arg Leu Val Asp Glu Thr
225 230 235 240
Ala Ser Glu Ser Asp Tyr Glu Gly Ile Glu Thr°Leu Leu Phe Asp Cys
245 250 255
G1y Leu Phe Lys Asp Thr Leu Arg Lys Phe Gln Glu Val Ile Lys Ser
260 265 270
Lys Ala Cys Glu Trp Glu Glu Arg Gln Arg Gln Met Lys Gln Gln Leu
275 280 285
Glu Ala Leu Ala Asp Leu Gln Gln Ser Leu Cys Ser Phe Gln Glu Asn
290 295 300
Gly Asp Leu Asp Cys Ser Ser Ser Thr Ser Gly Ser Leu Leu Pro Pro
305 310 315 320
Glu Asp His Gln
<210> 46
<211> 244
<212> PRT
<213> Homo sapien
<400> 46
Ala Val Asp Ile Arg Asp Asn Leu Leu Gly Ile Ser Trp Val Asp Ser
1 5 10 15


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
22
Ser Trp Ile Pro Ile Leu Asn Ser Gly Ser Val Leu Asp Tyr Phe Ser
20 25 30
Glu Arg Ser Asn Pro Phe Tyr Asp Arg Thr Cys Asn Asn Glu Val Val
35 40 45
Lys Met Gln Arg Leu Thr Leu Glu His Leu Asn Gln Met Val Gly Ile
50 55 60
Glu Tyr Ile Leu Leu His Ala Gln Glu Pro Ile Leu Phe Ile Tle Arg
65 70 75 80
Lys Gln Gln Arg Gln Ser Pro Ala Gln Val Ile Pro Leu Ala Asp Tyr
85 90 95
Tyr Ile Ile Ala Gly Val Ile Tyr Gln Ala Pro Asp Leu G1y Ser Val
100 105 110
Tle Asn Ser Arg Val Leu Thr Ala Val His Gly Tle Gln Ser Ala Phe
115 120 125
Asp Glu Ala Met Ser Tyr Cys Arg Tyr His Pro Ser Lys Gly Tyr Trp
130 135 140
Trp His Phe Lys Asp His Glu Glu Gln Asp Lys Val Arg Pro Lys Ala
145 150 155 160
Lys Arg Lys Glu Glu Pro Ser Ser Ile Phe Gln Arg Gln Arg Val Asp
165 170 175
Ala Leu Leu Leu Asp Leu Arg Gln Lys Phe Pro Pro Lys Phe Val Gln
180 185 190
Leu Lys Pro Gly Glu Lys Pro Val Pro Val Asp Gln Thr Lys Lys Glu
195 200 205
Ala Glu Pro Ile Pro Glu Thr Val Lys Pro Glu Glu Lys Glu Thr Thr
210 215 220
Lys Asn Va1 G1n Gln Thr Val Ser Ala Lys Gly Pro Pro Glu Lys Arg
225 230 235 240
Met Arg Leu Gln
<210> 47
<211> 14
<212> DNA
<213> Homo sapien
<400> 47
tttttttttt ttag 14
<210> 48
<211> 10
<212> DNA
<213> Homo sapien
<400> 48
cttcaacctc 10
<210> 49
<211> 496
<212> DNA
<213> Homo sapien
<400> 49
gcaccatgta ccgagcactt cggctcctcg cgcgctcgcg tcccctcgtg cgggctccag 60
ccgcagcctt agcttcggct cccggcttgg gtggcgcggc cgtgccctcg ttttggcctc 120
cgaacgcggc tcgaatggca agccaaaatt ccttccggat agaatatgat acctttggtg 180
aactaaaggt gccaaatgat aagtattatg gcgcccagac cgtgagatct acgatgaact 240
ttaagattgg aggtgtgaca gaacgcatgc caaccccagt tattaaagct tttggcatct 300


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
23
tgaagcgagc ggccgctgaa gtaaaccagg attatggtct tgatccaaag attgctaatg 360
caataatgaa ggcagcagat gaggtagctg aaggtaaatt aaatgatcat tttcctctcg 420
tggtatggca gactggatca ggaactcaga caaatatgaa tgtaaatgaa gtcattagcc 480
aatagagcaa ttgaaa 496
<210> 50
<211> 499
<212> DNA
<213> Homo sapien
<400> 50
agaaaaagtctatgtttgcagaaatacagatccaagacaaagacaggatgggcactgctg 60


gaaaagttattaaatgcaaagcagctgtgctttgggagcagaagcaacccttctccattg 120


aggaaatagaagttgccccaccaaagactaaagaagttcgcattaagattttggccacag 180


gaatctgtcgcacagatgaccatgtgataaaaggaacaatggtgtccaagtttccagtga 240


ttgtgggacatgaggcaactgggattgtagagagcattggagaaggagtgactacagtga 300


aaccaggtgacaaagtcatccctctctttctgccacaatgtagagaatgcaatgcttgtc 360


gcaacccagatggcaacctttgcattaggagcgatattactggtcgtggagtactggctg 420


atggcaccaccagatttacatgcaagggcgaaccagtccaccacttcatgaacaccagta 480


catttaccgagtacacagt 499


<210> 51
<211> 887
<212> DNA
<213> Homo sapien
<400> 51
gagtctgagcagaaaggaaaagcagccttggcagccacgttagaggaatacaaagccaca 60


gtggccagtgaccagatagagatgaatcgcctgaaggctcagctggagaatgaaaagcag 120


aaagtggcagagctgtattctatccataactctggagacaaatctgatattcaggacctc 180


ctggagagtgtcaggctggacaaagaaaaagcagagactttggctagtagcttgcaggaa 240


gatctggctcatacccgaaatgatgccaatcgattacaggatgccattgctaaggtagag 300


gatgaataccgagccttccaagaagaagctaagaaacaaattgaagatttgaatatgacg 360


ttagaaaaattaagatcagacctggatgaaaaagaaacagaaaggagtgacatgaaagaa 420


accatctttgaacttgaagatgaagtagaacaacatcgtgctgtgaaacttcatgacaac 480


ctcattatttctgatctagagaatacagttaaaaaactccaggaccaaaagcacgacatg 540


gaaagagaaataaagacactccacagaagacttcgggaagaatctgcggaatggcggcag 600


tttcaggctgatctccagactgcagtagtcattgcaaatgacattaaatctgaagcccaa 660


gaggagattggtgatctaaagcgccggttacatgaggctcaagaaaaaaatgagaaactc 720


acaaaagaattggaggaaataaagtcacgcaagcaagaggaggagcgaggcgggtataca 780


attacatgaatgccgttgagagagatttggcagccttaaggcagggaatgggactgagta 840


gaaggtcctcgacttcctcagagccaactcctacagtaaaaaccctc 887


<210> 52
<211> 491
<212> DNA
<213> Homo sapien
<400>
52


ggcacgagcttttccaaaaatcatgctgctcctttctctaaagttcttacattttataga 60


aaggaacctttcactcttgaggcctactacagctctcctcaggatttgccctatccagat 120


cctgctatagctcagttttcagttcagaaagtcactcctcagtctgatggctccagttca 180


aaagtgaaagtcaaagttcgagtaaatgtccatggcattttcagtgtgtccagtgcatct 240


ttagtggaggttcacaagtctgaggaaaatgaggagccaatggaaacagatcagaatgca 300


aaggaggaagagaagatgcaagtggaccaggaggaaccacatgttgaagagcaacagcag 360


cagacaccaggcagaaaataaggcagagtctgaagaaatggagacctctcaagctggatc 420


caaggataaaaagatggaccaaccaccccaagccaagaaggcaaaagtgaagaccagtac 480


tgtggacctgg 491




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
24
<210> 53
<211> 787
<212> DNA
<213> Homo sapien
<400> 53


aagcagttgagtaggcagaaaaaagaacctcttcattaaggattaaaatgtataggccag 60


cacgtgtaacttcgacttcaagatttctgaatccatatgtagtatgtttcattgtcgtcg 120


caggggtagtgatcctggcagtcaccatagctctacttgtttactttttagcttttgatc 180


aaaaatcttacttttataggagcagttttcaactcctaaatgttgaatataatagtcagt 240


taaattcaccagctacacaggaatacaggactttgagtggaagaattgaatctctgatta 300


ctaaaacattcaaagaatcaaatttaagaaatcagttcatcagagctcatgttgccaaac 360


tgaggcaagatggtagtggtgtgagagcggatgttgtcatgaaatttcaattcactagaa 420


ataacaatggagcatcaatgaaaagcagaattgagtctgttttacgacaaatgctgaata 480


actctggaaacctggaaataaacccttcaactgagataacatcacttactgaccaggctg 540


cagcaaattggcttattaatgaatgtggggccggtccagacctaataacattgtctgagc 600


agagaatccttggaggcactgaggctgaggagggaagctggccgtggcaagtcagtctgc 660


ggctcaataatgcccaccactgtggaggcagcctgatcaataacatgtggatcctgacag 720


cagctcactgcttcagaagcaactctaatcctcgtgactggattgccacgtctggtattt 780


ccacaac 787


<210> 54
<211> 386
<212> DNA
<213> Homo sapien
<400> 54


ggcattttcagtgtgtccagtgcatctttagtggaggttcacaagtctgaggaaaatgag 60


gagccaatggaaacagatcagaatgcaaaggaggaagagaagatgcaagtggaccaggag 120


gaaccacatgttgaagagcaacagcagcagacaccagcagaaaataaggcagagtctgaa 180


gaaatggagacctctcaagctggatccaaggataaaaagatggaccaaccaccccaagcc 240


aagaaggcaaaagtgaagaccagtactgtggacctgccaatcgagaatcagctattatgg 300


cagatagacagagagatgctcaacttgtacattgaaaatgagggtaagatgatcatgcag 360


gataaactggagaaggagcggaatga 386


<210> 55
<211> 1462
<212> DNA
<213> Homo sapien
<400> 55


aagcagttgagtaggcagaaaaaagaacctcttcattaaggattaaaatgtataggccag 60


cacgtgtaacttcgacttcaagatttctgaatccatatgtagtatgtttcattgtcgtcg 120


caggggtagtgatcctggcagtcaccatagctctacttgtttactttttagcttttgatc 180


aaaaatcttacttttataggagcagttttcaactcctaaatgttgaatataatagtcagt 240


taaattcaccagctacacaggaatacaggactttgagtggaagaattgaatctctgatta 300


ctaaaacattcaaagaatcaaatttaagaaatcagttcatcagagctcatgttgccaaac 360


tgaggcaagatggtagtggtgtgagagcggatgttgtcatgaaatttcaattcactagaa 420


ataacaatggagcatcaatgaaaagcagaattgagtctgttttacgacaaatgctgaata 480


actctggaaacctggaaataaacccttcaactgagataacatcacttactgaccaggctg 540


cagcaaattggcttattaatgaatgtggggccggtccagacctaataacattgtctgagc 600


agagaatccttggaggcactgaggctgaggagggaagctggccgtggcaagtcagtctgc 660


ggctcaataatgcccaccactgtggaggcagcctgatcaataacatgtggatcctgacag 720


cagctcactgcttcagaagcaactctaatcctcgtgactggattgccacgtctggtattt 780


ccacaacatttcctaaactaagaatgagagtaagaaatattttaattcataacaattata 840


aatctgcaactcatgaaaatgacattgcacttgtgagaCttgagaacagtgtcaccttta 900


ccaaagatatccatagtgtgtgtctcccagctgctacccagaatattccacctggctcta 960




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
~$
ctgcttatgtaacaggatggggcgctcaagaatatgctggccacacagttccagagctaa 1020


ggcaaggacaggtcagaataataagtaatgatgtatgtaatgcaccacatagttataatg 1080


gagccatcttgtctggaatgctgtgtgctggagtacctcaaggtggagtggacgcatgtc 1140


agggtgactctggtggcccactagtacaagaagactcacggcggctttggtttattgtgg 1200


ggatagtaagctggggagatcagtgtggcctgccggataagccaggagtgtatactcgag 1260


tgacagcatacattgactggattaggcaacaaactgggatctagtgcaacaagtgcatcc 1320


ctgttgcaaagtctgtatgcaggtgtgcctgtcttaaattccaaagctttacatttcaac 1380


tgaaaaagaaactagaaatgtcctaatttaacatcttgttacataaatatggtttaacaa 1440


aaaaaaaaaaaaaaaactcgag 1462


<210> 56
<211> 159
<212> PRT
<213> Homo sapien
<400> 56
Thr Met Tyr Arg Ala ~eu Arg Leu Leu Ala Arg Ser Arg Pro Leu Val
1 ~ 5 10 15
Arg Ala Pro Ala A1a Ala Leu A1a Ser Ala Pro Gly Leu Gly Gly Ala
20 25 30
Ala Val Pro Ser Phe Trp Pro Pro Asn Ala Ala Arg Met Ala Ser G1n
35 40 45
Asn Ser Phe Arg Ile Glu Tyr Asp Thr Phe Gly Glu Leu Lys Val Pro
50 55 60
Asn Asp Lys Tyr Tyr Gly Ala Gln Thr Val Arg Ser Thr Met Asn Phe
65 70 75 80
Lys Ile Gly Gly Val Thr Glu Arg Met Pro Thr Pro Val Ile Lys Ala
85 90 95
Phe Gly Ile Leu Lys Arg Ala Ala Ala G1u Val Asn Gln Asp Tyr Gly
100 105 110
Leu Asp Pro Lys Tle Ala Asn Ala Ile Met Lys Ala Ala Asp Glu Va1
1l5 120 125
Ala G1u Gly Lys Leu Asn Asp His Phe Pro Leu Val Val Trp Gln Thr
130 135 140
Gly Ser Gly Thr Gln Thr Asn Met Asn Val Asn G1u Val Ile Ser
145 150 155
<210> 57
<211> 165
<212> PRT
<213> Homo sapien
<400> 57
Lys Lys Ser Met Phe Ala Glu Ile Gln Ile Gln Asp Lys Asp Arg Met
1 5 10 , 15
Gly Thr Ala Gly Lys Val Tle Lys Cys Lys Ala Ala Val Leu Trp Glu
20 25 30
Gln Lys Gln Pro Phe Ser Ile Glu Glu Ile Glu Val Ala Pro Pro Lys
35 40 45
Thr Lys Glu Val Arg Ile Lys Ile Leu Ala Thr Gly Ile Cys Arg Thr
50 55 60
Asp Asp His Val T1e Lys Gly Thr Met Val Ser Lys Phe Pro Val Ile
65 70 75 80
Val Gly His Glu Ala Thr Gly Ile Val Glu Ser Ile G1y Glu G1y Val
85 90 95
Thr Thr Val Lys Fro Gly Asp Lys Val Ile Pro Leu Phe Leu Pro Gln
100 105 110
Cys Arg Glu Cys Asn Ala Cys Arg Asn Pro Asp Gly Asn Leu Cys Ile


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
26
115 120 125
Arg Ser Asp Ile Thr Gly Arg Gly Val Leu Ala Asp Gly Thr Thr Arg
130 135 140
Phe Thr Cys Lys Gly G1u Pro Val His His Phe Met Asn Thr Ser Thr
145 150 155 160
Phe Thr Glu Tyr Thr
165
<210> 58
<211> 259
<212> PRT
<213> Homo sapien
<400> 58
Glu Ser Glu Gln Lys Gly Lys Ala Ala Leu Ala Ala Thr Leu Glu Glu
1 5 10 15
Tyr Lys Ala Thr Val Ala Ser Asp Gln Ile Glu Met Asn Arg Leu Lys
20 25 30
Ala Gln Leu Glu Asn Glu Lys Gln Lys Val Ala Glu Leu Tyr Ser Ile
35 40 45
His Asn Ser Gly Asp Lys Ser Asp Ile G1n Asp Leu Leu Glu Ser Val
50 55 60
Arg Leu Asp Lys Glu Lys Ala Glu Thr Leu Ala Ser Ser Leu Gln Glu
65 70 75 80
Asp Leu Ala His Thr Arg Asn Asp Ala Asn Arg Leu Gln Asp Ala Ile
85 90 95
Ala Lys Val Glu Asp Glu Tyr Arg Ala Phe Gln Glu Glu Ala Lys Lys
100 105 110
Gln Ile G1u Asp Leu Asn Met Thr Leu Glu Lys Leu Arg Ser Asp Leu
115 120 125
Asp Glu Lys G1u Thr G1u Arg Ser Asp Met Lys Glu Thr Ile Phe Glu
130 135 140
Leu Glu Asp Glu Val Glu Gln His Arg Ala Val Lys Leu His Asp Asn
145 150 l55 160
Leu Ile Tle Ser Asp Leu G1u Asn Thr Val Lys Lys Leu Gln Asp Gln
165 170 175
Lys His Asp Met Glu Arg Glu I1e Lys Thr Leu His Arg Arg Leu Arg
180 185 190
Glu Glu Ser Ala Glu Trp Arg Gln Phe Gln Ala Asp Leu Gln Thr Ala
195 200 205
Val Val Ile Ala Asn Asp Ile Lys Ser Glu Ala Gln Glu Glu Ile Gly
210 215 220
Asp Leu Lys Arg Arg Leu His Glu Ala Gln G1u Lys Asn Glu Lys Leu
225 230 235 290
Thr Lys Glu Leu Glu Glu Ile Lys Ser Arg Lys Gln Glu Glu Glu Arg
245 250 255
Gly Gly Tyr
<210> 59
<211> 125
<212> PRT
<213> Homo sapien
<400> 59
Gly Thr Ser Phe Ser Lys Asn His Ala Ala Pro Phe Ser Lys Val Leu
1 5 10 15
Thr Phe Tyr Arg Lys Glu Pro Phe Thr Leu Glu Ala Tyr Tyr Ser Ser


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
20 25 . 30
Pro Gln Asp Leu Pro Tyr Pro Asp Pro Ala Ile Ala Gln Phe Ser Val
35 40 45
G1n Lys Val Thr Pro Gln Ser Asp Gly Ser Ser Ser Lys Val Lys Val
50 55 60
Lys Val Arg Val Asn Val His Gly Ile Phe Ser Val Ser Ser A1a Ser
65 70 75 80
Leu Va1 Glu Val His Lys Ser Glu Glu Asn Glu Glu Pro Met G1u Thr
85 90 95
Asp Gln Asn Ala Lys Glu Glu Glu Lys Met Gln Val Asp Gln Glu Glu
100 105 110
Pro His Val Glu Glu Gln Gln G1n Gln Thr Pro Gly Arg
115 120 125
<210> 60
<211> 246
<212> PRT
<213> Homo sapien
<400> 60
Met Tyr Arg Pro Ala Arg Val Thr Ser Thr Ser Arg Phe Leu Asn Pro
1 5 10 15
Tyr Val Val Cys Phe Ile Val Val Ala Gly Va1 Val Ile Leu Ala Val
20 25 30
Thr Ile Ala Leu Leu Val Tyr Phe Leu Ala Phe Asp Gln Lys Ser Tyr
35 40 45
Phe Tyr Arg Ser Ser Phe Gln Leu Leu Asn Val G1u Tyr Asn Ser Gln
50 55 60
Leu Asn Ser Pro Ala Thr Gln Glu Tyr Arg Thr Leu Ser Gly Arg Ile
65 70 75 80
Glu Ser Leu T1e Thr Lys Thr Phe Lys Glu Ser Asn Leu Arg Asn Gln
85 90 95
Phe Ile Arg Ala His Val Ala Lys Leu Arg Gln Asp Gly Ser G1y Val
100 105 110
Arg A1a Asp Val Val Met Lys Phe Gln Phe Thr Arg Asn Asn Asn Gly
115 120 125
Ala Ser Met Lys Ser Arg Ile Glu Ser Val Leu Arg Gln Met Leu Asn
130 135 140
Asn Ser Gly Asn Leu Glu Ile Asn Pro Ser Thr Glu Ile Thr Ser Leu
145 150 155 160
Thr Asp Gln Ala Ala Ala Asn Trp Leu Ile Asn Glu Cys Gly A1a Gly
165 170 175
Pro Asp Leu Ile Thr Leu Ser Glu Gln Ar_g Tle Leu Gly G1y Thr Glu
280 185 190
Ala Glu Glu Gly Ser Trp Pro Trp Gln Val Ser Leu Arg Leu Asn Asn
195 200 205
Ala His His Cys Gly Gly Ser Leu I1e Asn Asn Met Trp Ile Leu Thr
210 2I5 220
Ala Ala His Cys Phe Arg Ser Asn Ser Asn Pro Arg Asp Trp Tle Ala
225 230 235 240
Thr Ser G1y Tle Ser Thr
245
<210> 61
<211> 128
<212> PRT
<213> Homo sapien


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
2$
<400> 61
Gly Ile Phe Ser Val Ser Ser Ala Ser Leu Val Glu Val His Lys Ser
2 5 l0 15
G1u Glu Asn Glu Glu Pro Met Glu Thr Asp Gln Asn Ala Lys Glu Glu
20 25 30
Glu Lys Met Gln Val Asp Gln Glu Glu Pro His Val Glu Glu Gln Gln
35 40 45
Gln Gln Thr Pro Ala Glu Asn Lys Ala G1u Ser Glu Glu Met G1u Thr
50 55 60
Ser Gln Ala Gly Ser Lys Asp Lys Lys Met Asp Gln Pro Pro G1n Ala
65 70 75 80
Lys Lys Ala Lys Val Lys Thr Ser Thr Val Asp Leu Pro I1e Glu Asn
85 90 95
Gln Leu Leu Trp Gln Ile Asp Arg Glu Met Leu Asn Leu Tyr Ile Glu
100 105 110
Asn Glu Gly Lys Met Ile Met Gln Asp Lys Leu Glu Lys Glu Arg Asn
115 120 125
<210> 62
<211> 418
<212> PRT
<213> Homo sapien
<400> 62
Met Tyr Arg Pro Ala Arg Val Thr Ser Thr Ser Arg Phe Leu Asn Pro
1 5 10 15
Tyr Va1 Val Cys Phe Ile Val Val Ala Gly Va1 Val Ile Leu Ala Val
20 25 30
Thr Ile Ala Leu Leu Val Tyr Phe Leu Ala Phe Asp Gln Lys Ser Tyr
35 40 45
Phe Tyr Arg Ser Ser Phe G1n Leu Leu Asn Val G1u Tyr Asn Ser Gln
50 55 60
Leu Asn Ser Pr.o Ala Thr Gln Glu Tyr Arg Thr Leu Ser Gly Arg Ile
65 70 75 80
Glu Ser Leu I1e Thr Lys Thr Phe Lys Glu Ser Asn Leu Arg Asn Gln
85 90 95
Phe Ile Arg Ala His Val Ala Lys Leu Arg Gln Asp Gly Ser Gly Val
100 105 110
Arg Ala Asp Val Val Met Lys Phe Gln Phe Thr Arg Asn Asn Asn Gly
115 120 125
Ala Ser Met Lys Ser Arg Ile Glu Ser Val Leu Arg Gln Met Leu Asn
130 135 140
Asn Ser Gly Asn Leu Glu Ile Asn Pro Ser Thr Glu Ile Thr Ser Leu
145 150 155 160
Thr Asp Gln Ala Ala Ala Asn Trp Leu Ile Asn Glu Cys Gly Ala Gly
165 170 175
Pro Asp Leu Ile Thr Leu Ser Glu Gln Arg Ile Leu Gly Gly Thr Glu
180 185 190
Ala Glu Glu Gly Ser Trp Pro Trp Gln Val Ser Leu Arg Leu Asn Asn
195 200 205
Ala His His Cys Gly G1y Ser Leu Ile Asn Asn Met Trp Ile Leu Thr
210 215 220
Ala Ala His Cys Phe Arg Ser Asn Ser Asn Fro Arg Asp.Trp Ile Ala
225 230 235 240
Thr Ser Gly Tle Ser Thr Thr Phe Pro Lys Leu Arg Met Arg Val Arg
245 250 255
Asn Ile Leu Ile His Asn Asn Tyr Lys Ser Ala Thr His Glu Asn Asp
260 265 270


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
29
Ile Ala Leu Val Arg Leu Glu Asn Ser Val Thr Phe Thr Lys Asp Ile
275 280 285
His Ser Val Cys Leu Pro Ala Ala Thr Gln Asn Ile Pro Pro Gly Ser
290 295 300
Thr Ala Tyr Val Thr Gly Trp G1y Ala Gln Glu Tyr Ala Gly His Thr
305 310 315 320
Val Pro Glu Leu Arg Gln Gly Gln Val Arg Ile Tle Ser Asn Asp Val
325 330 335
Cys Asn Ala Pro His Ser Tyr Asn Gly Ala Ile Leu Ser Gly Met Leu
340 345 350
Cys Ala Gly Va1 Pro Gln Gly Gly Val Asp Ala Cys Gln Gly Asp Ser
355 360 365
Gly Gly Pro Leu Val Gln Glu Asp Ser Arg Arg Leu Trp Phe Ile Val
370 375 380
Gly Ile Val Ser Trp Gly Asp Gln Cys Gly Leu Pro Asp Lys Pro Gly
385 390 395 400
Val Tyr Thr Arg Val Thr Ala Tyr Ile Asp Trp Ile Arg Gln Gln Thr
405 410 415
Gly Ile
<210> 63
<211> 776
<212> DNA
<213> Homo sapien
<400> 63


cacagatggtgatagaggaatccatcttgcagtcagataaagccctcactgatagagaga 60


aggcagtagcagtggatcgggccaagaaggaggcagctgagaaggaacaggaacttttaa 120


aacagaaatt acaggagcagccagcaacagatggaggctcaagataagagtcgcaaggaa 180


aactagccaactgaaggagaagctgcagatggagagagaacacctactgagagagcagat 240


tatgatgttggagcacacgcagaaggtccaaaatgattggcttcatgaaggatttaagaa 300


gaagtatgaggagatgaatgcagagataagtcaatttaaacgtatgattgatactacaaa 360


aaatgatgatactccctggattgcacgaaccttggacaaccttgccgatgagctaactgc 420


aatattgtctgctcctgctaaattaattggtcatggtgtcaaaggtgtgagctcactctt 480


taaaaagcataagctccccttttaaggatattatagattgtacatatatgctttggacta 540


tttttgatctgtatgtttttcattttcattcagcaagttttttttttttttcagagtctt 600


actctgttgcccaggctggagtacagtggtgcaatctcagctcactgcaacctctgcctc 660


ctgggttcaagagattcacctgcctcagccccctagtagctgggattataggtgtacacc 720


accacacccagctaatttttgtatttttagtagagatggggtttcactatgttggc 776


<210> 64
<211> 160
<212> DNA
<213> Homo sapien
<400> 64
gcagcgctct cggttgcagt acccactgga aggacttagg cgctcgcgtg gacaccgcaa 60
gcccctcagt agcctcggcc caagaggcct gctttccact cgctagcccc gccgggggtc 120
cgtgtcctgt ctcggtggcc ggacccgggc ccgagcccga 160
<210> 65
<211> 72
<212> PRT
<213> Homo sapien
<400> 65
Leu Ser A1a Met Gly Phe Thr Ala Ala Gly Ile Ala Ser Ser Ser Ile


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
1 5 10 15
Ala Ala Lys Met Met Ser Ala Ala Ala Ile Ala Asn Gly Gly Gly Val
20 25 30
Ala Ser Gly Ser Leu Val Ala Thr Leu Gln Ser Leu Gly Ala Thr Gly
40 45
Leu Ser Gly Leu Thr Lys Phe Ile Leu Gly Ser Ile Gly Ser Ala Ile
50 55 60
Ala Ala Val Tle A1a Arg Phe Tyr
65 70
<210> 66
<211> 2581
<212> DNA
<213> Homo sapien
<400> 66
ctttcaacccgcgctcgccggctccagccccgcgcgcccccaccccttgccctcccggcg 60


gctccgcagggtgaggtggctttgaccccgggttgcccggccagcacgaccgaggaggtg 120


gctggacagctggaggatgaacggagaagccgactgccccacagacctggaaatggccgc 180


ccccaaaggccaagaccgttggtcccaggaagacatgctgactttgctggaatgcatgaa 240


gaacaaccttccatccaatgacagctccaagttcaaaaccaccgaatcacacatggactg 300


gg~aaaagtagcatttaaagacttttctggagacatgtgcaagctcaaatgggtggagat 360


ttctaatgaggtgaggaagttccgtacattgacagaattgatcctcgatgctcaggaaca 420


tgttaaaaatccttacaaaggcaaaaaactcaagaaacacccagacttcccaaagaagcc 480


cctgaccccttatttccgcttcttcatggagaagcgggccaagtatgcgaaactccaccc 540


tgagatgagcaacctggacctaaccaagattctgtccaagaaatacaaggagcttccgga 600


gaagaagaagatgaaatatattcaggacttccagagagagaaacaggagttcgagcgaaa 660


cctggcccgattcagggaggatcaccccgacctaatccagaatgccaagaaatcggacat 720


cccagagaagcccaaaaccccccagcagctgtggtacacccacgagaagaaggtgtatct 780


caaagtgcggccagatgccactacgaaggaggtgaaggactccctggggaagcagtggtc 840


tcagctctcggacaaaaagaggctgaaatggattcataaggccctggagcagcggaagga 900


gtacgaggagatcatgagagactatatccagaagcacccagagctgaacatcagtgagga 960


gggtatcaccaagtccaccctcaccaaggccgaacgccagctcaaggacaagtttgacgg 1020


gcgacccaCCaagccacctccgaacagctactcgctgtactgcgCagagctcatggccaa 1080


catgaaggacgtgcccagcacagagcgcatggtgctgtgcagccagcagtggaagctgct 1140


gtcccagaaggagaaggacgcctatcacaagaagtgtgatcagaaaaagaaagattacga 1200


ggtggagctgctccgtttcctcgagagcctgcctgaggaggagcagcagcgggtcttggg 1250


ggaagagaagatgctgaacatcaacaagaagcaggccaccagccccgcctccaagaagcc 1320


agcccaggaagggggcaagggcggctccgagaagcccaagcggcccgtgtcggccatgtt 1380


catcttctcggaggagaaacggcggcagctgcaggaggagcggcctgagctctccgagag 1440


cgagctgacccgcctgctggcccgaatgtggaacgacctgtctgagaagaagaaggccaa 1500


gtacaaggcccgagaggcggcgctcaaggctcagtcggagaggaagcccggcggggagcg 1560


cgaggaacggggcaagctgcccgagtcccccaaaagagctgaggagatctggcaacagag 1620


cgttatcggcgactacctggcccgcttcaagaatgaccgggtgaaggccttgaaagccat 1680


ggaaatgacctggaataacatggaaaagaaggagaaactgatgtggattaagaaggcagc 1740


cgaagaccaaaagcgatatgagagagagctgagtgagatgcgggcacctccagctgctac 1800


aaattcttccaagaagatgaaattccagggagaacccaagaagcctcccatgaacggtta 1860


ccagaagttctcccaggagctgctgtccaatgg'ggagctgaaccacctgccgctgaagga 1920


gcgcatggtggagatcggcagtcgctggcagcgcatctcccagagccagaaggagcacta 1980


caaaaagctggccgaggagcagcaaaagcagtacaaggtgcacctggacctctgggttaa 2040


gagcctgtctccccaggaccgtgcagcatataaagagtacatctccaataaacgtaagag 2100


catgaccaagctgcgaggcccaaaccccaaatccagccggactactctgcagtccaagtc 2160


ggagtccgaggaggatgatgaagaggatgaggatgacgaggacgaggatgaagaagagga 2220


agatgatgagaatggggactcctctgaagatggcggcgactcctctgagtccagcagcga 2280


ggacgagagcgaggatggggatgagaatgaagaggatgacgaggacgaagacgacgacga 2340


ggatgacgatgaggatgaagataatgagtccgagggcagcagctccagctcctcctcctt 2400


aggggactcctcagactttgactccaactgaggcttagccccaccccaggggagccaggg 2460


agagcccaggagctcccctccccaactgaccacctttgtttcttccccatgttctgtccc 2520




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
31
ttgcccccct ggcctccccc actttctttc tttctttaaa aaaaaaaaaa aaaaactcga 2580
g 2581
<210> 67
<211> 764
<212> PRT
<213> Homo sapien
<400> 67
Met Asn Gly Glu Ala Asp Cys Pro Thr Asp Leu Glu Met Ala Ala Pro
1 5 10 15
Lys Gly Gln Asp Arg Trp Ser Gln Glu Asp Met Leu Thr Leu Leu Glu
20 25 30
Cys Met Lys Asn Asn Leu Pro Ser Asn Asp Ser Ser Lys Phe Lys Thr
35 40 45
Thr Glu Ser His Met Asp Trp Glu Lys Val Ala Phe Lys Asp Phe Ser
50 55 60
Gly Asp Met Cys Lys Leu Lys Trp Val Glu Ile Ser Asn Glu Val Arg
65 70 75 80
Lys Phe Arg Thr Leu Thr Glu Leu Ile Leu Asp Ala Gln Glu His Val
85 90 95
Lys Asn Pro Tyr Lys Gly Lys Lys Leu Lys Lys His Pro Asp Phe Pro
100 105 110
Lys Lys Pro Leu Thr Pro Tyr Phe Arg Phe Phe Met Glu Lys Arg Ala
115 120 125
Lys Tyr Ala Lys Leu His Pro Glu Met Ser Asn Leu Asp Leu Thr Lys
130 135 140
Ile Leu Ser Lys Lys Tyr Lys Glu Leu Pro Glu Lys Lys Lys Met Lys
145 150 155 160
Tyr Ile Gln Asp Phe Gln Arg Glu Lys Gln Glu Phe Glu Arg Asn Leu
265 170 275
Ala Arg Phe Arg Glu Asp His Pro Asp Leu Ile Gln Asn Ala Lys Lys
180 185 190
Ser Asp Ile Pro Glu Lys Pro Lys Thr Pro Gln Gln Leu Trp Tyr Thr
195 200 205
His Glu Lys Lys Val Tyr Leu Lys Val Arg Pro Asp Ala Thr Thr Lys
210 215 220
Glu Val Lys Asp Ser Leu Gly Lys Gln Trp Ser Gln Leu Ser Asp Lys
225 230 235 240
Lys Arg Leu Lys Trp Ile His Lys A1a Leu Glu Gln Arg Lys Glu Tyr
245 250 255
G1u Glu Ile Met Arg Asp Tyr Ile Gln Lys His Pro Glu Leu Asn Ile
260 265 270
Ser Glu Glu Gly Ile Thr Lys Ser Thr Leu Thr Lys Ala Glu Arg Gln
275 280 285
Leu Lys Asp Lys Phe Asp Gly Arg Pro Thr Lys Pro Pro Pro Asn Ser
290 295 300
Tyr Ser Leu Tyr Cys Ala Glu Leu Met Ala Asn Met Lys Asp Val Pro
305 310 315 320
Ser Thr Glu Arg Met Va1 Leu Cys Ser Gln Gln Trp Lys Leu Leu Ser
325 330 335
G1n Lys Glu Lys Asp Ala Tyr His Lys Lys Cys Asp Gln Lys Lys Lys
340 345 350
Asp Tyr Glu Val Glu Leu Leu Arg Phe Leu Glu Ser Leu Pro Glu Glu
355 360 365
Glu Gln Gln Arg Val Leu Gly Glu Glu Lys Met Leu Asn Ile Asn Lys
370 375 380
Lys Gln Ala Thr Ser Pro Ala Ser Lys Lys Pro Ala Gln Glu Gly Gly


gagcctgtctccccaggaccgtgcagcatataaagagtacatctccaataaacgta


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
32
385 390 395 400
Lys Gly Gly Ser Glu Lys Pro Lys Arg Pro Val Ser Ala Met Phe Ile
405 410 415
Phe Ser Glu Glu Lys Arg Arg G1n Leu Gln Glu Glu Arg Pro Glu Leu
420 425 430
Ser Glu Ser Glu Leu Thr Arg Leu Leu Ala Arg Met Trp Asn Asp Leu
435 440 445
Ser Glu Lys Lys Lys Ala Lys Tyr Lys Ala Arg Glu Ala Ala Leu Lys
450 455 460
Ala Gln Ser Glu Arg Lys Pro Gly Gly Glu Arg Glu Glu Arg Gly Lys
465 470 475 480
Leu Pro Glu Ser Pro Lys Arg Ala Glu Glu I1e Trp Gln Gln Ser Val
485 490 495
Ile Gly Asp Tyr Leu Ala Arg Phe Lys Asn Asp Arg Va1 Lys Ala Leu
500 505 510
Lys Ala Met Glu Met Thr Trp Asn Asn Met Glu Lys Lys Glu Lys Leu
515 520 525
Met Trp Ile Lys Lys Ala A1a Glu Asp Gln Lys Arg Tyr Glu Arg Glu
530 535 540
Leu Ser Glu Met Arg Ala Pro Pro Ala Ala Thr Asn Ser Ser Lys Lys
545 550 555 560
Met Lys Phe Gln Gly Glu Pro Lys Lys Pro Pro Met Asn Gly Tyr Gln
565 570 575
Lys Phe Ser Gln Glu Leu Leu Ser Asn Gly Glu Leu Asn His Leu Pro
580 585 590
Leu Lys Glu Arg Met Val Glu Ile Gly Ser Arg Trp Gln Arg Ile Ser
595 600 605
Gln Ser Gln Lys Glu His Tyr Lys Lys Leu Ala Glu Glu Gln Gln Lys
610 615 620
G1n Tyr Lys Val His Leu Asp Leu Trp Va1 Lys Ser Leu Ser Pro Gln
625 630 635 640
Asp Arg Ala Ala Tyr Lys Glu Tyr Ile Ser Asn Lys Arg Lys Ser Met
645 650 655
Thr Lys Leu Arg Gly Pro Asn Pro Lys Ser Ser Arg Thr Thr Leu Gln
660 665 670
Ser Lys Ser Glu Ser Glu Glu Asp Asp Glu Glu Asp Glu Asp Asp Glu
675 680 685
Asp Glu Asp Glu G1u Glu Glu Asp Asp Glu Asn Gly Asp Ser Ser Glu
690 695 700
Asp Gly Gly Asp Ser Ser G1u Ser Ser Ser Glu Asp Glu Ser Glu Asp
705 710 715 720
Gly Asp G1u Asn Glu Glu Asp Asp Glu Asp Glu Asp Asp Asp Glu Asp
725 730 735
Asp Asp Glu Asp Glu Asp Asn Glu Ser Glu Gly Ser Ser Ser Ser Ser
740 745 750
Ser Ser Leu Gly Asp Ser Ser Asp Phe Asp Ser Asn
755 760
<210> 68
<211> 434
<212> DNA
<213> Homo sapien
<400> 68
ctaagatgct ggatgctgaa gacatcgtcg gaactgcccg gccagatgag aaagccatta 60
tgacttatgt gtctagcttc tatcatgcct tctctggagc ccagaaggca gaaacagcag 120
ccaatcgcat ctgcaaagtg ttggcggtca atcaagagaa cgagcagctt atggaagact 180
atgagaagct ggccagtgat ctgttggagt ggatccgccg caccatccca tggctggaga 240


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
33
atcgggtgcc tgagaacacc atgcatgcca tgcagcagaa gctggaggac ttccgagact 300
atagacgcct gcacaagccg cccaaggtgc aggagaagtg ccagctggag atcaacttta 360
acacgctgca gaccaaactg cggctcagca accggcctgc cttcatgccc tccgagggca 420
ggatggtctc ggat 434
<2i0> 69
<211> 244
<212> DNA
<213> Homo sapien
<400> 69


aggcagcatgctcgttgagagtcatcaccactccctaatctcaagtaCgcagggacacaa 60


acactgcggaaggccgcagggtcctctgcctaggaaaaccagagacctttgttcacttgt 120


ttatgtgctgaccttccctccactattgtcctgtgaccctgccaaatccccctttgtgag 180


aaacacccaagaatgatcaataaaaaataaattaatttaggaaaaaaaaaaaaaaaaact 240


cgag 244


<210> 70
<2i1> 437
<212> DNA
<213> Homo sapien
<400> 70


ctgggacgggagcgtccagcgggactcgaaccccagatgtgaaggcgtttctggaaagtc 60


cttggtccctggatccagcgtcggccagcccagagcccgtgccgcacatccttgcgtcct 120


ccaggcagtgggaccccgcgagctgcacgtccctgggcacggacaagtgtgaggcactgt 180


tggggctgtgccaggtgcggggtgggctgccccctttctcagaaccttccagcctggtgc 240


cgtggcccccaggccggagtcttcctaaggctgtgaggccacccctgtcctggcctccgt 300


tctcgcagcagcagaccttgcccgtgatgagcggggaggcccttggctggctgggccagg 360


ctggttccctggccatgggggctgcacctctgggggagccagccaaggaggaccccatgc 420


tggcgcaggaagccggg 437


<210> 7l
<211> 271
<212> DNA
<213> Homo sapien
<400> 71


gcgcagagttctgtcgtccaccatcgagtgaggaagagagcattggttcccctgagatag 60


aagagatggctctcttcagtgcccagtctccatacattaacccgatcatcccctttactg 120


gaccaatccaaggagggctgcaggagggacttcaggtgaccctccaggggactaccgaga 180


gttttgcacaaaagtttgtggtgaacttttcagaacagcttcaatggagatgacttggcc 240


ttccacttcaaccccggttatgaggaaggag 271


<210> 72
<211> 290
<212> DNA
<213> Homo sapien
<400> 72
ccgagcccta cccggaggtc tccagaatcc ccaccgtcag gggatgcaac ggctccctgt 60
ctggtgccct ctcctgctgc gaggactcgg cccagggctc gggcccgccc aaggccccta 120
cggtggccga gggtcccagc tcctgccttc ggcggaacgt gatcagcgag agggagcgca 180
ggaagcggat gtcgttgagc tgtgagcgtc tgcgggccct gctgccccag ttcgatggcc 240
ggcgggagga catggcctcg gtcctggaga tgtctgttgc aattcctgcg 290
<210> 73
<221> 144


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
34
<212> PRT
<213> Homo sapien
<400> 73
Lys Met Leu Asp Ala Glu Asp Tle Val G1y Thr Ala Arg Pro Asp Glu
1 5 ZO 15
Lys Ala Ile Met Thr Tyr Val Ser Ser Phe Tyr His Ala Phe Ser Gly
20 25 30
Ala Gln Lys Ala Glu Thr Ala Ala Asn Arg Ile Cys Lys Val Leu Ala
35 40 45
Val Asn Gln Glu Asn Glu Gln Leu Met Glu Asp Tyr G1u Lys Leu Ala
50 55 60
Ser Asp Leu Leu Glu Trp Ile Arg Arg Thr Ile Pro Trp Leu Glu Asn
65 70 75 80
Arg Val Pro Glu Asn Thr Met His Ala Met Gln Gln Lys Leu Glu Asp
85 90 95
Phe Arg Asp Tyr Arg Arg Leu His Lys Pro Pro Lys Val Gln Glu Lys
100 105 110
Cys Gln Leu Glu Ile Asn Phe Asn Thr Leu G1n Thr Lys Leu Arg Leu
115 120 125
Ser Asn Arg Pro Ala Phe Met Pro Ser Glu Gly Arg Met Val Ser Asp
130 135 140
<210> 74
<211> 64
<212> PRT
<213> Homo sapien
<400> 74
Gly Ser Met Leu Val Glu Ser His His His Ser Leu Tle Ser Ser Thr
1 5 20 Z5
Gln Gly His Lys His Cys Gly Arg Pro Gln fly Pro Leu Pro Arg Lys
20 25 30
Thr Arg Asp Leu Cys Ser Leu Val Tyr Val Leu Thr Phe Pro Pro Leu
35 40 45
Leu Ser Cys Asp Pro Ala Lys Ser Pro Phe Val Arg Asn Thr G1n Glu
50 55 60
<210> 75
<211> 145
<212> PRT
<213> Homo sapien
<400> 75
G1y Thr Gly Ala Ser Ser G1y Thr Arg Thr Pro Asp Val Lys Ala Phe
1 5 10 15
Leu Glu Ser Pro Trp Ser Leu Asp Pro Ala Ser Ala Ser Pro Glu Pro
20 25 30
Val Pro His Ile Leu Ala Ser Ser Arg Gln Trp Asp Pro Ala Ser Cys
35 40 45
Thr Ser Leu Gly Thr Asp Lys Cys Glu Ala Leu Leu Gly Leu Cys Gln
50 55 60
Val Arg Gly Gly Leu Pro Pro Phe Ser Glu Pro Ser Ser Leu Val Pro
65 70 75 80
Trp Pro Pro Gly Arg Ser Leu Pro Lys Ala Val Arg Pro Pro Leu Ser
85 90 95
Trp Pro Pro Phe Sex Gln G1n Gln Thr Leu Pro Val Met Ser Gly Glu
100 7.05 110


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
Ala Leu Gly Trp Leu Gly Gln Ala Gly Ser Leu Ala Met Gly Ala Ala
115 120 125
Pro Leu Gly Glu Pro Ala Lys Glu Asp Pro Met Leu Ala Gln Glu Ala
130 135 140
Gly
145
<210> 76
<211> 69
<212> PRT
<213> Homo sapien
<400> 76
Ala Glu Phe Cys Arg Pro Pro Ser Ser Glu Glu Glu Ser Ile Gly Ser
1 5 10 15
Pro Glu Ile Glu Glu Met Ala Leu Phe Ser A1a Gln Ser Pro Tyr Ile
20 25 30
Asn Pro Ile Ile Pro Phe Thr Gly Pro Ile Gln Gly Gly Leu Gln Glu
35 40 45
Gly Leu Gln Val Thr Leu Gln Gly Thr Thr Glu Ser Phe Ala Gln Lys
50 55 60
Phe Va1 Val Asn Phe
<210> 77
<211> 96
<212> PRT
<213> Homo sapien
<400> 77
Glu Pro Tyr Pro Glu Val Ser Arg T1e Pro Thr Val Arg Gly Cys Asn
l 5 10 15
Gly Ser Leu Ser Gly Ala Leu Ser Cys Cys Glu Asp Ser Ala G1n Gly
20 25 30
Ser Gly Pro Pro Lys Ala Pro Thr Val Ala G1u Gly Pro Ser Ser Cys
35 40 45
Leu Arg Arg Asn Val Ile Ser Glu Arg Glu Arg Arg Lys Arg Met Ser
50 55 60
Leu Ser Cys Glu Arg Leu Arg Ala Leu Leu Pro Gln Phe Asp Gly Arg
65 70 75 80
Arg Glu Asp Met Ala Ser Val Leu Glu Met Ser Val Ala Ile Pro Ala
85 90 95
<210> 78
<211> 2076
<212> DNA
<213> Homo sapien
<400>
78


agaaaaagtctatgtttgcagaaatacagatccaagacaaagacaggatgggcactgctg 60


gaaaagttattaaatgcaaagcagctgtgctttgggagcagaagcaacccttctccattg 120


aggaaatagaagttgccccaccaaagactaaagaagttcgcattaagattttggccacag 180


gaatctgtcgcacagatgaccatgtgataaaaggaacaatggtgtccaagtttccagtga 240


ttgtgggacatgaggcaactgggattgtagagagcattggagaaggagtgactacagtga 300


aaccaggtgacaaagtcatccctctctttctgccacaatgtagagaatgcaatgcttgtc 360


gcaacccagatggcaacctttgcattaggagcgatattactggtcgtggagtactggctg 420


atggcaccaccagatttacatgcaagggcaaaccagtccaccacttcatgaacaccagta 480


catttaccgagtacacagtggtggatg~atcttctgttgctaagattgatgatgcagctc 540




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
36
ctcctgagaaagtctgtttaattggctgtgggttttccactggatatggcgctgctgtta 600


aaactggcaaggtcaaacctggttccacttgcgtcgtctttggcctgagaggagttggcc 660


tgtcagtcatcatgggctgtaagtcagctggtgcatctaggatcattgggattgacctca 720


acaaagacaaatttgagaaggccatggctgtaggtgccactgagtgtatcagtcccaagg 780


actctaccaaacccatcagtgaggtgctgtcagaaatgacaggcaacaacgtgggataca 840


cctttgaagttattgggcatcttgaaaccatgattgatgccctggcatcctgccacatga 900


actatgggaccagcgtggttgtaggagttcctccatcagccaagatgctcacctatgacc 960


cgatgttgctcttcactggacgcacatggaagggatgtgtctttggaggtttgaaaagca 1020


gagatgatgtcccaaaactagtgactgagttcctggcaaagaaatttgacctggaccagt 1080


tgataactcatgtcttaccatttaaaaaaatcagtgaaggatttgagctgctcaattcag 1140


gacaaagcattcgaacggtcctgacgttttgagatccaaagtggcaggaggtctgtgttg 1200


tcatggtgaactggagtttctcttgtgagagttccctcatctgaaatcatgtatctgtct 1260


cacaaatacaagcataagtagaagatttgttgaagacatagaacccttataaagaattat 1320


taacctttataaacatttaaagtcttgtgagcacctgggaattagtataataacaatgtt 1380


aatatttttgatttacattttgtaaggctataattgtatcttttaagaaaacatacactt 1440


ggatttctatgttgaaatggagatttttaagagttttaaccagctgctgcagatatatat 1500


ctcaaaacagatatagcgtataaagatatagtaaatgcatctcctagagtaatattcact 1560


taacacattgaaactattattttttagatttgaatataaatgtattttttaaacacttgt 1620


tatgagttaacttggattacattttgaaatcagttcattccatgatgcatattactggat 1680


tagattaagaaagacagaaaagattaagggacgggcacatttttcaacgattaagaatca 1740


tcattacataacttggtgaaactgaaaaagtatatcatatgggtacacaaggctatttgc 1800


cagcatatattaatattttagaaaatattccttttgtaatactgaatataaacatagagc 1860


tagaatcatattatcatacttatcataatgttcaatttgatacagtagaattgcaagtcc 1920


ttaagtccctattcactgtgcttagtagtgactccatttaataaaaagtgtttttagttt 1980


ttaacaactacactgatgtatttatatatatttataacatgttaaaaatttttaaggaaa 2040


ttaaaaattatataaaaaaaaaaaaaaaaactcgag 2076


<210> 79
<211> 2790
<212> DNA
<213> Homo sapien
<400> 79


aagcagttgagtaggcagaaaaaagaacctcttcattaaggattaaaatgtataggccag 60


cacgtgtaacttcgacttcaagatttctgaatccatatgtagtatgtttcattgtcgtcg 120


caggggtagtgatcctggcagtcaccatagctctacttgtttactttttagcttttgatc 180


aaaaatcttacttttataggagcagttttcaactcctaaatgttgaatataatagtcagt 240


taaattcaccagctacacaggaatacaggactttgagtggaagaattgaatctctgatta 300


ctaaaacattcaaagaatcaaatttaagaaatcagttcatcagagctcatgttgccaaac 360


tgaggcaagatggtagtggtgtgagagcggatgttgtcatgaaatttcaattcactagaa 420


ataacaatggagcatcaatgaaaagcagaattgagtctgttttacgacaaatgctgaata 480


actctggaaacctggaaataaacccttcaactgagataacatcacttactgaccaggctg 540


cagcaaattggcttattaatgaatgtggggccggtccagacctaataacattgtctgagc 600


agagaatccttggaggcactgaggctgaggagggaagctggccgtggcaagtcagtctgc 660


ggctcaataatgcccaccactgtggaggcagcctgatcaataacatgtggatcctgacag 720


cagctcactgcttcagaagcaactctaatcctcgtgactggattgccacgtctggtattt 780


ccacaacatttcctaaactaagaatgagagtaagaaatattttaattcataacaattata 840


aatctgcaactcatgaaaatgacattgcacttgtgagacttgagaacagtgtcaccttta 900


ccaaagatatccatagtgtgtgtctcccagctgctacccagaatattccacctggctcta 960


ctgcttatgtaacaggatggggcgctcaagaatatgctggccacacagttccagagctaa 1020


ggcaaggacaggtcagaataataagtaatgatgtatgtaatgcaccacatagttataatg 1080


gagccatcttgtctggaatgctgtgtgctggagtacctcaaggtggagtggacgcatgtc 1140


agggtgactctggtggcccactagtacaagaagactcacggcggctttggtttattgtgg 1200


ggatagtaagctggggagatcagtgtggcctgccggataagccaggagtgtatactcgag 1260


tgacagcctaccttgactggattaggcaacaaactgggatctagtgcaacaagtgcatcc 2320


ctgttgcaaagtctgtatgcaggtgtgcctgtcttaaattccaaagctttacatttcaac 1380


tgaaaaagaaactagaaatgtcctaatttaacatcttgttacataaatatggtttaacaa 1440


acactgtttaacctttctttattattaaaggttttctattttctccagagaactatatga 1500




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
37
atgttgcatagtactgtggctgtgtaacagaagaaacacactaaactaattacaaagtta 1560


acaatttcattacagttgtgctaaatgcccgtagtgagaagaacaggaaccttgagcatg 1620


tatagtagaggaacctgcacaggtctgatgggtcagaggggtcttctctgggtttcactg 1680


aggatgagaagtaagcaaactgtggaaacatgcaaaggaaaaagtgatagaataatattc 1740


aagacaaaaagaacagtatgaggcaagagaaatagtatgtatttaaaatttttggttact 1800


caatatcttatacttagtatgagtcctaaaattaaaaatgtgaaactgttgtactatacg 1860


tataacctaaccttaattattctgtaagaacatgcttccataggaaatagtggataattt 1920


tcagctatttaaggcaaaagctaaaatagttcactcctcaactgagacccaaagaattat 1980


agatatttttcatgatgacccatgaaaaatatcactcatctacataaaggagagactata 2040


tctattttatagagaagctaagaaatatacctacacaaacttgtcaggtgctttacaact 2100


acatagtactttttaacaacaaaataataattttaagaatgaaaaatttaatcatcggga 2160


agaacgtcccactacagacttcctatcactggcagttatatttttgagcgtaaaagggtc 2220


gtcaaacgctaaatctaagtaatgaattgaaagtttaaagagggggaagagttggtttgc 2280


aaaggaaaagtttaaatagcttaatatcaatagaatgatcctgaagacagaaaaaacttt 2340


gtCaCtCttCCt CtCtCattttCtttCt Ct CtCCCCCCttCtCdtaCaCatgCCECCC 2400
Ct


cgaccaaagaatataatgtaaattaaatccactaaaatgtaatggcatgaaaatctctgt 2460


agtctgaatcactaatattcctgagtttttatgagctcctagtacagctaaagtttgcct 2520


atgcatgatcatctatgcgtcagagcttcctccttctacaagctaactccctgcatctgg 2580


gcatcaggactgctccatacatttgctgaaaacttcttgtatttcctgatgtaaaattgt 2640


gcaaacacctacaataaagccatctacttttagggaaagggagttgaaaatgcaaccaac 2700


tcttggcgaactgtacaaacaaatctttgctatactttatttcaaataaattctttttga 2760


aatgaaaaaaaaaaaaaaaaaaaactcgag 2790


<210> 80
<211> 1460
<212> DNA
<213> Homo sapien
<400>
80


ctcaaagcagttgagtaggcagaaaaaagaacctcttcattaaggattaaaatgtatagg 60


ccagcacgtgtaacttcgacttcaagatttctgaatccatatgtagtatgtttcattgtc 120


gtcgcaggggtagtgatcctggcagtcaccatagctctacttgtttactttttagctttt 180


gatcaaaaatcttacttttataggagcagttttcaactcctaaatgttgaatataatagt 240


cagttaaattcaccagctacacaggaatacaggactttgagtggaagaattgaatctctg 300


attactaaaacattcaaagaatcaaatttaagaaatcagttcatcagagctcatgttgcc 360


aaactgaggcaagatggtagtggtgtgagagcggatgttgtcatgaaatttcaattcact 420


agaaataacaatggagcatcaatgaaaagcagaattgagtctgttttacgacaaatgctg 480


aataactctggaaacctggaaataaacccttcaactgagataacatcacttactgaccag 540


gctgcagcaaattggcttattaatgaatgtggggccggtccagacctaataacattgtct 600


gagcagagaatccttggaggcactgaggctgaggagggaagctggccgtggcaagtcagt 660


ctgcggctcaataatgcccaccactgtggaggcagcctgatcaataacatgtggatcctg 720


acagcagctcactgcttcagaagcaactctaatcctcgtgactggattgccacgtctggt 780


atttccacaacatttcctaaactaagaatgagagtaagaaatattttaattcataacaat 840


tataaatctgcaactcatgaaaatgacattgcacttgtgagacttgagaacagtgtcacc 900


tttaccaaagatatccatagtgtgtgtctcccagctgctacccagaatattccacctggc 960


tctactgcttatgtaacaggatggggcgctcaagaatatgctggccacacagttccagag 1020


ctaaggcaaggacaggtcagaataataagtaatgatgtatgtaatgcaccacatagttat 1080


aatggagccatcttgtctggaatgctgtgtgctggagtacctcaaggtggagtggacgca 1140


tgtcagggtgactctggtggcccactagtacaagaagactcacggcggctttggtttatt 1200


gtggggatagtaagctggggagatcagtgtggcctgccggataagccaggagtgtatact 1260


cgagtgacagcctaccttgactggattaggcaacaaactgggatctagtgcaacaagtgc 1320


atccctgttgcaaagtctgtatgcaggtgtgcctgtcttaaattccaaagctttacattt 1380


caactgaaaaagaaactagaaatgtcctaatttaacatcttgttacataaatatggttta 1440


acaaaaaaaaaaaaaaaaaa 1460


<210> 81
<211> 386
<212> PRT


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
38
<213> Homo sapien
<400> 81
Met Phe Ala Glu Ile GIn Ile Gln Asp Lys Asp Arg Met Gly Thr Ala
1 5 10 15
Gly Lys Va1 Ile Lys Cys Lys Ala Ala Val Leu Trp Glu Gln Lys Gln
20 25 30
Pro Phe Ser Ile Glu Glu Ile Glu Val Ala Pro Pro Lys Thr Lys Glu
35 40 45
Val Arg I1e Lys Ile Leu Ala Thr Gly Ile Cys Arg Thr Asp Asp His
50 55 60
Val Ile Lys Gly Thr Met Val Sex Lys Phe Pro.Val Ile Val Gly His
65 70 75 80
Glu Ala Thr Gly Ile Val Glu Sex Ile Gly Glu Gly Val Thr Thr Val
85 90 95
Lys Pro Gly Asp Lys Val T1e Pro Leu Phe Leu Pro Gln Cys Arg G1u
100 105 110
Cys Asn Ala Cys Arg Asn Pro Asp GIy Asn Leu Cys Ile Arg Ser Asp
115 120 125
Ile Thr Gly Arg Gly Val Leu Ala Asp Gly Thr Thr Arg Phe Thr Cys
230 135 140
Lys Gly Lys Pro Val His His Phe Met Asn Thr Ser Thr Phe Thr Glu
145 150 155 160
Tyr Thr Val Val Asp Glu Ser Ser Val A1a Lys Ile Asp Asp Ala Ala
165 170 175
Pro Pro G1u Lys Val Cys Leu Ile G1y Cys Gly Phe Sex Thr Gly Tyr
180 185 190
G1y Ala Ala Val Lys Thr Gly Lys Val Lys Pro Gly Ser Thr Cys Val
195 200 205
Val Phe Gly Leu Arg Gly Val Gly Leu Ser Val Ile Met G1y Cys Lys
210 2l5 220
Ser A1a Gly Ala Ser Arg Ile Tle Gly Ile Asp Leu Asn Lys Asp Lys
225 230 235 240
Phe Glu Lys Ala Met A1a Val Gly A1a Thr Glu Cys Ile Ser Pro Lys
245 250 255
Asp Ser Thr Lys Pro Ile Ser Glu Val Leu Ser Glu Met Thr Gly Asn
260 265 270
Asn Val Gly Tyr Thr Phe G1u Val Ile Gly His Leu Glu Thr Met Ile
275 280 285
Asp Ala Leu Ala Ser Cys His Met Asn Tyr Gly Thr Ser Va1 Val Val
290 295 300
Gly Va1 Pro Pro Ser Ala Lys Met Leu Thr Tyr Asp Pro Met Leu Leu
305 310 315 320
Phe Thr Gly Arg Thr Trp Lys Gly Cys Val Phe Gly G1y Leu Lys Ser
325 330 335
Arg Asp Asp Val Pro Lys Leu Val Thr G1u Phe Leu Ala Lys Lys Phe
340 395 350
Asp Leu Asp Gln Leu Ile Thr His Val Leu Pro Phe Lys Lys Ile Ser
355 360 365
Glu Gly Phe G1u Leu Leu Asn Ser Gly Gln Ser Ile Arg Thr Va1 Leu
370 375 380
Thr Phe
385
<210> 82
<211> 418
<212> PRT
<213> Homo sapien


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
39
<400> 82
Met Tyr Arg Pro Ala Arg Val Thr Ser Thr Ser Arg Phe Leu Asn Pro
1 5 10 15
Tyr Val Val Cys Phe Ile Val Val A1a Gly Val Val Ile Leu Ala Val
20 25 30
Thr I1e Ala Leu Leu Val Tyr Phe Leu Ala Phe Asp Gln Lys Ser Tyr
35 40 45
Phe Tyr Arg Ser Ser Phe Gln Leu Leu Asn Val Glu Tyr Asn Ser Gln
50 55 60
Leu Asn Ser Pro Ala Thr Gln Glu Tyr Arg Thr Leu Ser Gly Arg Ile
65 70 75 80 .
Glu Ser Leu Ile Thr Lys Thr Phe Lys Glu Ser Asn Leu Arg Asn Gln
85 90 95
Phe T1e Arg Ala His Val Ala Lys Leu Arg Gln Asp Gly Ser Gly Val
100 105 110
Arg Ala Asp Val Val Met Lys Phe Gln Phe Thr Arg Asn Asn Asn G1y
115 l20 125
Ala Ser Met Lys Ser Arg Ile Glu Ser Va1 Leu Arg Gln Met Leu Asn
130 135 140
Asn Ser Gly Asn Leu Glu Ile Asn Pro Ser Thr Glu Ile Thr Ser Leu
145 150 155 160
Thr Asp Gln Ala Ala Ala Asn Trp Leu Ile Asn G1u Cys Gly Ala Gly
165 170 175
Pro Asp Leu Ile Thr Leu Ser Glu Gln Arg Ile Leu G1y Gly Thr Glu
180 185 190
Ala Glu Glu G1y Ser Trp Pro Trp Gln Val Ser Leu Arg Leu Asn Asn
195 200 205
Ala His His Cys Gly Gly Ser Leu Ile Asn Asn Met Trp Ile Leu Thr
210 215 220
Ala A1a His Cys Phe Arg Ser Asn Ser Asn Pro Arg Asp Trp I1e Ala
225 230 235 240
Thr Ser Gly T1e Ser Thr Thr Phe Pro Lys Leu Arg Met Arg Val Arg
245 250 255
Asn Ile Leu Tle His Asn Asn Tyr Lys Sex Ala Thr His Glu Asn Asp
260 265 270
Ile Ala Leu Val Arg Leu Glu Asn Ser Va1 Thr Phe Thr Lys Asp Ile
275 280 285
His Ser Val Cys Leu Pro Ala Ala Thr Gln Asn Tle Pro Pro Gly Ser
290 295 300
Thr Ala Tyr Val Thr Gly Trp Gly Ala Gln Glu Tyr Ala Gly His Thr
305 310 315 320
Val Pro Glu Leu Arg Gln Gly Gln Val Arg Ile Ile Ser Asn Asp Val
325 330 335
Cys Asn Ala Pro His Ser Tyr Asn Gly Ala I1e Leu Ser Gly Met Leu
340 345 350
Cys Ala Gly Val Pro Gln Gly Gly Val Asp Ala Cys G1n Gly Asp Ser
355 360 365
Gly Gly Pro Leu Val Gln Glu Asp Ser Arg Arg Leu Trp Phe Ile Val
370 375 380
Gly Ile Val Sex Trp Gly Asp Gln Cys Gly Leu Pro Asp Lys Pro Gly
385 390 395 400
Val Tyr Thr Arg Val Thr Ala Tyr Leu Asp Trp Ile Arg G1n Gln Thr
405 410 415
Gly Ile
<210> 83


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
<211> 418
<212> PRT
<213> Homo sapien
<400> 83
Met Tyr Arg Pro Ala Arg Val Thr Ser Thr Ser Arg Phe Leu Asn Pro
2 5 10 15
Tyr Val Val Cys Phe Ile Val Val Ala Gly Va1 Val Ile Leu Ala Val
20 25 30
Thr Ile Ala Leu Leu Val Tyr Phe Leu Ala Phe Asp Gln Lys Ser Tyr
35 40 45
Phe Tyr Arg Ser Ser Phe Gln Leu Leu Asn Val Glu Tyr Asn Ser Gln
55 60
Leu Asn Ser Pro Ala Thr Gln Glu Tyr Arg Thr Leu Ser Gly Arg Ile
65 70 75 80
Glu Ser Leu Tle Thr Lys Thr Phe Lys Glu Ser Asn Leu Arg Asn Gln
85 90 95
Phe Ile Arg Ala His Val A1a Lys Leu Arg G1n Asp Gly Ser Gly Val
100 105 110
Arg Ala Asp Val Val Met Lys Phe Gln Phe Thr Arg Asn Asn Asn Gly
115 120 125
Ala Ser Met Lys Ser Arg Ile Glu Ser Val Leu Arg Gln Met Leu Asn
130 135 140
Asn Ser Gly Asn Leu Glu Ile Asn Pro Ser Thr Glu Ile Thr Ser Leu
145 150 155 160
Thr Asp Gln Ala Ala A1a Asn Trp Leu Tle Asn Glu Cys Gly A1a Gly
165 170 175
Pro Asp Leu Ile Thr Leu Ser Glu Gln Arg Ile Leu Gly Gly Thr Glu
180 185 190
Ala Glu Glu Gly Ser Trp Pro Trp Gln Val Ser Leu Arg Leu Asn Asn
195 200 205
Ala His His Cys Gly Gly Ser Leu I1e Asn Asn Met Trp Ile Leu Thr
210 215 220
Ala Ala His Cys Phe Arg Ser Asn Ser Asn Pro Arg Asp Trp Ile Ala
225 230 235 240
Thr Ser Gly Ile Ser Thr Thr Phe Pro Lys Leu Arg Met Arg Val Arg
245 250 255
Asn Ile Leu Ile His Asn Asn Tyr Lys Ser Ala Thr His Glu Asn Asp
260 265 270
Tle Ala Leu Val Arg Leu Glu Asn Ser Val Thr Phe Thr Lys Asp Ile
275 280 285
His Ser Va1 Cys Leu Pro Ala Ala Thr Gln Asn Ile Pro Pro Gly Ser
290 295 300
Thr A1a Tyr Val Thr Gly Trp Gly Ala Gln Glu Tyr Ala Gly His Thr
305 310 315 320
Val Pro Glu Leu Arg Gln Gly Gln Val Arg Ile Ile Ser Asn Asp Val
325 330 335
Cys Asn Ala Pro His Ser Tyr Asn Gly Ala Ile Leu Sex Gly Met Leu
340 345 350
Cys Ala Gly Val Pro Gln Gly Gly Val Asp A1a Cys Gln Gly Asp Ser
355 360 365
G1y Gly Pro Leu Val Gln Glu Asp Ser Arg Arg Leu Trp Phe Ile Val
370 375 380
Gly Ile Va1 Ser Trp Gly Asp Gln Cys Gly Leu Pro Asp Lys Pro Gly
385 390 395 400
Val Tyr Thr Arg Val Thr Ala Tyr Leu Asp Trp Ile Arg Gln Gln Thr
405 410 415
G1y Ile


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
41
<210> 84
<211> 489
<212> DNA
<213> Homo sapien
<400> 84


aaaagggtaagcttgatgattaccaggaacgaatgaacaaaggggaaaggcttaatcaag 60


atcagctggatgccgtttctaagtaccaggaagtcacaaataatttggagtttgcaaaag 120


aattacagaggagtttcatggCactaagtcaagatattcagaaaacaataaagaagacag 7.80


cacgtcgggagcagcttatgagagaagaagctgaacagaaacgtttaaaaactgtacttg 240


agctacagtatgttttggacaaattgggagatgatgaagtgcggactgacctgaaacaag 300


gtttgaatggagtgccaatattgtccgaagaggagttgtcattgttggatgaattctata 360


agctagtagaccctgaacgggacatgagcttgaggttgaatgaacagtatgaacatgcct 420


ccattcacctgtgggacctgctggaagggaaggaaaaacctgtatgtggaaccacctata 480


aagttctaa 489


<210> 85
<211> 304
<2I2> DNA
<213> Homo sapien
<400> 85


gggacctggaggaggccacgctgcagcatgaagccacagcagccaccctgaggaagaagc 60


acgcggacagcgtggccgagctcggggagcagatcgacaacctgcagcgggtgaagcaga 120


agctggagaaggagaagagcgagatgaagatggagatcgatgacctcgcttgtaacatgg 180


aggtcatctccaaatctaagggaaaccttgagaagatgtgccgcacactggaggaccaag 240


tgagtgagctgaagacccaggaggaggaacagcagcggctgatcaatgaactgactgcgc 300


agag 304


<210> 86
<211> 296
<212> DNA
<213> Homo sapien
<400> 86


gaaaatccttcctttgaatgggaatctccaagcagttgaattgggcgaaaaaagaacctc 60


ttccttaaggattaaaatgtttagggcaacacgtgttacttccacttccagatttctgaa 120


tccatatgttgtatgtttccttgtcctcccaggggttgtgatcctggcagtccccatagc 180


tctacttgtttactttttagcttttgatcaaaaatcttacttttattggagcaattttcc 240


actcccaaatgttgaatataatagtccgtttaattcccccgcttcaccgggaattc 296


<210> 87
<211> 904
<212> DNA
<213> Homo sapien
<400>
87


gtgtccaggaaacgattcatgaacataacaagcttgctgcaaattcagatcatctcatgc 60


agattcaaaaatgtgagttggtcttgatccacacctacccagttggtgaagacagccttg 120


tatctgatcgttctaaaaaagagttgtccccggttttaaccagtgaagttcatagtgttc 180


gtgcaggacggcatcttgctaccaaattgaatattttagtacagcaacattttgacttgg 240


cttcaactactattacaaatattccaatgaaggaagaacagcatgctaacacatctgcca 300


attatgatgtggagctacttcatcacaaagatgcacatgtagatttcctgaaaagtggtg 360


attcgcatctaggtggcggcagtcgagaaggctcgtttaaagaaacaataacattaaagt 420


ggtgtacaccaaggacaaataacattgaattacactattgtactggagcttatcggattt 480


cacctgtagatgtaaatagtagaccttcctcctgccttactaattttcttctaaatggtc 540




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
42
gttctgttttattggaacaaccacgaaagtcaggttctaaagtcattagtcatatgctta 600


gtagccatggaggagagatttttttgcacgtccttagcagttctcgatccattctagaag 660


atccaccttcaattagtgaaggatgtggaggaagagttacagactaccggattacagatt 720


ttggtgaatttatgaggggaaaacagattaactccttttctacaccccagatataaaatc 780


gatggaagtcttgaggtccctttggaaccgagccaaaagatcagttaaaaaaacataccc 840


gttactggcctatgatttcaaaaacccaccatttttaacatgcaagcggtagttccgtta 900


acca 904


<210> 88
<211> 387
<212> DNA
<213> Homo sapien
<400> 88
cgtctctcccccagtttgccgttcacccggagcgctcgggacttgccgatagtggtgacg 60


gcggcaacatgtctgtggctttcgcggccccgaggcagcgaggcaagggggagatcactc 120


ccgctgcgattcagaagatgttggatgacaataaccatcttattcagtgtataatggact 180


ctcagaataaaggaaagacctcagagtgttctcagtatcagcagatgttgcacacaaact 240


tggtataccttgctacaatagcagattctaatcaaaatatgcagtctcttttaccagcac 300


cacccacacagaatatgcctatgggtcctggagggatgaatcagagcgggcctcccccac 360


ctccacgctctcacaacatgccttcaa 387


<210> 89
<211> 481
<212> DNA
<213> Homo sapien
<400> 89
tgttcttggacctgcggtgctatagagcaggctcttctaggttggcagttgccatggaat 60


ctggacccaaaatgttggcccccgtttgcctggtggaaaataacaatgagcagctattgg 120


tgaaccagcaagctatacagattcttgaaaagatttctcagccagtggtggtggtggcca 180


ttgtaggactgtaccgtacagggaaatcctacttgatgaaccatctggcaggacagaatc 240


atggcttccctctgggctccacggtgcagtctgaaaccaagggcatctggatgtggtgcg 300


tgccccacccatccaagccaaaccacaccctggtccttctggacaccgaaggtctgggcg 360


atgtggaaaagggtgaccctaagaatgactcctggatctttgccctggctgtgctcctgt 420


gcagcacctttgtctacaacagcatgagcaccatcaaccaccaggccctggagcagctgc 480


a 481


<210> 90
<211> 491
<212> DNA
<213> Homo sapien
<400>
90


tgaaaactgttcttggacctgcggtgctatagagcaggttggcagttgccatggaatctg 60


gacccaaaatgttggcccccgtttgcctggtggaaaataacaatgagcagctattggtga 120


accagcaagctatacagattcttgaaaagatttctcagccagtggtggtggtggccattg 180


taggactgtaccgtacagggaaatcctacttgatgaaccatctggcaggacagaatcatg 240


gcttccctctgggctccacggtgcagtctgaaaccaagggcatctggatgtggtgcgtgc 300


cccacccatccaagccaaaccacaccctggtccttctggacaccgaaggtctgggcgatg 360


tggaaaagggtgaccctaagaatgactcctggatctttgccctggctgtgctcctgtgca 420


gcacctttgtctacaacagcatgagcaccatcaaccaccaagccctggagcagctgcatt 480


atgtgacggac 491


<210> 91
<211> 488
<2l2> DNA
<213> Homo sapien


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
43
<400> 91


ttcgacagtcagccgcatcttcttttgcgtcgccagccgagccacatcgctcagacacca 60


tggggaaggtgaaggtcggagtcaacggatttggtcgtattgggcgcctggtcaccaggg 120


ctgcttttaactctggtaaagtggatattgttgccatcaatgaccccttcattgacctca 180


actacatggtttacatgttccaatatgattccacccatggcaaattccatggcaccgtcg 240


aggctgagaacgggaagcttgtcatcaatggaaatcccatcaccatcttccaggagcgag 300


atccctccaaaatcaagtggggcgatgctggcgctgagtacgtcgtggagtccactggcg 360


tcttcaccaccatggagaaggctggggctcatttgcaggggggagccaaaagggtcatca 420


tctctgcccctctgctgatgccccatgttcgtcatgggtgtgaaccatgagaagtatgac 480


acagcctc 488


<210> 92
<211> 384
<212> DNA
<213> Homo sapien
<400> 92


gacagtcagccgcatcttcttttgcgtcgccagccgagccacatcgctcagacaccatgg 60


ggaaggtgaaggtcggagtcaacggatttggtcgtattgggcgcctggtcaccagggctg 120


cttttaactctggtaaagtggatattgttgccatcaatgaccccttcattgacctcaact 180


acatggtttacatgttccaatatgattccacccatggcaaattccatggcaccgtcgagg 240


ctgagaacgggaagcttgtcatcaatggaaatcccatcaccatcttccaggagcgagatc 300


cctccaaaatcaagtggggcgatactggcgctgagtacgtcgtggagtccactggcgtct 360


tcaccaccatggagaaggctgggg 384


<210> 93
<211> 162
<212> PRT
<213> Homo sapien
<400> 93
Lys G1y Lys Leu Asp Asp Tyr Gln Glu Arg Met Asn Lys Gly Glu Arg
1 5 10 15
Leu Asn Gln Asp Gln Leu Asp Ala Val Ser Lys Tyr Gln Glu Val Thr
20 25 30
Asn Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg Ser Phe Met Ala Leu
35 40 45
Ser Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr Ala Arg Arg Glu Gln
50 55 60
Leu Met Arg Glu Glu Ala Glu Gln Lys Arg Leu Lys Thr Val Leu Glu
65 70 75 80
Leu G1n Tyr Val Leu Asp Lys Leu Gly Asp Asp Glu Val Arg Thr Asp
85 90 95
Leu Lys Gln Gly Leu Asn Gly Val Pro Ile Leu Ser Glu Glu Glu Leu
100 105 l10
Ser Leu Leu Asp Glu Phe Tyr Lys Leu Val Asp Pro Glu Arg Asp Met
115 120 125
Ser Leu Arg Leu Asn Glu Gln Tyr Glu His Ala Ser Ile His Leu Trp
130 135 140
Asp Leu Leu Glu Gly Lys Glu Lys Pro Val Cys Gly Thr Thr Tyr Lys
145 150 I55 160
Val Leu
<210> 94
<211> 100
<212> PRT


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
44
<213> Homo sapien
<400> 94
Asp Leu Glu Glu Ala Thr Leu Gln His Glu Ala Thr Ala Ala Thr Leu
1 5 10 15
Arg Lys Lys His Ala Asp Ser Val Ala Glu Leu Gly Glu Gln Ile Asp
20 25 30
Asn Leu Gln Arg Val Lys Gln Lys Leu Glu Lys Glu Lys Ser Glu Met
35 40 45
Lys Met Glu Ile Asp Asp Leu Ala Cys Asn Met Glu Val Ile Ser Lys
50 55 60
Ser Lys Gly Asn Leu Glu Lys Met Cys Arg Thr Leu G1u Asp Gln Val
65 70 75 80
Ser Glu Leu Lys Thr Gln Glu Glu Glu Gln G1n Arg Leu Ile Asn Glu
85 90 95
Leu Thr Ala Gln
100
<210> 95
<211> 99
<212> PRT
<213> Homo sapien
<400> 95 .
Lys Ile Leu Pro Leu Asn Gly Asn Leu G1n Ala Val Glu Leu Gly Glu
l 5 10 15
Lys Arg Thr Ser Ser Leu Arg Ile Lys Met Phe Arg Ala Thr Arg Val
20 25 30
Thr Ser Thr Ser Arg Phe Leu Asn Pro Tyr Val Va1 Cys Phe Leu Val
35 40 45
Leu Pro Gly Val Val Ile Leu Ala Val Pro Ile Ala Leu Leu Val Tyr
50 55 60
Phe Leu Ala Phe Asp Gln Lys Ser Tyr Phe Tyr Trp Ser Asn Phe Pro
65 70 75 80
Leu Pro Asn Val Glu Tyr Asn Ser Pro Phe Asn Ser Pro Ala Ser Pro
85 90 95
G1y Ile Pro
<210> 96
<211> 257
<2I2> PRT
<213> Homo sapien
<400> 96
Val G1n Glu Thr Ile His Glu His Asn Lys Leu Ala Ala Asn Ser Asp
1 5 10 15
His Leu Met Gln Ile Gln Lys Cys G1u Leu Val Leu Ile His Thr Tyr
20 25 30
Pro Val Gly Glu Asp Ser Leu Val Ser Asp Arg Ser Lys Lys Glu Leu
35 40 45
Ser Pro Val Leu Thr Ser Glu Val His Ser Val Arg A1a Gly Arg His
50 55 60
Leu Ala Thr Lys Leu Asn Ile Leu Val Gln Gln His Phe Asp Leu Ala
65 70 75 80
Ser Thr Thr Ile Thr Asn Ile Pro Met Lys Glu Glu Gln His Ala Asn
85 90 95
Thr Ser Ala Asn Tyr Asp Val Glu Leu Leu His His Lys Asp Ala His


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
100 105 110
Val Asp Phe Leu Lys Ser Gly Asp Ser His Leu Gly Gly Gly Ser Arg
1l5 120 125
Glu Gly Ser Phe Lys Glu Thr Ile Thr Leu Lys Trp Cys Thr Pro Arg
130 135 140
Thr Asn Asn Ile Glu Leu His Tyr Cys Thr Gly Ala Tyr Arg Ile Ser
145 150 155 160
Pro Val Asp Val Asn Ser Arg Pro Ser Ser Cys Leu Thr Asn Phe Leu
165 170 175
Leu Asn Gly Arg Ser Val Leu Leu Glu Gln Pro Arg Lys Ser Gly Ser ,
180 185 190
Lys Val Ile Ser His Met Leu Ser Ser His Gly Gly Glu Ile Phe Leu
195 200 205
His Val Leu Ser Ser Ser Arg Ser Ile Leu Glu Asp Pro Pro Ser Ile
210 215 220
Ser Glu Gly Cys Gly Gly Arg Val Thr Asp Tyr Arg Ile Thr Asp. Phe
225 230 235 240
Gly Glu Phe Met Arg Gly Lys Gln Ile Asn Ser Phe Ser Thr Pro Gln
245 250 255
Ile
<210> 97
<211> 128
<212> PRT
<213> Homo sapien
<400> 97
Ser Leu Pro Gln Phe Ala Val His Pro Glu Arg Ser Gly Leu Ala Asp
1 5 10 15
Ser Gly Asp Gly Gly Asn Met Ser Val Ala Phe Ala Ala Pro Arg Gln
20 25 30
Arg Gly Lys G1y Glu I1e Thr Pro Ala Ala Ile Gln Lys Met Leu'Asp
35 40 45
Asp Asn Asn His Leu Ile Gln Cys Ile Met Asp Ser Gln Asn Lys Gly
55 60
Lys Thr Ser G1u Cys Ser Gln Tyr Gln Gln Met Leu His Thr Asn Leu
65 70 75 80
Val Tyr Leu Ala Thr Ile Ala Asp Ser Asn Gln Asn Met Gln Ser Leu
85 90 95
Leu Pro Ala Pro Pro Thr Gln Asn Met Pro Met Gly Pro Gly Gly Met
100 105 110
Asn Gln Ser Gly Pro Pro Pro Pro Pro Arg Ser His Asn Met Pro Ser
115 120 125
<210> 98
<211> 159
<212> PRT
<213> Homo sapien
<400> 98
Phe Leu Asp Leu Arg Cys Tyr Arg Ala Gly Ser Ser Arg Leu Ala Val
1 5 10 15
Ala Met Glu Ser Gly Pro Lys Met Leu Ala Pro Val Cys Leu Val Glu
20 25 30
Asn Asn Asn Glu Gln Leu Leu Val Asn Gln Gln Ala Ile Gln Ile Leu
35 40 45
Glu Lys Ile Ser Gln Pro Val Val Val Val Ala Ile Val Gly Leu Tyr


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
46
50 55 60
Arg Thr Gly Lys Ser Tyr Leu Met Asn His Leu Ala Gly Gln Asn His
65 70 75 80
Gly Phe Pro Leu Gly Ser Thr Val G1n Ser Glu Thr Lys Gly Ile Trp
85 90 95
Met Trp Cys Va1 Pro His Pro Ser Lys Pro Asn His Thr Leu Val Leu
100 105 110
Leu Asp Thr Glu Gly Leu Gly Asp Val Glu Lys Gly Asp Pro Lys Asn
1.15 120 125
Asp Ser Trp Ile Phe Ala Leu Ala Val Leu Leu Cys Ser Thr Phe Val
130 135 140
Tyr Asn Ser Met Ser Thr Ile Asn His Gln Ala Leu Glu Gln Leu
145 150 155
<210> 99
<211> 147
<212> PRT
<213> Homo sapien
<400> 99
Met Glu Ser Gly Pro Lys Met Leu Ala Pro Val Cys Leu Val Glu Asn
1 5 10 15
Asn Asn Glu Gln Leu Leu Val Asn GIn Gln A1a Ile Gln Ile Leu Glu
20 25 30
Lys Ile Ser Gln Pro Val Val Val Val Ala Ile Val Gly Leu Tyr Arg
35 40 45
Thr Gly Lys Ser Tyr Leu Met Asn His Leu Ala Gly Gln Asn His Gly
50 55 60
Phe Pro Leu Gly Ser Thr Val Gln Ser Glu Thr Lys Gly Ile Trp Met
65 70 75 80
Trp Cys Val Pro His Pro Ser Lys Pro Asn His Thr Leu Val Leu Leu
85 90 95
Asp Thr Glu Gly Leu G1y Asp Val Glu Lys G1y Asp Pro Lys Asn Asp
100 105 110
Ser Trp Tle Phe Ala Leu Ala Val Leu Leu Cys Ser Thr Phe Val Tyr
115 120 125
Asn Ser Met Ser Thr Ile Asn His Gln Ala Leu Glu Gln Leu His Tyr
130 135 140
Val Thr Asp
145
<210> 100
<211> 124
<212> PRT
<213> Homo sapien
<400> 100
Met Gly Lys Val Lys Val Gly Val Asn Gly Phe Gly Arg Ile Gly Arg
1 5 10 15
Leu Val Thr Arg A1a Ala Phe Asn Ser Gly Lys Val Asp Ile Val Ala
20 25 30
Ile Asn Asp Pro Phe Tle Asp Leu Asn Tyr Nlet Val Tyr Met Phe Gln
35 40 45
Tyr Asp Ser Thr His Gly Lys Phe His G1y Thr Val Glu Ala Glu Asn
50 55 60
Gly Lys Leu Val Ile Asn Gly Asn Pro Ile Thr Ile Phe Gln Glu Arg
65 70 75 80
Asp Pro Ser Lys Ile Lys Trp Gly Asp A1a Gly Ala Glu Tyr Val Val


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
47
85 90 95
Glu Ser Thr Gly Val Phe Thr Thr Met Glu Lys Ala Gly Ala His Leu
100 105 110
Gln Gly Gly Ala Lys Arg Val Ile Ile Ser Ala Pro
115 120
<210> 101
<211> 127
<212> PRT
<213> Homo sapien
<400> 101
Gln Ser Ala Ala Ser Ser Phe Ala Ser Pro Ala G1u Pro His Arg Ser
1 5 10 15
Asp Thr Met Gly Lys Val Lys Val Gly Val Asn G1y Phe Gly Arg Ile
20 25 30
Gly Arg Leu Val Thr Arg Ala Ala Phe Asn Ser Gly Lys Val Asp Ile
35 40 45
Val Ala Ile Asn Asp Pro Phe Ile Asp Leu Asn Tyr Met Val Tyr Met
50 55 60
Phe Gln Tyr Asp Ser Thr His Gly Lys Phe His Gly Thr Val Glu Ala
65 70 75 80
Glu Asn Gly Lys Leu Val Ile Asn Gly Asn Pro Ile Thr Ile Phe Gln
85 90 95
Glu Arg Asp Pro Ser Lys Ile Lys Trp Gly Asp Thr Gly Ala Glu Tyr
100 105 110
Va1 Val Glu Ser Thr Gly Val Phe Thr Thr Met Glu Lys Ala Gly
115 120 125
<210> 102
<211> 1225
<212> DNA
<213> Homo sapien
<400>
102


atggcggcgcggtcgtcgtcgggggtggcggcggcagagggggcggcggccctggcggca 60


gcggagacggcagccgtgacggtggcagcggcggcgcgggacctgggcctgggggaatga 120


ggcggccgcggcgggccagcggcggagccgtgtagcggagaagctccccctccctgcttc 180


ccttggccgagccgggggcgcgcgcgcacgcggccgtccagagcgggctccccacccctc 240


gactcctgcgacccgcaccgcacccccacccgggcccggaggatgatgaagctcaagtcg 300


aaccagacccgcacctacgacggcgacggctacaagaagcgggccgcatgcctgtgtttc 360


cgcagcgagagcgaggaggaggtgctactcgtgagcagtagtcgccatccagacagatgg 420


attgtccctggaggaggcatggagcccgaggaggagccaagtgtggcagcagttcgtgaa 480


gtctgtgaggaggctggagtaaaagggacattgggaagattagttggaatttttgagaac 540


caggagaggaagcacaggacgtatgtctatgtgctcattgtcactgaagtgctggaagac 600


tgggaagattcagttaacattggaaggaagagggaatggtttaaaatagaagacgccata 660


aaagtgctgcagtatcacaaacccgtgcaggcatcatattttgaaacattgaggcaaggc 720


tactcagccaacaatggcaccccagtcgtggccaccacatactcggtttctgctcagagc 780


tcgatgtcaggcatcagatgactgaagacttcctgtaagagaaatggaaattggaaacta 840


gactgaagtgcaaatcttccctctcaccctggctctttccacttctcacaggcctcctct 900


ttcaaataaggcatggtgggcagcaaagaaagggtgtattgataatgttgctgtttggtg 960


ttaagtgatggggctttttcttctgtttttattgagggtgggggttgggtgtgtaatttg 2020


taagtacttttgtgcatgatctgtccctccctcttcccacccctgcagtcctctgaagag 1080


aggccaacagccttcccctgccttggattctgaagtgttcctgtttgtcttatcctggcc 1140


ctggccagacgttttctttgatttttaattttttttttttattaaaagataccagtatga 1200


gaaaaaaaaaaaaaaaaaactcgag 1225


<210> 103


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
48
<211> 741
<212> DNA
<213> Homo sapien
<400> 103


agaaacctcaatcggattcagcaaaggaatggtgttattatcactacataccaaatgtta 60


atcaataactggcagcaactttcaagctttaggggccaagagtttgtgtgggactatgtc 120


atcctcgatgaagcacataaaataaaaacctcatctactaagtcagcaatatgtgctcgt 180


gctattcctgcaagtaatcgcctcctcctcacaggaaccccaatccagaataatttacaa 240


gaactatggtccctatttgattttgcttgtcaagggtccctgctgggaacattaaaaact 300


tttaagatggagtatgaaaatcctattactagagcaagagagaaggatgctaccccagga 360


gaaaaagccttgggatttaaaatatctgaaaacttaatggcaatcataaaaccctatttt 420


ctcaggaggactaaagaagacgtacagaagaaaaagtcaagcaacccagaggccagactt 480


aatgaaaagaatccagatgttgatgccatttgtgaaatgccttccctttccaggagaaat 540


gatttaattatttggatacgacttgtgcctttacaagaagaaatatacaggaaatttgtg 600


tctttagatcatatcaaggagttgctaatggagacgcgctcacctttggctgagctaggt 660


gtcttaaagaagctgtgtgatcatcctaggctgctgtctgcacgggcttgttgtttgcta 720


aatcttgggacattctctgct 741


<210> 104
<211> 321
<212> DNA
<213> Homo sapien
<400> 104


ttgctctgcgtcatcaaagacaccaaactgctgtgctataaaagttccaaggaccagcag 60


cctcagatggaactgccactccaaggctgtaacattacgtacatcccgaaagacagcaaa 120


aagaagaagcacgagctgaagattactcagcagggcacggacccgcttgttctcgccgtc 7.80


cagagcaaggaacaggccgagcagtggctgaaggtgatcaaagaagcctacagtggttgt 240


agtggc.cccgtggattcagagtgtcctcctccaccaagctccccggtgcacaaggcagaa 300


ctggagaagaaactgtcttca 321


<210> 105
<211> 389
<212> DNA
<213> Homo sapien
<400> 105


cagcactggccacactataaaattcaggttcagaaaaacagggtaagtcacagacagcaa 60


cgcttccagcatttattttctttgcacccatgggcaatttgagaaaatttacctttagaa 120


cgaactctgttaaaggtacagacagtacaatactttttattcagaaggtttctgcataaa 180


ggtgatagtcttttgacttaatatattattgtctcctgccttgtgtttctggaatgaatg 240


aaggtcattatttagaagataatctgggttgtatttgtgtcgtcagattgaattttcatt 300


gcacatgctacttaatgtctttaccaaataataacaaagggaaagaaaaccaaatataga 360


tgtataataaggaaaagctggcctataga 389


<210> 106
<211> 446
<212> DNA
<213> Homo sapien
<400> 106


gccacatttgccctggtcatagtttaaacaccaggtcctgtgtcacatctttttggtgcc 60


acaagtatcactccattgttcagagagtaatgtattagttctgcccaattcattcttcac 120


ttttatttcttccatttcattagcatttatatcagctcaagaagttaaggttagaaaatt 180


ttccacttcaaattttcagtacagaaatgtgctgtgatgtttgacaagactatttcatag 240


taagtgagttaatgtttattggcctctgctctcctctgtgtcagacctaggaagcctgag 300


gattacttagttgttctgtctctgggtccacaggcagaatttggcccatccaaagactgg 360




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
49
ccaagtgcca aaaaaaggcc tgattaggcc ctgaaattca gtgaaattct gcctgaagaa 420
acctcttatt gaatttgaaa accata 446
<210> 107
<211> 467
<212> DNA
<213> Homo sapien
<400> 107


ccgccgctgccgtcgccttcctgggattggagtctcgagctttcttcgttcgttcgccgg 60


cgggttcgcgcccttctcgcgcctcggggctgcgaggctggggaaggggttggagggggc 120


tgttgatcgccgcgtttaagttgcgctcggggcggccatgtcggccggcgaggtcgagcg 180


cctagtgtcggagctgagcggcgggaccggaggggatgaggaggaagagtggctctatgg 240


cgatgaagatgaagttgaaaggccagaagaagaaaatgccagtgctaatcctccatctgg 3d0


aattgaagatgaaactgctgaaaatggtgtaccaaaaccgaaagtgactgagaccgaaga 360


tgatagtgatagtgacagcgatgatgatgaagatgatgtgcatgtcactataggagacat 420


taaaacgggagcaccacagtatgggagttatggtacagcacctgtaa 467


<210> 108
<211> 491
<212> DNA
<213> Homo sapien
<400> 108


gaaagatacaacttccccaacccaaacccgtttgtggaggacgacatggataagaatgaa 60


atcgcctctgttgcgtaccgttaccgcaggtggaagcttggagatgatattgaccttatt 120


gtccgttgtgagcacgatggcgtcatgactggagccaacggggaagtgtccttcatcaac 180


atcaagacactcaatgagtgggattccaggcactgtaatggcgttgactggcgtcagaag 240


ctggactctcagcgaggggctgtcattgccacggagctgaagaacaacagctacaagttg 300


gcccggtggacctgctgtgctttgctggctggatctgagtacctcaagcttggttatgtg 360


tctcggtaccacgtgaaagactcctcacgccacgtcatcctaggcacccagcagttcaag 420


cctaatgagtttgccagccagatcaacctgagcgtggagaatgcctgaggcattttacgc 480


tgcgtcattga 491


<210> 109
<211> 489
<212> DNA
<213> Homo sapien
<400> 109


ctcagatagtactgaaccctttatcaactatgttttttcagtctgacaaccaaggcggct 60


actaagtgactaaggggcaggtagtatacagtgtggataagcaggacaaaggggtgattc 120


acatcccaggcaggacagagcaggagatcatgagatttcatcactcaggatggcttgtga 180


tttattttattttattctttttttt~ttttgagatggagtctcactcttgcccaggctgga 240


gtgcagtggtgcgatcttggctcactgcaacctctgcctcctgggttcaagcagttctcc 300


tgcctcagcctcccaagtagctgggattacaggcgtccgccaccatgcccagccaatttt 360


tgtacttttagtagagatggggtttcaccatgttggccaggctggtctcgaactccfgac 420


ctcaggtgatccactcgcctcggcctcccaaagtgctgggattataggcatgcgccacca 480


tgcccgggc 489


<210> 110
<211> 391
<212> DNA
<213> Homo sapien
<400> 110
gcggagtccg ctggctgacc cgagcgctgg tctccgccgg gaaccctggg gcatggagag 60
gtctgagtac ctcggccgcg gcgcacgctg catcgcggag ccaggctgcc gctgtcccag 220


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
SO
tggagttccaggagcaccacctgagtgaggtgcagaatatggcatctgaggagaagctgg 180


agcaggtgctgagttccatgaaggagaacaaagtggccatcattggaaagattcataccc 240


cgatggagtataagggggagctagcctcctatgatatgcggctgaggcgtaagttggact 300


tatttgccaacgtaatccatgtgaagtcacttcctgggtatatgactcggcacaacaatc 360


tagacctggtgatcattcgagagcagacaga 391


<210> 111
<211> 172
<212> PRT
<213> Homo sapien
<400> 111
Met Met Lys Leu Lys Ser Asn Gln Thr Arg Thr Tyr Asp G1y Asp Gly
1 5 10 15
Tyr Lys Lys Arg Ala Ala Cys Leu Cys Phe Arg Ser Glu Ser Glu Glu
20 25 30
Glu Val Leu Leu Val Ser Ser Ser Arg His Pro Asp Arg Trp Ile Val
35 40 45
Pro Gly Gly Gly Met Glu Pro Glu Glu Glu Pro Ser Val Ala Ala Val
50 55 60
Arg Glu Val Cys Glu Glu Ala Gly Val Lys Gly Thr Leu Gly Arg Leu
65 70 75 80
Val Gly Ile Phe Glu Asn Gln Glu Arg Lys His Arg Thr Tyr Val Tyr
85 90 95
Val Leu Ile Val Thr Glu Val Leu Glu Asp Trp Glu Asp Ser Val Asn
100 105 110
Ile Gly Arg Lys Arg Glu Trp Phe Lys I1e Glu Asp Ala Ile Lys Val
115 120 125
Leu G1n Tyr His Lys Pro Val Gln Ala Ser Tyr Phe Glu Thr Leu Arg
130 135 140
Gln Gly Tyr Ser Ala Asn Asn Gly Thr Fro Val Val Ala Thr Thr Tyr
145 150 155 160
Ser Val Ser Ala Gln Ser Ser Met Ser Gly Tle Arg
165 170
<210> 112
<21l> 247
<212> PRT
<213> Homo sapien
<400> 112
Arg Asn Leu Asn Arg Ile Gln Gln Arg Asn Gly Val Ile Ile Thr Thr
1 5 10 - 15
Tyr Gln Met Leu Tle Asn Asn Trp G1n Gln Leu Ser Ser Phe Arg G1y
20 25 30
Gln Glu Phe Val Trp Asp Tyr Va1 Ile Leu Asp Glu Ala His Lys Ile
35 40 45
Lys Thr Ser Ser Thr Lys Ser Ala Ile Cys Ala Arg Ala Ile Pro Ala
50 55 60
Ser Asn Arg Leu Leu Leu Thr Gly Thr Pro Ile Gln Asn Asn Leu Gln
65 70 75 80
Glu Leu Trp Ser Leu Phe Asp Phe Ala Cys Gln Gly Ser Leu Leu Gly
85 90 95
Thr Leu Lys Thr Phe Lys Met Glu Tyr Glu Asn Pro Ile Thr Arg Ala
100 105 110
Arg Glu Lys Asp Ala Thr Pro Gly Glu Lys Ala Leu Gly Phe Lys Ile
115 120 125
Ser Glu Asn Leu Met Ala Ile Ile Lys Pro Tyr Phe Leu Arg Arg Thr


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
SI
130 135 140
Lys Glu Asp Val Gln Lys Lys Lys Ser Ser Asn Pro Glu Ala Arg Leu
145 150 155 260
Asn Glu Lys Asn Pro Asp Val Asp Ala Ile Cys Glu Met Pro Ser Leu
165 170 175
Ser Arg Arg Asn Asp Leu Ile Ile Trp Ile Arg Leu Val Pro Leu Gln
180 185 190
Glu Glu Ile Tyr Arg Lys Phe Val Ser Leu Asp His Tle Lys Glu Leu
195 200 205
Leu Met Glu Thr Arg Ser Pro Leu Ala G1u Leu Gly Val Leu Lys Lys
210 215 220
Leu Cys Asp His Pro Arg Leu Leu Ser Ala Arg Ala Cys Cys Leu Leu
225 230 235 240
Asn Leu Gly Thr Phe Sex Ala
245
<210> 113
<211> 107
<212> PRT
<213> Homo sapien
<400> 113
Leu Leu Cys Val Ile Lys Asp Thr Lys Leu Leu Cys Tyr Lys Ser Ser
1 5 10 15
Lys Asp Gln Gln Pro Gln Met Glu Leu Pro Leu Gln Gly Cys Asn Ile
20 25 30
Thr Tyr Ile Pro Lys Asp Ser Lys Lys Lys Lys His G1u Leu Lys Ile
35 40 45
Thr Gln Gln Gly Thr Asp Pro Leu Val Leu Ala Val Gln Ser Lys Glu
50 55 60
Gln A1a Glu Gln Trp Leu Lys Val Ile Lys Glu Ala Tyr Ser Gly Cys
65 70 75 80
Ser Gly Pro Val Asp Ser Glu Cys Pro Pro Pro Pro Ser Ser Pro Val
85 90 95
His Lys Ala G1u Leu Glu Lys Lys Leu Ser Ser
100 105
<210> 114
<211> 155
<212> PRT
<213> Homo sapien
<400> 114
Glu Arg Tyr Asn Phe Pro Asn Pro Asn Pro Phe Val G1u Asp Asp Met
1 5 10 15
Asp Lys Asn Glu Ile Ala Ser Val Ala Tyr Arg Tyr Arg Arg Trp Lys
20 25 30
Leu Gly Asp Asp Ile Asp Leu Ile Va1 Arg Cys Glu His Asp Gly Val
35 40 45
Met Thr Gly Ala Asn Gly Glu Val Ser Phe Ile Asn Ile Lys Thr Leu
50 55 60
Asn Glu Trp Asp Ser Arg His Cys Asn Gly Val Asp Trp Arg Gln Lys
65 70 75 80
Leu Asp Ser Gln Arg Gly Ala Val Ile Ala Thr Glu Leu Lys Asn Asn
85 90 95
Ser Tyr Lys Leu Ala Arg Trp Thr Cys Cys Ala Leu Leu Ala Gly Ser
100 105 110
Glu Tyr Leu Lys Leu Gly Tyr Val Ser Arg Tyr His Val Lys Asp Ser


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
52
115 120 125
Ser Arg His Val Ile Leu Gly Thr Gln Gln Phe Lys Pro Asn Glu Phe
130 135 140
Ala Ser Gln Ile Asn Leu Ser Va1 Glu Asn Ala
145 150 155
<210> 115
<211> 129
<212> PRT
<213> Homo sapien
<400> 115 '
Gly Val Arg Trp Leu Thr Arg Ala Leu Val Ser Ala Gly Asn Pro Gly
1 5 10 15
Ala Trp Arg Gly Leu Ser Thr Ser Ala Ala Ala His Ala Ala Ser Arg
20 25 30
Ser Gln Ala Ala Ala Val Pro Val Glu Phe Gln G1u His His Leu Ser
35 40 45
Glu Val Gln Asn Met Ala Ser Glu Glu Lys Leu Glu Gln Val Leu Ser
50 55 60
Ser Met Lys G1u Asn Lys Va1 Ala Ile Ile Gly Lys Ile His Thr Pro
65 70 ~ 75 80
Met Glu Tyr Lys Gly Glu Leu Ala Ser Tyr Asp Met Arg Leu Arg Arg
85 90 95
Lys Leu Asp Leu Phe Ala Asn Val Ile His Val Lys Ser Leu Pro Gly
100 105 110
Tyr Met Thr Arg His Asn Asn Leu Asp Leu Val Ile Ile Arg Glu Gln
115 120 125
Thr
<210> 116
<211> 550
<212> DNA
<213> Homo sapien
<400> 116


gaattcggcaccagcctcagagccccccagcccggctaccaccccctgcggaaaggtacc 60


catctgcattcctgcccgtcgggacctggtggacagtccagcctccttggcctctagcct 120


tggctcaccgctgcctagagccaaggagctcatcctgaatgaccttcccgccagcactcc 180


tgCCtCCaaatcctgtgactCCtCCCCgCCCCaggaCgCttCCaCCCCCaggcccagctc 240


ggccagtcacctctgccagcttgctgccaagccagcaccttccacggacagcgtcgccct 300


gaggagccccctgactctgtccagtcccttcaccacgtccttcagcctgggctcccacag 360


CaCtCtCaaCggagaCCtCtCCgtgCCCagCtCCtaCgtCagCCtCCaCCtgtCCCCCCa 420


ggtcagcagctctgtggtgtacggacgctcccccgtgatggcatttgagtctcatcccca 480


tctccgagggtcatccgtctcttcctccctacccagcatccctgggggaaagccggccta 540


ctccttccac 550


<210> 117
<211> 154
<212> DNA
<213> Homo sapien
<400> 117
ttctgaggga aagccgagtg gagtgggcga cccggcggcg gtgacaatga gttttcttgg 60
aggctttttt ggtcccattt gtgagattga tgttgccctt aatgatgggg aaaccaggaa 120
aatggcagaa atgaaaactg aggatggcaa agta 154


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
53
<210> 118
<211> 449
<212> DNA
<213> Homo sapien
<400> 118


gaattcggcaccagggcccgcagcccgagtgtcgccgccatggcttcgccgcagctctgc 60


cgcgcgctggtgtcggcgcaatgggtggcggaggcgctgcgggccccgcgcgctgggcag 120


cctctgcagctgctggacgcctcctggtacctgccgaagctggggcgcgacgcgcgacgc 180


gagttcgaggagcgccacatcccgggcgccgctttcttcgacatcgaccagtgcagcgac 240


cgcacctcgccctacgaccacatgctgcccggggccgagcatttcgcggagtacgcaggc 300


cgcctgggcgtgggcgcggccacccacgtcgtgatctacgacgccagcgaccagggcctc 360


tactccgccccgcgcgtctggtggatgttccgcgccttcggccaccacgccgtgtcactg 420


cttgatggcggcctccgccactggctgcg 449


<210> 119
<211> 642
<212> DNA
<213> Homo sapien
<400> 119


gaattcggcacgagcagtaacccgaCCgccgctggtcttcgctggacaccatgaatcaca 60


ctgtccaaaccttcttctctcctgtcaacagtggccagccccccaactatgagatgctca 120


aggaggagcacgaggtggctgtgctgggggcgccccacaaccctgctcccccgacgtcca 180


ccgtgatccacatccgcagcgagacctccgtgcccgaccatgtcgtctggtccctgttca 240


acaccctcttcatgaacccctgctgcctgggcttcatagcattcgcctactccgtgaagt 300


ctagggacaggaagatggttggcgacgtgaccggggcccaggcctatgcctccaccgcca 360


agtgcctgaacatctgggccctgattctgggcatcctcatgaccattctgctcatcgtca 420


tcccagtgctgatcttccaggcctatggatagatcaggaggcatcactgaggccaggagc 480


tctgcccatgacctgtatcccacgtactccaacttccattcctcgccctgcccccggagc 540


cgagtcctgtatcagccctttatcctcacacgcttttctacaatggcattcaataaagtg 600


cacgtgtttctggtgaaaaaaaaaaaaaaaaaaaaactcgag 642


<210> 120
<211> 603
<212> DNA
<213> Homo sapien
<400>
120


gaattcggcacgagccacaacagccactacgactgcatccactggatccacggccacccc 60


gtcctccaccccgggaacagctccccctcccaaagtgctgaccagcccggccaccacacc 120


catgtccaccatgtccacaatccacacctcctctactccagagaccacccacacctccac 180


agtgctgaccaccacagccaccatgacaagggccaccaattccacggccacaccctcctc 240


cactctggggacgacccggatcctcactgagctgaccacaacagccactacaactgcagc 300


cactggatccaCggCCdCCCtgtCCtCCaCCCCagggaCCacctggatcctcacagagcc 360


gagcactatagccaccgtgatggtgcccaccggttccacggccaccgcctcctccactct 420


gggaacagctcaCacccccaaagtggtgaccaccatggccactatgcccacagccactgc 480


ctccacggttcccagctcgtccaccgtggggaccacccgcacccctgcagtgctccccag 540


cagcctgccaaccttcagcgtgtccactgtgtcctcctcagtcctcaccaccctgagacc 600


cac 603


<210> 121
<211> 178
<212> PRT
<213> Homo sapien
<400> 121
Ser Glu Pro Pro Ser Pro Ala Thr Thr Pro Cys Gly hys Val Pro Ile


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
54
1 5 10 15
Cys Ile Pro Ala Arg Arg Asp Leu Val Asp Ser Pro A1a Ser Leu Ala
20 25 ' 30
Sex Ser Leu Gly Ser Pro Leu Pro Arg Ala Lys Glu Leu Ile Leu Asn
35 40 45
Asp Leu Pro Ala Sex Thr Pro Ala Ser Lys Ser Cys Asp Ser Ser Pro
50 55 60
Pro Gln Asp A1a Ser Thr Pro Arg Pro Ser Ser Ala Ser His Leu Cys
65 70 75 80
Gln Leu Ala Ala Lys Pro Ala Pro Ser Thr Asp Ser Val Ala Leu Arg
85 90 95
Ser Pro Leu Thr Leu Ser Ser Pro Phe Thr Thr Ser Phe Ser Leu Gly
100 105 110
Ser His Ser Thr Leu Asn Gly Asp Leu Ser Val Pro Ser Ser Tyr Val
115 120 125
Ser Leu His Leu Ser Pro Gln Val Ser Sex Ser Val Val Tyr Gly Arg
130 135 140
Ser Pro Val Met Ala Phe Glu Ser His Pro His~Leu Arg Gly Ser Ser
145 150 155 160
Val Ser Ser Ser Leu Pro Ser Ile Pro Gly Gly Lys Pro Ala Tyr Ser
165 170 175
Phe His
<210> 122
<211> 36
<212> PRT
<213> Homo sapien
<400> 122
Met Ser Phe Leu Gly Gly Phe Phe Gly Pro Ile Cys Glu Ile Asp Val
1 5 10 . 15
Ala Leu Asn Asp Gly Glu Thr Arg Lys Met A1a Glu Met Lys Thr Glu
20 25 30
Asp Gly Lys Va1
<210> 123
<211> 136
<212> PRT
<213> Homo sapien
<400> 123
Met Ala Ser Pro Gln Leu Cys Arg A1a Leu Val Ser Ala Gln Trp Val
1 5 10 15
Ala Glu Ala Leu Arg Ala Pro Arg Ala Gly Gln Pro Leu Gln Leu Leu
20 25 30
Asp Ala Ser Trp Tyr Leu Pro Lys Leu Gly Arg Asp Ala Arg Arg G1u
35 40 45
Phe Glu Glu Arg His Ile Pro Gly Ala Ala Phe Phe Asp T1e Asp Gln
50 55 60
Cys Ser Asp Arg Thr Ser Pro Tyr Asp His Met Leu Pro Gly Ala Glu
65 70 75 80
His Phe Ala Glu Tyr Ala Gly Arg Leu Gly Val Gly Ala Ala Thr His
85 90 95
Val Val Ile Tyr Asp Ala Ser Asp Gln Gly Leu Tyr Ser A1a Pro Arg
100 105 110
Val Trp Trp Met Phe Arg Ala Phe Gly His His Ala Val Ser Leu Leu


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
SS
115 120 125
Asp Gly Gly Leu Arg His Trp Leu
130 135
<210> l24
<211> 7.33
<212> PRT
<213> Homo sapien
<400> 124
Met Asn His Thr Val Gln Thr Phe Phe Ser Pro Val Asn Ser Gly Gln
1 5 10 15
Pro Pro Asn Tyr Glu Met Leu Lys Glu Glu His Glu Val Ala Val Leu
20 25 30
Gly Ala Pro His Asn Pro Ala Pro Pro Thr Ser Thr Val Ile His Tle
35 40 45
Arg Ser Glu Thr Ser Val Pro Asp His Val Val Trp Ser Leu Phe Asn
50 55 60
Thr Leu Phe Met Asn Pro Cys Cys Leu Gly Phe Tle Ala Phe Ala Tyr
65 70 75 80
Ser Val Lys Ser Arg Asp Arg Lys Met Val Gly Asp Val Thr Gly Ala
85 90 95
Gln Ala Tyr Ala Ser Thr Ala Lys Cys Leu Asn Tle Trp Ala Leu Ile
100 105 110
Leu Gly Ile Leu Met Thr I1e Leu Leu Ile Va1 I1e Pro Val Leu Ile
115 120 125
Phe Gln Ala Tyr Gly
130
<210> 125
<211> 195
<212> PRT
<213> Homo sapien
<400> 125
Thr Thr A1a Thr Thr Thr Ala Ser Thr Gly Ser Thr Ala Thr Pro Ser
1 5 10 15
Ser Thr Pro Gly Thr Ala Pro Pro Pro Lys Val Leu Thr Ser Pro Ala
20 25 30
Thr Thr Pro Met Ser Thr Met Ser Thr Ile His Thr Ser Ser Thr Pro
35 40 45
Glu Thr Thr His Thr Ser Thr Val Leu Thr Thr Thr Ala Thr Met Thr
50 55 60
Arg Ala Thr Asn Ser Thr Ala Thr Pro Ser Ser Thr Leu Gly Thr Thr
65 70 75 80
Arg Ile Leu Thr Glu Leu Thr Thr Thr Ala Thr Thr Thr Ala Ala Thr
85 90 95
Gly Ser Thr Ala Thr Leu Ser Ser Thr Pro Gly Thr Thr Trp Ile Leu
100 105 110
Thr Glu Pro Ser Thr Ile A1a Thr Val Met Val Pro Thr Gly Ser Thr
115 120 125
Ala Thr Ala Ser Ser Thr Leu Gly Thr Ala His Thr Pro Lys Val Val
130 135 140
Thr Thr Met Ala Thr Met Pro Thr Ala Thr Ala Ser Thr Val Pro Ser
145 150 155 ~ 160
Ser Ser Thr Val Gly Thr Thr Arg Thr Pro Ala Val Leu Pro Ser Ser
265 170 175
Leu Pro Thr Phe Ser Val Ser Thr Val Ser Ser Ser Val Leu Thr Thr


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
56
I,eu Arg Pro
195
180 185 190
<210> 126
<211> 509
<212> DNA
<213> Homo sapien
<400>
126


gaattcggcacgagccaagtaccccctgaggaatctgcagcctgcatctgagtacaccgt 60


atccctcgtggccataaagggcaaccaagagagccccaaagccactggagtctttaccac 120


actgcagcctgggagctctattccaccttacaacaccgaggtgactgagaccaccattgt 180


gatcacatggacgcctgctccaagaattggttttaagctgggtgtacgaccaagccaggg 240


aggagaggcaccacgagaagtgacttcagactcaggaagcatcgttgtgtccggcttgac 300


tccaggagtagaatacgtctacaccatccaagtcctgagagatggacaggaaagagatgc 360


gccaattgtaaacaaagtggtgacaccattgtctccaccaacaaacttgcatctggaggc 420


aaaccctgacactggagtgctcacagtctcctggagaggagcaccaccccagacattact 480


gggtatagaattaccacaacccctacaaa 509


<210> 127
<211> 500 a
<212> DNA
<213> Homo sapien
<400>
127


gaattcggcacgagccactgatgtccggggagtcagccaggagCttggggaagggaagcg 60


cgcccccggggccggtcccggagggctcgatccgcatctacagcatgaggttctgcccgt 120


ttgctgagaggacgcgtctagtcctgaaggccaagggaatcaggcatgaagtcatcaata 180


tcaacctgaaaaataagcctgagtggttctttaagaaaaatccctttggtctggtgccag 240


ttctggaaaacagtcagggtcagctgatctacgagtctgccatcacctgtgagtacctgg 300


atgaagcatacccagggaagaagctgttgccggatgacccctatgagaaagcttgccaga 360


agatgatcttagagttgttttctaaggtgccatccttggtaggaagctttattagaagcc 420


aaaataaagaagactatgctggcctaaaagaagaatttcgtaaagaatttaccaagctag 480


aggaggttctgactaataag 500


<210> 128
<211> 500
<212> DNA
<213> Homo sapien
<400>
128


agctttcctctgctgccgctcggtcacgcttgtgcccgaaggaggaaacagtgacagacc 60


tggagactgcagttctctatccttcacacagctctttcaccatgcctggatcacttcctt 120


tgaatgcagaagcttgctggccaaaagatgtgggaattgttgcccttgagatctattttc 180


cttctcaatatgttgatcaagcagagttggaaaaatatgatggtgtagatgctggaaagt 240


ataccattggcttgggccaggccaagatgggcttctgcacagatagagaagatattaact 300


ctctttgcatgactgtggttcagaatcttatggagagaaataacctttcctatgattgca 360


ttgggcggctggaagttggaacagagacaatcatcgacaaatcaaagtctgtgaagacta 420


atttgatgcagctgtttgaagagtctgggaatacagatatagaaggaatcgacacaacta 480


atgcatgctatggaggcaca 500


<210> 129
<211> 497
<212> DNA
<213> Homo sapien
<400> 129


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
57
gaattcggcacgagcagaggtctccagagccttctctctcctgtgcaaaatggcaactct 60


taaggaaaaactcattgcaccagttgcggaagaagaggcaacagttccaaacaataagat 120


cactgtagtgggtgttggacaagttggtatggcgtgtgctatcagcattctgggaaagtc 180


tctggctgatgaacttgctcttgtggatgttttggaagataagcttaaaggagaaatgat 240


ggatctgcagcatgggagcttatttcttcagacacctaaaattgtggcagataaagatta 300


ttctgtgaccgccaattctaagattgtagtggtaactgcaggagtccgtcagcaagaagg 360


ggagagtcggctcaatctggtgcagagaaatgttaatgtcttcaaattcattattcctca 420


gatcgtcaagtacagtcctgattgcatcataattgtggtttccaacccagtggacattct 480


tacgtatgttacctgga 497


<210> 130
<211> 383
<212> DNA
<213> Homo sapien
<400> 130


gaattcggcacgagggccgcggctgccgactgggtcccctgccgctgtcgccaccatggc 60


tccgcaccgccccgcgcccgcgctgctttgcgcgctgtccctggcgctgtgcgcgctgtc 120


gctgcccgtccgcgcggccactgcgtcgcggggggcgtcccaggcgggggcgccccaggg 180


gcgggtgcccgaggcgcggcccaacagcatggtggtggaacaccccgagttcctcaaggc 240


agggaaggagcctggcctgcagatctggcgtgtggagaaagttcgatctggtggcccgtg 300


cccaccaacctttatggagacttcttcacgggcgacgcctacgtcatcctgaagacagtg 360


cagcttaagaacggaaaatcttg 383


<210> 131
<211> 509
<212> DNA
<213> Homo sapien
<400> 131


gaattcggcacgagagtcagccgcatcttcttttgcgtcgccagccgagccacatcgctc 60


agacaccatggggaaggtgaaggtcggagtcaacggatttggtcgtattgggcgcctggt 120


caccagggctgcttttaactctggtaaagtggatattgttgccatcaatgaccccttcat 180


tgacctcaactacatggtttacatgttccaatatgattccacccatggcaaattccatgg 240


caccgtcaaggctgagaacgggaagcttgtcatcaatggaaatcccatcaccatcttcca 300


ggagcgagatccctccaaaatcaagtggggcgatgctggcgctgagtacgtcgtggagtc 360


Cactggccgtcttcaccaccatggagaaggctggggctcatttgcaggggggagccaaaa 420


gggtcatcatctctgccccctctgctgacgcccccatgttcgtcatgggtgtgaaccatg 480


agaagtatgacaacagcctcaagatcatc 509


<210> 132
<211> 357
<212> DNA
<2l3> Homo sapien
<400> 132


gaattcggcacgagtaagaagaagcccctagaccacagctccacaccatggactggacct 60


ggaggatcctcttcttggtggcagcagcaacaggtgcccactcccaggtgcaactggtgc 120


aatctgggtctgagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctg 180


gacacatcttcagtatctatggtttgaattgggtgcgacaggcccctggtcaaggccttg 240


agtggatgggatggatcaaagtcgacactgcgaacccaacgtatgcccagggcttcacag 300


gacgatttgtcttctccctggacacctctgtcagcacggcatatctgcagatcagca 357


<210> 133
<2I1> 468
<212> DNA
<213> Homo sapien


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
58
<400> 133


gaattcggcacgaggcgccccgaaccgtcctcctgctgctctcggcggccctggccctga 60


ccgagacctgggccggctcccactccatgaggtatttcgacaccgccatgtcccggcccg 120


gccgcggggagccccgcttcatctcagtgggctacgtggacgacacgcagttcgtgaggt 180


tcgacagcgacgccgcgagtccgagagaggagccgcgggcgccgtggatagagcaggagg 240


ggccggagtattgggaccggaacacacagatcttcaagaccaacacacagactgaccgag 300


agagcctgcggaacctgcgcggctactacaaccagagcgaggccgggtctcacaccctcc 360


agagcatgtacggctgcgacgtggggccggacgggcgcctcctccgcgggcataaccagt 420


acgcctacgacggcaaggattacatcgccctgaacgaggacctgcgct 468


<210> 134
<211> 214
<212> DNA
<213> Homo sapien
<400> 134
gaattcggca cgagctgcgt cctgctgagc tctgttctct ccagcacctc ccaacccact 60
agtgcctggt tctcttgctc caccaggaac aagccaccat gtctcgccag tcaagtgtgt 120
ccttccggag cgggggcagt cgtagcttca gcaccgcctc tgccatcacc ccgtctgtct 180
cccgcaccag cttcacctcc gtgtcccggt ccgg 214
<210> 135
<211> 355
<212> DNA
<213> Homo sapien
<400> 135
gaattcggca cgaggtgaac aggacccgtc gccatgggcc gtgtgatccg tggacagagg 60
aagggcgccg ggtctgtgtt ccgcgcgcac gtgaagcacc gtaaaggcgc tgcgcgcctg 120
cgcgccgtgg atttcgctga gcggcacggc tacatcaagg gcatcgtcaa ggacatcatc 180
cacgacccgg gccgcggcgc gcccctcgcc aaggtggtct tccgggatcc gtatcggttt 240
aagaagcgga cggagctgtt cattgccgcc gagggcattc acacgggcca gtttgtgtat 300
tgcggcaaga aggcccagct caacattggc aatgtgctcc ctgtgggcac catgc 355
<210> 136
<211> 242
<212> DNA
<213> Homo sapien
<400> 136


gaattcggcacgagccagctcctaaccgcgagtgatccgccagcctccgcctcccgaggt 60


gcccggattgcagacggagtctccttcactcagtgctcaatggtgcccaggctggagtgc 120


agtggtgtgatctcggctcgctacaacatccacctcccagCagCCtgCCttggCCtCCCa 180


aagtgccgagattgcagctctctgcccggccgccacccctgtctgggaagtgaggatgct 240


gt 242


<210> l37
<211> 424
<212> DNA
<213> Homo sapien
<400> 137
gaattcggca cgagcccaga tcccgaggtc cgacagcgcc cggcccagat ccccacgcct 60
gccaggagca agccgagagc cagccggccg gcgcactccg actccgagca gtctctgtcc 120
ttcgacccga gccccgcgcc ctttccggga cccctgcccc gcgggcagcg ctgccaacct 180
gccggccatg gagaccccgt cccagcggcg cgccacccgc agcggggcgc aggccagctc 240
cactccgctg tcgcccaccc gcatcacccg gctgcaggag aaggaggacc tgcaggagct 300
caatgatcgc ttggcggtct acatcgaccg tgtgcgctcg ctggaaacgg agaacgcagg 360


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
59
gctgcgcctt cgcatcaccg agtctgaaga ggtggtcagc cgcgaggtgt ccggcatcaa 420
ggcc 424
<210> 138
<211> 448
<212> DNA
<213> Homo sapien
<400> 138


gaattcggcacgagcctgtgttccaggagccgaatcagaaatgtcatcctcaggcacgcc 60


agacttacctgtcctactcaccgatttgaagattcaatatactaagatcttcataaacaa 120


tgaatggcatgattcagtgagtggcaagaaatttcctgtctttaatcctgcaactgagga 180


ggagctctgccaggtagaagaaggagataaggaggatgttgacaaggcagtgaaggccgc 240


aagacaggcttttcagattggatccccgtggcgtactatggatgcttccgagagggggcg 300


actattatacaagttggctgatttaatcgaaagagatcgtctgctgctggccgacaatgg 360


agtcaatgaatggtggaaaactctattccaatgcatatctgaatgatttagcaggctgca 420


tcaaaacattgcgctactgtgcaggttg 448


<2I0> 139
<211> 510
<212> DNA
<213> Homo sapien
<400> 139


gaattcggcacgaggttccgtgcagctcacggagaagcgaatggacaaagtcggcaagta 60


ccccaaggagctgcgcaagtgctgcgaggacggcatgcgggagaaccccatgaggttctc 120


gtgccagcgccggacccgtttcatctccctggcgaggcgtgcaagaaggtcttcctggac 180


tgctgcaactacatcacagagctgcggcggcagcacgcgcgggccagccacctggcctgc 240


caggagtaacctggatgaggacatcattgcagaagagaacatcgtttcccgaagtgagtt 300


cccagagagctggctgtggaacgttgaggacttgaaagagccaccgaaaaatggaatctc 360


tacgaagctcatgaatatatttttgaaagactccatcaccacgtgggagattctggctgt 420


gagcatgtcggacaagaaagggatctgtgtggcagaccccttcgaggtcacagtaatgca 480


ggacttcttcatcgacctgcggctacccta 510


<210> 140
<211> 360
<212> DNA
<213> Homo sapien
<400> 140


gaattcggcacgagcggtaactaccccggctgcgcacagctcggcgctccttcccgctcc 60


ctcacacaccggcctcagcccgcaccggcagtagaagatggtgaaagaaacaacttacta 120


cgatgttttgggggtcaaacccaatgctactcaggaagaattgaaaaaggcttataggaa 180


actggctttgaagtaccatcctgataagaacccaaatgaaggagagaagtttaaacagat 240


ttctcaagcttacgaagttctctctgatgcaaagaaaagggaattatatgacaaaggagg 300


agaacaggcaattaaagagggtggagcaggtggcggttttggctcccccatggacatctt 360


<210> 141
<211> 483
<212> DNA
<213> Homo sapien
<400> 141


gaattcggcacgagagcagaggctgatctttgctggaaaacagctggaagatgggctgca 60


ccctgtctgactacaacatccagaaagagtccaccctgcacctggtgctccgtctcagag 120


gtgggatgcaaatcttcgtgaagacactcactggcaagaccatcacccttgaggtggagc 180


ccagtgacaccatcgagaacgtcaaagcaaagatccaggacaaggaaggcattcctcctg 240


accagcagaggttgatctttgccggaaagcagctggaagatgggcgcaccctgtctgact 300




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
acaacatcca gaaagagtct accctgcacc tggtgctccg tctcagaggt gggatgcaga 360
tcttcgtgaa gaccctgact ggtaagacca tcaccctcga ggtggagccc agtgacacca 420
tcgagaatgt caaggcaaag atccaagata aggaaggcat tcctcctgat cagcagaggt 480
tga 483
<210> 142
<211> 500
<212> DNA
<213> Homo sapien
<400>
142


gaattcggcacgaggcggcgacgaccgccgggagcgtgtgcagcggcggcggcggaagtg 60


gccggcgagcccggtccccgccggcaccatgcttcccttgtcactgctgaagacggctca 120


gaatcaccccatgttggtggagctgaaaaatggggagacgtacaatggacacctggtgag 180


ctgcgacaactggatgaacattaacctgcgagaagtcatctgcacgtccagggacgggga 240


caagttctggcggatgcccgagtgctacatccgcggcagcaccatcaagtacctgcgcat 300


ccccgacgagatcatcgacatggtcaaggaggaggtggtggccaagggccgcggccgcgg 360


aggcctgcagcagcagaagcagcagaaaggccgcggcatgggcggcgctggccgaggtgt 420


gtttggtggccggggccgaggtgggatcccgggcacaggcagaagccagccagagaagaa 480


gcctggcagacaggcgggca 500


<210> 143
<211> 400
<212> DNA
<213> Homo sapien
<400>
143


gaattcggcacgagctcggatgtcagcaggcgtcccaacccagcaggaactggctcaatt 60


ctcagaagaaagcgatcggccccgaggcaggaaggccggctccggtgcagggcgcgccgc 120


ctgcgggctgcttcgggccagggtcgacccgagggccagcgcaagcagcggcaacaggag 180


cgccaggaggacatgaggctctgcctgcagtcagcaacttggaatattcagacttcagac 240


cagcatcacagattataaccctccgtaaatcatctgcatcccagctcccatcaaaagcca 300


gcctgaaggacccatggacacgtgactccagtgttctcaacaacatcttagatcaagttg 360


gtttgcacaacatttgcatctacttgggacaaagcaagaa 400


<210> 144
<211> 243
<212> DNA
<213> Homo sapien
<400>
144


gaattcggcacgagccagct cctaaccgcgagtgatccgccagcctccgcctcccgaggt 60


gcccggattgcagacggagt ctccttcactcagtgctcaatggtgcccaggctggagtgc 120


agtggtgtgatctcggctcg ctacaacatccacctcccagcagcctgccttggcctccca 180


aagtgccgagattgcagcct ctgcccggccgtcaccccgtctgggaagtgaggagcgttt 240


ctg 243


<210> 145
<211> 450
<212> DNA
<213> Homo sapien
<400> 145
gaattcggca cgaggacagc aggaccgtgg aggccgcggc aggggtggca gtggtggcgg 60
cggcggcggc ggcggtggtg gttacaaccg cagcagtggt ggctatgaac ccagaggtcg 120
tggaggtggc cgtggaggca gaggtggcat gggcggaagt gaccgtggtg gcttcaataa 180
atttggtggc cctcgggacc aaggatcacg tcatgactcc gaacaggata attcagacaa 240
caacaccatc tttgtgcaag gcctgggtga gaatgttaca attgagtctg tggctgatta 300


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
61
cttcaagcag attggtatta ttaagacaaa caagaaaacg ggacagccca tgattaattt 360
gtacacagac agggaaactg gcaagctgaa gggagaggca acggtctctt ttgatgaccc 420
accttcagct aaagcagcct attgactggt . 450
<210> 146
<211> 451
<212> DNA
<213> Homo sapien
<400> 146


gaattcggcacgagccatcgagtccctgcctttcgacttgcagagaaatgtctcgctgat 60


gcgggagatcgacgcgaaataccaagagatcctgaaggagctagacgagtgctacgagcg 120


cttcagtcgcgagacagacggggcgcagaagcggcggatgctgcactgtgtgcagcgcgc 180


gctgatccgcaccaggagctgggcgacgagaagatccagatcgtgagccagatggtggag 240


ctggtggagaaccgcacgcggcaggtggacagccacgtggagctgttcgaggcgcagcag 300


gagctgggcgacacagcgggcaacagcggcaaggctggcgcggacaggcccaaaggcgag 360


gcggcagcgcaggctgacaagcccaacagcaagcgctcacggcggcagcgcaacaacgag 420


aaccgtgagaacgcgtccagcaaccacgacc 451


<210> 147
<211> 400
<212> DNA
<213> Homo sapien
<400> 147


gaattcggcacgagctcggatgtcagcaggcgtcccaacccagcaggaac tggctcaatt60


ctcagaagaaagcgatcggccccgaggcaggaaggccggctccggtgcag ggcgcgccgc120


ctgcgggctgcttcgggccagggtcgacccgagggccagcgcaagcagcg gcaacaggag280


cgccaggaggacatgaggctctgcctgcagtcagcaacttggaatattca gacttcagac240


cagcatcacagattataaccctccgtaaatcatctgcatcccagctccca tcaaaagcca300


gcctgaaggacccatggacacgtgactccagtgttctcaacaacatctta gatcaagttg360


gtttgcacaacatttgcatctacttgggacaaagcaagaa 400


<210> 148
<211> 503
<212> DNA
<213> Homo sapien
<400> 148


aaaagaattcggcacgagcggcgccgctcatccccctctcccagcagattcccactggaa 60


attcgttgtatgaatcttattacaagcaggtcgatccggcatacacagggagggtggggg 120


cgagtgaagctgcgctttttctaaagaagtctggcctctcggacattatccttgggaaga 180


tatgggacttggccgatccagaaggtaaagggttcttggacaaacagggtttctatgttg 240


cactgagactggtggcctgtgcacagagtggccatgaagttaccttgagcaatctgaatt 300


tgagcatgccaccgcctaaatttcacgacaccagcagccctctgatggtcacaccgccct 360


ctgcagaggcccactgggctgtgagggtggaagaaaaggccaaatttgatgggatttttg 420


aaagcctcttgcccatcaatggtttgctctctggagacaaagtcaagccagtcctcatga 480


actcaaagctgcctcttgatgtc 503


<210> 149
<211> 1061
<212> DNA
<213> Homo sapien
<400> 149
gaattcggca cgaggccttt tccagcaacc ccaaggtcca ggtggaggcc atcgaagggg 60
gagccctgca gaagctgctg gtcatcctgg ccacggagca gccgctcact gcaaagaaga 120
aggtcctgtt tgcactgtgc tccctgctgc gccacttccc ctatgcccag cggcagttcc 180


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
62
tgaagctcggggggctgcaggtcctgaggaccctggtgcaggagaagggcacggaggtgc 240


tcgccgtgcgcgtggtcacactgctctacgacctggtcacggagaagatgttcgccgagg 300


aggaggctgagctgacccaggagatgtccccagagaagctgcagcagtatcgccaggtac 360


acctcctgccaggcctgtgggaacagggctggtgcgagatcacggcccacctcctggcgc 420


tgcccgagcatgatgcccgtgagaaggtgctgcagacactgggcgtcctcctgaccacct 480


gccgggaccgctaccgtcaggacccccagctcggcaggacactggccagcctgcaggctg 540


agtaccaggtgctggccagcctggagctgcaggatggtgaggacgagggctacttccagg 600


agctgctgggctctgtcaacagcttgctgaaggagctgagatgaggccccacaccagtac 660


tggactgggatgccgctagtgaggctgaggggtgccagcgtgggtgggcttctcaggcag 720


gaggacatcttggcagtgctggcttggccattaaatggaaacctgaaggccatcctcttt 780


ctgctgtgtgtctgtgtagactgggcacagccctgtggccggggggtcaggtgagtggtt 840


gggtgatgggctctgctgacgtgcagggctcagcccagggcatccaggaacaggctccag 900


ggcaggaacctgggcccaggagttgcaagtctctgcttcttaccaagcagcagctctgta 960


ccttgggaagtcgcttaattgctctgagcttgtttcctcatctgtcaggagtgccattaa 1020


aggagaaaaatcacgtaaaaaaaaaaaaaaaaaaactcgag 1061


<210> 150
<211> 781
<212> DNA
<213> Homo sapien
<400> 150
gaattcggcacgagaaatggcggcaggggtcgaagcggcagccgaagtggcggcgacaga 60


acccaaaatggaggaagagagcggcgcgccctgcgtgccgagcggcaacggagctccggg 120


cccgaagggtgaagaacgacctactcagaatgagaagaggaaggagaaaaacataaaaag 180


aggaggcaatcgctttgagccatattccaacccaactaaaagatacagagccttcattac 240


aaatataccttttgatgtgaaatggcagtcacttaaagacctggttaaagaaaaagttgg 300


tgaggtaacatacgtggagctattaatggacgctgaaggaaagtcaaggggatgtgctgt 360


tgttgaattcaagatggaggagagcatgaaaaaagctgctgaagttctaaacaagcatag 420


tctgagtggaaggccactgaaagtcaaggaagatcctgatggtgaacatgcaaggagagc 480


aatgcaaaaggctggaagacttggaagcacagtatttgtagcaaatctggattataaagt 540


tggctggaagaaactgaaggaagtatttagtatggctggtgtggtggtccgagcagacat 600


tctggaagataaagatgggaaaagtcgtggaataggcattgtgacttttgaacagtccat 660


tgaagctgtgcaagcaatatctatgtttaatggccagttgctgtttgatagaccgatgca 720


cgtcaagatggatgagagggctttaccaaagggagacttttttcctcctgaacgccacag 780


c 781


<210> 151
<211> 3275
<212> DNA
<213> Homo sapien
<400> 151
cttaagtggatcctgcatcaggagggagcagacaccggagaaagaaaaacaagttgtgct 60


gtttgaggaagcaagttggacctgcactccagcctgtggagatgaacctaggactgtgat 120


tctgctatccagtatgttggctgaccacaggctcaaactggaggattataaggatcgcct 180


gaaaagtggagagcatcttaatccagaccagttggaagctgtagagaaatatgaagaagt 240


gctacataatttggaatttgccaaggagcttcaaaaaaccttttctgggttgagcctaga 300


tctactaaaagcgcaaaagaaggcccagagaagggagcacatgctaaaacttgaggctga 360


gaagaaaaagcttcgaactatacttcaagttcagtatgtattgcagaacttgacacagga 420


gcacgtacaaaaagacttcaaagggggtttgaatggtgcagtgtatttgccttcaaaaga 480


acttgactacctcattaagttttcaaaactgacctgccctgaaagaaatgaaagtctgag 540


acaaacacttgaaggatctactgtctaaattgctgaactcaggctattttgaaagtatcc 600


cagttcccaaaaatgccaaggaaaaggaagtaccactggaggaagaaatgctaatacaat 660


cagagaaaaaaacacaattatcgaagactgaatctgtcaaagagtcagagtctctaatgg 720


aatttgcccagccagagatacaaccacaagagtttcttaacagacgctatatgacagaag 780


tagattattcaaacaaacaaggcgaagagcaaccttgggaagcagattatgctagaaaac 840


caaatctcccaaaacgttgggatatgcttactgaaccagatggtcaagagaagaaacagg 900




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
63
agtcctttaagtcctgggaggcttctggtaagcaccaggaggtatccaagcctgcagttt 960


ccttagaacagaggaaacaagacacctcaaaactcaggtctactctgccggaagagcaga 1020


agaagcaggagatctccaaatccaagccatctcctagccagtggaagcaagatacaccta 1080


aatccaaagcagggtatgttcaagaggaacaaaagaaacaggagacaccaaagctgtggc 1140


cagttcagctgcagaaagaacaagatccaaagaagcaaactccaaagtcttggacacctt 1200


ccatgcagagcgaacagaacaccaccaagtcatggaccactcccatgtgtgaagaacagg 1260


attcaaaacagccagagactccaaaatcctgggaaaacaatgttgagagtcaaaaacact 1320


ctttaacatcacagtcacagatttctccaaagtcctggggagtagctacagcaagcctca 1380


taccaaatgaccagctgctgcccaggaagttgaacacagaacccaaagatgtgcctaagc 1440


ctgtgcatcagcctgtaggttcttcctctacccttccgaaggatccagtattgaggaaag 1500


aaaaactgcaggatctgatgactcagattcaaggaacttgtaactttatgcaagagtctg 1560


ttcttgactttgacaaaccttcaagtgcaattccaacgtcacaaccgccttcagctactc 1620


caggtagccccgtagcatctaaagaacaaaatctgtccagtcaaagtgattttcttcaag 1680


agccgttacaggtatttaacgttaatgcacctctgcctccacgaaaagaacaagaaataa 1740


aagaatccccttattcacctggctacaatcaaagttttaccacagcaagtacacaaacac 1800


caccccagtgccaactgccatctatacatgtagaacaaactgtccattctcaagagactg 1860


cagcaaattatcatcctgatggaactattcaagtaagcaatggtagccttgccttttacc 1920


cagcacagacgaatgtgtttcccagacctactcagccatttgtcaatagccggggatctg 1980


ttagaggatgtactcgtggtgggagattaataaccaattcctatcggtcccctggtggtt 2040


ataaaggttttgatacttatagaggactcccttcaatttccaatggaaattatagccagc 2100


tgcagttccaagctagagagtattctggagcaccttattcccaaagggataatttccagc 2160


agtgttataagcgaggagggacatctggtggtccacgagcaaattcgagagcagggtgga 2220


gtgattcttctcaggtgagcagcccagaaagagacaacgaaacctttaacagtggtgact 2280


ctggacaaggagactcccgtagcatgacccctgtggatgtgccagtgacaaatccagcag 2340


ccaccatactgccagtacacgtctaccctctgcctcagcagatgcgagttgccttctcag 2400


cagccagaacctctaatctggcccctggaactttagaccaacctattgtgtttgatcttc 2460


ttctgaacaacttaggagaaacttttgatcttcagcttggtagatttaattgcccagtga 2520


atggcacttacgttttcatttttcacatgctaaagctggcagtgaatgtgccactgtatg 2580


tcaacctcatgaagaatgaagaggtcttggtatcagcctatgccaatgatggtgctccag 2640


accatgaaactgctagcaatcatgcaattcttcagctcttccagggagaccagatatggt 2700


tacgtctgcacaggggagcaatttatggaagtagctggaaatattctacgttttcaggct 2760


atcttctttatcaagattgaaagtcagtacagtattgacaataaaaggatggtgttctaa 2820


ttagtgggattgaaggaaaagtagtctttgccctcatgactgattggtttaggaaaatgt 2880


ttttgttcctagagggaggaggtccttacttttttgttttccttcctgaggtgaaaaatc 2940


aagctgaatgacaattagcactaatctggcactttataaattgtgatgtagcctcgctag 3000


tcaagctgtgaatgtatattgtttgcacttaatccttaactgtattaacgttcagcttac 3060


taaactgactgcctcaagtccaggcaagttacaatgccttgttgtgcctcaataaaaaag 3120


ttacatgcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 3180


aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 3240


aaaaaaaaaaaaaaaaaaaaaaaaaaaaactcgag 3275


<210> 152
<211> 2179
<212> DIVA
<213> Homo sapien
<900> 152
gaattcggcaCcaggcactattaaatgtgaggcagcctccatctactacaacatttgtgc 60


tgaatcaaataaatcatcttccacccttgggatctacaattgtaatgactaaaacaccac 120


ctgtaacaaccaacaggcaaaccatcactttaactaagtttatccagactactgcaagca 180


cacgcccgtcagtctcagcaccaacagtacgaaatgccatgacctctgcaccttcaaaag 240


accaagttcagcttaaagatctactgaaaaataatagtcttaatgaactgatgaaactaa 300


agccacctgctaatattgctcagccagtagcaacagcagctactgatgtaagcaatggta 360


cagtaaagaaagagtcttctaataaagaaggagctagaatgtggataaacgacatgaaga 420


tgaggagtttttccccaaccatgaaggttcctgttgtaaaagaagatgatgaaccagagg,480


aagaagatgaagaagaaatgggtcatgcagaaacctatgcagaatacatgccaataaaat 540


taaaaattggcctacgtcatccagatgctgtagtggaaaccagctctttatccagtgtta 600


ctcctcctgatgtttggtacaaaacatccatttctgaggaaaccattgataatggctggt 660




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
64
tatcagcattgcagcttgaggcaattacatatgcagcccagcaacatgaaactttcctac720


ctaatggagatcgtgctggcttcttaataggtgatggtgccggtgtaggaaaaggaagga780


cgatagcaggaatcatctatgaaaattatttgttgagtagaaaacgagcattgtggttta840


gtgtttcaaatgacttaaagtatgatgctgaaagagatttaagggatattggagcaaaaa900


acattttggttcattcgttaaataagtttaaatacggaaaaatttcttccaaacataatg960


ggagtgtgaaaaagggtgttatttttgctacttactcttcacttattggtgaaa,gccagt1020


ctggcggcaagtataaaactaggttaaaacaacttctgcattggtgcggtgatgacttcg1080


atggagtgatagtgtttgatgagtgtcataaagccaaaaacttatgtcctgttggttctt1140


caaagccaaccaagacaggcttagcagttttagagcttcagaacaaattgccaaaagcca1200


gagttgtttatgctagtgcaactggtgcttctgaaccacgcaacatggcctatatgaacc1260


gtcttggcatatggggtgagggtactccatttagagaattcagtgattttattcaagcag1320


tagaacggagaggagttggtgccatggaaatagttgctatggatatgaagcttagaggaa1380


tgtacattgctcgacaactgagctttactggagtgaccttcaaaattgaggaagttcttc1440


tttctcagagctacgttaaaatgtataacaaagctgtcaagctgtgggtcattgccagag1500


agcggtttcagcaagctgcagatctgattgatgctgagcaacgaatgaagaagtccatgt1560


ggggtcagttctggtctgctcaccagaggttcttcaaatacttatgcatagcatccaaag1620


ttaaaagggttgtgcaactagctcgagaggaaatcaagaatggaaaatgtgttgtaattg2680


gtctgcagtctacaggagaagctagaacattagaagctttggaagagggcgggggagaat1740


tgaatgattttgtttcaactgccaaaggtgtgttgcagtcactcattgaaaaacattttc1800


ctgctccagacaggaaaaaactttatagtttactaggaatcgatttgacagctccaagta1860


acaacagttcgccaagagatagtccttgtaaagaaaataaaataaagaagcggaaaggtg1920


aagaaataactcgagaagccaaaaaagcacgaaaagtaggtggccttactggtagcagtt1980


ctgacgacagtggaagtgaatctgatgcctctgataatgaagaaagtgactatgagagct2040


ctaaaaacatgagttctggagatgatgacgatttcaacccatttttagatgagtctaatg2100


aggatgatgaaaatgatccctggttaattaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa2160


aaaaaaaaaaaaactcgag 2179


<210> 153
<211> 2109
<212> DNA
<213> Homo sapien
<400> 153
cagagagccccaggcatcgaggagaaggcggcggagaatggggccctggggtcccccgag60


agagaagagaaagtgctggagaatggggagctgacacccccaaggagggaggagaaagcg120


ctggagaatggggagctgaggtccccagaggccggggagaaggtgctggtgaatgggggc180


ctgacacccccaaagagcgaggacaaggtgtcagagaatgggggcctga,gattccccagg240


aacacggagaggccaccagagactgggccttggagagccccagggccctgggagaagacg300


cccgagagttggggtccagcccccacgatcggggagccagccccagagacctctctggag360


agagcccctgcacccagcgcagtggtctcctcccggaacggcggggagacagcccctggc420


ccccttggcccagcccccaagaacgggacgctggaacccgggaccgagaggagagccccc480


gagactgggggggcgccgagagccccaggggctgggaggctggacctcgggagtgggggc540


cgagccccagtgggcacggggacggcccccggcggcggccccggaagcggcgtggacgca600


aaggccggatgggtagacaacacgaggccgcagccaccgccgccaccgctgccaccgcca660


ccggaggcacagccgaggaggctggagccagcgcccccgagagccaggccggaggtggcc720


cccgagggagagcccggggccccagacagcagggccggcggagacacggcactcagcgga780


gacggggacccccccaagcccgagaggaagggccccgagatgccacgactattcttggac840


ttgggaccccctcaggggaacagcgagcagatcaaagccaggctctcccggctctcgctg900


gcgctgccgccgctcacgctcacgccattcccggggccgggcccgcggcggcccccgtgg960


gagggcgcggacgccggggcggctggcggggaggccggcggggcgggagcgccggggccg1020


gcggaggaggacggggaggacgaggacgaggacgaggaggaggacgaggaggcggcggcg2080


ccgggcgcggcggcggggccgcggggccccgggagggcgcgagcagccccggtgcccgtc1140


gtggtgagcagcgccgacgcggacgcggcccgcccgctgcgggggctgctcaagtctccg1200


cgcggggccgacgagccagaggacagcgagctggagaggaagcgcaagatggtctccttc1260


cacggggacgtgaccgtctacctcttcgaccaggagacgccaaccaacgagctgagcgtc1320


caggccccccccgagggggacacggacccgtcaacgcctccagcgcccccgacacctccc1380


caccccgccacccccggagatgggtttcccagcaacgacagcggctttggaggcagtttc1440


gagtgggcggaggatttccccctcetcccccctccaggccccccgctgtgcttctcccgc1500




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
ttctccgtctcgcctgcgctggagaccccggggccacccgcccgggcccccgacgcccgg1560


cccgcaggccccgtggagaattgattccccgaagacccgaccccgctgcaccctcagaag1620


aggggttgagaatggaatcctctgtggatgacggcgccactgccaccaccgcagacgccg1680


cctctggggaggcccccgaggctgggccctccccctcccactcccctaccatgtgccaaa1740


cgggaggccccgggcccccgcccccccagccccccagatggctcccctgacccccctgac1800


cccctcggagccaaatgaggcaggaatccccccgcccctccatagagagccgcctttctc1860


ggaactgaactgaactcttttgggcctggagcccctcgacacagcggaggtccctcctca1920


cccactcctggcccaagacaggggccgcaggcttcggggacccggaccccccatttcgcg1980


tctcccctttccctccccagcccggcccctggaggggcctctggttcaaaccttcgcgtg2040


gcattttcacattatttaaaaaagacaaaaacaactttttggaggaaaaaaaaaaaaaaa2100


aaactcgag 2109


<210> 154
<211> 1411
<212> DNA
<213> Homo sapien
<400> 154
gaattcggcaccaggggagatgaggaagttcgatgttcctagcatggagtctacccttaa60


ccagccagccatgctagagacgttatactcagatccacattaccgagcccatttccccaa120


cccaagacctgatacaaataaggatgtatacaaagtattgccagaatccaagaaggcacc180


gggcagtggtgcagtatttgagaggaacggaccacatgctagcagtagtggggtgctccc240


tttgggactccagcctgcgcctggactttccaagtcactatcctctcaggtgtggcaacc300


aagtcctgacccttggcatcctggagaacaatcctgtgaactcagtacttgtcgacagca360.


gttggaattgatccgtttacagatggagcaaatgcagcttcagaacggagccatgtgtca420


ccatcctgctgctttcgctccattactgcccaccctagagccagcacagtggctcagcat480


cctgaacagtaacgagcatctcctgaaggagaaggagctcctcattgacaagcaaaggaa540


gcatatctctcagctggagcagaaagtgcgagagagtgaactgcaagtccacagtgccct600


tttgggccgccctgccccctttggggatgtctgcttattgaggctacaggagttgcagcg660


agagaacactttcttacgggcacagtttgcacagaagacagaagccctgagcaaggaga.a720


gatggagcttgaaaagaaactctctgcatctgaagttgaaattcagctcattagggagtc780


tctaaaagtgacactacagaagcattcggaggaggggaagaaacaggaggaaagggtcaa840


aggtcgtgataaacatatcaataatttgaaaaagaaatgtcagaaggaatcagagcagaa900


ccgggagaagcagcagcgtattgaaaccttggagcgctatctagctgacctgcccaccct960


agaagaccatcagaaacagacggagcagcttaaggacgctgaattaaagaacacagaact1020


gcaagagagagtggctgagctggagactttgctggaggacacccaggcaacctgcagaga1080


gaaggaggttcagctggaaagtctgagacaaagagaagcagacctctcctctgctagaca1190


taggtaatgccctgtgtacttgggggaaggagggagttcggttctggtgctctgttaact1200


cttgtgtgttcaacagtgttcatttcaagttcctttcttctaagagctttgtgttctttg1260


aattgaaagtcacttatggccgggtgtggtggcgcacacctttaatcccagcacttggga1320


gtcagaggcaggctaatttctgagtttcaggacagccagggctatacagagaaaccctgt1380


ctcaaacaaaaaaaaaaaaaaaaaactcgag 1411


<210> 155
<211> 678
<212> DNA
<213> Homo sapien
<400> 155
ctggagtgaagggagctagtggtaaagggagctggtggaggggtggcggcaggggtaagg 60


ggcaggggacaccctctagacggagagcgggctccgaggtcctggctggccctcggtgcg 120


cccgcccctgtgttggtcccacaatccctggcaatgagaggccagggtttattggacaga 180


gtcagttgtggggttcagagggtcagcaatcaatcaatcctccgaatccagagatttaga 240


cccagtcgtccgtattaggactggaggggggtcaataggttcagtgtttgagatgccaag 300


ggaacctgtcttttgatttggggttcaacatacagagttcaggtacctgcaggaatttgc 360


ccccctaggcacagggggtggtctttaccattttcgagaccagatcctggctgggagccc 420


cgaggcattcttcgtgctcaatgctgatgtctgctccgacttccccttgagtgctatgtt 480


ggaagcccaccgacgccagcgtcaccctttcttactccttggcactacggctaacaggac 540




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
66
gcaatccctc aactacggct gcatcgttga gaatccacag acacacgagg tattgcacta 600
tgtggagaaa cccagcacat ttatcagtga catcatcaac tgcggcacct acctcttttc 660
tcctgaagcc ttgaagcc 678
<210> 156
<211> 2668
<212> DNA
<213> Homo sapien
<400>
156


gggaaggcggctgcgctgctgggcgggggcgggagctggagccggagctggagccggggc 60


cggggcccgggtcagcgcttgagccgggagaagagtttgagatcgtggaccgaagccagc 120


tgcccggcccaggcgacctgcggagcgcaacgaggccgcgggcggccgagggctggtcgg 180


cgcccatcctgaccctggCacgcagggccaccgggaacctgtcggcgagctgcgggagcg 240


cgctgcgcgcggccgcggggctgggcggcggggacagcggggacggcacggcgcgcgcag 300


cttctaagtgccagatgatggaggagcgtgccaacctgatgcacatgatgaaactcagca ,360


tcaaggtgttgctccagtcggctctgagcctgggccgcagcctggatgcggaccatgccc 420


ccttgcagcagttctttgtagtgatggagcactgcctcaaacatgggctgaaagttaaga 480


agagttttattggccaaaataaatcattctttggtcctttggagctggtggagaaacttt 540


gtccagaagcatcagatatagcgactagtgtcagaaatcttccagaattaaagacagctg 600


tgggaagaggccgagcgtggctttatcttgcactcatgcaaaagaaactggcagattatc 660


tgaaagtgcttatagacaataaacatctcttaagcgagttctatgagcctgaggctttaa 720


tgatggaggaagaagggatggtgattgttggtctgctggtgggactcaatgttctcgatg 780


ccaatctctgcttgaaaggagaagacttggattctcaggttggagtaatagatttttccc 840


tctaccttaaggatgtgcaggatcttgatggtggcaaggagcatgaaagaattactgatg 900


tccttgatcaaaaaaattatgtggaagaacttaaccggcacttgagctgcacagttgggg 960


atcttcaaaccaagatagatggcttggaaaagactaactcaaagcttcaagaagagcttt 1020


cagctgcaacagaccgaatttgctcacttcaagaagaacagcagcagttaagagaacaaa 1080


atgaattaattcgagaaagaagtgaaaagagtgtagagataacaaaacaggataccaaag 1140


ttgagctggagacttacaagcaaactcggcaaggtctggatgaaatgtacagtgatgtgt 1200


ggaagcagctaaaagaggagaagaaagtccggttggaactggaaaaagaactggagttac 1260


aaattggaatgaaaaccgaaatggaaattgcaatgaagttactggaaaaggacacccacg 1320


agaagcaggacacactagttgccctccgccagcagctggaagaagtcaaagcgattaatt 1380


tacagatgtttcacaaagctcagaatgcagagagcagtttgcagcagaagaatgaagcca 1440


tcacatcctttgaaggaaaaaccaaccaagttatgtccagcatgaaacaaatggaagaaa 1500


ggttgcagcactcggagcgggcgaggcagggggctgaggagcggagccacaagctgcagc 1560


aggagctgggcgggaggatcggcgccctgcagctgcagctctcccagctgcacgagcaat 1620


gctcaagcctggagaaagaattgaaatcagaaaaagagcaaagacaggctcttcagcgcg 1680


aattacagcacgagaaagacacttcctctctactcaggatggagctgcaa~caagtggaag1740


gactgaaaaaggagttgcgggagcttcaggacgagaaggcagagctgcagaagatctgcg 1800


aggagcaggaacaagccctccaggaaatgggcctgcacctcagccagtccaagctgaaga 1860


tggaagatataaaagaagtgaaccaggcactgaagggccacgcctggctgaaagatgacg 1920


aagcgacacactgtaggcagtgtgagaaggagttctccatttcccggagaaagcaccact 1980


gccggaactgtggccacatcttctgcaacacctgctccagcaacgagctggccctgccct 2040


cctaccccaagccggtgcgagtgtgcgacagctgccacaccctgctcctgcagcgctgct 2100


cctccacggcctcctgaacgtccgtcctcaggagcacagcctcacggacagtgccaaacc 2160


ctgtgggtctccaggggcttgggaaatgtgttctttcccaagagtatcaaaggaaagaat 2220


caaatttcttgcccggtcactggcactccagaagacagcgtgccggaaccggcagctctc 2280


acctttctgtgacttgttcggaattaactcctctggatggaaacttccatcttacttggt 2340


tacatcacggctctggttcagatacaacttcatgattttgctactatcatttttcacttt 2400


tcaaagaatttaacctattttacagcagttcagttctgctagtgagtagttttcctctcc 2460


taccttccttctaaaaacctgattcatgcacagcgtttgacacacatggagtctgccagt 2520


gtgccttctctgcttcagacaagagatctgccatttcatgcccttgtgactacctatcat 2580


tggccctgcaataaaatcatttatttttcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 2640


aaaaaaaaaaaaaaaaaaaaaactcgag 2668


<210> 157
<211> 2313


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
67
<212> DNA
<213> Homo sapien
<400> 157
gaattcggcaccaggccgggcgggcgcctcagccatggccctgcgcaaggaactgctcaa 60


gtccatctggtacgcctttaccgcgctggacgtggagaagagtggcaaagtctccaagtc 120


ccagctcaaggtgctgtcccacaacctgtacacggtcctgcacatcccccatgaccccgt 180


ggccctggaggaacacttccgagatgatgatgacggccctgtgtccagccagggatacat 240


gccctacctcaacaagtacatcctggacaaggtggaggagggggcttttgttaaagagca 300


ctttgatgagctgtgctggacgctgacggccaagaagaactatcgggcagatagcaacgg 360


gaacagtatgctctccaatcaggatgccttccgcctctggtgcctcttcaacttcctgtc 420


tgaggacaagtaccctctgatcatggttcctgatgaggtggaatacctgctgaaaaaggt 480


actcagcagcatgagcttggaggtgagcttgggtgagctggaggagcttctggcccagga 540


ggcccaggtggcccagaccaccggggggctcagcgtctggcagttcctggagctcttcaa 600


ttcgggccgctgcctgcggggcgtgggccgggacaccctcagcatggccatccacgaggt 660


ctaccaggagctcatccaagatgtcctgaagcagggctacctgtggaagcgagggcacct 720


gagaaggaactgggccgaacgctg.gttccagctgcagcccagctgcctctgctactttgg 780


gagtgaagagtgcaaagagaaaaggggcattatcccgctggatgcacactgctgcgtgga 840


ggtgctgccagaccgcgacggaaagcgctgcatgttctgtgtgaagacagccacccgcac 900


gtatgagatgagcgcctcagacacgcgccagcgccaggagtggacagctgccatccagat 960


ggcgatccggctgcaggccgaggggaagacgtccctacacaaggacctgaagcagaaacg 1020


gcgcgagcagcgggagcagcgggagcggcgccgggcggccaaggaagaggagctgctgcg 1080


gctgcagcagctgcaggaggagaaggagcggaagctgcaggagctggagctgctgcagga 1140


ggcgcagcggcaggccgagcggctgctgcaggaggaggaggaacggcgccgcagccagca 1200


ccgcgagctgcagcaggcgctcgagggccaactgcgcgaggcggagcaggcccgggcctc 1260


catgcaggctgagatggagctgaaggaggaggaggctgcccggcagcggcagcgcatcaa 1320


ggagctggaggagatgcagcagcggttgcaggaggccctgcaactagaggtgaaagctcg 1380


gcgagatgaagaatctgtgcgaatcgctcagaccagactgctggaagaggaggaagagaa 1440


gctgaagcagttgatgcagctgaaggaggagcaggagcgctacatcgaacgggcgcagca 1500


ggagaaggaagagctgcagcaggagatggcacagcagagccgctccctgcagcaggccca 1560


gcagcagctggaggaggtgcggcagaaccggcagagggctgacgaggatgtggaggctgc 1620


ccagagaaaactgcgccaggccagcaccaacgtgaaacactggaatgtccagatgaaccg 1680


gctgatgcatccaattgagcctggagataagcgtccggtcacaagcagctccttctcagg 1740


cttccagccccctctgcttgcccaccgtgactcctccctaaagcgcctgacccgctgggg 1800


atcccagggcaacaggaccccctcgcccaacagcaatgagcagcagaagtccctcaatgg 1860


tggggatgaggctcctgccccggcttccacccctcaggaagataaactggatccagcacc 1920


agaaaattagcctctcttagccccttgttcttcccaatgtcatatccaccaggacctggc 1980


cacagctggcctgtgggtgatcccagctcttactaggagagggagctgaggtcctggtgc 2040


caggggcccaggccctccaaccataaacagtccaggatggaacctggttcacccttcata 2100


ccagctccaagccccagaccatgggagctgtctgggatgttgatccttgagaacttggcc 2160


ctgtgctttagacccaaggacccgattcctgggctaggaaagagagaacaagcaagccgg 2220


ggctacctgcccccaggtggccaccaagttgtggaagcacatttctaaataaaaactgct 2280


cttagaatgaaaaaaaaaaaaaaaaaactcgag 2313


<210> 158
<211> 2114
<212> DNA
<213> Homo sapien
<400> 158
gaattcggcacgaggaagaactcgcctctgttgagtgtaagtagccaaacaataaccaag 60


gagaataacagaaatgtccatttggagcactcagagcagaatcctggttcatcagcaggt 120


gacacctcagcagcgcaccaggtggttttaggagaaaacttgatagccacagccctttgt 180


ctttctggcagtgggtctcagtctgatttgaaggatgtggccagcacagcaggagaggag 240


ggggacacaagccttcgggagagcctccatccagtcactcggtctcttaaggcagggtgc 300


catactaagcagcttgcctccaggaattgctctgaagagaaatccccacaaacctccatc 360


ctaaaggaaggtaacagggacacaagcttggatttccgacctgtagtgtctccagcaaat 420


ggggttgaaggagtcCgagtggatcaggatgatgatcaagatagctcttccctgaagctt 480




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
68
tctcagaacattgctgtacagactgactttaagacagctgattcagaggtaaacacagat540


caagatattgaaaagaatttggataaaatgatgacagagagaaccctgttgaaagagcgt600


taccaggaggtcctggacaaacagaggcaagtggagaatcagctccaagtgcaattaaag660


cagcttcagcaaaggagagaagaggaaatgaagaatcaccaggagatattaaaggctatt720


caggatgtgacaataaagcgggaagaaacaaagaagaagatagagaaagagaagaaggag780


tttttgcagaaggagcaggatctgaaagctgaaattgagaagctttgtgagaagggcaga840


agagaggtgtgggaaatggaactggatagactcaagaatcaggatggcgaaataaatagg900


aacattatggaagagactgaacgggcctggaaggcagagatcttatcactagagagccgg960


aaagagttactggtactgaaactagaagaagcagaaaaaga.ggcagaattgcaccttact1020


tacctcaagtcaactcccccaacactggagacagttcgttccaaacaggagtgggagacg1080


agactgaatggagttcggataatgaaaaagaatgttcgtgaccaatttaatagtcatatc1140


cagttagtgaggaacggagccaagctgagcagccttcctcaaatccctactcccacttta1200


cctccacccccatcagagacagacttcatgcttcaggtgtttcaacccagtccctctctg1260


gctcctcggatgcccttctccattgggcaggtcacaatgcccatggttatgcccagtgca1320


gatccccgctccttgtctttcccaatcctgaaccctgccctttcccagcccagccagcct1380


tcctcaccccttcctggctcccatggcagaaatagccctggcttgggttcccttgtcagc1440


cctggtgccgaattcggcacgaggtaccactggtctgtgtgctagaggagggtgttgcca2500


tagaaccagtggccacagttgtggtggtggtggtcagcactgtgggggtgtgggtggtcc1560


ccgggacggaggagggggtcaccgtgaagccactggttgtgggtgtggtggttgtgctga1620


tccacactggaggcgtgcgtgccgtccctgggctgaaggagggggtgactgtgaagcccg1680


tggttgtggtagtcggcactttggtagtgtgagctgttcctggggtggaagagggggtgg1740


ccacagagccggtggccctggttgtggtggccgtggtggtaagcactgtggaggtgtggg1800


cagtctctggagtggaggagggtgtggctgtggacatggtggccgtgggtgtggtggtct1860


gtgataggcgggtccaggtggtgcccagggaggaggaggggatggctgtaaagctggtag1920


ctgtgggtgtggtggctgtgcttctcagtgctggaagggcggttgcagtccctggactgg1980


agaagggagtggctttggagctggtgactgtgggtgtcgtggccgtggtgctcacatgtg2040


gggtgccagcagttgcctgggtggaggaggcggtggccgtggatccggtgggcaccgtca2100


cgggagtacttcta 2114


<210> 159
<211> 278
<212> DNA
<213> Homo sapien
<400> 159
gaattcggcacaggtaactttgcctggggtatttaaaaaaaaaaaaaaaa aaaaaaaaag60


tcaaatatctgagtactaatttcctgaaaagtatgttccgatagatgaac agatcattaa120


tgcagaatgagaatcactcctaaaataggtaatggtaaaaattaaattga caattacctc180


tctctatgcagaaggaaatatcacctatatgacatcatcatcatctattg atacttgctg240


gcagtgctaataatggttttaatgccaatttgtaagaa 278


<210> 160
<211> 848
<212> DNA
<213> Homo sapien
<400> 160
gaattcggcacgagccccagaggagctcggcctgcgctgcgccacgatgtccggggagtc 60


agccaggagcttggggaagggaagcgcgcccccggggccggtcccggagggctcgatccg 120


catctacagcatgaggttctgcccgtttgctgagaggacgcgtctagtcctgaaggccaa 180


gggaatcaggcatgaagtcatcaatatcaacctgaaaaataagcctgagtggttctttaa 240


gaaaaatccctttggtctggtgccagttctggaaaacagtcagggtcagctgatctacga 300


gtctgccatcacctgtgagtacctggatgaagcatacccagggaagaagctgttgccgga 360


tgacccctatgagaaagcttgccagaagatgatcttagagttgttttctaaggtgccatc 420


cttggtaggaagctttattagaagccaaaataaagaagactatgctggcctaaaagaaga 980


atttcgtaaagaatttaccaagctagaggaggttctgactaataagaagacgaccttctt 540


tggtggcaattctatctctatgattgattacctcatctggccctggtttgaacggctgga 600


agcaatgaagttaaatgagtgtgtagaccacactccaaaactgaaactgtggatggcagc 660




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
69
catgaaggaa gatcccacag tctcagccct gcttactagt gagaaagact ggcaaggttt 720
cctagagctc tacttacaga acagccctga ggcctgtgac tatgggctct gaagggggca 780
ggagtcagca ataaagctat gtctgatatt ttccttcact aaaaaaaaaa aaaaaaaaaa 840
aactcgag 848
<210> 161
<211> 432
<212> DNA
<213> Homo sapien
<400> 161


gaattcggcacgagggcagaccaagatcctggaggaggacctggaacagatcaagctgtc 60


cttgagagagcgaggccgggagctgaccactcagaggcagctgatgcaggaacgggcaga 120


ggaagggaagggcccaagtaaagcacagcgcgggagcctagagcacatgaagctgatcct 180


gcgtgataaggagaaggaggtggaatgtcagcaggagcatatccatgaactccaggagct 240


caaagaccagctggagcagcagctccagggcctgcacaggaaggtaggtgagaccagcct 300


cctcctgtcccagcgagagcaggaaatagtggtcctgcagcagcaactgcaggaagccag 360


ggaacaaggggagctgaaggagcagtcacttcagagtcaactggatgaggcccagagagc 420


cctagcccagag 432


<210> 162
<211> 433
<212> DNA
<213> Homo sapien
<400> 162


gattcggcacgagccggagctgggttgctcctgctcccgtctccaagtcctggtacctcc 60


ttcaagctgggagagggctctagtccctggttctgaacactctggggttctcgggtgcag 120


gccgccatgagcaaacggaaggcgccgcaggagactctcaacgggggaatcaccgacatg 180


ctcacagaactcgcaaactttgagaagaacgtgagccaagctatccacaagtacaatgct 240


tacagaaaagcagcatctgttatagcaaaatacccacacaaaataaagagtggagctgaa 300


gctaagaaattgcctggagtaggaacaaaaattgctgaaaagattgatgagtttttagca 360


actggaaaattacgtaaactggaaaagattcggcaggatgatacgagttcatccatcaat 420


ttcctgactcgag 433


<210> 163
<211> 432
<212> DNA
<213> Homo sapien
<400> 163


gaattcggcaccagatgaggccaacgaggtgacggacagcgcgtacatgggctccgagag 60


cacctacagtgagtgtgagaccttcacggacgaggacaccagcaccctggtgcaccctga 120


gctgcaacctgaaggggacgcagacagtgccggcggctcggccgtgccctctgagtgcct 180


ggacgccatggaggagcccgaccatggtgccctgctgctgctcccaggcaggcctcaccc 240


ccatggccagtctgtcatcacggtgatcgggggcgaggagcactttgaggactacggtga 300


aggcagtgaggcggagctgtccccagagaccctatgcaacgggcagctgggctgcagtga 360


ccccgctttcctcacgcccagtccgacaaagcggctctccagcaagaaggtggcaaggta 420


cctgcaccagtc 432


<210> 164
<211> 395
<212> DNA
<213> Homo sapien
<400> 164
gacacttgaa tcatgggtga cgttaaaaat tttctgtatg cctggtgtgg caaaaggaag 60
atgaccccat cctatgaaat tagagcagtg gggaacaaaa acaggcagaa attcatgtgt 120


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
gaggttcaggtggaaggttataattacactggcatgggaaattccaccaataaaaaagat 180


gcacaaagcaatgctgccagagactttgttaactatttggttcgaataaatgaaataaag 240


agtgaagaagttccagcttttggggtagcatctccgcccccacttactgatactcctgac 300


actacagcaaatgctgaaggcatcttgttgacatcgaatatgactttgataataaatacc 360


ggttcctgaaaaaaaaaaaaaaaaaaaaactcgag 395


<210> 165
<211> 503
<212> DNA
<213> Homo sapien
<400> 165
gaattcggcaccaggaacgctcggtgagaggcggaggagcggtaactaccccggttgcgc 60


acagctcggcgctccttcccgctccctcacacaccggcctcagcccgcaccggcagtaga 120


agatggtgaaagaaacaacttactacgatgttttgggggtcaaacccaatgctactcagg 180


aagaattgaaaaaggcttataggaaactggccttgaagtaccatcctgataagaacccaa 240


atgaaggagagaagtttaaacagatttctcaagcttacgaagttctctctgatgcaaaga 300


aaagggaattatatgacaaaggaggagaacaggcaattaaagagggtggagcaggtggcg 360


gttttggctcccccatggacatctttgatatgttttttggaggaggaggaaggatgcaga 420


gagaaaggagaggtaaaaatgttgtacatcagctctcagtaaccctagaagacttatata 480


atggtgcaacaagaaaactgget 503


<210> 166
<211> 893
<212> DNA
<213> Homo sapien
<400> 166
gaattcggcacgagaggaacttctcttgacgagaagagagaccaaggaggccaagcaggg 60


gctgggccagaggtgccaacatggggaaactgaggctcggctcggaagggtgagagtgag 120


actacatctcaaaaaaaaaaaaaaaaaaaaaaaagaaagaaaagaaaagaaaaaagaaag 180


aacggaagtagttgtaggtagtggtatggtggtatgagtctgttttctgttacttataac 240


aacaacaacaacaaaaaacgctgaaactgggtaatttataaagaaaaggaaaaaaagcag 300


aaaaaaatcaggaagaagagaaaggaaaagaagacaaataaatgaaatttatgtattaca 360


gttctgaaggctgagacatcccaggtcaagggtccacacttggcgagggctttcttgctg 420


gtggagactctttgtggagtcctgggacagtgcagaaggatcacgcctccctaccgctcc 480


aagcccagccctcagccatggcatgccccctggatcaggccattggcctcctcgtggcca 540


tcttccacaagtactccggcagggagggtgacaagcacaccctgagcaagaaggagctga 600


aggagctgatccagaaggagctcaccattggctcgaagctgcaggatgctgaaattgcaa 660


ggctgatggaagacttggaccggaacaaggaccaggaggtgaacttccaggagtatgtca 720


ccttcctgggggccttggctttgatctacaatgaagccctcaagggctgaaaataaatag 780


ggaagatggagacaccctctgggggtcctctctgagtcaaatccagtggtgggtaattgt 840


acaataaattttttttggtcaaatttaaaaaaaaaaaaaaaaaaaaactcgag 893


<210> 167
<211> 549
<212> DNA
<213> Homo sapien
<400> 167
gaattcggcacgagcccagatcccgaggtccgacagcgcccggcccagatccccacgcct 60


gccaggagcaagccgagagccagccggccggcgcactccgactccgagcagtctctgtcc 120


ttcgacccgagccccgcgccctttccgggacccctgccccgcgggcagcgctgccaacct 180


gccggccatggagaccccgtcccagcggcgcgccacccgcagcggggcgcaggccagctc 240


cactccgctgtcgcccacccgcatcacccggctgcaggagaaggaggacctgcaggagct 300


caatgatcgcttggcggtctacatcgaccgtgtgcgctcgctggaaacggagaacgcagg 360


gctgcgccttcgcatcaccgagtctgaagaggtggtcagccgcgaggtgtccggcatcaa 420


ggccgcctacgaggccgagctcggggatgcccgcaagacccttgactcagtagccaagga 480




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
71
gcgcgcccgc ctgcagctgg agctgagcaa agtgcgtgaa gagtttaagg agctgaaagc 540
gcgcaatac 549
<210> 168
<211> 547
<212> DNA
<213> Homo sapien
<400> 168
gaattcggcacgagatggcggcaggggtcgaagcggcggcggaggtggcggcgacggaga 60


tcaaaatggaggaagagagcggcgcgcccggcgtgccgagcggcaacggggctccgggcc 120


ctaagggtgaaggagaacgacctgctcagaatgagaagaggaaggagaaaaacataaaaa 180


gaggaggcaatcgctttgagccatatgccaatccaactaaaagatacagagccttcatta 240


caaacataccttttgatgtgaaatggcagtcacttaaagacctggttaaagaaaaagttg 300


gtgaggtaacatacgtggagctcttaatggacgctgaaggaaagtcaaggggatgtgctg 360


ttgttgaattcaagatggaagagagcatgaaaaaagctgcggaagtcctaaacaagcata 420


gtctgagcggaagaccactgaaagtcaaagaagatcctgatggtgaacatgccaggagag 480


caatgcaaaaggctggaagacttggaagcacagtatttgtagcaaatctggattataaag 540


ttggctg 547


<210> 169
<211> 547
<212> DNA
<213> Homo sapien
<400> 169
gaattcggcaccaggagtccgactgtgctcgctgctcagcgccgcacccggaagatgagg 60


ctcgccgtgggagccctgctggtctgcgccgtcctggggctgtgtctggctgtccctgat 120


aaaactgtgagatggtgtgcagtgtcggagcatgaggccactaagtgccagagtttccgc 180


gaccatatgaaaagcgtcattccatccgatggtcccagtgttgcttgtgtgaagaaagcc 240


tcctaccttgattgcatcagggccattgcggcaaacgaagcggatgctgtgacactggat 300


gcaggtttggtgtatgatgcttacctggctcccaataacctgaagcctgtggtggcagag 360


ttctatgggtcaaaagaggatccacagactttctattatgctgttgctgtggtgaagaag 420


gatagtggcttccagatgaaccagcttcgaggcaagaagtcctgccacacgggtctaggc 480


aggtccgctgggtggaacatccccataggcttactttactgtgacttacctgagccacgt 540


aaacctc 547


<210> 170
<211> 838
<212> DNA
<213> Homo sapien
<400> 170
gaattcggcaccagaggagctcggcctgcgctgcgccacgatgtccggggagtcagccag 60


gagcttggggaagggaagcgcgcccccggggccggtcccggagggctcgatccgcatcta 120


cagcatgaggttctgcccgtttgctgagaggacgcgtctagtcctgaaggccaagggaat 180


caggcatgaagtcatcaatatcaacctgaaaaataagcctgagtggttctttaagaaaaa 240


tccctttggtctggtgccag'ttctggaaaacagtcagggtcagctgatctacgagtctgc 300


catcacctgtgagtacctggatgaagcatacccagggaagaagctgttgccggatgaccc 360


ctatgagaaagcttgccagaagatgatcttagagttgttttctaaggtgccatccttggt 420


aggaagctttattagaagccaaaataaagaagactatgatggcctaaaagaagaatttcg 480


taaagaatttaccaagctagaggaggttctgactaataagaagacgaccttctttggtgg 540


caattctatctctatgattgattacctcatctggccctggtttgaacggctggaagcaat 600


gaagttaaatgagtgtgtaga'ccacactccaaaactgaaactgtggatggcagccatgaa 660


ggaagatcccacagtctcagccctgcttactagtgagaaagactggcaaggtttcctaga 720


gctctacttacagaacagccctgaggcctgtgactatgggctctgaagggggcaggagtc 780


agcaataaagctatgtctgatattttccttcactaaaaaaaaaaaaaaaaaactcgag 838




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
72
<210> 171
<211> 547
<212> DNA
<213> Homo sapien
<400>
171


gaattcggcaccagcgggatttgggtcgcagttcttgtttgtggattgctgtgatcgtca 60


cttgacaatgcagatcttcgtgaagactctgactggtaagaccatcaccctcgaggttga 120


gcccagtgacaccatcgagaatgtcaaggcaaagatccaagataaggaaggcatccctcc 180


tgaccagcagaggctgatctttgctggaaaacagctggaagatgggcgcaccctgtctga 240


ctacaacatccagaaagagtccaccctgcacctggtgctccgtctcagaggtgggatgca 300


aatcttcgtgaagacactcactggcaagaccatcacccttgaggtcgagcccagtgacac 360


catcgagaacgtcaaagcaaagatccaggacaaggaaggcattcctcctgaccagcagag 420


gttgatctttgccggaaagcagctggaagatgggcgcaccctgtctgactacaacatcca 480


gaaagagtctaccctgcacctggtgctccgtctcagaggtgggatgcagatcttcgtgaa 540


gaccctg
547


<210> 172
<211> 608
<212> DNA
<213> Homo sapien
<400>
172


gaattcggcaccagagacttctccctctgaggcctgcgcacccctcctcatcagcctgtc 60
'


caccctcatctacaatggtgccctgccatgtcagtgcaaccctcaaggttcactgagttc 120


tgagtgcaaccctcatggtggtcagtgcctgtgcaagcctggagtggttgggcgccgctg 180


tgacctctgtgcccctggctactatggctttggccccacaggctgtcaaggcgcttgcct 240


gggctgccgtgatcacacagggggtgagcactgtgaaaggtgcattgctggtttccacgg 300


ggacccacggctgccatatgggggccagtgccggccctgtccctgtcctgaaggccctgg 360


gagccaacggcactttgctacttcttgccaccaggatgaatattcccagcagattgtgtg 420


ccactgccgggcaggctatacggggctgcgatgtgaagcttgtgcccctgggcactttgg 480


ggacccatcaaggccaggtggccggtgccaactgtgtgagtgcagtgggaacattgaccc 540


aatggatcctgatgcctgtgacccccacacggggcaatgcctgcgctgtttacaccacac 600


agagggtc
608


<210> 173
<211> 543
<212> DNA
<213> Homo sapien
<400>
173


gaattcggcaccagagatcatccgccagcagggtctggcctcctacgactacgtgcgccg 60


ccgcctcacggctgaggacctgttcgaggctcggatcatctctctcgagacctacaacct 120


gctccgggagggcaccaggagcctccgtgaggctctcgaggcggagtccgcctggtgcta 180


cctctatggcacgggctccgtggctggtgtctacctgcccggttccaggcagacactgag 240


catctaccaggctctcaagaaagggctgctgagtgccgaggtggcccgcctgctgctgga 300


ggcacaggcagccacaggcttcctgctggacccggtgaagggggaacggctgactgtgga 360


tgaagctgtgcggaagggcctcgtggggcccgaactgcacgaccgcctgctctcggctga 420


gcgggcggtcaccggctaccgtgacccctacaccgagcagaccatctcgctcttccaggc 480


catgaagaaggaactgatccctactgaggaggccctgcggctgtggatgcccagctggcc 540


acc 543


<210> 174
<211> 548
<212> DNA
<213> Homo sapien
<400> 174


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
73
gaattcggcacgagaaatggcggcaggggtcgaagcggcggcggaggtggcggcgacgga 60


gatcaaaatggaggaagagagcggcgcgcccggcgtgccgagcggcaacggggctccggg 120


ccctaagggtgaaggagaacgacctgctcagaatgagaagaggaaggagaaaaacataaa 180


aagaggaggcaatcgctttgagccatatgccaatccaactaaaagatacagagccttcat 240


tacaaacataccttttgatgtgaaatggcagtcacttaaagacctggttaaagaaaaagt 300


tggtgaggtaacatacgtggagctcttaatggacgctgaaggaaagtcaaggggatgtgc 360


tgttgttgaattcaagatggaagagagcatgaaaaaagctgcggaagtcctaaacaagca 420


tagtctgagcggaagaccactgaaagtcaaagaagatcctgatggtgaacatgccaggag 480


agcaatgcaaaaggtgatggctacgactggtgggatgggtatgggaccaggtggcccagg 540


aatgatta 548


<210> 175
<211> 604
<212> DNA
<213> Homo sapien
<400> 175
gaattcggcaccagaggacctccaggacatgttcatcgtccataccatcgaggagattga 60


gggcctgatctcagcccatgaccagttcaagtccaccctgccggacgccgatagggagcg 120


cgaggccatcctggccatccacaaggaggcccagaggatcgctgagagcaaccacatcaa 180


gctgtcgggcagcaacccctacaccaccgtcaccccgcaaatcatcaactccaagtggga 240


gaaggtgcagcagctggtgccaaaacgggaccatgccctcctggaggagcagagcaagca 300


gcagtccaacgagcacctgcgccgccagttcgccagccaggccaatgttgtggggccctg 360


gatccagaccaagatggaggagatcgggcgcatctccattgagatgaacgggaccctgga 420


ggaccagctgagccacctgaagcagtatgaacgcagcatcgtggactacaagcccaacct 480


ggacctgctggagcagcagcaccagcttatccaggaggccctcatcttcgacaacaagca 540


caccaactataccatggagcacatccgcgtgggctgggagcagctgctcaccaccattgc 600


ccgg 604


<210> 176
<211> 486
<212> DNA
<213> Homo sapien
<400> 176
gaattcggcaccagccaagctcactattgaatccacgccgttcaatgtcgcagaggggaa 60


ggaggttcttctactcgcccacaacctgccccagaatcgtattggttacagctggtacaa 120


aggcgaaagagtggatggcaacagtctaattgtaggatatgtaataggaactcaacaagc 180


taccccagggcccgcatacagtggtcgagagacaatataccccaatgcatccctgctgat 240


ccagaacgtcacccagaatgacacaggattctataccctacaagtcataaagtcagatct 300


tgtgaatgaagaagcaaccggacagttccatgtatacccggagctgcccaagccctccat 360


ctccagcaacaactccaaccccgtggaggacaaggatgctgtggccttcacctgtgaacc 420


tgaggttcagaacacaacctacctgtggtgggtaaatggtcagagcctcccggtcagtcc 480


caaggc 486


<210> 177
<211> 387
<212> DNA
<213> Homo sapien
<400> 177
gaattcggcaccagggacagcagaccagacagtcacagcagccttgacaaaacgttcctg 60


gaactcaagctcttctccacagaggaggacagagcagacagcagagaccatggagtctcc 120


ctcggcccctccccacagatggtgcatcccctggcagaggctcctgctcacagcctcact 180


tctaaccttctggaacccgcccaccactgccaagctcactattgaatccacgccgttcaa 240


tgtcgcagaggggaaggaggtgcttctacttgtccacaatctgccccagcatctttttgg 300


ctacagctggtacaaaggtgaaagagtggatggcaaccgtcaaattataggatatgtaat 360


aggaactcaacaagctaccccagggcc 387




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
74
<210> 178
<211> 440
<212> DNA
<213> Homo sapien
<400>
178


gaattcggcacgaggagaagcagaaaaacaaggaatttagccagactttagaaaatgaga 60


aaaataccttactgagtcagatatcaacaaaggatggtgaactaaaaatgcttcaggagg 120


aagtaaccaaaatgaacctgttaaatcagcaaatccaagaagaactctctagagttacca 180


aactaaaggagacagcagaagaagagaaagatgatttggaagagaggcttatgaatcaat 240


tagcagaacttaatggaagcattgggaattactgtcaggatgttacagatgcccaaataa 300


aaaatgagctattggaatctgaaatgaagaaccttaaaaagtgtgtgagtgaattggaag 360


aagaaaagcagcagttagtcaaggaaaaaactaaggtggaatcagaaatacgaaaggaat 420


atttggagaaaatacaaggt 440


<210> 179
<211> 443
<212> DNA
<213> Homo sapien
<400>
179


gaattcggcaccagcggggggctacggcggcggctacggcggcgtcctgaccgcgtccga 60


cgggctgctggcgggcaacgagaagctaaccatgcagaacctcaacgaccgcctggcctc 120


ctacctggacaaggtgcgcgccctggaggcggccaacggcgagctagaggtgaagatccg 180


cgactggtaccagaagcaggggcctgggccctcccgcgactacagccactactacacgac 240


catccaggacctgcgggacaagattcttggtgccaccattgagaactccaggattgtcct 300


gcagatcgacaacgcccgtctggctgcagatgacttccgaaccaagtttgagacggaaca 360


ggctctgcgcatgagcgtggaggccgacatcaacggcctgcgcagggtgctggatgagct 420


gaccctggccaggaccgacctgg 443


<210> 180
<211> 403
<212> DNA
<213> Homo sapien
<400>
180


gaattcggcacgaggttatgagagtcgacttcaatgttcctatgaagaacaaccagataa 60


caaacaaccagaggattaaggctgctgtcccaagcatcaaattctgcttggacaatggag 120


ccaagtcggtagtccttatgagccacctaggccggcctgatggtgtgcccatgcctgaca 180


agtactccttagagccagttgctgtagaactcagatctctgctgggcaaggatgttctgt 240


tcttgaaggactgtgtaggcccagaagtggagaaagcctgtgccaacccagctgctgggt 300


ctgtcatcctgctggagaacctccgctttcatgtggaggaagaagggaagggaaaagatg 360


cttctgggaacaaggttaaagccgagccagccaaaatagaagc 403


<210> 181
<211> 493
<212> DNA
<213> Homo sapien
<400>
181


gaattcggcaccagcagaggtctccagagccttctctctcctgtgcaaaatggcaactct 60


taaggaaaaactcattgcaccagttgcggaagaagaggcaacagttccaaacaataagat 120


cactgtagtgggtgttggacaagttggtatggcgtgtgctatcagcattctgggaaagtc 180


tctggctgatgaacttgctcttgtggatgttttggaagataagcttaaaggagaaatgat 240


ggatctgcagcatgggagcttatttcttcagacacctaaaattgtggcagataaagatta 300


ttctgtgaccgccaattctaagattgtagtggtaactgcaggagtccgtcagcaagaagg 360


ggagagtcggctcaatctggtgcagagaaatgttaatgtcttcaaattcattattcctca 420




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
gatcgtcaag tacagtcctg attgcatcat aattgtggtt tccaacccag tggacattct 480
tacgtatgtt acc 493
<210> 182
<211> 209
<212> PRT
<213> Homo sapien
<400> 182
Ala Phe Ser Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu Gly G1y
1 5 10 15
Ala Leu Gln Lys Leu Leu Val Ile Leu Ala Thr Glu Gln Pro Leu Thr
20 25 30
Ala Lys Lys Lys Val Leu Phe Ala Leu Cys Ser Leu Leu Arg His Phe
35 40 45
Pro Tyr Ala Gln Arg Gln Phe Leu Lys Leu Gly Gly Leu Gln Val Leu
50 55 60
Arg Thr Leu Val Gln G1u Lys Gly Thr Glu Val Leu Ala Val Arg Val
65 70 75 80
Val Thr Leu Leu Tyr Asp Leu Val Thr Glu Lys Met Phe Ala Glu Glu
90 ' 95
Glu Ala Glu Leu Thr Gln Glu Met Ser Pro Glu Lys Leu Gln Gln Tyr
100 105 110
Arg Gln Val His Leu Leu Pro Gly Leu Trp Glu Gln G1y Trp Cys Glu
115 120 125
Ile Thr Ala His Leu Leu Ala Leu Pro Glu His Asp Ala Arg Glu Lys
130 135 140
Val Leu Gln Thr Leu Gly Val Leu Leu Thr Thr Cys Arg Asp Arg Tyr
145 150 155 160
Arg Gln Asp Pro Gln Leu Gly Arg Thr Leu Ala Ser Leu Gln Ala Glu
165 170 175
Tyr Gln Val Leu Ala Ser Leu G1u Leu Gln Asp Gly Glu Asp Glu Gly
180 185 190
Tyr Phe Gln Glu Leu Leu Gly Ser Val Asn Ser Leu Leu Lys Glu Leu
195 200 205
Arg
<210> 183
<211> 255
<212> PRT
<213> Homo sapien
<400> 183
Met Ala Ala Gly Val Glu A1a Ala Ala Glu Va1 Ala Ala Thr Glu Pro
1 5 10 15
Lys Met Glu Glu Glu Ser Gly Ala Pro Cys Val Pro Ser Gly Asn Gly
20 25 30
A1a Pro Gly Pro Lys Gly Glu Glu Arg Pro Thr Gln Asn Glu Lys Arg
35 40 45
Lys Glu Lys Asn I1e Lys Arg G1y Gly Asn Arg Phe Glu Pro Tyr Ser
50 55 60
Asn Pro Thr Lys Arg Tyr Arg Ala Phe Ile Thr Asn Ile Pro Phe Asp
65 70 75 80
Val Lys Trp Gln Ser Leu Lys Asp Leu Val Lys Glu Lys Val G1y Glu
85 90 95
Val Thr Tyr Va1 Glu Leu Leu Met Asp Ala Glu Gly Lys Ser Arg Gly
100 ~ 105 110


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
76
Cys Ala Val Val Glu Phe Lys Met Glu Glu Ser Met Lys Lys Ala Ala
115 120 125
Glu Va1 Leu Asn Lys His Ser Leu Ser Gly Arg Pro Leu Lys Val Lys
130 135 140
Glu Asp Pro Asp Gly Glu His Ala Arg Arg Ala Met Gln Lys Ala Gly
145 150 155 160
Arg Leu Gly Ser Thr Val Phe Val Ala Asn Leu Asp Tyr Lys Val Gly
165 170 175
Trp Lys Lys Leu Lys Glu Val Phe Ser Met Ala Gly Val Val Val Arg
180 185 190
Ala Asp Ile Leu Glu Asp Lys Asp G1y Lys Ser Arg Gly Ile Gly Tle
295 200 205
Val Thr Phe Glu Gln Ser Ile G1u Ala Val G1n A1a I1e Ser Met Phe
210 215 220
Asn Gly Gln Leu Leu Phe Asp Arg Pro Met His Val Lys Met Asp Glu
225 230 235 240
Arg Ala Leu Pro Lys Gly Asp Phe Phe Pro Pro Glu Arg His Ser
245 250 255
<210> 184
<211> 188
<212> PRT
<213> Homo sapien
<400> 184
Leu Ser Gly Ser Cys Ile Arg Arg Glu Gln Thr Pro Glu Lys Glu Lys
1 5 10 15
Gln Val Val Leu Phe Glu Glu Ala Ser Trp Thr Cys Thr Pro Ala Cys
20 25 30
Gly Asp Glu Pro Arg Thr Val Ile Leu Leu Ser Ser Met Leu Ala Asp
35 40 45
His Arg Leu Lys Leu Glu Asp Tyr Lys Asp Arg Leu Lys Ser Gly Glu
50 55 60
His Leu Asn Pro Asp G1n Leu Glu Ala Val GIu Lys Tyr Glu Glu Val
65 70 75 80
Leu His Asn Leu Glu Phe Ala Lys Glu Leu Gln Lys Thr Phe Ser Gly
85 90 95
Leu Ser Leu Asp Leu Leu Lys Ala Gln Lys Lys Ala Gln Arg Arg Glu
100 105 110
His Met Leu Lys Leu Glu Ala Glu Lys Lys Lys Leu Arg Thr Ile Leu
115 120 125
Gln Val Gln Tyr Val Leu G1n Asn Leu Thr Gln Glu His Val Gln Lys
130 135 140
Asp Phe Lys Gly Gly Leu Asn Gly Ala Val Tyr Leu Pro Ser Lys Glu
145 150 155 160
Leu Asp Tyr Leu Ile Lys Phe Ser Lys Leu Thr Cys Pro Glu Arg Asn
165 170 175
Glu Ser Leu Arg Gln Thr Leu Glu Gly Ser Thr Val
180 185
<210> 185
<211> 746
<212> PRT
<213> Homo sapien
<400> 185
Asp Lys His Leu Lys Asp Leu Leu Ser Lys Leu Leu Asn Ser Gly Tyr
1 5 10 15


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
77
Phe Glu Ser Ile Pro Val Pro Lys Asn Ala Lys Glu Lys Glu Val Pro
20 25 30
Leu Glu Glu Glu Met Leu Ile Gln Ser Glu Lys Lys Thr Gln Leu Ser
35 40 45
Lys Thr Glu Ser Val Lys Glu Ser Glu Ser Leu Met Glu Phe Ala Gln
50 55 60
Pro Glu Ile Gln Pxo Gln Glu Phe Leu Asn Arg Arg Tyr Met Thr Glu
65 70 75 80
Val Asp Tyr Ser Asn Lys Gln Gly Glu Glu Gln Pro Trp Glu Ala Asp
85 90 95
Tyr Ala Arg Lys Pro Asn Leu Pro Lys Arg Trp Asp Met Leu Thr Glu
100 105 110
Pro Asp Gly G1n Glu Lys Lys Gln Glu Sex Phe Lys Ser Trp Glu Ala
115 120 125
Ser Gly Lys His Gln Glu Val Ser Lys Pro Ala Val Ser Leu Glu Gln
130 135 140
Arg Lys Gln Asp Thr Ser Lys Leu Arg Ser Thr Leu Pro Glu Glu Gln
145 150 155 160
Lys Lys Gln Glu Ile Ser Lys Ser Lys Pro Ser Pro Ser Gln Trp Lys
165 170 175
Gln Asp Thr Pro Lys Ser Lys Ala G1y Tyr Va1 Gln Glu Glu Gln Lys
180 185 190
Lys Gln Glu Thr Pro Lys Leu Trp Pro Val Gln Leu Gln Lys Glu Gln
195 200 205
Asp Pro Lys Lys Gln Thr Pro Lys Ser Trp Thr Pro Ser Met G1n Ser
210 215 220
Glu Gln Asn Thr Thr Lys Ser Trp Thr Thr Pro Met Cys Glu Glu Gln
225 230 235 240
Asp Ser Lys G1n Pro Glu Thr Pro Lys Ser Trp Glu Asn Asn Val Glu
245 250 255
Ser Gln Lys His Ser Leu Thr Ser Gln Ser Gln Ile Ser Pro Lys Ser
26D 265 270
Trp Gly Val Ala Thr Ala Ser Leu Ile Pro Asn Asp Gln Leu Leu Pro
275 280 285
Arg Lys Leu Asn Thr Glu Pro Lys Asp Val Pro Lys Pro Val His Gln
290 295 300
Pro Val Gly Ser Ser Ser Thr Leu Pro Lys Asp Pro Val Leu Arg Lys
305 310 315 320
Glu Lys Leu Gln Asp Leu Met Thr Gln Ile Gln Gly Thr Cys Asn Phe
325 330 335
Met Gln Glu Ser Val Leu Asp Phe Asp Lys Pro Ser Ser Ala Ile Pro
340 345 350
Thr Ser Gln Pro Pro Ser Ala Thr Pro Gly Ser Pro Val Ala Ser Lys
355 360 365
Glu Gln Asn Leu Ser Ser Gln Ser Asp Phe Leu Gln GIu Pro Leu Gln
370 375 ' 380
Val Phe Asn Val Asn Ala Pro Leu Pro Pro Arg Lys Glu G1n Glu Tle
385 390 395 400
Lys Glu Ser Pro Tyr Ser Pro Gly Tyr Asn Gln Ser Phe Thr Thr A1a
405 410 415
Ser Thr Gln Thr Pro Pro Gln Cys Gln Leu Pro Ser Tle His Val Glu
420 425 430
Gln Thr Val His Ser Gln Glu Thr Ala Ala Asn Tyr His Pro Asp Gly
435 440 445
Thr Ile Gln Val Ser Asn Gly Ser Leu Ala Phe Tyr Pro Ala Gln Thr
450 455 460
Asn Val Phe Pro Arg Pro Thr Gln Pro Phe Val Asn Ser Arg Gly Ser
465 470 475 480


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
78
Val Arg Gly Cys Thr Arg Gly Gly Arg Leu Ile Thr Asn Ser Tyr Arg
485 490 495
Ser Pro Gly Gly Tyr Lys Gly Phe Asp Thr Tyr Arg Gly Leu Pro Ser
500 505 510
Ile Ser Asn Gly Asn Tyr Ser Gln Leu Gln Phe Gln Ala Arg Glu Tyr
515 520 525
Ser Gly Ala Pro Tyr Ser Gln Arg Asp Asn Phe Gln Gln Cys Tyr Lys
530 535 540
Arg Gly Gly Thr Ser Gly Gly Pro Arg Ala Asn Ser Arg Ala Gly Trp
545 550 555 560
Ser Asp Ser Ser Gln Val Ser Ser Pro Glu Arg Asp Asn Glu Thr Phe
565 570 575
Asn Ser Gly Asp Ser Gly Gln Gly Asp Ser Arg Ser Met Thr Pro Val
580 585 590
Asp Val Pro Val Thr Asn Pro Ala Ala Thr Ile Leu Pro Val His Va1
595 600 605
Tyr Pro Leu Pro Gln Gln Met Arg Val Ala Phe Ser Ala Ala Arg Thr
610 615 ~ 620
Ser Asn Leu Ala Pro Gly Thr Leu Asp Gln Pro Ile Val Phe Asp Leu
625 630 635 640
Leu Leu Asn Asn Leu Gly Glu Thr Phe Asp Leu Gln Leu Gly Arg Phe
645 650 655
Asn Cys Pro Val Asn Gly Thr Tyr Va1 Phe Ile Phe His Met Leu Lys
660 665 670
Leu Ala Val Asn Val Pro Leu Tyr Val Asn Leu Met Lys Asn G1u Glu
675 680 685
Val Leu Val Ser Ala Tyr Ala Asn Asp Gly Ala Pro Asp His Glu Thr
690 695 700
Ala Ser Asn His Ala Ile Leu Gln Leu Phe Gln.Gly Asp Gln Ile Trp
705 710 715 720
Leu Arg Leu His Arg Gly Ala Ile Tyr Gly Ser Ser Trp Lys Tyr Ser
725 730 735
Thr Phe Ser Gly Tyr Leu Leu Tyr Gln Asp
740 745
<210> 186
<211> 705
<212> PRT
<213> Homo sapien
<400> 186
Ala Leu Leu Asn Val Arg Gln Pro Pro Ser Thr Thr Thr Phe Val Leu
1 5 10 15
Asn Gln Ile Asn His Leu Pro Pro Leu Gly Ser Thr I1e Va1 Met Thr
20 25 30
Lys Thr Pro Pro Val Thr Thr Asn Arg Gln Thr Ile Thr Leu Thr Lys
35 40 45
Phe Ile Gln Thr Thr A1a Ser Thr Arg Pro Ser Val Ser Ala Pro Thr
50 55 60
Va1 Arg Asn Ala Met Thr Ser Ala Pro Ser Lys Asp Gln Val Gln Leu
65 70 75 80
Lys Asp Leu Leu Lys Asn Asn Ser Leu Asn Glu Leu Met Lys Leu Lys
85 90 95
Pro Pro Ala Asn Ile Ala Gln Pro Val Ala Thr Ala Ala Thr Asp Val
100 105 110
Ser Asn Gly Thr Val Lys Lys Glu Ser Ser Asn Lys Glu Gly Ala Arg
115 120 125
Met Trp Ile Asn Asp Met Lys Met Arg Ser Phe Ser Pro Thr Met Lys


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
79
130 135 140
Val Pro Val Val Lys Glu Asp Asp Glu Pro Glu Glu Glu Asp Glu Glu
145 150 155 160
Glu Met Gly His A1a Glu Thr Tyr Ala G1u Tyr Met Pro Ile Lys Leu
165 170 ~ 175
Lys Ile Gly Leu Arg His Pro Asp Ala Val Val Glu Thr Ser Ser Leu
180 185 190
Ser Ser Val Thr Pro Pro Asp Val Trp Tyr Lys Thr Ser Ile Ser Glu
195 200 205
Glu Thr Ile Asp Asn Gly Trp Leu Ser Ala Leu Gln Leu Glu Ala Ile
210 215 220
Thr Tyr Ala Ala Gln Gln His Glu Thr Phe Leu Pro Asn Gly Asp Arg
225 230 235 240
Ala Gly Phe Leu Ile Gly Asp G1y Ala Gly Val Gly Lys Gly Arg Thr
245 250 255
Ile Ala G1y Ile Ile Tyr Glu Asn Tyr Leu Leu Ser Arg Lys Arg Ala
260 265 270
Leu Trp Phe Ser Val Ser Asn Asp Leu Lys Tyr Asp Ala Glu Arg Asp
275 280 285
Leu Arg Asp Ile Gly Ala Lys Asn Ile Leu Val His Ser Leu Asn Lys
290 295 300
Phe Lys Tyr Gly Lys Ile Ser Ser Lys His Asn Gly Ser Val Lys Lys
305 , 310 315 320
Gly Val Ile Phe Ala Thr Tyr Ser Ser Leu Ile Gly Glu Ser Gln Ser
325 330 335
Gly Gly Lys Tyr Lys Thr Arg Leu Lys Gln Leu Leu His Trp Cys Gly
340 345 350
Asp Asp Phe Asp Gly Val Ile Val Phe Asp Glu Cys His Lys Ala Lys
355 360 365
Asn Leu Cys Pro Val Gly Ser Ser Lys Pro Thr Lys Thr Gly Leu Ala
370 375 380
Val Leu Glu Leu Gln Asn Lys Leu Pro Lys Ala Arg Val Val Tyr Ala
385 390 395 400
Ser Ala Thr G1y Ala Ser Glu Pro Arg Asn Met Ala Tyr Met Asn Arg
405 410 415
Leu Gly Ile Trp Gly Glu Gly Thr Pro Phe Arg Glu Phe Ser Asp Phe
420 425 430
Ile Gln Ala Val Glu Arg Arg Gly Val Gly Ala Met Glu Ile Val Ala
435 ° 440 445
Met Asp Met Lys Leu Arg Gly Met Tyr Ile Ala Arg Gln Leu Sex Phe
450 455 460
Thr Gly Val Thr Phe Lys Ile Glu Glu Val Leu Leu Ser Gln Ser Tyr
465 470 475 480
Val Lys Met Tyr Asn Lys Ala Val Lys Leu Trp Va1 Ile Ala Arg Glu
485 490 495
Arg Phe Gln Gln Ala Ala Asp Leu Ile Asp Ala Glu Gln Arg Met Lys
500 505 510
Lys Ser Met Trp Gly Gln Phe Trp Ser Ala His Gln Arg Phe Phe Lys
515 520 525
Tyr Leu Cys Ile Ala Ser Lys Val Lys Arg Val Val Gln Leu Ala Arg
530 535 540
Glu Glu Ile Lys Asn Gly Lys Cys Val Val Ile Gly Leu Gln Ser Thr
545 ~ 550 555 560
Gly Glu Ala Arg Thr Leu Glu Ala Leu Glu Glu Gly Gly Gly Glu Leu
565 570 575
Asn Asp Phe Val Ser Thr Ala Lys Gly Val Leu Gln Ser Leu Ile Glu
580 585 590
Lys His Phe Pro Ala Pro Asp Arg Lys Lys Leu Tyr Ser Leu Leu Gly


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
595 600 605
Ile Asp Leu Thr Ala Pro Ser Asn Asn Ser Ser Pro Arg Asp Ser Pro
610 615 620
Cys Lys Glu Asn Lys Ile Lys Lys Arg Lys Gly Glu Glu Ile Thr Arg
625 630 635 640
Glu Ala Lys Lys Ala Arg Lys Val Gly Gly Leu Thr Gly Ser Ser Ser
645 650 655
Asp Asp Ser Gly Ser Glu Ser Asp Ala Sex Asp Asn Glu Glu Ser Asp
660 665 670
Tyr Glu Ser Ser Lys Asn Met Ser Ser G1y Asp Asp Asp Asp Phe Asn
675 680 685
Pro Phe Leu Asp Glu Ser Asn Glu Asp Asp Glu Asn Asp Pro Trp Leu
690 695 700
Ile
705
<210> 187
<211> 595
<212> PRT
<213> Homo sapien
<400> 187
Glu Ser Pro Arg His Arg Gly Glu Gly Gly Gly Glu Trp G1y Pro Gly
1 5 10 15
Val Pro Arg Glu Arg Arg Glu Ser Ala Gly Glu Trp Gly Ala Asp Thr
20 25 30
Pro Lys Glu Gly Gly Glu Ser Ala Gly Glu Trp Gly Ala Glu Val Pro
35 40 45
Arg Gly Arg Gly Glu Gly Ala Gly Glu Trp Gly Pro Asp Thr Pro Lys
50 55 60
Glu Arg Gly Gln Gly Val Arg G1u Trp Gly Pro Glu Ile Pro Gln Glu
65 70 75 80
His Gly Glu Ala Thr Arg Asp Trp Ala Leu Glu Ser Pro Arg A1a Leu
85 90 95
Gly Glu Asp Ala Arg Glu Leu Gly Ser Ser Pro His Asp Arg Gly Ala
. 100 105 110
Ser Pro Arg Asp Leu Ser Gly Glu Ser Pro Cys Thr Gln Arg Ser Gly
115 120 125
Leu Leu Pro G1u Arg Arg Gly Asp Ser Pro Trp Pro Pro Trp Pro Ser
130 135 140
Pro Gln Glu Arg Asp Ala Gly Thr Arg Asp Arg Glu Glu Ser Pro Arg
145 150 155 160
Asp Trp Gly Gly Ala Glu Ser Pro Arg Gly Trp Glu A1a Gly Pro Arg
165 170 175
Glu Trp Gly Pro Ser Pro Ser Gly His Gly Asp Gly Pro Arg Arg Arg
180 185 190
Pro Arg Lys Arg Arg Gly Arg Lys Gly Arg Met Gly Arg Gln His Glu
195 200 205
Ala A1a Ala Thr Ala Ala Thr A1a Ala Thr Ala Thr Gly Gly Thr Ala
210 215 220
Glu Glu Ala Gly A1a Sex A1a Pro Glu Ser Gln Ala Gly Gly Gly Pro
225 230 235 240
Arg Gly Arg Ala Arg Gly Pro Arg Gln Gln Gly Arg Arg Arg~His Gly
245 250 255
Thr Gln Arg Arg Arg Gly Pro Pro Gln Ala Arg Glu Glu Gly Pro Arg
260 265 270
Asp Ala Thr Thr Ile Leu Gly Leu Gly Thr Pro Ser Gly Glu Gln Arg
275 280 285


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
81
Ala Asp Gln Ser Gln Ala Leu Pro Ala Leu Ala Gly Ala Ala Ala Ala
290 295 300
His Ala His Ala Tle Pro Gly Ala Gly Pro Ala Ala Ala Pro Val G1y
305 ~ 310 315 320
Gly Arg Gly Arg Arg Gly Gly Trp Arg Gly G1y Arg Arg Gly Gly Ser
325 330 335
Ala Gly Ala Gly Gly Gly Gly Arg Gly Gly Arg Gly Arg Gly Arg Gly
340 345 350
Gly Gly Arg Gly Gly Gly Gly Ala Gly Arg Gly Gly Gly Ala Ala Gly.
355 360 365
Pro Arg Glu Gly Ala Ser Ser Pro Gly Ala Arg Arg Gly Glu Gln Arg
370 375 380
Arg Arg Gly Arg Gly Pro Pro Ala Ala Gly Ala Ala Gln Val Ser Ala
385 390 395 400
Arg Gly Arg Arg Ala Arg Gly Gln Arg Ala Gly Glu Glu Ala G1n Asp
405 410 415
Gly Leu Leu Pro Arg Gly Arg Asp Arg Leu Pro Leu Arg Pro Gly Asp
420 425 430
Ala Asn Gln Arg Ala Glu Arg Pro Gly Pro Pro Arg Gly G1y His Gly
435 440 445
Pro Val Asn Ala Ser Ser Ala Pro Asp Thr Ser Pro Pro Arg His Pro
450 455 460
Arg Arg Trp Val Ser Gln Gln Arg Gln Arg Leu Trp Arg G1n Phe Arg
465 470 475 480
Val Gly Gly Gly Phe Pro Pro Pro Pro Pro Ser Arg Pro Pro Ala Val
485 490 495
Leu Leu Pro Leu Leu Arg Leu Ala Cys Ala Gly Asp Pro Gly Ala Thr
500 505 510
Arg Pro G1y Pro Arg Arg Pro Ala Arg Arg Pro Arg Gly Glu Leu Ile
515 520 525
Pro Arg Arg Pro Asp Pro Ala Ala Pro Ser Glu Glu Gly Leu Arg Met
530 535 540
Glu Ser Ser Val Asp Asp Gly Ala Thr Ala Thr Thr Ala Asp Ala Ala
545 550 555 560
Sex Gly Glu Ala Pro Glu Ala Gly Pro Ser Pro Ser His Ser Pro Thr
565 570 575
Met Cys Gln Thr Gly Gly Pro Gly Pro Pro Pro Pro Gln Pro Pro Arg
580 585 590
Trp Leu Pro
595
<210> 188
<211> 376
<212> PRT
<213> Homo sapien
<400> 188
Glu Met Arg Lys Phe Asp Va1 Pro Ser Met Glu Ser Thr Leu Asn Gln
1 5 10 15
Pro A1a Met Leu Glu Thr Leu Tyr Ser Asp Pro His Tyr Arg Ala His
20 25 30
Phe Pro Asn Pro Arg Pro Asp Thr Asn Lys Asp Val Tyr Lys Val Leu
35 40 45 '
Pro Glu Ser Lys Lys Ala Pro Gly Ser Gly Ala Val Phe Glu Arg Asn
50 55 60
Gly Pro His Ala Ser Ser Ser Gly Val Leu Pro Leu G1y Leu Gln Pro
65 70 75 80
Ala Pro Gly Leu Ser Lys Ser Leu Ser Ser Gln Val Trp Gln Pro Ser


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
82
85 90 95
Pro Asp Pro Trp His Pro Gly Glu G1n Ser Cys Glu Leu Ser Thr Cys
100 105 110
Arg Gln Gln Leu Glu Leu Ile Arg Leu Gln Met Glu Gln Met Gln Leu
115 120 125
Gln Asn Gly Ala Met Cys His His Pro A1a Ala Phe Ala Pro Leu Leu
130 135 140
Pro Thr Leu Glu Pro Ala Gln Trp Leu Ser Ile Leu Asn Ser Asn Glu
145 150 155 160
His Leu Leu Lys Glu Lys Glu Leu Leu Ile Asp Lys Gln Arg Lys His
165 170 175
Ile Ser Gln Leu Glu Gln Lys Val Arg Glu Ser Glu Leu Gln Val His
180 185 190
Ser Ala Leu Leu Gly Arg Pro Ala Pro Phe Gly Asp Va1 Cys Leu Leu
195 200 205
Arg Leu Gln Glu Leu Gln Arg Glu Asn Thr Phe Leu Arg Ala Gln Phe
210 215 220
Ala Gln Lys Thr Glu Ala Leu Ser Lys Glu Lys Met Glu Leu Glu Lys
225 230 235 240
Lys Leu Ser Ala Ser Glu Val Glu Ile Gln Leu Ile Arg Glu Ser Leu
245 250 255
Lys Val Thr Leu Gln Lys His Ser Glu G1u Gly Lys Lys Gln Glu Glu
260 265 270
Arg Va1 Lys Gly Arg Asp Lys His Ile Asn Asn Leu Lys Lys Lys Cys
275 280 285
Gln Lys Glu Ser Glu Gln Asn Arg Glu Lys Gln Gln Arg Ile Glu Thr
290 295 300
Leu Glu Arg Tyr Leu Ala Asp Leu Pro Thr Leu Glu Asp His Gln Lys
305 310 315 320
Gln Thr Glu Gln Leu Lys Asp Ala Glu Leu Lys Asn Thr Glu Leu Gln
325 330 335
Glu Arg Val Ala Glu Leu Glu Thr Leu Leu Glu Asp Thr Gln Ala Thr
340 345 350
Cys Arg Glu Lys Glu Va1 Gln Leu G1u Ser Leu Arg Gln Arg Glu Ala
355 360 365
Asp Leu Ser Ser Ala Arg His Arg
370 375
<210> 189
<211> 160
<212> PRT
<213> Homo sapien
<400> 189
Met Leu Glu Ala His Arg Arg Gln Arg His Pro Phe Leu Leu Leu Gly
1 5 10 15
Thr Thr Ala Asn Arg Thr Gln Ser Leu Asn Tyr Gly Cys Ile Va1 Glu
20 25 30
Asn Pro Gln Thr His Glu Val Leu His Tyr Val Glu Lys Pro Ser Thr
35 40 45
Phe Ile Ser Asp Ile Ile Asn Cys Gly Ile Tyr Leu Phe Ser Pro Glu
50 55 60
Ala Leu Lys Pro Leu Arg Asp Val Phe Gln Arg Asn Gln Gln Asp Gly
65 70 . 75 80
G1n Leu Glu Asp Sex Pro Gly Leu Trp Pro Gly Ala Gly Thr Ile Arg
85 90 95
Leu Glu Gln Asp Val Phe Ser Ala Leu Ala Gly Gln Gly Gln Ile Tyr
100 105 110


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
83
Val His Leu Thr Asp Gly Ile'Trp Ser Gln I1e Lys Ser Ala Gly Ser
115 120 125
Ala Leu Tyr Ala Ser Arg Leu Tyr Leu Ser Arg Tyr Gln Asp Thr His
130 135 140
Pro Glu Arg Leu Ala Lys His Thr Pro Gly Gly Pro Trp T.le Arg Gly
145 150 155 160
<210> 190
<211> 146
<212> PRT
<213> Homo sapien
<400> 190
Met Asp Pro Arg Ala Ser Leu Leu Leu Leu Gly Asn Val Tyr Ile His
1 5 10 15
Pro Thr Ala Lys Val Ala Pro Ser Ala Val Leu Gly Pro Asn Val Ser
20 25 30
Tle Gly Lys Gly Val Thr Val Gly Glu Gly Val Arg Leu Arg Glu Ser
35 40 45
Ile Val Leu His Gly Ala Thr Leu Gln Glu His Thr Cys Val Leu His
50 55 60
Ser Ile Val Gly Trp Gly Ser Thr Val Gly Arg Trp Ala Arg Val Glu
65 70 75 80
Gly Thr Pro Ser Asp Pro Asn Pro Asn Asp Pro Arg Ala Arg Met Asp
85 90 95
Ser Glu Ser Leu Phe Lys Asp Gly Lys Leu Leu Pro Ala Ile Thr Ile
100 105 110
Leu Gly Cys Arg Val Arg Ile Pro Ala GIu Val Leu Ile Leu Asn Ser
115 120 125
Ile Va1 Leu Pro His Lys Glu Leu Ser Arg Ser Phe Thr Asn Gln Ile
130 135 140
T1e Leu
145
<210> 191
<221> 704
<212> PRT
<213> Homo sapien
<400> 191
Glu Gly Gly Cys A1a Ala Gly Arg Gly Arg Glu Leu Glu Pro Glu Leu
1 5 10 15
G1u Pro Gly Pro Gly Pro Gly Sex Ala Leu Glu Pro Gly Glu Glu Phe
20 25 30
Glu I1e Val Asp Arg Ser Gln Leu Pro G1y Pro Gly Asp Leu Arg Ser
35 40 45
Ala Thr Arg Pro Arg A1a Ala Glu Gly Trp Ser Ala Pro Ile Leu Thr
50 55 60
Leu Ala Arg Arg Ala Thr Gly Asn Leu Ser Ala Ser Cys Gly Ser Ala
65 70 75 80
Leu Arg Ala Ala Ala Gly Leu G1y G1y Gly Asp Ser Gly Asp Gly Thr
85 90 95
Ala Arg Ala Ala Ser Lys Cys Gln Met Met Glu Glu Arg Ala Asn Leu
100 105 110
Met His Met Met Lys Leu Ser Ile Lys Val Leu Leu Gln Ser A1a Leu
115 120 125
Ser Leu Gly Arg Ser Leu Asp Ala Asp His Ala Pro Leu G1n Gln Phe
130 135 140


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
84
Phe Val Val Met Glu His Cys Leu Lys His Gly Leu Lys Va1 Lys Lys
145 150 155 160
Ser Phe Ile Gly Gln Asn Lys Ser Phe Phe Gly Pro Leu Glu Leu Val
165 170 175
Glu Lys Leu Cys Pro Glu Ala Ser Asp Ile Ala Thr Ser Val Arg Asn
180 185 190
Leu Pro Glu Leu Lys Thr Ala Val Gly Arg Gly Arg Ala Trp Leu Tyr
195 200 205
Leu Ala Leu Met Gln Lys Lys Leu Ala Asp Tyr Leu Lys Val Leu Ile
210 215 220
Asp Asn Lys His Leu Leu Ser Glu Phe Tyr G1u Pro Glu Ala Leu Met
225 230 235 240
Met Glu Glu G1u Gly Met Val Ile Val Gly Leu Leu Val Gly Leu Asn
245 250 255
Val Leu Asp Ala Asn Leu Cys Leu Lys Gly G1u Asp Leu Asp Ser Gln
260 265 270
Val Gly Va1 Ile Asp Phe Ser Leu Tyr Leu Lys Asp Val Gln Asp Leu
275 280 285
Asp Gly Gly Lys Glu His Glu Arg Ile Thr Asp Val Leu Asp Gln Lys
290 295 300
Asn Tyr Val Glu Glu Leu Asn Arg His Leu Ser Cys Thr Val Gly Asp
305 310 315 320
Leu Gln Thr Lys Ile Asp Gly Leu Glu Lys Thr Asn Ser Lys Leu Gln
325 330 335
Glu Glu Leu Ser Ala Ala Thr Asp Arg Ile Cys Ser Leu Gln Glu Glu
340 345 350
Gln Gln Gln Leu Arg Glu Gln Asn Glu Leu Ile Arg Glu Arg Ser Glu
355 360 365
Lys Ser Val Glu Ile Thr Lys Gln Asp Thr Lys Val Glu Leu Glu Thr
370 375 380
Tyr Lys Gln Thr Arg Gln Gly Leu Asp G1u Met Tyr Ser Asp Val Trp
385 390 395 400
Lys Gln Leu Lys Glu Glu Lys Lys Val Arg Leu Glu Leu Glu Lys Glu
405 410 415
Leu Glu Leu G1n Ile G1y Met Lys Thr Glu Met Glu Ile Ala Met Lys
420 425 430
Leu Leu Glu Lys Asp Thr His G1u Lys Gln Asp Thr Leu Val Ala Leu
435 440 445
Arg Gln Gln Leu Glu Glu Val Lys Ala Ile Asn Leu Gln Met Phe His
450 455 460
Lys Ala Gln Asn Ala Glu Ser Ser Leu Gln Gln Lys Asn Glu Ala Ile
465 470 475 480
Thr Ser Phe Glu Gly Lys Thr Asn Gln Val Met Ser Ser Met Lys G1n
485 490 495
Met Glu Glu Arg Leu Gln His Ser Glu Arg Ala Arg Gln Gly Ala Glu
500 505 510
Glu Arg Ser His Lys Leu Gln Gln G1u Leu Gly Gly Arg Tle Gly Ala
515 520 52S
Leu Gln Leu Gln Leu Ser Gln Leu His Glu,Gln Cys Ser Ser Leu Glu
530 535 540
Lys G1u Leu Lys Ser Glu Lys Glu Gln Arg Gln Ala Leu Gln Arg Glu
545 550 555 560
Leu Gln His Glu Lys Asp Thr Ser Ser Leu Leu Arg Met Glu Leu Gln
565 570 575
Gln Val Glu Gly Leu Lys Lys Glu Leu Arg Glu Leu Gln Asp G1u Lys
580 585 590
Ala Glu Leu Gln Lys Ile Cys Glu Glu Gln Glu Gln Ala Leu Gln Glu
595 600 605


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
Met Gly Leu His Leu Ser Gln Ser Lys Leu Lys Met Glu Asp Ile Lys
610 615 620
Glu Val Asn Gln Ala Leu Lys Gly His Ala Trp Leu Lys Asp Asp Glu
625 630 635 640
Ala Thr His Cys Arg Gln Cys Glu Lys G1u Phe Ser Ile Ser Arg Arg
645 650 655
Lys His His Cys Arg Asn Cys Gly His Ile Phe Cys Asn Thr Cys Ser
660 665 670
Ser Asn Glu Leu Ala Leu Pro Ser Tyr Pro Lys Pro Va1 Arg Va1 Cys
675 680 685
Asp Ser Cys His Thr Leu Leu Leu Gln Arg Cys Ser Ser Thr Ala Ser
690 695 700
<210> 192
<211> 331
<212> PRT
<213> Homo sapien
<400> 192
Arg Ala Gly A1a Ser Ala Met Ala Leu Arg Lys Glu Leu Leu Lys Ser
1 5 10 15
Ile Trp Tyr Ala Phe Thr Ala Leu Asp Val G1u Lys Ser Gly Lys Val
20 25 30
Ser Lys Ser Gln Leu Lys Val Leu Ser His Asn Leu Tyr Thr Val Leu
35 40 45
His Ile Pro His Asp Pro Val Ala Leu Glu Glu His Phe Arg Asp Asp
50 55 60
Asp Asp Gly Pro Val Ser Ser Gln Gly Tyr Met Pro Tyr Leu Asn Lys
65 70 75 80
Tyr Ile Leu Asp Lys Val Glu Glu Gly Ala Phe Val Lys Glu His Phe
85 90 95
Asp Glu Leu Cys Trp Thr Leu Thr Ala Lys Lys Asn Tyr Arg Ala Asp
100 105 110
Ser Asn Gly Asn Ser Met Leu Ser Asn Gln Asp Ala Phe Arg Leu Trp
115 120 125
Cys Leu Phe Asn Phe Leu Ser Glu Asp Lys Tyr Pro Leu Ile Met Val
130 135 140
Pro Asp Glu Val Glu Tyr Leu Leu Lys Lys Val Leu Ser Ser Met Ser
145 150 155 160
Leu Glu Val Ser Leu Gly Glu Leu Glu Glu Leu Leu Ala Gln Glu Ala
165 l70 175
Gln Val Ala Gln Thr Thr Gly Gly Leu Ser Va1 Trp Gln Phe Leu Glu
180 185 190
Leu Phe Asn Ser G1y Arg Cys Leu Arg Gly Val Gly Arg Asp Thr Leu
195 200 205
Ser Met Ala Ile His Glu Val Tyr Gln Glu Leu Ile Gln Asp Val Leu
210 215 220
Lys Gln Gly Tyr Leu Trp Lys Arg Gly His Leu Arg Arg Asn Trp Ala
225 230 235 240
Glu Arg Trp Phe Gln Leu Gln Pro Ser Cys Leu Cys Tyr Phe G1y Ser
245 250 255
Glu Glu Cys Lys Glu Lys Arg Gly Tle Ile Pro Leu Asp Ala His Cys
260 265 270
Cys Val Glu Val Leu Pro Asp Arg Asp Gly Lys Arg Cys Met Phe Cys
275 280 285
Val Lys Thr Ala Thr Arg Thr Tyr Glu Met Ser Ala Ser Asp Thr Arg
290 295 300
Gln Arg Gln Glu Trp Thr Ala Ala Ile Gln Met Ala I1e Arg Leu Gln


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
86
305 310 315 320
Ala Glu Gly Lys Thr Ser Leu His Lys Asp Leu
325 330
<210> 193
<211> 475
<212> PRT
<213> Homo sapien
<400> 193
Lys Asn Ser Pro Leu Leu Ser Val Ser Ser Gln Thr Ile Thr Lys Glu
1 5 10 15
Asn Asn Arg Asn Val His Leu Glu His Ser Glu Gln Asn Pro Gly Ser
20 25 30
Ser Ala Gly Asp Thr Ser Ala Ala His Gln Val Val Leu Gly Glu Asn
35 40 45
Leu Ile Ala Thr Ala Leu Cys Leu Ser Gly Ser Gly Ser Gln Ser Asp
50 55 60
Leu Lys Asp Val Ala Ser Thr Ala Gly Glu Glu Gly Asp Thr Ser Leu
65 70 75 80
Arg Glu Ser Leu His Pro Val Thr Arg Ser Leu Lys Ala Gly Cys His
85 90 95
Thr Lys G1n Leu Ala Ser Arg Asn Cys Ser Glu Glu Lys Ser Pro G1n
100 105 110
Thr Ser Ile Leu Lys Glu Gly Asn Arg Asp Thr Ser Leu Asp Phe Arg
115 120 125
Pro Val Val Ser Pro Ala Asn Gly Val Glu Gly Val Arg Val Asp Gln
130 135 140
Asp Asp Asp Gln Asp Ser Ser Ser Leu Lys Leu Ser Gln Asn I1e Ala
145 150 155 160
Val Gln Thr Asp Phe Lys Thr Ala Asp Ser Glu Val Asn Thr Asp Gln
165 170 175
Asp Ile G1u Lys Asn Leu Asp Lys Met Met Thr Glu Arg Thr Leu Leu
180 185 190
Lys G1u Arg Tyr Gln Glu Val Leu Asp Lys Gln Arg Gln Val Glu Asn
195 200 205
Gln Leu Gln Val G1n Leu Lys Gln Leu Gln Gln Arg Arg Glu Glu Glu
210 215 220
Met Lys Asn His Gln Glu Ile Leu Lys Ala Ile Gln Asp Val Thr Ile
225 230 235 240
Lys Arg Glu Glu Thr Lys Lys Lys Ile Glu Lys Glu Lys Lys Glu Phe
245 250 255
Leu Gln Lys Glu Gln Asp Leu Lys Ala Glu Ile Glu Lys Leu Cys Glu
260 265 270
Lys Gly Arg Arg Glu Val Trp Glu Met Glu Leu Asp Arg Leu Lys Asn
275 280 285
Gln Asp Gly Glu Ile Asn Arg Asn Ile Met Glu Glu Thr Glu Arg Ala
290 295 300
Trp Lys Ala Glu Ile Leu Ser Leu Glu Ser Arg Lys Glu Leu Leu Val
305 310 315 320
Leu Lys Leu Glu Glu Ala Glu Lys G1u Ala Glu Leu His Leu Thr Tyr
325 330 335
Leu Lys Ser Thr Pro Pro Thr Leu Glu Thr Val Arg Ser Lys Gln G1u
340 345 350
Trp Glu Thr Arg Leu Asn Gly Val Arg Ile Met Lys Lys Asn Val Arg
355 360 ' 365
Asp Gln Phe Asn Sex His Ile Gln Leu Val Arg Asn Gly Ala Lys Leu
370 375 380


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
8~
Ser Ser Leu Pro Gln Ile Pro Thr Pro Thr Leu Pro Pro Pro Pro Ser
385 390 395 400
Glu Thr Asp Phe Met Leu Gln Va1 Phe Gln Pro Ser Pro Ser Leu A1a
405 410 415
Pro Arg Met Pro Phe Ser Ile Gly Gln Val Thr Met Pro Met Val Met
420 425 430
Pro Ser Ala Asp Pro Arg Ser Leu Ser Phe Pro Ile Leu Asn Pro Ala
435 440 445
Leu Ser G1n Pro Ser Gln Pro Ser Ser Pro Leu Pro Gly Ser His Gly
450 455 460
Arg Asn Ser Pro Gly Leu Gly Ser Leu Val Ser
465 470 475
<210> 194
<211> 241
<212> PRT
<213> Homo sapien
<400> 194
Met Ser Gly Glu Ser A1a Arg Ser Leu Gly Lys Gly Ser Ala Pro Pro
1 5 10 15
Gly Pro Val Pro Glu Gly Ser Ile Arg Ile Tyr Ser Met Arg Phe Cys
20 25 30
Pro Phe Ala Glu Arg Thr Arg Leu Val Leu Lys Ala Lys Gly Ile Arg
35 40 45
His Glu Val Ile Asn Ile Asn Leu Lys Asn Lys Pro Glu Trp Phe Phe
50 55 60
Lys Lys Asn Pro Phe Gly Leu Va1 Pro Val Leu Glu Asn Ser Gln Gly
65 70 75 80
Gln Leu Ile Tyr G1u Ser Ala Tle Thr Cys Glu Tyr Leu Asp Glu Ala
85 90 95
Tyr Pro Gly Lys Lys Leu Leu Pro Asp Asp Pro Tyr Glu Lys Ala Cys
l00 105 110
G1n Lys Met Ile Leu Glu Leu Phe Ser Lys Val Pro Ser Leu Val Gly
115 120 125
Ser Phe Ile Arg Ser Gln Asn Lys Glu Asp Tyr Ala Gly Leu Lys G1u
130 135 140
Glu Phe Arg Lys Glu Phe Thr Lys Leu Glu Glu Val Leu Thr Asn Lys
145 150 155 160
Lys Thr Thr Phe Phe Gly Gly Asn Ser Ile Ser Met Ile Asp Tyr Leu
165 170 175
Ile Trp Pro Trp Phe Glu Arg Leu Glu Ala Met Lys Leu Asn Glu Cys
180 185 190
Val Asp His Thr Pro Lys Leu Lys Leu Trp Met Ala Ala Met Lys G1u
195 200 205
Asp Pro Thr Val Ser Ala Leu Leu Thr Ser Glu Lys Asp Trp Gln Gly
210 215 , 220
Phe Leu Glu Leu Tyr Leu Gln Asn Ser Pro Glu Ala Cys Asp Tyr Gly
225 230 235 240
Leu
<210> 195
<21l> 138
<212> PRT
<213> Homo sapien
<400> 195


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
88
Gln Thr Lys Ile Leu Glu Glu Asp Leu Glu Gln Ile Lys Leu Ser Leu
1 5 10 15
Arg Glu Arg Gly Arg Glu Leu Thr Thr Gln Arg Gln Leu Met Gln Glu
20 25 30
Arg A1a Glu Glu Gly Lys Gly Pro Ser Lys Ala Gln Arg Gly Ser Leu
35 40 45
Glu His Met Lys Leu Ile Leu Arg Asp Lys Glu Lys Glu Val Glu Cys
50 55 60
Gln Gln Glu His Ile His Glu Leu Gln Glu Leu Lys Asp Gln Leu Glu
65 70 75 80
Gln Gln Leu Gln Gly Leu His Arg Lys Val Gly Glu Thr Ser Leu Leu
85 90 95
Leu Ser Gln Arg Glu Gln Glu Ile Val Val Leu Gln Gln Gln Leu Gln
100 105 110
Glu Ala Arg Glu Gln Gly Glu Leu Lys Glu Gln Ser Leu Gln Ser Gln
115 120 125
Leu Asp Glu Ala Gln Arg Ala Leu Ala Gln
130 135
<220> 196
<211> 102
<212> PRT
<213> Homo sapien
<400> 196
Met Ser Lys Arg Lys A1a Pro Gln Glu Thr Leu Asn G1y Gly Ile Thr
1 5 10 15
Asp Met Leu Thr Glu Leu Ala Asn Phe Glu Lys Asn Val Ser Gln Ala
20 25 30
I1e His Lys Tyr Asn Ala Tyr Arg Lys Ala A1a Ser Val Ile Ala Lys
35 40 45
Tyr Pro His Lys Ile Lys Ser Gly Ala Glu Ala Lys Lys Leu Pro Gly
50 55 60
Val Gly Thr Lys Ile Ala GluiLys Ile Asp Glu Phe Leu Ala Thr Gly
65 70 75 80
Lys Leu Arg Lys Leu Glu Lys Ile Arg Gln Asp Asp Thr Ser Sex Ser
85 90 95
Ile Asn Phe Leu Thr Arg
100
<210> 197
<211> 138
<212> PRT
<213> Homo sapien
<400> 197
Glu Ala Asn Glu Val Thr Asp Ser Ala Tyr Met Gly Ser Glu Ser Thr
1 5 10 15
Tyr Ser Glu Cys Glu Thr Phe Thr Asp Glu Asp Thr Ser Thr Leu Val
20 25 30
His Pro Glu Leu Gln Pro Glu Gly Asp Ala Asp Ser Ala Gly Gly Ser
35 40 45
Ala Val Pro Ser G1u Cys Leu Asp Ala Met Glu Glu Pro Asp His Gly
50 55 60
Ala Leu Leu Leu Leu Pro Gly Arg Pro His Pro His Gly Gln Ser Val
65 70 75 80
Ile Thr Val Ile Gly Gly Glu Glu His Phe Glu Asp Tyr Gly Glu Gly
85 90 95


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
89
Ser Glu Ala Glu Leu Ser Pro Glu Thr Leu Cys Asn G1y G1n Leu Gly
100 105 110
Cys Ser Asp Pro Ala Phe Leu Thr Pro Ser Pro Thr Lys Arg Leu Ser
115 120 125
Ser Lys Lys Val Ala Arg Tyr Leu His Gln
130 135
<210> 198
<211> 100
<212> PRT
<213> Homo sapien
<400> 198
Met Gly Asp Val Lys Asn Phe Leu Tyr Ala Trp Cys Gly Lys Arg Lys
1 5 10 15
Met Thr Pro Ser Tyr G1u I1e Arg Ala Val G1y Asn Lys Asn Arg G1n
20 25 30
Lys Phe Met Cys Glu Val Gln Val Glu Gly Tyr Asn Tyr Thr Gly Met
35 40 45
Gly Asn Ser Thr Asn Lys Lys Asp Ala Gln Ser Asn Ala Ala Arg Asp
50 ' 55 60
Phe Val Asn Tyr Leu Va1 Arg Ile Asn Glu Ile Lys Ser Glu Glu Val
65 70 75 80
Pro Ala Phe Gly Val Ala Ser Pro Pro Pro Leu Thr Asp Thr Pro Asp
85 90 95
Thr Thr Ala Asn
100
<210> 199
<211> 127
<212> PRT
<213> Homo sapien
<400> 199
Met Val Lys Glu Thr Thr Tyr Tyr Asp Val Leu Gly Val Lys Pro Asn
1 5 10 15
Ala Thr G1n Glu Glu Leu Lys Lys Ala Tyr Arg Lys Leu Ala Leu Lys
20 25 30
Tyr His Pro Asp Lys Asn Pro Asn Glu Gly Glu Lys Phe Lys Gln Ile
35 40 45
Ser Gln Ala Tyr Glu Val Leu Ser Asp A1a Lys Lys Arg Glu Leu Tyr
50 55 60
Asp Lys Gly Gly Glu Gln A1a Ile Lys Glu Gly Gly Ala Gly Gly Gly
65 70 75 80
Phe Gly Sex Pro Met Asp Ile Phe Asp Met Phe Phe Gly Gly Gly Gly
85 90 95
Arg Met Gln Arg Glu Arg Arg G1y Lys Asn Val Val His Gln Leu Sex
100 105 110
Val Thr Leu Glu Asp Leu Tyr Asn G1y A1a Thr Arg Lys Leu Ala
115 120 125
<210> 200
<211> 90
<212> PRT
<213> Homo sapien
<400> 200
Met Ala Cys Pro Leu Asp Gln Ala Ile Gly Leu Leu Va1 Ala Ile Phe


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
1 5 10 15
His Lys Tyr Ser Gly Arg Glu Gly Asp Lys His Thr Leu Ser Lys Lys
20 25 30
G1u Leu Lys Glu Leu Ile Gln Lys Glu Leu Thr Ile Gly Ser Lys Leu
35 40 45
Gln Asp Ala Glu Ile Ala Arg Leu Met Glu Asp Leu Asp Arg Asn Lys
50 55 60
Asp Gln Glu Val Asn Phe Gln Glu Tyr Val Thr Phe Leu Gly Ala Leu
65 70 75 80
Ala Leu Ile Tyr Asn Glu Ala Leu Lys Gly
85 90
<210> 201
<211> 120
<212> PRT
<213> Homo sapien
<400> 201
Met Glu Thr Pro Ser Gln Arg Arg Ala Thr Arg Ser Gly Ala Gln Ala
1 5 10 15
Ser Ser Thr Pro Leu Ser Pro Thr Arg Ile Thr Arg Leu Gln Glu Lys
20 25 30
Glu Asp Leu Gln Glu Leu Asn Asp Arg Leu Ala Val Tyr Ile Asp Arg
35 40 45
Val Arg Ser Leu Glu Thr Glu Asn Ala Gly Leu Arg Leu Arg Ile Thr
50 55 60
Glu Ser Glu Glu Val Val Ser Arg Glu Val Ser G1y Ile Lys Ala Ala
65 70 75 80
Tyr Glu Ala Glu Leu Gly Asp Ala Arg Lys Thr Leu Asp Ser Val Ala
85 90 95
Lys Glu Arg Ala Arg Leu Gln Leu Glu Leu Ser Lys Val Arg Glu Glu
100 105 110
Phe Lys Glu Leu Lys Ala Arg Asn ,
115 120
<210> 202
<211> 177
<212> PRT
<213> Homo sapien
<400> 202
Met A1a Ala Gly Val Glu Ala Ala Ala Glu Val Ala Ala Thr Glu Ile
1 5 10 15
Lys Met Glu Glu G1u Ser Gly Ala Pro Gly Val Pro Ser Gly Asn Gly
20 25 30
Ala Pro Gly Pro Lys Gly Glu G1y Glu Arg Pro Ala Gln Asn Glu Lys
35 40 45
Arg Lys Glu Lys Asn Ile Lys Arg Gly Gly Asn Arg Phe Glu Pro Tyr
50 55 60
Ala Asn Pro Thr Lys Arg Tyr Arg Ala Phe Ile Thr Asn I1e Pro Phe
65 70 75 80
Asp Val Lys Trp G1n Ser Leu Lys Asp Leu Val Lys Glu Lys Val Gly
85 90 95
Glu Val Thr Tyr Val Glu Leu Leu Met Asp Ala Glu Gly Lys Ser Arg
100 105 l10
Gly Cys Ala Val Val Glu Phe Lys Met Glu G1u Ser Met Lys Lys Ala
115 1.20 125
Ala Glu Val Leu Asn Lys His Ser Leu Ser G1y Arg Pro Leu Lys Val


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
91
130 135 140
Lys G1u Asp Pro Asp Gly Glu His Ala Arg Arg Ala Met Gln Lys Ala
145 150 155 160
Gly Arg Leu Gly Ser Thr Val Phe Val Ala Asn Leu Asp Tyr Lys Val
165 170 175
Gly
<210> 203
<211> 164
<212> PRT
<213> Homo sapien
<400> 203
Met Arg Leu Ala Val Gly Ala Leu Leu Val Cys Ala Val Leu Gly Leu
1 5 10 15
Cys Leu Ala Val Pro Asp Lys Thr Val Arg Trp Cys Ala Val Ser Glu
20 25 30
His Glu Ala Thr Lys Cys Gln Ser Phe Arg Asp His Met Lys Ser Val
35 40 45
Ile Pro Ser Asp Gly Pro Ser Val Ala Cys Val Lys Lys Ala Ser Tyr
50 55 60
Leu Asp Cys Ile Arg Ala Ile Ala Ala Asn Glu Ala Asp Ala Val Thr
65 70 75 80
Leu Asp Ala Gly Leu Val Tyr Asp Ala Tyr Leu Ala Pro Asn Asn Leu
85 90 95
Lys Pro Val Val Ala Glu Phe Tyr Gly Ser Lys Glu Asp Pro Gln Thr
100 105 110
Phe Tyr Tyr Ala Val Ala Val Val Lys Lys Asp Ser Gly Phe Gln Met
115 l20 125
Asn Gln Leu Arg Gly Lys Lys Ser Cys His Thr G1y Leu Gly Arg Ser
130 135 140
Ala Gly Trp Asn Ile Pro Ile Gly Leu Leu Tyr Cys Asp Leu Pro Glu
145 150 155 160
Pro Arg Lys Pro
<210> 204
<211> 241
<212> PRT
<213> Homo sapien
<400> 204
Met Ser Gly Glu Ser Ala Arg Ser Leu Gly Lys Gly Ser A1a Pro Pro
1 5 10 15
Gly Pro VaI Pro Glu Gly Ser Ile Arg Ile Tyr Ser Met Arg Phe Cys
20 25 30
Pro Phe Ala Glu Arg Thr Arg Leu Val Leu Lys A1a Lys Gly Ile Arg
35 40 45
His Glu Val Ile Asn Ile Asn Leu Lys Asn Lys Pro Glu Trp Phe Phe
50 55 60
Lys Lys Asn Pro Phe Gly Leu Val Pro Val Leu Glu Asn Ser Gln Gly
65 70 75 80
Gln Leu Ile Tyr Glu Ser Ala Ile Thr Cys Glu Tyr Leu Asp Glu Ala
85 90 95
Tyr Pro Gly Lys Lys Leu Leu Pro Asp Asp Pro Tyr Glu Lys Ala Cys
100 105 110
Gln Lys Met Ile Leu Glu Leu Phe Ser Lys Val Pro Ser Leu Val Gly


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
92
115 120 125
Ser Phe Ile Arg Ser Gln Asn Lys Glu Asp Tyr Asp Gly Leu Lys Glu
130 135 140
Glu Phe Arg Lys G1u Phe Thr Lys Leu Glu Glu Val Leu Thr Asn Lys
145 150 155 160
Lys Thr Thr Phe Phe Gly Gly Asn Ser Ile Ser Met Tle Asp Tyr Leu
165 170 175
Tle Trp Pro Trp Phe Glu Arg Leu Glu Ala Met Lys Leu Asn Glu Cys
180 185 190
Val Asp His Thr Pro Lys Leu Lys Leu Trp Met Ala Ala Met Lys Glu
195 200 205
Asp Pro Thr Val Ser Ala Leu Leu Thr Ser Glu Lys Asp Trp Gln Gly
210 215 220
Phe Leu Glu Leu Tyr Leu G1n Asn Ser Pro Glu Ala Cys Asp Tyr Gly
225 230 235 240
Leu
<210> 205
<21l> 160
<212> PRT
<213> Homo sapien
<400> 205
Met G1n Tle Phe Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu
1 5 10 I5
Val Glu Pro Ser Asp Thr Tle Glu Asn Val Lys Ala Lys Ile Gln Asp
20 25 30
Lys Glu Gly Ile Pxo Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys
35 40 45
Gln Leu Glu Asp Gly Arg Thr Leu Sex Asp Tyr Asn Ile Gln Lys G1u
50 55 60
Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly G1y Met Gln Tle Phe
65 70 75 80
Va1 Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu Val Glu Pro Ser
85 90 95
Asp Thr Ile Glu Asn Val Lys Ala Lys Ile Gln Asp Lys Glu Gly Ile
100 105 110
Pro Pro Asp Gln Gln Arg Leu Tle Phe Ala Gly Lys Gln Leu Glu Asp
115 120 125
Gly Arg Thr Leu Ser Asp Tyr Asn Ile Gln Lys Glu Ser Thr Leu His
130 135 140
Leu Val Leu Arg Leu Arg Gly Gly Met Gln Ile Phe Val Lys Thr Leu
145 150 155 160
<210> 206
<211> 197
<212> PRT
<213> Homo sapien
<400> 206
Thr Ser Pro Ser Glu Ala Cys Ala Pro Leu Leu Ile Ser Leu Ser Thr
1 5 10 15
Leu Ile Tyr Asn Gly Ala Leu Pro Cys Gln Cys Asn Pro Gln Gly Ser
20 25 30
Leu Ser Ser Glu Cys Asn Pro His Gly Gly Gln Cys Leu Cys hys Pro
35 40 45
Gly Val Val Gly Arg Arg Cys Asp Leu Cys Ala Pro Gly Tyr Tyr Gly


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
93
50 55 60
Phe Gly Pro Thr Gly Cys Gln Gly Ala Cys Leu Gly Cys Arg Asp His
65 70 75 80
Thr Gly Gly Glu His Cys Glu Arg Cys Ile Ala Gly Phe His Gly Asp
85 90 95
Pro Arg Leu Pro Tyr Gly Gly Gln Cys Arg Pro Cys Pro Cys Pro Glu
100 105 110
Gly Pro Gly Ser Gln Arg His Phe Ala Thr Ser Cys His Gln Asp Glu
115 120 125
Tyr Ser Gln Gln T1e Val Cys His Cys Arg A1a Gly Tyr Thr Gly Leu
130 135 140
Arg Cys Glu Ala Cys Ala Pro Gly His Phe Gly Asp Pro Ser Arg Pro
145 150 155 l60
Gly Gly Arg Cys Gln Leu Cys Glu Cys Ser Gly Asn Ile Asp Pro Met
165 170 175
Asp Pro Asp Ala Cys Asp Pro His Thr Gly Gln Cys Leu Arg Cys Leu
180 185 190
His His Thr Glu Gly
195
<210> 207
<211> 175
<212> PRT
<213> Homo sapien
<400> 207
Ile Ile Arg Gln Gln Gly Leu Ala Ser Tyr Asp Tyr Val Arg Arg Arg
l 5 20 15
Leu Thr Ala Glu Asp Leu Phe Glu Ala Arg Ile Tle Ser Leu Glu Thr
20 25 30
Tyr Asn Leu Leu Arg Glu Gly Thr Arg Ser Leu Arg Glu Ala Leu Glu
35 40 45
Ala Glu Ser Ala Trp Cys Tyr Leu Tyr Gly Thr Gly Ser Val Ala Gly
50 55 60
Val Tyr Leu Pro Gly Ser Arg G1n Thr Leu Ser Tle Tyr G1n Ala Leu
65 70 75 $0
Lys Lys Gly Leu Leu Ser Ala Glu Val Ala Arg Leu Leu Leu Glu Ala
85 90 95
G1n Ala Ala Thr Gly Phe Leu Leu Asp Pro Va1 Lys Gly Glu Arg Leu
100 105 110
Thr Val Asp G1u Ala Val Arg Lys Gly Leu Val G1y Pro Glu Leu His
115 120 , 125
Asp Arg Leu Leu Ser Ala Glu Arg Ala Val Thr Gly Tyr Arg Asp Pro
130 135 140
Tyr Thr Glu Gln Thr Ile Ser Leu Phe Gln Ala Met Lys Lys Glu Leu
145 150 155 160
Ile Pro Thr Glu Glu Ala Leu Arg Leu Trp Met Pro Ser Trp Pro
165 170 175
<210> 208
<211> 177
<212> PRT
<213> Homo sapien
<400> 208
Met Ala Ala Gly Val Glu Ala Ala Ala Glu Val Ala Ala Thr Glu Ile
1 5 10 15
Lys Met Glu Glu Glu Ser Gly Ala Pro Gly Val Pro Ser Gly Asn G1y


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
94
20 25 30
Ala Pro Gly Pro Lys Gly Glu Gly Glu Arg Pro Ala Gln Asn Glu Lys
35 40 45
Arg Lys Glu Lys Asn Ile Lys Arg Gly Gly Asn Arg Phe Glu Pro Tyr
50 55 60
Ala Asn Pro Thr Lys Arg Tyr Arg Ala Phe Ile Thr Asn Ile Pro Phe
65 70 75 80
Asp Val Lys Trp Gln Ser Leu Lys Asp Leu Val Lys Glu Lys Val Gly
85 90 95
Glu Val Thr Tyr Val Glu Leu Leu Met Asp Ala Glu Gly Lys Ser Arg
100 105 110
Gly Cys Ala Val Val Glu Phe Lys Met Glu Glu Sex Met Lys Lys Ala
115 120 125
Ala Glu Val Leu Asn Lys His Ser Leu Ser Gly Arg Pro Leu Lys Val
130 135 140
Lys Glu Asp Pro Asp Gly Glu His Ala Arg Arg Ala Met Gln Lys Val
145 150 155 160
Met Ala Thr Thr Gly Gly Met Gly Met Gly Pro Gly Gly Pro Gly Met
165 170 175
Ile
<210> 209
<211> 196
<212> PRT
<213> Homo sapien
<400> 209
Asp Leu Gln Asp Met Phe Tle Va1 His Thr Ile G1u G1u Ile Glu Gly
1 5 10 15
Leu Ile Ser Ala His Asp Gln Phe Lys Ser Thr Leu Pro Asp Ala Asp
20 25 30
Arg Glu Arg Glu Ala Ile Leu Ala Il~e His Lys Glu Ala Gln Arg Ile
35 40 45
Ala Glu Ser Asn His Ile Lys Leu Ser Gly Ser Asn Pro Tyr Thr Thr
50 55 60
Val Thr Pro Gln I1e Ile Asn Ser Lys Trp Glu Lys Val Gln Gln Leu
65 70 75 80
Val Pro Lys Arg Asp His Ala Leu Leu Glu Glu Gln Ser Lys Gln Gln
85 90 95
Ser Asn Glu His Leu Arg Arg Gln Phe Ala Ser Gln Ala Asn Val Val
100 105 ~ 110
Gly Pro Trp Ile Gln Thr Lys Met G1u Glu Ile Gly Arg I1e Ser Ile
115 120 125
Glu Met Asn Gly Thr Leu Glu Asp Gln Leu Ser His Leu Lys Gln Tyr
130 135 140
Glu Arg Ser Ile Val Asp Tyr Lys Pro Asn Leu Asp Leu Leu Glu Gln
145 7:50 155 160
Gln His Gln Leu Ile Gln Glu Ala Leu Ile Phe Asp Asn Lys His Thr
165 170 175
Asn Tyr Thr Met Glu His Ile Arg Val Gly Trp Glu Gln Leu Leu Thr
180 185 190
Thr Tle A1a Arg
195
<210> 210
<211> 156
<212> PRT


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
<213> Homo sapien
<400> 210
Lys Leu Thr Ile Glu Ser Thr Pro Phe Asn Val Ala Glu Gly Lys Glu
1 5 10 15
Val Leu Leu Leu Ala His Asn Leu Pro Gln Asn Arg Ile Gly Tyr Ser
20 25 30
Trp Tyr Lys Gly Glu Arg Val Asp Gly Asn Ser Leu Ile Va1 Gly Tyr
35 40 45
Val Ile Gly Thr Gln Gln Ala Thr Pro Gly Pro Ala Tyr Ser Gly Arg
50 55 60
Glu Thr Tle Tyr Pro Asn Ala Ser Leu Leu Ile Gln Asn Val Thr Gln
65 70 75 80
Asn Asp Thr Gly Phe Tyr Thr Leu Gln Val Tle Lys Ser Asp Leu Val
85 90 95
Asn Glu Glu Ala Thr Gly Gln Phe His Val Tyr Pro Glu Leu Pro Lys
100 105 110
Pro Ser Tle Ser Ser Asn Asn Ser Asn Pro Val Glu Asp Lys Asp Ala
115 120 125
Val Ala Phe Thr Cys Glu Pro Glu Val Gln Asn Thr Thr Tyr Leu Trp
130 135 140
Trp Val Asn Gly Gln Ser Leu Pro Val Ser Pro Lys
145 150 155
<210> 211
<211> 92
<212> PRT
<213> Homo sapien
<400> 211
Met G1u Ser Pro Ser Ala Pro Pro His Arg Trp Cys Ile Pro Trp Gln
1 5 10 15
Arg Leu Leu Leu Thr Ala Ser Leu Leu Thr Phe Trp Asn Pro Pro Thr
20 25 30
Thr Ala Lys Leu Thr Ile Glu Ser Thr Pro Phe Asn Val Ala G1u Gly
35 90 45
Lys Glu Va1 Leu Leu Leu Val His Asn Leu Pro Gln His Leu Phe Gly
50 55 60
Tyr Ser Trp Tyr Lys Gly Glu Arg Val Asp Gly Asn Arg Gln Ile Ile
65 70 75 80
Gly Tyr Val Ile Gly Thr Gln Gln Ala Thr Pro Gly
85 90
<210> 212
<211> 142
<212> PRT
<213> Homo sapien
<400> 212
Glu Lys Gln Lys Asn Lys Glu Phe Ser Gln Thr Leu Glu Asn Glu Lys
1 5 10 15
Asn Thr Leu Leu Ser Gln Ile Ser Thr Lys Asp Gly Glu Leu Lys Met
20 25 30
Leu Gln Glu Glu Val Thr Lys Met Asn Leu Leu Asn G1n Gln Ile G1n
35 40 45
Glu Glu Leu Ser Arg Val Thr Lys Leu Lys Glu Thr Ala Glu Glu Glu
50 55 60
Lys Asp Asp Leu Glu Glu Arg Leu Met Asn Gln Leu Ala Glu Leu Asn


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
96
65 70 75 80
Gly Ser Ile Gly Asn Tyr Cys Gln Asp Val Thr Asp Ala Gln I1e Lys
85 90 95
Asn Glu Leu Leu Glu Ser Glu Met Lys Asn Leu Lys Lys Cys Val Ser
100 105 110
Glu Leu Glu Glu Glu Lys Gln Gln Leu Val Lys Glu Lys Thr Lys Val
115 I20 125
Glu Ser Glu Ile Arg Lys Glu Tyr Leu Glu Lys I1e Gln Gly
130 135 140
<210> 213
<211> 142
<212> PRT
<213> Homo sapien
<400> 213
Gly Gly Tyr G1y Gly Gly Tyr Gly Gly Val Leu Thr A1a Ser Asp Gly
1 5 10 15
Leu Leu Ala G1y Asn Glu Lys Leu Thr Met Gln Asn Leu Asn Asp Arg
20 25 30
Leu Ala Ser Tyr Leu Asp Lys Val Arg A1a Leu Glu A1a Ala Asn G1y
35 40 45
Glu Leu Glu Val Lys Tle Arg Asp Trp Tyr Gln Lys Gln Gly Pro Gly
50 55 60
Pro Ser Arg Asp Tyr Ser His Tyr Tyr Thr Thr Ile Gln Asp Leu Arg
65 70 75 80
Asp Lys Ile Leu G1y Ala Thr Ile Glu Asn Ser Arg Ile Val Leu Gln
85 90 95
Ile Asp Asn Ala Arg Leu Ala Ala Asp Asp Phe Arg Thr Lys Phe Glu
100 105 110
Thr Glu Gln Ala Leu Arg Met Ser Val Glu Ala Asp I1e Asn Gly Leu
115 120 125
Arg Arg Val Leu Asp Glu Leu Thr Leu Ala Arg Thr Asp Leu
130 135 140
<210> 214
<211> 129
<212> PRT
<213> Homo sapien
<400> 214
Val Met Arg Val Asp Phe Asn Val Pro Met Lys Asn Asn Gln Ile Thr
1 5 10 15
Asn Asn Gln Arg Ile Lys Ala Ala Val Pro Ser I1e Lys Phe Cys Leu
20 25 30
Asp Asn Gly Ala Lys Ser Val Val Leu Met Ser His Leu Gly Arg Pro
35 40 45
Asp Gly Val Pro Met Pro Asp Lys Tyr Ser Leu Glu Pro Val Ala Val
50 55 60
Glu Leu Arg Ser Leu Leu Gly Lys Asp Va1 Leu Phe Leu Lys Asp Cys
65 70 75 80
Val Gly Pro Glu Val Glu Lys Ala Cys Ala Asn Pro Ala Ala Gly Ser
85 90 95
Val Ile Leu Leu Glu Asn Leu Arg Phe His Val Glu Glu Glu Gly Lys
100 105 110
Gly Lys Asp Ala Ser Gly Asn Lys Val Lys Ala Glu Pro Ala Lys Ile
115 120 125
Glu


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
97
<210> 215
<211> 148
<212> PRT
<213> Homo sapien
<400> 215
Met Ala Thr Leu Lys Glu Lys Leu Ile Ala Pro Val Ala Glu Glu Glu
1 5 10 15
Ala Thr Val Pro Asn Asn Lys Ile Thr Val Val Gly Val Gly Gln Val
20 25 30
Gly Met Ala Cys Ala Iley Ser Ile Leu Gly Lys Ser Leu Ala Asp Glu
35 40 45
Leu Ala Leu Val Asp Val Leu Glu Asp Lys Leu Lys Gly Glu Met Met
50 55 60
Asp Leu Gln His Gly Ser Leu Phe Leu Gln Thr Pro Lys Ile Val Ala
65 70 75 80
Asp Lys Asp Tyr Ser Val Thr Ala Asn Ser Lys Ile Val Val Val Thr
85 90 95
Ala Gly Val Arg Gln G1n Glu Gly Glu Ser Arg Leu Asn Leu Val G1n
100 105 110
Arg Asn Val Asn Val Phe Lys Phe Ile Ile Pro Gln Ile Val Lys Tyr
115 120 125
Ser Pro Asp Cys Ile Ile Ile Val Val Ser Asn Pro Val Asp Ile Leu
130 235 240
Thr Tyr Val Thr
145
<210> 216
<211> 527
<212> PRT
<213> Homo sapien
<400> 216
Gln Arg Ala Pro Gly Ile Glu Glu Lys Ala Ala Glu Asn Gly Ala Leu
1 5 10 l5
Gly Ser Pro Glu Arg Glu Glu Lys Val Leu Glu Asn Gly Glu Leu Thr
20 25 30
Pro Pro Arg Arg Glu Glu Lys Ala Leu Glu Asn Gly Glu Leu Arg Ser
35 40 45
Pro Glu Ala Gly Glu Lys Val Leu Val Asn Gly Gly Leu Thr Pro Pro
50 55 60
Lys Ser Glu Asp Lys Val Ser Glu Asn Gly Gly Leu Arg Phe Pro Arg
65 70 75 80
Asn Thr Glu Arg Pro Pro Glu Thr Gly Pro Trp Arg Ala Pro Gly Pro
85 90 95
Trp G1u Lys Thr Pro Glu Ser Trp Gly Pro Ala Pro Thr Ile Gly Glu
100 105 110
Pro A1a Pro Glu Thr Ser Leu G1u Arg Ala Pro Ala Pro Ser Ala Val
115 120 125
Val Ser Ser Arg Asn Gly Gly Glu Thr Ala Pro Gly Pro Leu Gly Pro
130 135 140
Ala Pro Lys Asn Gly Thr Leu Glu Pro Gly Thr Glu Arg Arg Ala Pro
145 150 155 160
Glu Thr Gly Gly Ala Pro Arg Ala Pro Gly Ala Gly Arg Leu Asp Leu
165 170 175
Gly Ser Gly Gly Arg Ala Pro Val Gly Thr G1y Thr Ala Pro Gly Gly


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
98
180 185 190
Gly Pro Gly Ser Gly Val Asp Ala Lys Ala Gly Trp Val Asp Asn Thr
195 200 205
Arg Pro Gln Pro Pro Pro Pro Pro Leu Pro Pro Pro Pro Glu Ala Gln
210 215 220
Pro Arg Arg Leu Glu Pro Ala Pro Pro Arg Ala Arg Pro Glu Val Ala
225 230 235 240
Pro Glu Gly Glu Pro Gly Ala Pro Asp Ser Arg Ala G1y Gly Asp Thr
245 250 255
Ala Leu Ser Gly Asp Gly Asp Pro Pro Lys Pro Glu Arg Lys Gly Pro
260 265 270
Glu Met Pro Arg Leu Phe Leu Asp Leu Gly Pro Pro Gln GIy Asn Ser
275 280 285
Glu Gln Ile Lys Ala Arg Leu Ser Arg Leu Ser Leu Ala Leu Pro Pro
290 295 300
Leu Thr Leu Thr Pro Phe Pro G1y Pro Gly Pro Arg Arg Pro Pro Trp
305 310 315 320
GIu Gly Ala Asp Ala Gly Ala Ala Gly Gly Glu Ala Gly Gly Ala Gly
325 330 335
Ala Pro Gly Pro Ala Glu Glu Asp G1y Glu Asp Glu Asp Glu Asp Glu
340 345 350
Glu Glu Asp Glu Glu Ala Ala Ala Pro Gly Ala Ala Ala Gly Pro Arg
355 360 365
Gly Pro G1y Arg Ala Arg Ala Ala Pro Val Pro Val Val Val Ser Ser
370 375 380
Ala Asp Ala Asp Ala Ala Arg Pro Leu Arg Gly Leu Leu Lys Ser Pro
385 390 395 400
Arg Gly Ala Asp Glu Pro Glu Asp Ser Glu Leu Glu Arg Lys Arg Lys
405 410 47.5
Met Val Ser Phe His Gly Asp Val Thr Val Tyr Leu Phe Asp Gln Glu
920 425 430
Thr Pro Thr Asn Glu Leu Ser Val Gln Ala Pro Pro Glu Gly Asp Thr
435 440 445
Asp Pro Ser Thr Pro Pro Ala Pro Pro Thr Pro Pro His Pro Ala Thr
450 455 460
Pro Gly Asp Gly Phe Pro Ser Asn Asp Ser Gly Phe Gly Gly Ser Phe
465 470 475 480
Glu Trp Ala Glu Asp Phe Pro Leu Leu Pro Pro Pro Gly Pro Pro Leu
485 490 495
Cys Phe Ser Arg Phe Ser Val Ser Pro Ala Leu Glu Thr Pro Gly Pro
500 505 510
Pro Ala Arg Ala Pro Asp Ala Arg Pro Ala Gly Pro Val Glu Asn
515 520 525
<210> 217
<211> 466
<212> DNA
<213> Homo sapien
<400> 217


gaatggtgcctgtcctgctgtctctgctgctgcttctgggtcctgctgtcccccaggaga 60


accaagatggtcgttactctctgacctatatctacactgggctgtccaagcatgttgaag 120


acgtccccgcgtttcaggcccttggctcactcaatgacctccagttctttagatacaaca 180


gtaaagacaggaagtctcagcccatgggactctggagacaggtggaaggaatggaggatt 240


ggaagcaggacagccaacttcagaaggccagggaggacatctttatggagaccctgaaag 300


acatcgtggagtattacaacgacagtaacgggtctcacgtattgcagggaaggtttggtt 360


gtgagatcgagaataacagaagcagcggagcattctggaaatattactatgatggaaagg 420


actacattgaattcaacaaagaaatcccagcctgggtccccttcga 466




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
99
<210> 218
<211> 381
<212> DNA
<213> Homo sapien
<400>
218


gagtttccttcgcaagttcatgtggggtaccttcccaggctgcctggctgaccagctggt 60


tttaaagcgccggggtaaccagttggagatctgtgccgtggtcctgaggcagttgtctcc 120


acacaagtactacttcctcgtgggctacagtgaaactttgctgtcctacttttacaaatg 180


tcctgtgcgactccacctccaaactgtgccctcaaaggttgtgtataagtacctctagaa 240


caatccccttttttccatcaagctgtagcctgcagagaatggaaacgtgggaaaggaatg 300


gtatgtgggggaaatgcatcccctcagaggactgaggcatagtctctcatctgctattga 360


ataaagaccttctatcttgta 381


<210> 219
<21I> 1293
<212> DNA
<213> Homo sapien
<400> 219


gaggggaggcgcatggcggggatggcgctggcgcgggcctggaagcagatgtcctggttc60


tactaccagtacctgctggtcacggcgctctacatgctggagccctgggagcggacggtg120


ttcaattccatgctggtttccattgtggggatggcactatacacaggatacgtcttcatg180


ccccagcacatcatggcgatattgcactactttgaaatcgtacaatgaccaagatgcgac240


caggatcagaggttccttggggaagacccaccctacgaagttggaatgagaccatcagat300


gtgataagaaactcttctagatgtcaacataaccaaccttataaagactaaaattcatga360


gtagaacaggaaaatcatcctgactcatgtgttgtgttctttatttttaattttcaaaga420


ggctcttgtatagcagtttttgtctattttaacattgtagtcatttgtactttgatatca480


gtattttcttaacctttgtgactgtttcaatattacccccgtgaaagcttttcttaatgt540


aactttgagtacattttaattgccttctatttttaaaactcaaaatcattagttgggctt600


tactgttcttgctattgtatggcatatacatctgcctggatatatttctactcttgacca660


aagttttgtaaagaacaatataagatttcgggtaggggtatggggagggaagatatttta720


ttgagaactacttaacaaaagatttatctgtaagcttgaactcaggagtacagttttagc780


tatctagactctaacagcttttgctttaaaattattaaagtgtttcttaatgaaaaagaa840


aagatcttgctaaagttaaaataaggaacatttCaccttttaaatatttaattcttatgt900


ggacttatttccagaaaactttggtgataattcttgagacaaaaggtggttaagtagcat960


tattatgtaatgcttatataccatagagtttttaatagaagagaaatccatttcctccga1020


gggtcactattaacaatgtacttccttaaatttagtttaatgattgtaatgggtgctgca1080


tttgcacattgcattaagttatgatgagacgaattgttgttaaaaattatagcaaaaaga1140


aatgtaaacttggttaaaatcctttcactctttgtattgttttttttaaggtttttattc1200


cttaaatgtaaaatgactacctaattttttgatgtaaatacattaaattcaaagagaaaa1260


aaaatcaaaaaaaaaaaaaaaaaaaaactcgag 1293


<210> 220
<211> 983
<212> DNA
<213> Homo sapien
<400> 220


caggttattctgatcctgccgcctgtcttccctgtaagagtggagcctcgaggtgtacct 60


taaagtgaccggaatgttagagatgcaatttgcagagctggggcaaggaagggctccttg 120


tcactgtagttactttccttgcagtggccaaatgcccaataagaaggaatacatgaccac 180


tgctgtggggagtcagcaggtgcgtgatgcagctggccacactccatccacggccatgac 240


ataaaacagacaagaagtaaggctggactgtaacacctcaaggcctgctccagtgaccca 300


ctttcttcagagaggctctaccacacacacaaccaccttccaaatttacactcagatcac 360


tacaccatgtctcccaagttaaaacatgtatccacctagactttaaatgtgctttgtaac 420


tgttgatggcactgtacagagggccaaagtatttcccatcagatagcatttttctgaacc 480




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
1~~
catgcctcttgggacgagatcacaggacttgacccatcatcaaataggaccaggtgacct 540


acagagacatcacaatgatggcttcctacagtcaagtccatttccaataatgctctcatc 600


taagagaacccatgaaccttatttgaatcctggttcaaacaaaaaccttaaattatttat 660


gagacaattataaacttgatagattttgatgtgtgaaggtatttatgaatatttttagtc 720


agtgatggtatactgttaaggaaaaggttcatattttagggacaaaggctgaaacattta 780


tggacagagtgatatgatatctgggatttgttttaggatgaagtgggagggaggaaatga 840


atggaaatagtgttgaaacagtattggccacgagtcagctattgtgtgctaagacgctcc 900


tcacaccagtctactctgtatgtgtttgaatatctctgtaataaacttaacaaggaaaaa 960


aaaaaaaaaaaaaaaaactcgag 983


<210> 221
<211> 373
<2l2> DNA
<213> Homo sapien
<400> 221


cattttatgggttaattttttattaaatagcaataagatacttttataactcaataaaat 60


tattcaatgatacattcggaaaataaatgtataaaatatgaaaaagtactaaaaagcatt 120


tttcagtacttttaggtaagattaatccaactaaacactagcatatgttatacagtaata 180


ataaggggaaaatacaataatgttgagaaagcaaactcaaagcatagatcaatgaaaaaa 240


ttgagaaatggacataaatgatttagtatttttaaagagagtgaaaaatcattattttat 300


gcttttgtgtagcgttagatgaattaaataacatatgcacatatagctttgcgatacaaa 360


tttccagaccata 373


<210> 222
<211> 544
<212> DNA
<213> Homo sapien
<400> 222


cagagatgctgctgctacaaaggatcggtgtaagcagttaacccaggaaatgatgacaga 60


gaaagaaagaagcaatgtggttataacaaggatgaaagatcgaattggaacattagaaaa 120


ggaacataatgtatttcaaaacaaaatacatgtcagttatcaagagactcaacagatgca 180


gatgaagtttcagcaagttcgtgagcagatggaggcagagatagctcacttgaagcagga 240


aaatggtatactgagagatgcagtcagcaacactacaaatcaactggaaagcaagcagtc 300


tgcagaactaaataaactacgccaggattatgctaggttggtgaatgagctgactgagaa 360


aacaggaaagctacagcaagaggaagtccaaaagaagaatgctgagcaagcagctactca 420


gttgaaggttcaactacaagaagctgagagaaggtgggaagaagttcagagctacatcag 480


gaagagaacagcggaacatgaggcagcacagctagatttacagagtaaatttgtggccaa 540


agaa 544


<210> 223 .
<211> 316
<212> DNA
<213> Homo sapien
<400> 223
gaggcaagggatatgctttagtgcctattatagttaattcttcaactccaaagtctaaaa 60


cagttgaatctgctgaaggaaaatctgaagaagtaaatgaaacattagttatacccactg 120


aggaagcagaaatggaagaaagtggacgaagtgcaactcctgttaactgtgaacagcctg 180


atatcttggtttcttctacaccaataaatgaaggacagactgtgttagacaaggtggctg 240


agcagtgtgaacctgctgaaagtcagccagaagcacttctgagaggaagatgtttgcaag 300


gtaactctaacagttg 316


<210> 224
<211> 1583
<212> DNA
<213> Homo sapien


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
101
<400> 224
cagaccacgtctgccctcgccgctctagccctgcgccccagcccggccgcggcacctccg 60


cctcgccgccgctaggtcggccggctccgcccggctgccgcctaggatgaatatcatgga 120


cttcaacgtgaagaagctggcggccgacgcaggcaccttcctcagtcgcgccgtgcagtt 180


cacagaagaaaagcttggccaggctgagaagacagaattggatgctcacttagagaacct 240


ccttagcaaagctgaatgtaccaaaatatggacagaaaaaataatgaaacaaactgaagt 300


gttattgcagccaaatccaaatgccaggatagaagaatttgtttatgagaaactggatag 360


aaaagctccaagtcgtataaacaacccagaacttttgggacaatatatgattgatgcagg 420


gactgagtttggcccaggaacagcttatggtaatgcccttattaaatgtggagaaaccca 480


aaaaagaattggaacagcagacagagaactgattcaaacgtcagccttaaattttcttac 540


tcctttaagaaactttatagaaggagattacaaaacaattgctaaagaaaggaaactatt 600


gcaaaataagagactggatttggatgctgcaaaaacgagactaaaaaaggcaaaagctgc 660


agaaactagaaattcatctgaacaggaattaagaataactcaaagtgaatttgatcgtca 720


agcagagattaccagacttctgctagagggaatcagcagtacacatgcccatcaccttcg 780


ctgtctgaatgactttgtagaagcccagatgacttactatgcacagtgttaccagtatat 840


gttggacctccagaaacaactgggaagttttccatccaattatcttagtaacaacaatca 900


gacttctgtgacacctgtaccatcagttttaccaaatgcgattggttcttctgccatggc 960


ttcaacaagtggcctagtaatcacctctccttccaacctcagtgaccttaaggagtgtag 1020


tggcagcagaaaggccagggttctctatgattatgatgcagcaaacagtactgaattatc 1080


acttctggcagatgaggtgatcactgtgttcagtgttgttggaatggattcagactggct 1240


aatgggggaaaggggaaaccagaagggcaaggtgccaattacctacttagaactgctcaa 1200


ttaagtaggtggactatggaaaggttgcccatcatgactttgtatttatatacaattaac 1260


tctaaataaagcaggttaagtatcttccatgttaatgtgttaagagactgaaaataccag 1320


ccatcagaaactggcctttttgccaataaagttgcatggtaaatatttcattacagaatt 1380


tatgttagagctttcatgccaagaatgttttcttacaaaattctctttttattgaggttt 1440


cactaataagcagcttctacttttgagcctcaacttaaagcagaactgttttttactgga 1500


tttttcattaacagcaagcttttttttttatgtaaaataaatctattgtgaattgaaaaa 1560


aaaaaaaaaaaaaaaaactcgag 1583


<210> 225
<211> 491
<212> DNA
<213> Homo sapien
<400>
225


gaacaacatcatcttgaatcactagatagactcttgacggaaagcaaaggggaaatgaaa 60


aaggaaaatatgaagaaagatgaagctttaaaagcattacagaaccaagtatctgaagaa 120


acaatcaaggttaggcaactagattcagcattggaaatttgtaaggaagaacttgtcttg 180


catttgaatcaattggaaggaaataaggaaaagtttgaaaaacagttaaagaagaaatct 240


gaagaggtatattgtttacagaaagagctaaagataaaaaatcacagtcttcaagagact 300


tctgagcaaaacgttattctacagcatactcttcagcaacagcagcaaatgttacaacaa 360


gagacaattagaaatggagagctagaagatactcaaactaaacttgaaaaacaggtgtca 420


aaactggaacaagaacttcaaaaacaaagggaaagttcagctgaaaagttgagaaaaatg 480


gaggagaaatg 491


<210> 226
<211> 483
<212> DNA
<213> Homo sapien
<400> 226
cagccgcacgccgcggagcaggggctcggaggtcccgggattacggtgctcgagcacgct 60


ggtgggaaaggacccgggacttgaacagtgttgtgcggcgccatgcaggtctccagcctc 120


aatgaggtgaagatttacagcctcagctgcggcaagtcccttcctgagtggctttctgat 180


aggaagaagagagcgctacagaagaaagatgtagatgtccgtaggagaattgaacttatt 240


caggactttgaaatgcctactgtgtgtaccactattaaggtgtcaaaagatggacagtac 300


attttagcaactggaacatataaacctcgggttcgatgttatgacacctatcaattatcc 360




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
102
ttgaagtttg aaaggtgttt agattcagaa gttgtcacct ttgaaatttt gtctgatgac 420
tactcaaaga ttgtcttctt acataatgat agatacattg aatttcattc gcaatcaggt 480
ttt 483
<210> 227
<2l1> 486
<212> DNA
<213> Homo sapien
<400> 227


gagcctcgctaagctccgactctgggcggcaccgggcgtcccacgatgccgaagaacaag 60


aagcggaacactccccaccgcggtagcagtgctggcggcggcgggtcaggagcagccgca 120


gcgacggcggcgacagcaggtggccagcatcgaaatgttcagccttttagtgatgaagat 180


gcatcaattgaaacagtgagccattgcagtggttatagcgatccttccagttttgctgaa 240


gatggaccagaagtccttgatgaggaaggaaetcaagaagacctagagtacaagttgaag 300


ggattaattgacctaaccctggataagagtgcgaagacaaggcaagcagctcttgaaggt 360


attaaaaatgcactggcttcaaaaatgctgtatgaatttattctggaaaggagaatgact 420


ttaactgatagcattgaacgctgcctgaaaaaaggtaagagtgatgagcaacgtgcagct 480


gcagcg 486


<210> 228
<211> 494
<212> DNA
<213> Homo sapien
<400> 228


gaggccaggactccgggaatgcgagcaggccccttattctcccagtggcctcggtctgtc 60


cccacagcggcccggtcagggttgcccgagccccaaggcggggggcggcaccggggtgct 120


gaaagggacagaatgctttgacctccaagctgttttaaatctagtagataagccagatcc 180


tgtgttgccataagcccttggcccacatttaagtgggaatgcagctagcttggatgtctg 240


aaactttgtaagcgccttctgtctgaatcctgaacacaggcaccaagactactgaagaag 300


ctcgtcattcttgtgcagggatagccacacaagcaaacatgtttgcaaaacttgaaagaa 360


agaaaattgcagaaagaagacttgctgttcttaagaggcccaggaaggtgctacttagga 420


atcccaccggcttgtgaagcaagggaatcaagtttgccttcaatggggaacttgacttca 480


ggaaaatgaacttt 494


<210> 229
<211> 465
<212> DNA
<213> Homo sapien
<400> 229


gtcagagagctggtataacctcctgttggacatgcagaaccgactcaataaggtcatcaa 60


aagcgtgggcaagattgagcactccttctggagatcctttcacactgagcgaaagacaga 120


accagccacaggcttcatcgatggtgatctgattgaaagtttcctagatatcagccgccc 180


taagatgcaggaggttgtggcaaacttgcagtatgatgatggcagtggtatgaagcggga 240


ggcaactgcagatgacctcatcaaagtcgtggaggaactaactcggatccattagccaag 300


gacaggatctcttttcctgaccctcctaaaggcgttgccctcctatcctcccttccttgc 360


ccacccttggtttctttggcatgggaaggttttccttaaccacttgccctagagccacca 420


gtgaccttgtgtggaaacagggttttttttacttaaaacagttCa 465


<210> 230
<211> 495
<212> DNA
<213> Homo sapien
<400> 230
caggggaaag ggtgtttggc cttgaccagc cactgctgac ctcaatctca gacctacaga 60


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
103
tggtgaatatctccctgcgagtgttgtctcgacccaatgctcaggagcttcctagcatgt 120


accagcgcctagggctggactacgaggaacgagtgttgccgtccattgtcaacgaggtgc 180


tcaagagtgtggtggccaagttcaatgcctcacagctgatcacccagcgggcccaggtat 240


ccctgttgatccgccgggagctgacagaaagggccaaaggacttcagcctcatcctggat 300


gatgtggccatcacagacttgagctttagccgagaagtacacaagctgcctgtaagaaac 360


ccaaccaagtggggtgaattccaaaaacccgtgggggtgaagggcttcttaagaatgcaa 420


ggaaggaggaaaagaattccatggggggggggttccttaacccaggaacaggggtttccc 480


ttgaatttttttcca 495


<210> 231
<211> 498
<212> DNA
<213> Homo sapien
<400>
231


ggcagcttctgagaccagggttgctccgtccgtgctccgcctcgccatgacttcctacag 60


ctatcgccagtcgtcggccacgtcgtccttcggaggcctgggcggcggctccgtgcgttt 120


tgggccgggggtcgcttttcgcgcgcccagcattcacgggggctccggcggccgcggcgt 180


atccgtgtcctccgcccgctttgtgtcctcgtcctcctcggggggctacggcggcggcta 240


cggcggcgtcctgaccgcgtccgacgggctgctggcgggcaacgagaagctaaccatgca 300


gaacctcaacgaccgcctgcctcCtacctggacaaagtgcgcgccctggaagcgggcaac 360


ggcgaacttagaggtgaaagaatcccgcgaactggtaccaaaaacaaggggcctggggcc 420


ttccgcgacttacagccaacttactacaccgaacattcaagaacttgcgggaacaaaaat 480


ttttggtgccacccattt 498


<210> 232
<211> 465
<212> DNA
<213> Homo sapien
<400> 232
caggccggccgagtaggaaagctggaggcgcgggtggggaacatgtctgagtcggagctc 60


ggcaggaagtgggaccggtgtctggcggatgcggtcgtgaagataggtactggttttgga 120


ttaggaattgttttctcacttaccttctttaaaagaagaatgtggccattagccttcggt 180


tctggcatgggattaggaatggcttattccaactgtcagcatgatttccaggctccatat 240


cttctacatggaaaatatgtcaaagagcaggagcagtgacttcacctgagaacatcccag 300


cgggaggacaagagaaaatcatgtttattcctcaggaatacttgaagtgccctggagtaa 360


actgccattcttctgtaacaatggtatcagtaatgctttaaactccagcacctggttatg 420


catttgaaacccaagtctggttcttggtttggattttctctctgg 465


<2I0> 233
<211> 366
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1). .(366)
<223> n = A,T,C or G
<400>
233


cagtaaaaaaggttatgttttattaattgctggacaaccgtgggaaaacaaataagcaat 60


tgacaccaccaaattcttat,tacattcaanataaaanatttattcacaccacaaaaagat 120


aatcacaacaaaatatacactaacttaaaaaacaaaagattatagtgacataaaatgtta 180


tattctctttttaagtgggtaaaagtattttgtttgcttctacataaatttctattcatg 240


ananaataacaaatattaaaatacagtgatagtttgcatttcttctatagaatgaacata 300


gacataaccctgaagcttttagtttacagggagtttccatgaagccacaaactaaactaa 360


ttatca 366




CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
I04
<210> 234
<211> 379
<2l2> DNA
<213> Homo sapien
<400> 234


gagggcagccctcctacctgcgcacgtggtgccgccgctgctgcctcccgctcgccctga 60


acccagtgcctgcagccatggctcccggccagctcgccttatttagtgtctctgacaaaa 120


ccggccttgtggaatttgcaagaaacctgaccgctcttggtttgaatctggtcgcttccg 180


gagggactgcaaaagctctcagggatgctggtctggcagtcacagatgtctctgagttga 240


cgggatttctgaaatgttggggggacgtgtgaaaactttgcatcctgcacgatcccatgc 300


tggaatcctagctcctaatattcagaagataatgcttgacatgcgccacacttgattcaa ,360


tcttataacaattgttgcc 379


<210> 235
<211> 406
<212> DNA
<213> Homo sapien
<400> 235


caggctgcaccatgtaccccaccttcagtttaaaagaaaaaaaaaatccccttcactcct 60


actgggaggtgggacccctttcattttcagttttgctcatctagggaaaataaggctttg 120


gtttccagtttaattgtttttgaccttctaaaatgtttttatgttagcactgatagttgg 180


cattactgttgttaagcactgtgttccagaccgtgtctgacttagtgtaacctaggagat 240


tttatagttttattttaatgaaaccctgattgacgcacagcagtggggagaacagcgtct 300


tttacctgtcaccgaagccaggaagccccgtttgtaagcgtgtgttgtggtgctttattg 360


tacatcctccagtggcgttctttttactctaatgttcttttggttt 406


<210> 236
<211> 278
<212> DNA
<213> Homo sapien
<400> 236


gagattagcacctgtgaacaatgcgttctctgatgacactctgagcatggaccaacgcct 60


tcttaagctaattctgcaaaatcacatattgaaagtaaaagttggccttagcgacctcta 120


caatggacagatactggaaaccattggaggcaaacaactccgagtctttgtgtatcggac 180


ggctatctgcatagaaaactcatgcatggtgagaggaagcaagcagggaaggaacggtgc 240


cattcacatattccgagagatcatccaaccagcagaat 278


<210> 237
<211> 322
<212> DNA
<213> Homo sapien
<400> 237


cagggccgtggcggaggaggagcgctgcacggtggagcgtcgggccgacctcacctacgc 60


ggagttcgtgcagcagtacgtgcgcccctgatcgcggaggtcgcgtcctgttcaccggcc 120


cgtctgccccgaccgcccaaggccgccttcccctgacctcgcgcgcacgcgtggggctgg 180


ggcggcgaggctggcggtccggcctggccgcgactctgcccttctttccagaggttccgg 240


gccctgtgctcccgcgacaggttgctggcttcgtttggggacagagtggtccggtgagca 300


ccgccaacacctactcctacct 322


<210> 238
<211> 613
<212> DNA


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
105
<213> Homo sapiens
<220>
<221> misc_feature
<222> (399)
<223> n=A,T,C or G
<400> 238
gaattcggca ccagccttct tggatcagga ccagt ctcca ccccgtttct acagtggaga 60
tcagcctcct tcttatcttg gtgcaagtgt ggataaactc catcaccctt tagaatttgc 120
agacaaatct cccacacctc ctaatttacc tagcgataaa atctaccctc cttctgggtc 180
ccccgaagag aataccagca cagccaccat gacttacatg acaactactc cagcaacagc 240
ccaaatgagc accaaggaag ccagctggga tgtggctgaa caacccacca ctgctgattt 300
tgctgctgcc acacttcagc gcacgcacag aactaatcgt ccccttcccc ctccgccttc 360
ccagagatct gcagagcagc caccagttgt ggggcaggna caagcagcaa ccaatatagg 420
attaaataat tcccacaagg ttcaaggagt agttccagtt ccagagaggc cacctgaacc 480
tcgagccatg gatgaccctg cgtctgcctt catcagtgac agtggtgctg ctgctgctca 540
gtgtcccatg gctacagctg tccagccagg cctgcctgag aaagtgcggg acggtgcccg 600
ggtcccgctg ctg
613
<210> 239
<211> 613
<212> DNA
<213> Homo Sapiens
<400> 239
gaattcggca ccaggggaca ctggtgctga gctggatgat gatcagcact ggtctgacag 60
cccgtcggat gctgacagag agctgcgttt gccgtgccca gctgaggggg aagcagagct 120
ggagctgagg gtgtcggaag atgaggagaa gctgcccgcc tcaccgaagc accaagagag 180
aggtccctcc caagccacca gccccatccg gtctccccag gaatcagctc ttctgttcat 240
tCCagtCCaC dgCCCCtCaa CagaggggCC ccaactccca cctgtccctg CCgCCdCCCa 300
ggagaaatca cctgaggagc gccttttccc tgagcctttg ctccccaaag agaagcccaa 360
agctgatgcc ccctcggatc tgaaagctgt gcactctccc atccgatcac agccagtgac 420
cctgccagaa gctaggactc ctgtctcacc agggagcccg cagccccagc cacccgtggc 480
ggcctccacg cccccacc~a gcgaggtctc cagagccttc tctctcctgt gcaaaatggc 540
aactcttaag gaaaaactca ttgcaccagt tgcggaagaa gaggcaacag ttccaaacaa 600
taagatcact gta 613
<210> 240
<211> 585
<212> DNA
<213> Homo Sapiens
<400> 240
gaattcggca cgaggtgaga tctacgatga actttaagat tggaggtgtg acagaacgca 60
tgccaacccc agttattaaa gcttttggca tcttgaagcg agcggccgct gaagtaaacc 120
aggattatgg tcttgatcca aagattgcta atgcaataat gaaggcagca gatgaggtag 180
ctgaaggtaa attaaatgat cattttcctc tcgtggtatg gcagactgga tcaggaactc 240
agacaaatat gaatgtaaat gaagtcatta gcaatagagc aattgaaatg ttaggaggtg 300
aacttggcag caagatacct gtgcatccca acgatcatgt taataaaagc cagagctcaa 360
atgatacttt tcccacagca atgcacattg ctgctgcaat agaagttcat gaagtactgt 420
taccaggact acagaagtta catgatgctc ttgatgcaaa atccaaagag tttgcacaga 480
tcatcaagat tggacgtact catactcagg atgctgttcc acttactctt gggcaggaat 540
ttagtggtta tgttcaacaa gtaaaatatg caatgacaag aataa 585
<210> 241
<2l1> 566
<212> DNA


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
106
<213> Homo Sapiens
<400> 241
gaattcggca ccaggcgagc tgcacctcga ggtgaaggcc tcactgatga acgatgactt 60
cgagaagatc aagaactggc agaaggaagc ctttcacaag cagatgatgg gcggcttcaa 120
ggagaccaag gaagctgagg acggctttcg gaaggcacag aagccctggg ccaagaagct 180
gaaagaggta gaagcagcaa agaaagccca ccatgcagcg tgcaaagagg agaagctggc 240
tatctcacga gaagccaaca gcaaggcaga cccatccctc aaccctgaac agctcaagaa 300
attgcaagac aaaatagaaa agtgcaagca agatgttctt aagaccaaag agaagtatga 360
gaagtccctg aaggaactcg accagggcac accccagtac atggagaaca tggagcaggt 420
gtttgagcag tgccagcagt tcgaggagaa acgccttcgc ttcttccggg aggttctgct 9$0
ggaggttcag aagcacctag acctgtccaa tgtggctggc tacaaagcca tttaccatga 540
cctggagcag agcatcagag cagctg 566
<210> 242
<211> 556
<212> DNA
<213> Homo Sapiens
<400> 242
gaattcggca cgagcaaagg tgaagcagga catgcctccg cccgggggct atgggcccat 60
cgactacaaa cggaacttgc cgcgtcgagg actgtcgggc tacagcatgc tggccatagg 120
gattggaacc ctgatctacg ggcactggag cataatgaag tggaaccgtg agcgcaggcg 180
cctacaaatc gaggacttcg aggctcgcat cgcgctgttg ccactgttac aggcagaaac 240
cgaccggagg accttgcaga tgcttcggga gaacctggag gaggaggcca tcatcatgaa 300
ggacgtgccc gactggaagg tgggggagtc tgtgttccac acaacccgct gggtgccccc 360
cttgatcggg gagctgtacg ggctgcgcac cacagaggag gctctccatg ccagccacgg 420
CttCatgtgg tacacgtagg ccctgtgccc tccggccacc tggatccctg CCCCtCCCCa 480
ctgggacgga ataaatgctc tgcagacctg gaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 540
aaaaaaaaaa ctcgag 556
<210> 293
<211> 591
<212> DNA
<213> Homo Sapiens
<400> 243
gtctatgttt gcagaaatac agatccaaga caaagacagg atgggcactg ctggaaaagt 60
tattaaatgc aaagcagctg tgctttggga gcagaagcaa cccttctcca ttgaggaaat 120
agaagttgcc ccaccaaaga ctaaagaagt tcgcattaag attttggcca caggaatctg 180
tcgcacagat gaccatgtga taaaaggaac aatggtgtcc aagtttccag tgattgtggg 240
acatgaggca actgggattg.tagagagcat tggagaagga gtgactacag tgaaaccagg 300
tgacaaagtc atccctctct ttctgccaca atgtagagaa tgcaatgctt gtcgcaaccc 360
agatggcaac ctttgcatta ggagcgatat tactggtcgt ggagtactgg ctgatggcac 420
caccagattt acatgcaagg gcaaaccagt ccaccacttc atgaacacca gtacatttac 480
cgagtacaca gtggtggatg aatcttctgt tgctaagatt gatgatgcag ctcctcctga 540
gaaagtctgt ttaattggct gtgggttttc cactggatat ggcgctgctg t 591
<210> 244
<211> 594
<212> DNA
<213> Homo Sapiens
<400> 244
gaattcggca cgagaacaga gtgaactgag catcagtcag aaaaagtcta tgtttgcaga 60
aatacagatc caagacaaag acaggatggg cactgctgga aaagttatta aatgcaaagc 120
agctgtgctt tgggagcaga agcaaccctt ctccattgag gaaatagaag ttgccccacc 180
aaagactaaa gaagttcgca ttaagatttt ggccacagga atctgtcgca cagatgacca 240


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
107
tgtgataaaa ggaacaatgg tgtccaagtt tccagtgatt gtgggacatg aggcaactgg 300
gattgtagag agcattggag aaggagtgac tacagtgaaa ccaggtgaca aagtcatccc 360
tctctttctg ccacaatgta.gagaatgcaa tgcttgtcgc aacccagatg gcaacctttg 420
cattaggagc gatattactg gtcgtggagt actggctgat ggcaccacca gatttacatg 480
caagggcaaa ccagtccacc acttcatgaa caccagtaca tttaccgagt acacagtggt 540
ggatgaatct tctgttgcta agattgat ga tgcagctcct cctgagaaag tctg 594
<210> 245
<211> 615
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (105)
<223> n=A,T,C or G
<400> 245
gtccctttcc tctgctgccg ctcggtcacg cttgtgcccg aaggaggaaa cagtgacaga 60
cctggagact gcagttctct atccttccac agctctttca ccatnctgga tcacttcctt 120
tgaatgcaga agcttgctgg ccaaaagatg tgggaattgt tgcccttgag atctattttc 180
cttctcaata tgttgatcaa gcagagttgg aaaaatatga tggtgtagat gctggaaagt 240
ataccattgg cttgggccag gccaagatgg gcttctgcac agatagagaa gatattaact 300
ctctttgcat gactgtggtt cagaatctta tggagagaaa taacctttcc tatgattgca 360
ttgggcggct ggaagttgga acagagacaa tcatcgacaa atcaaagtct gtgaagacta 420
atttgatgca gctgtttgaa' gagtctggga atacagatat agaaggaatc gacacaacta 480
atgcatgcta tggaggcaca gctgctgtct tcaatgcttg ttaactggat tgagtccagc 540
tcttgggatg gacggtatgc cctggtaagt tgcaggagat attgctgtat atgccacagg 600
aaatgctaga cctac 615
<210> 246
<211> 546
<212> DNA
<213> Homo sapiens
<400> 246
gaattcggca ccaggctgcc tcccgctcgc cctgaaccca gtgcctgcag ccatggctcc 60
cggccagctc gccttattta gtgtctctgc aaaaccggcc ttgtgaattt gcaagaaacc 120
tgaccgctct tggtttgaat ctggtcgctt ccggagggac tgcaaaagct ctcagggatg 180
ctggtctggc agtcagagat gtctctgagt tgacgggatt tcctgaaatg ttggggggac 240
gtgtgaaaac tttgcatcct gcagtccatg ctggaatcct agctcgtaat attccagaag 300
ataatgctga catggccaga cttgatttca atcttataag agttgttgcc tgcaatctct 360
atccctttgt aaagacagtg gcttctccag gtgtaactgt tgaggaggct gtggagcaaa 420
ttgacattgg tggagtaacc ttactgagag ctgcagccaa aaaccacgct cgagtgacag 480
tggtgtgtga accagaggac tatgtgggtg ggtgtccacg gagatgcaga gctccgagag 540
taagga 546
<210> 247
<211> 564
<212> DNA
<213> Homo sapiens
<400> 247
gaattcggca ccagagatca cgtgcagtga gatgcagcaa aaagttgaac ttctgagata 60
tgaatctgaa aagcttcaac aggaaaattc tattttgaga aatgaaatta ctactttaaa 120
tgaagaagat agcatttcta acctgaaatt agggacatta aatggatctc aggaagaaat 180
gtggcaaaaa acggaaactg taaaacaaga aaatgctgca gttcagaaga tggttgaaaa 240
tttaaagaaa cagatttcag aattaaaaat caaaaaccaa caattggatt tggaaaatac 300


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
108
agaacttagc caaaagaact ctcaaaacca ggaaaaactg caagaactta atcaacgtct 360
aacagaaatg ctatgccaga aggaaaaaga gccaggaaac agtgcattgg aggaacggga 420
acaagagaag tttaatctga aagaagaact ggaacgttgt aaagtgcagt cctccacttt 480
agtgtcttct ctggaggcgg agctctctga agttaaaata cagacccata ttgtgcaaca 540
ggaaaaccac cttctcaaag atga 564
<210> 248
<211> 434
<212> DNA
<213> Homo Sapiens
<400> 248
gttcttgttt gtggatcgct gtgatcgtca cttgacaatg cagatcttcg tgaagactct 60
gactggtaag accatcaccc tcgaggttga gcccagtgac accatcgaga atgtcaaggc 120
aaagatccaa gataaggaag gcatccctcc tgaccagcag aggctgatct ttgctggaaa 180
acagctggaa gatgggcgca ccctgtctga ctacaacatc cagaaagagt ccaccctgca 240
cctggtgctc cgtctcagag gtgggatgca aatcttcgtg aagacactca ctggcaagac 300
catcaccctt gaggtggagc ccagtgacac catcgagaac gtcaaagcaa agatccagga 360
caaggaaggc attcctcctg accagcagag gttgatcttt gccggaaagc cagcctggga 420
agatggggcc gcca 434
<210> 249
<211> 416
<212> DNA
<213> Homo Sapiens
<400> 249
gcgggcccag gaggcggcgg cggcggcggc ggacgggccc cccgcggcag acggcgagga 60
cggacaggac ccgcacagca agcacctgta cacggccgac atgttcacgc acgggatcca 120
gagcgccgcg cacttcgtCa tgttcttcgc gccctggtgt ggacactgcc agcggctgca 180
gccgacttgg aatgacctgg gagacaaata caacagcatg gaagatgcca aagtctatgt 240
ggctaaagtg gactgcacgg cccactccga cgtgtgctcc gcccaggggg tgcgaggata 300
ccccacctta aagcttttca agccaggcca agaagctgtg aagtaccagg gtcctcggga 360
cttccagaca ctggaaaact ggatgctgca gacactgaac gaggagccag tgacac 416
<210> 250
<211> 504
<212> DNA
<213> Homo Sapiens
<400> 250
gaattcggca cgaggcgggt aacgttatag tatttgtcag aagttggggt ctccgtgggc 60
attgtgatcc gtcccaggca gtggattagg aggccagaag gagatccctt ccacggtgct 120
aggctgagat ggatcctctc agggcccaac agctggctgc ggagctggag gtggagatga 180
tggccgatat gtacaacaga atgaccagtg cctgccaccg gaagtgtgtg cctcctcact 240
acaaggaagc agagctctcc aagggcgagt ctgtgtgcct ggaccgatgt gtctctaagt 300
acctggacat ccatgagcgg atgggcaaaa agttgacaga gttgtctatg caggatgaag 360
agctgatgaa gagggtgcag cagagctctg ggcctgcatg aggtccctgt cagtatacac 420
cctggggtgt accccacccc ttcccacttt aataaacgtg ctccctgttg ggtgtcatct 480
gtgaagactg ccaggCCtag ctct 504
<210> 251 '
<211> 607
<212> DNA
<213> Homo Sapiens
<400> 251
gatgaaaata cacaatttta ctagcaaatg cctctactgt aatcgctatt tacccacaga 60


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
109
tactctgctc aaccatatgt taattcatgg tctgtcttgt ccatattgcc gttcaacttt 120
caatgatgtg gaaaagatgg ccgcacacat gcggatggtt cacattgatg aagagatggg 180
acctaaaaca gattctactt tgagttttga tttgacattg cagcagggta gtcacactaa 240
catccatctc ctggtaacta catacaatct gagggatgcc ccagctgaat ctgttgctta 300
ccatgcccaa aataatcctc cagttcctcc aaagccacag ccaaaggttc aggaaaaggc 360
agatatccct gtaaaaagtt cacctcaagc tgcagtgccc tataaaaaag atgttgggaa 420
aaccctttgt cctctttgct tttcaatcct aaaaggaccc atatctgatg cacttgcaca 480
tcacttacga gagaggcacc aagttattca gacggttcat ccagttgaga aaaagctcac 540
ctacaaatgt atccattgcc ttggtgtgta taccagcaac atgaccgcct caactatcac 600
tctgcat 607
<210> 252
<211> 618
<212> DNA
<213> Homo sapiens
<400> 252
gaattcgcac caggggtcct gctggtcttc gcctttcttc tccgcttcta ccccgtcggc 60
cgctgccact ggggtccctg gccccaccga catggcggcg gtgttgagca agtcctggag 120
cgcacggagc tgaacaagct gcccaagtct gtccagaaca aacttgaaaa gttccttgct 180
gatcagcaat ccgagatcga tggcctgaag gggcggcatg agaaatttaa ggtggagagc 240
gaacaacagt attttgaaat agaaaagagg ttgtcccaca gtcaggagag acttgtgaat 300
gaaacccgag agtgtcaaag cttgcggctt gagctagaga aactcaacaa tcaactgaag 360
gcactaactg agaaaaacaa agaacttgaa attgctcagg atcgcaatat tgccattcag 420
agccaattta caagaacaaa ggaagaatta gaagctgaga aaagagactt aattagaacc 480
aatgagagac tatctcaaga acttgaatac ttaacagagg atgttaaacg tctgaatgaa 540
aaacttaaag aaagcaatac aacaaagggt gaacttcagt taaaattgga tgaacttcaa 600
gcttctgatg tttctgtt 628
<210> 253
<211> 1201
<212> DNA
<213> Homo sapiens
<400> 253
gaattcggca ccagggtggc gagcgcggct gctgtgctgg ggcgagcagc ggggaccgtg 60
tgtgagtttg gcatgatttg gtcccctggg attctgcctt agcaagaaag aagttggaaa 120
tacttcctgg aagaaaacta aaacaataca aaagccacag cttattgatt gcatgtcagc 180
ccccttacaa atatggacac atttcctagc ctatttccac ctggaggaga tagtaggctg 240
aatcctgagc ctgagttcca aaatatgtta attgatgaaa gggtacgctg tgaacatcat 300
aaacataatt atcaggctct gaaaattgaa cacaaaaggt tgcaggaaga atatgtaaaa 360
tcacaaaatg aacttaaacg tgtattaatt gaaaagcaag caagccagga aaaattccaa 420
ctgctccttg aagacttaag gggagaatta gtagagaaag ctagagacat agaaaaaatg 480
aaactgcagg tactaacacc acaaaaattg gaattggtaa aagcccaact acaacaagaa 540
ttagaagctc caatgcgaga acgttttcgg actcttgatg aagaagtgga aaggtacaga 600
gctgagtata acaagctgcg ctacgagtat acatttctca agtcagagtt tgaacaccag 660
aaagaagagt ttactcgggt ttcagaagaa gagaaaatga aatacaagtc agaggttgca 720
cgactggaga aggacaaaga ggagctacat aaccagctgc ttagtgttga tcccacgaga 780
gacagcaaac gaatggagca acttgttcga gaaaaaaccc atttgcttca gaaattgaaa 840
agtttagagg ctgaagtagc agaattaagg gctgagaaag aaaattctgg tgctcaggta 900
gaaaatgtcc aaagaataca ggtgaggcag ttggctgaga tgcaggctac actcagatcc 960
ttggaggctg aaaagcagtc agctaaacta caagctgagc gtttagaaaa agaactacaa 1020
tcaagcaatg aacagaatac ctgcttaatc agcaaactgc atagagctga ccgagaaatc 1080
agcacactgg ccagtgaagt gaaagagctt aaacatgcaa acaaactaga aataactgac 1140
atcaaactgg aggcagcaag agctaagagt gagctcgaaa gagaaaggaa taagatccaa 1200
a 1201
<210> 254


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
110
<211> 560
<212> DNA
<213> Homo Sapiens
<400> 254
gaattcggca ccagtttggg gggtgaggtt taattggaaa tggtctctgg ggactgaaaa 60
ctgatgtttt tgcagattac ctcagggaaa cggaggtttg ttgagttaca gacacattaa 120
accaaaggcc gtgggaaaac ccctctccag ctccagggga ttggtcagga ccacccacta 180
accagtgcct tccttcttaa cat'tcacttt~tagcagcttg tgtttatttt acatgggcag 240
ttttgatggg aaattgccat gaccacaggg gtttggagtt ctgctttttt tttttcttct 300
tctttttcgg gggactgggg gactcctccc aagatcacat tttagcatct ttctctccta 360
ctccatttag aaaaataagt aacaggtgaa atgtggtctc agtgttaacg ggataattct 420
gctaccggct cctccctgat gattctgaaa tacactactg aacgagctct ggctggtcct 480
ttctatcctg gatgtggttc ttctgtgtag caattccttg atgtccagtt tggaaagatg 540
tactcttctc aacaagaaaa 560
<210> 255
<211> 612
<212> DNA
<213> Homo Sapiens
<400> 255
gaattcggca ccaggcgggg cagcagggcc gcggccatgg ggagcttgaa ggaggagctg 60
ctcaaagcca tctggcacgc cttcaccgac tcgaccagga ccacagggca aggtctccaa 120
gtcccagctc aaggtccttt cccataacct gtgcacggtg ctgaaggttc ctcatgaccc 180
agttgccctt gaagagcact tcagggatga tgatgagggt ccagtgtcca accagggcta 240
catgccttat ttaaacaggt tcattttgga aaaggtccaa gacaactttg acaagattga 300
attcaatagg atgtgttgga ccctctgtgt caaaaaaaaa cctcacaaag aatcccctgc 360
tcattacaga agaagatgca tttaaaatat gggttatttt caacttttta tctgaggaca 420
agtatccatt aattattgtg tcagaagaga ttgaatacct gcttaagaag cttacagaag 480
ctatgggagg aggttggcag caagaacaat ttgaacatta taaaatcaac tttgatgaca 540
gtaaaaatgg cctttctgca tgggaactta ttgagcttat tggaaatgga cagtttagca 600
aaggcatgga cc 612
<210> 256
<211> 1132
<212> DNA
<213> Homo Sapiens
<400> 256
gaattcggca cgaggtctgg gagaggcctc tggagcagga ggcccagtgg ctcttctgac 60
ccaaggcccc gccgtccagc ttctaagtgc cagatgatgg aggagcgtgc caacctgatg 120
cacatgatga aactcagcat caaggtgttg ctccagtcgg ctctgagcct gggccgcagc 180
ctggatgcgg accatgcccc cttgcagcag ttctttgtag tgatggagca ctgcctcaaa 240
catgggctga aagttaagaa gagttttatt ggccaaaata aatcattctt tggtcctttg 300
gagctggtgg agaaactttg tccagaagca tcagatatag cgactagtgt cagaaatctt 360
ccagaattaa agacagctgt gggaagaggc cgagcgtggc tttatcttgc actcatgcaa 420
aagaaactgg cagattatct gaaagtgctt atagacaata aacatctctt aagcgagttc 480
tatgagcctg aggctttaat gatggaggaa gaagggatgg tgattgttgg tctgctggtg 540
ggactcaatg ttctcgatgc caatctctgc ttgaaaggag aagacttgga ttctcaggtt 600
ggagtaatag atttttccct ctaccttaag gatgtgcagg atcttgatgg tggcaaggag 660
catgaaagaa ttactgatgt ccttgatcaa aaaaattatg tggaagaact taaccggcac 720
ttgagctgca cagttgggga tcttcaaacc aagatagatg gcttggaaaa gactaactca 780
aagcttcaag aagagctttc agctgcaaca gaccgaattt gctcacttca agaagaacag 840
cagcagttaa gagaacaaaa tgaattaatt cgagaaagaa gtgaaaagag tgtagagata 900
acaaaacagg ataccaaagt tgagctggag acttacaagc aaactcggca aggtctggat 960
gaaatgtaca gtgatgtgtg gaagcagcta aaagaggaga agaaagtccg gttggaactg 1020
gaaaaagaac tggagttaca aattggaatg aaaaccgaaa tggaaattgc aatgaagtta 1080


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
111
ctggaaaagg acacccacga gaagcaggac acactagttg ccctccgcca gc 1132
<210> 257
<211> 519
<212> DNA
<213> Homo Sapiens
<400> 257
gaattcgtga cacgaggtgc tcgagatgaa ccccagcgcc cccagctacc ccatggcctc 60
tctgtacgtg ggggacctgc accccgacgt gaccgaggcg atgctctacg agaagttcag 120
cccggccggg cccatcctct ccatccgggt ctgcagggac atgatcaccc gccgctcctt 180
gggctacgcg tacgtgaact tccagcagcc ggcggacgcg gaacgtgctt tggacaccat 240
gaattttgat gttataaagg gcaagccagt acgcatcatg tggtctcagc gtgatccatc 300
acttcgcaaa agtggagtag gcaacatatt cattaaaaat ttggacaaat ccatcgacaa 360
taaagcacta tatgatacgt tttctgcgtt tggtaacatc ctttcatgta aggtggtttg 420
tgatgaaaat ggctccaagg gctatggatt tgtacacttt gaaacacagg aagcagctga 480
aagagctatt gaaaaaatga atgggatgct tctaaatga 519
<210> 258
<211> 596
<212> DNA
<213> Homo Sapiens
<400> 258
gctttgccaa agacttagaa gctaagcaga aaatgagctt aacatcctgg tttttggtga 60
gcagtggagg cactcgccac aggctgccac gagaaatgat ttttgttgga agagatgact 120
gtgagctcat gttgcagtct cgtagtgtgg ataagcaaca cgctgtcatc aactatgatg 180
cgtctacgga tgagcattta gtgaaggatt tgggcagcct caatgggact tttgtgaatg 240
atgtaaggat tccggaacag acttatatca ccttgaaact tgaagataag ctgagatttg 300
gatatgatac aaatcttttc actgtagtac aaggagaaat gagggtccct gaagaagctc 360
ttaagcatga gaagtttacc attcagcttc agttgtccca aaaatcttca gaatcagaat 420
tatccaaatc tgcaagtgcc aaaagcatag attcaaaggt agcagacgct gctactgaag 480
tgcagcacaa aactactgaa gcactgaaat ccgaggaaaa agccatggat atttctgcta 540
tgccccgtgg tactccatta tatgggcagc cgtcatggtg gggggatgat gaggtg 596
<210> 259
<211> 595
<212> DNA
<213> Homo Sapiens
<400> 259
gaattcggca ccagagaaaa agcttcaagg tatattgagt cagagtcaag ataaatcact 60
tcggagaatt tcagaattaa gagaggagct gcaaatggac cagcaagcaa agaaacatct 120
tcaggacgag tttgatgcat gtttggagga gaaagatcag tatatcagtg ttctccagac 180
tcaggtttct cttctaaagc agcgattaca gaatggccca atgaatgttg atgctcccaa 240
acccctccct cccggggagc tccaggcaga agtgcacggt gacacggaga agatggaggg 300
cgtcggggaa ccagtgggag gtgggacttc cgctaaaacc ctggaaatgc tccagcaaag 360
agtgaaacgt caggagaatc tgcttcagcg ctgtaaggag acaattgggt cccacaagga 420
gcagtgcgca ctgctgctga gtgagaagga ggcactgcag gagcagttgg atgaaaggct 480
gcaggagctg gaaaagatga aggggatggt aataaccgag acgaagcggc aaatgcttga 540
gaccctggaa ctgaaagaag atgaaattgc tcagcttcgt agtcatatca aacag 595
<210> 260
<211> 994
<2l2> DNA
<213> Homo sapiens
<400> 260


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
112
gaattcggca cgaggcgttg cctgccttct tgctgtctat cagcctttct tgcctcttcc 60
ttttcgcctt ccctgttctt ccctttctca aacaaacaag acatggcaaa ccgcagtcta 120
acccagccct ttgaaattat ccatagtttt acagacagct ccaggccatg agccacaatg 180
tccaaaatta ttcttgagca ctgatataaa ttacttagac cttctttgag ggcagaactc 240
agctgttgct ctcatgatgg gcagtgctgg aaagggttct ggtatgtctt caaaatgagt 300
ccacgagttt actgagtgct tacaggtaaa ggaatgaata taagatgtct ttctgatcag 360
aacaggtgtc ccttcacatg agctttacta gactctggga gggaaaagta gccaagtact 420
tctgaaccat tttttaatac ttgttttgtc atggtgaaat tatagcagtt atcccaaaat 480
gttttaatta tcaaaatact gtcttttaaa aaaaaaaaaa agtaacacct tttaaagcat 540
tagatttcac ttgggtttct tttccaaaaa atgctaggta gacaaggcat tgtaaacatg 600
agtttccttt aagaaccatc agaatataaa tttaacatga agaaaactgc tatatctagt 660
agaaataata tctaaagttt aacaactaaa gtaccctcac agaatagcaa. atacccttct 720
gttctggaca tgggttcaaa tttgaatatg gaaataattt ccttggaagt ccctagaggc 780
aggtcagagg aagtatgcat taagagggaa aggagagaat ggaaataaaa gtcactataa 840
tgcagattta tgccttattt tttagcattt tttaaatgtt gggtctttca aggtgttttt 900
tgctttttat tagatctata taaataagtt aactagcaat ttagttttgt atttaagcta 960
cacttaatct ttttctttgg tgatatttat ttct 994
<210> 261
<211> 594
<212> DNA
<213> Homo Sapiens
<220>
<221> misc_feature
<222> (538)
<223> n=A,T,C or G
<400> 261
gaattcggca ccagtggaga tccagctgaa ccatgccaac cgccaggctg cggaggcaat 60
caggaacctt cggaacaccc agggaatgct gaaggacaca cagctgcacc tggacgatgc 120
tctcagaggc caggacgacc tgaaagagca gctggccatg gttgagcgca gagccaacct 180
gatgcaggct gagatcgagg agctcagggc atccctggaa cagacagaga ggagcaggag 240
agtggccgag caagagctac tggatgccag tgagcgcgtg cagctcctcc acacccagaa 300
caccagcctc atcaacacca agaagaagct ggagacagac atttcccaaa tccagggaga 360
gatggaagac atcgtccagg aagcccgcaa cgcagaagag aaggccaaga aagccatcac 420
tgatgccgcc atgatggcgg aggagctgaa gaaggagcag gacaccagcg cccacctgga 480
gcggatgaag aagaacatgg agcagaccgt gaaggacctg cagcaccgtc tggacgangc 540
tgagcagctt ggcgctgaag ggcgggcaag aagcagatcc agaaactgga ggct 594
<210> 262
<211> 594
<212> DNA
<213> Homo Sapiens
<400> 262
gaaaaggtgg ctggagccaa aggcatagtc agggttaatg ctcctttttc tttatcccaa 60
atcagatagt gtttaggctt tttcatcaaa tataaaaacc cagcccagtt catggctcat 120
tcggcagcaa ccctgagacg ctttacagct ctagacccta aaaggtcaaa aggccgtctt 180
atgctcaata tacattttat tacccaatct gccccggaca ttaaataaaa ctccaaaaat 240
taaatccggc cctcaaaccc cacaacagga cttaattgac ctcaccttca aggtgtagaa 300
taataaaaaa aaaaagttgc aattccttgc ctccgctgtg agacaaaccc cagccacatc 360
tccagcacac aagaacttcc aaacgcctga accacagcag ccaggcgttc ctccagaacc 420
tcctccccca ggagcttgct acatgtgccg gaaatctggc cactaggcca aggaatgcct 480
gcagccccgg attcctccta agccgtgtcc catctgtgcg ggaccccact gaaaatcgga 540
ctgttcaact cacctggcag ccactctcag agaccctgga actctggccc aagg 594
<210> 263


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
113
<211> 506
<212> DNA
<213> Homo Sapiens
<400> 263
gaattcggca cgagcggaaa cttaggggcc acgtgagcca cggccacggc cgcataggca 60
agcaccggaa gcaccccggc ggccgcggta atgctggtgg tctgcatcac caccggatca 120
acttcgacaa ataccaccca ggctactttg ggaaagttgg tatgaagcat taccacttaa 180
agaggaacca gagcttctgc ccaactgtca accttgacaa attgtggact ttggtcagtg 240
aacagacacg ggtgaatgct gctaaaaaca agactggggc tgctcccatc attgatgtgg 300
tgcgatcggg ctactataaa gttctgggaa agggaaagct cccaaagcag cctgtcatcg 360
tgaaggccaa attcttcagc agaagagctg aggagaagat taagagtgtt gggggggcct 420
gtgtcctggt ggcttgaagc cacatggagg gagtttcatt aaatgctaac tactttttaa 480
aaaaaaaaaa aaaaaaaaaa ctcgag 506
<210> 264
<211> 600
<212> DNA
<213> Homo Sapiens
<220>
<221> misc feature
<222> (32)
<223> n=A, T, C or G
<400> 264
ggctcgtgaa cacacactga cagctatagg gnaggcggcg gcaccgtccc cgcttcccct 60
cggcggcggg gtgtcccgtc ggcggccctg aagtgaccca taaacatgtc ttgtgagagg 120
aaaggcctct cggagctgcg atcggagctc tacttcctca tcgcccggtt cctggaagat 180
ggaccctgtc agcaggcggc tcaggtgctg atccgcgagg tggccgagaa ggagctgctg 240
ccccggcgca ccgactggac cgggaaggag catcccagga cctaccagaa tctggtgaag 300
tattacagac acttagcacc tgatcacttg ctgcaaatat gtcatcgact aggacctctt 360
cttgaacaag aaattcctca aagtgttcct ggagtacaaa ctttattagg agctggaaga 420
cagtctttac tacgcacaaa taaaagctgc aagcatgttg tgtggaaagg atctgctctg 480
gctgcgttgc actgtggaag accacctgag tcaccagtta actatggtag cccacccagc 540
attgcggata ctctgttttc aaggaagctg aatgggaaat acagacttga gcgacttgtt 600
<210> 265
<211> 534
<212> DNA
<213> Homo Sapiens
<400> 265
gaattcggca cgagtgagga gcccatcatg gcgacgcccc ctaagcggcg ggcggtggag 60
gccacggggg agaaagtgct gcgctacgag accttcatca gtgacgtgct gcagcgggac 120
ttgcgaaagg tgctggacca tcgagacaag gtatatgagc agctggccaa ataccttcaa 180
ctgagaaatg tcattgagcg actccaggaa gctaagcact cggagttata tatgcaggtg 240
gatttgggct gtaacttctt cgttgacaca gtggtcccag atacttcacg catctatgtg 300
gccctgggat atggtttttt cctggagttg acactggcag aagctctcaa gttcattgat 360
cgtaagagct ctctcctcac agagctcagc aacagcctca ccaaggactc catgaatatc 420
aaagcccata tccacatgtt gctagagggg cttagagaac tacaaggcct gcagaatttc 480
ccagagaagc ctcaccattg acttcttccc cccatcctca gacattaaag agcc 534
<210> 266
<211> 552
<212> DNA
<213> Homo sapiens


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
114
<400> 266
gaattcggca ccagggcacc tccgcctcgc cgccgctagg tcggccggct ccgcccggct 60
gccgcctagg atgaatatca tggacttcaa cgtgaagaag ctggcggccg acgcaggcac 120
cttcctcagt cgcgccgtgc agttcacaga agaaaagctt ggccaggctg agaagacaga 180
attggatgct cacttagaga acctccttag caaagctgaa tgtaccaaaa tatggacaga 240
aaaaataatg aaacaaactg aagtgttatt gcagccaaat ccaaatgcca ggatagaaga 300
atttgtttat gagaaactgg atagaaaagc tccaagtcgt ataaacaacc cagaactttt 360
gggacaatat atgattgatg cagggactga gtttggccca ggaacagctt atggtaatgc 420
ccttattaaa tgtggagaaa cccaaaaaag aattggaaca gcagacagag aactgattca 480
aacgtcagcc ttaaattttc ttactccttt aagaaacttt atagaaggag attacaaaac 540
aattgctaaa ga 552
<210> 267
<211> 551
<212> DNA
<213> Homo Sapiens
<400> 267
gaagcctacc agccaggtgc cggccccccc acccccggcc cagccccctc ctgcagcggt 60
ggaagcggct cggcagatcg agcgtgaggc ccagcagcag cagcacctgt accgggtgaa 120
catcaacaac agcatgcccc caggacgcac gggcatgggg accccgggga gccagatggc 180
ccccgtgagc ctgaatgtg.c cccgacccaa ccaggtgagc gggcccgtca tgcccagcat 240
gcctcccggg cagtggcagc aggcgcccct tccccagcag cagcccatgc caggcttgcc 300
caggcctgtg atatccatgc aggcccaggc ggccgtggct gggccccgga tgcccagcgt 360
gcagccaccc aggagcatct cacccagcgc tctgcaagac ctgctgcgga ccctgaagtc 420
gcccagctcc cctcagcagc aacagcaggt gctgaacatt ctcaaatcaa acccgcagct 480
aatggcagct ttcatcaaac agcgcacagc caagtacgtg gccaatcagc ccggcatgca 540
gccccagcct g 551
<210> 268
<211> 573
<212> DNA
<213> Homo Sapiens
<400> 268
gaattcggca ccagggttcc ttgtgggcta gaagaatcct gcaaaaatgt ctctctatcc 60
atctctcgaa gacttgaagg tagacaaagt aattcaggct caaactgctt tttctgcaaa 120
ccctgccaat ccagcaattt tgtcagaagc ttctgctcct atccctcacg atggaaatct 180
ctatcccaga ctgtatccag agctctctca atacatgggg ctgagtttaa atgaagaaga 240
aatacgtgca aatgtggccg tggtttctgg tgcaccactt caggggcagt tggtagcaag 300
accttccagt ataaactata tggtggctcc tgtaactggt aatgatgttg gaattcgtag 360
agcagaaatt aagcaaggga ttcgtgaagt cattttgtgt aaggatcaag atggaaaaat 420
tggactcagg cttaaatcaa tagataatgg tatatttgtt cagctagtcc aggctaattc 480
tccagcctca ttggttggtc tgagatttgg ggaccaagta cttcagatca atggtgaaaa 540
ctgtgcagga tggagctctg ataaagcgca caa _ 573
<210> 269
<211> 500
<212> DNA
<213> Homo sapiens
<400> 269
gaatcggcac caggaaacct ttattagcag agatagctgg cttggatcag attacgggga 60
atgtggggga gccatgaaga aactaactaa aggggagcct ttggggacca gggggagaca 120
agtcactatt ttgagggaga aagctctgga ttgattctga caggacactt gagtgtgaac 180
tgtccaagct aagcctctgg gtgtgtagag agagccctta cagatagata gcacctttgc 240
tttcagagtg gaaggactag ccactaagga ccagaccaag atgcatgtag gtcactgaca 300
agcacctgat gaagaggagg ggtctcctcc aagtttgtgt ttggaactcc tcctgtgttc 360


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
115
aatttcctaa aagccataat ccagcaagct gaactcatga gaaggtctgc ttcatgttga 420
gcatggaaga cagaacacag acggaaactg cagtgatggt gtgaagacac cacggatagg 480
ttaggggcag tgaggaggaa 500
<210> 270
<211> 224
<212> DNA
<213> Homo Sapiens
<400> 270
gaattcggca cgagaagact acaatctcca gggaaacctg gggcgtctcg cgcaaacgtc 60
cataactgaa agtagctaag gcaccccagc cggaggaagt gagctctcct ggggcgtggt 120
tgttcgtgat ccttgcatct gttacttagg gtcaaggctt gggtcttgcc ccgcagaccc 180
ttgggacgac ccggccccag cgcagctatg aacctggagc gagt 224
<210> 271 ,
<211> 447
<212> DNA
<213> Homo Sapiens
<400> 271
gaattcggca cgaggctggg ccgggcccga gcggatcgcg ggctcgggct gcggggctcc 60
ggctgcgggc gctgggccgc gaggcgcgga gcttgggagc ggagcccagg ccgtgccgcg 120
cggcgccatg aagggcaagg aggagaagga gggcggcgca cggctgggcg ctggcggcgg 180
aagccccgag aagagcccga gcgcgcagga gctcaaggag cagggcaatc gtctgttcgt 240
gggccgaaag tacccggagg cggcggcctg ctacggccgc gcgatcaccc ggaacccgct 300
ggtggccgtg tattacacca accgggcctt gtgctacctg aagatgcagc agcacgagca 360
ggccctggcc gactgccggc gcgccctgga gctggacggg cagtctgtga aggcgcactt 420
cttcctgggg cagtgccagc tggagat 447
<210> 272
<211> 606
<212> DNA
<213> Homo sapiens
<400> 272
gcaactactt atattccttt gatggataat gctgactcaa gtcctgtggt agataagaga 60
gaggttattg atttgcttaa acctgaccaa gtagaaggga tccagaaatc tgggactaaa 120
aaactgaaga ccgaaactga caaagaaaat gctgaagtga agtttaaaga ttttcttctg 180
tccttgaaga ctatgatgtt ttctgaagat gaggctcttt gtgttgtaga cttgctaaag 240
gagaagtctg gtgtaataca agatgcttta aagaagtcaa gtaagggaga attgactacg 300
cttatacatc agcttcaaga aaaggacaag ttactcgctg ctgtgaagga agatgctgct 360
gctacaaagg atcggtgtaa gcagttaacc caggaaatga tgacagagaa agaaagaagc 420
aatgtggtta taacaaggat gaaagatcga attggaacat tagaaaagga acataatgta 480
tttcaaaaca aaatacatgt cagttatcaa gagactcaac agatgcagat gaagtttcag 540
caagttcgtg agcagatgga ggcagagata gctcacttga agcaggaaaa tgggtatact 600
ggagaa 606
<210> 273
<211> 598
<212> DNA
<213> Homo sapiens
<400> 273
gaattcggca ccaggcccgg tcccgcggtc gcagctccag ccgcctcctc cgcgcagccg 60
ccgcctcagc tgctcgctct gtgggtcggt cctctccggc acttgggctc cagtcgcgcc 120
ctccaagccc ttcaggccgc cccagtgtcc tcctccttct ccggccagac ccagccccgc 180
gaagatggtg gaccgcgagc aactggtgca gaaagcccgg ctggccgagc aggcggagcg 240


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
116
ctacgacgac atggccgcgg ccatgaagaa cgtgacagag ctgaatgagc cactgtcgaa 300
tgaggaaCga aaccttctgt ctgtggccta caagaacgtt gtgggggcac gccgctcttc 360
ctggagggtc atcagtagca ttgagcagaa gacatctgca gacggcaatg agaagaagat 420
tgagatggtc cgtgcgtacc gggagaagat agagaaggag ttggaggctg tgtgccagga 480
tgtgctgagc ctgctggata actacctgat caagaattgc agcgagaccc agtacgagag 540
caaagtgttc tacctgaaga tgaaagggga ctactaccgc tacctggctg aagtggcc 598
<210> 274
<211> 536
<212> DNA
<213> Homo sapiens
<400> 274
gcaccaagag actaaacaag aaagtggatc agggaagaag aaagcttcat caaagaaaca 60
aaagacagaa aatgtcttcg tagatgaacc ccttattcat gcaactactt atattccttt 120
gatggataat gctgactcaa gtcctgtggt agataagaga gaggttattg atttgcttaa 180
acctgaccaa gtagaaggga tccagaaatc tgggactaaa aaactgaaga ccgaaactga 240
caaagaaaat gctgaagtga agtttaaaga ttttcttctg tccttgaaga ctatgatgtt 300
ttctgaagat gaggctcttt gtgttgtaga cttgctaaag gagaagtctg gtgtaataca 360
agatgcttta aagaagtcaa gtaagggaga attgactacg cttatacatc agcttcaaga 420
aaaggacaag ttactcgctg ctgtgaagga agatgctgct gctacaaagg atcggtgtaa 480
gcagttaacc caggaaatga tgacagagaa agaaagaagc aatgtggtta taacaa 536
<210> 275
<211> 494
<212> DNA
<213> Homo Sapiens
<220>
<221> misc_feature
<222> (379)
<223> n=A,T,C or G
<400> 275
gaattcggca ccagggtcgc ggttcttgtt tgtggatcgc tgtgatcgtc acttgacaat 60
gcagatcttc gtgaagactc tgactggtaa gaccatcacc ctcgaggttg agcccagtga 120
caccatcgag aatgtcaagg caaagatcca agataaggaa ggcatccctc ctgaccagca 180
gaggctgatc tttgctggaa aacagctgga agatgggcgc accctgtctg actacaacat 240
ccagaaagag tccaccctgc acctggtgct ccgtctcaga ggtgggatgc aaatcttcgt 300
gaagacactc actggcaaga ccatcaccct tgaggtggag cccagtgaca ccatcgagaa 360
cgtcaaagca aagatccang acaaggaagg cattcctcct gaccagcaga ggttgatctt 420
tgccggaaag cagctggaag atgggcgcac cctgtctgac tacaacatcc agaaagagtc 480
taccctgcac ctgg 494
<210> 276
<211> 484
<212> DNA
<213> Homo Sapiens
<400> 276
ggcttttaac cagaagtcaa acctgttcag acagaaggca gtcacagcag aaaaatcttc 60
agacaaaagg cagtcacagg tgtgcaggga gtgtgggcga ggctttagca ggaagtcaca 120
gctcatcata caccagagga cacacacagg agaaaagcct tatgtctgcg gagagtgtgg 180
gcgaggcttt atagttgagt cagtcctccg caaccacctg agtacacact ccggggagaa 240
accttatgtg tgcagccatt gtgggcgagg ctttagctgc aagccatacc tcatcagaca 300
tcagaggaca cacacaaggg agaaatcgtt tatgtgcaca gtgtgtgggc gaggctttcg 360
tgaaaagtca gagctcatta agcaccagag aattcacacg ggggataagc cttatgtgtg 420
cagagattga ggccgaggct ttgtaaagga gatcatgtct caacacacac cagaggatta 480


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
117
catt 484
<210> 277
<211> 513
<212> DNA
<213> Homo sapiens
<400> 277
gcttgaggct gccaatcaga gcttggcaga gctgagagat cagcggcagg gggagcgcct 60
ggaacatgca gcagctttgc gggccctaca agatcaggta tccatccaga gtgcagatgc 120
acaggaacaa gtggaagggc ttttggctga gaacaatgcc ttgaggacta gcctggctgc 180
cctggagcag atccaaacag caaagaccca agaactgaat atgctccggg aacagaccac 240
tgggctggca gctgagttgc agcagcagca ggctgagtac gaggacctta tgggacagaa 300
agatgacctc aactcccagc tccaggagtc attacgggcc aatagtcgac tgctggaaca 360
acttcaagaa atagggcagg agaaggagca gttgacccag gaattacagg aggctcggaa 420
gagtgcggag aagcggaagg ccatgcttgg atgagctagc aatggaaacg ctgcaagaga 480
agtcccacac aaggaagagc ttgggagcag ttc 513
<210> 278
<211> 471
<212> DNA
<213> Homo Sapiens
<400> 278
gaattcggca ccagccaagg ccctgtccct ggctcgggcc cttgaagagg ccttggaagc 60
caaagaggaa ctcgagcgga ccaacaaaat gctcaaagcc gaaatggaag acctggtcag 120
ctccaaggat gacgtgggca agaacgtcca tgagctggag aagtccaagc gggccctgga 180
gacccagatg gaggagatga agacgcagct ggaagagctg gaggacgagc tgcaagccac 240
ggaggacgcc aaactgcggc tggaagtcaa catgcaggcg ctcaagggcc agttcgaaag 300
ggatctccaa gcccgggacg agcagaatga ggagaagagg aggcaactgc agagacagct 360
tcacgagtat gagacggaac tggaagacga gcgaaagcaa cgtgccctgg cagctgcagc 420
aaagaagaag ctggaagggg acctgaaaga cctggagctt caggccgact t 471
<210> 279
<211> 497
<212> DNA
<213> Homo Sapiens
<220>
<221> misc_feature
<222> (457)
<223> n=A,T,C or G
<221> misc_feature
<222> (471)
<223> n=A,T,C or G
<400> 279
gaattcggca cgaggccaca gaggcggcgg agagatggcc ttcagcggtt cccaggctcc 60
ctacctgagt ccagctgtcc ccttttctgg gactattcaa ggaggtctcc aggacggact 120
tcagatcact gtcaatggga ccgttctcag ctccagtgga accaggtttg ctgtgaactt 180
tcagactggc ttcagtggaa atgacattgc cttccacttc aaccctcggt ttgaagatgg 240
agggtacgtg gtgtgcaaca cgaggcagaa cggaagctgg gggcccgagg agaggaagac 300
acacatgcct ttccagaagg ggatgccctt tgacctctgc ttcctggtgc agagctcaga 360
tttcaaggtg atggtgaacg ggatcctctt cgtgcagtac ttccaccgcg tgcccttcca 420
ccgtgtggac accatctccg tcaatggctc tgtgcanctg tcctacatca ncttccagac 480
ccagacagtc atccaca 497
<210> 280


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
118
<211> 544
<212> DNA
<213> Homo Sapiens
<220>
<221> misc_feature
<222> (451)
<223> n=A,T,C or G
<400> 280
gaattcggca ccagaatagg aacagctccg gtctacagct cccagcgtga gcgacgcaga 60
agacgggtga tttctgcatt tccatctgag gtaccgggtt catctcacta gggagtgcca 120
gacagtgggc gcaggccagt gtgtgtgcgc accgtgcgcg agccgaagca gggcgaggca 180
ttgcctcacc tgggaagcac aaggggtcag ggagttccct ttccgagtca aagaaagggg 240
tgacggacgc acctggaaaa tcgggtcact cccacccgaa tattgtgctt ttcagaccgg 300
cttaagaaac ggcgcaccac gagactatat cccacacctg gctcagaggg tcctacgccc 360
acggaatctc gctgattgct agcacagcag tcttagatca aactgcaagg ggggcaacga 420
ggctggggga ggggcgcccg ccattgccca ngcttgctta ggtaaacaaa gcagccggga 480
agcttgaact gggtggagcc caccacagct caaggaggcc tgcctgcctc tgtagctcca 540
cctc 544
<210> 281
<2I1> 527
<212> DNA
<213> Homo Sapiens
<220>
<221> misc_feature
<222> (456)
<223> n=A,T,C or G
<400> 281
gaattcggca cgaggcctcg ctcagctcca acatggcaaa aatctccagc cctacagaga 60
ctgagcggtg catcgagtcc ctgatt,gctg tcttccagaa gtatgctgga aaggatggtt 120
ataactacac tctctccaag acagagttcc taagcttcat gaatacagaa ctagctgcct 180
tcacaaagaa ccagaaggac cctggtgtcc ttgaccgcat gatgaagaaa ctggacacca 240
acagtgatgg tcagctagat ttctcagaat ttctt aatct gattggtggc ctagctatgg 300
cttgccatga ctccttcctc aaggctgtcc cttcccagaa gcggacctga ggaccccttg 360
gccctggcct tcaaacccac occctttcct tccagccttt ctgtcatcat ctccacagcc 420
cacccatccc ctgagcacac taaccacctc atgcanggcc cccctgccaa tagtaataaa 480
gcaatgtcct tttttaaaac atgaaaaaaa aaaaaaaaaa actcgag 527
<210> 282
<211> 514
<212> DNA
<213> Homo Sapiens
<220>
<221> misc_feature
<222> (494)
<223> n=A,T;C or G
<400> 282
ggaagactgg agcctttgcg gcggcgctgc ccctcccctg gtccccgcga gctcggaggg 60
cccggctggt gctgcggggg ccccgggagg ttgaaaacta agcatgggga agagctgcaa 120
ggtggtcgtg tgtggccagg cgtctgtggg caaaacttca atcctggagc agcttctgta 180
tgggaaccat gtagtgggtt cggagatgat cgagacgcag gaggacatct acgtgggctc 240
cattgagaca gaccgggggg tgcgagagca ggtgcgtttc tatgacaccc gggggctccg 300


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
119
agatggggcc gaactgcccc gacactgctt ctcttgcact gatggctacg tcctggtcta 360
tagcacagat agcagagagt~ cttttcagcg tgtggagctg ctcaagaagg agattgacaa 420
atccaaggac aagaaggagg tcaccatcgt ggtccttggc aacaagtgtg acttacagga 480
gcagcggcgt gtanacccaa atgtggctca acac 514
<210> 283
<212> 484
<212> DNA
<213> Homo Sapiens
<400> 283
gggcgggcgg tggacagtca tggcggcccg gcgcggggct ctcatagtgc tggagggcgt 60
ggaccgcgcc gggaagagca cgcagagccg caagctggtg gaagcgctgt gcgccgcggg 120
ccaccgcgcc gaactgctcc ggttcccgga aagatcaact gaaatcggca aacttctgag 180
ttcctacttg caaaagaaaa gtgacgtgga ggatcactcg gtgcacctgc ttttttctgc 240
aaatcgctgg gaacaagtgc cgttaattaa ggaaaagttg agccagggcg tgaccctcgt 300
cgtggacaga tacgcatttt ctggtgtggc cttcaccggt gccaaggaga atttttccct 360
agactggtgt aaacagccag acgtgggcct tcccaaaccc gacctggtcc tgttcctcca 420
gttacagctg gcggatgctg ccaagcgggg agcgtttggc catgagcgct atgagaacgg 480
ggct 484
<210> 284
<211> 514
<212> DNA
<213> Homo Sapiens
<400> 284
gaattcggca cgaggcggag gccgcggagg ctcctcggtc cttcagcacc cctcggcccg 60
acgcacccac gcccctcacc ccccgagagc cgaaaatgga cccaagtggg gtcaaagtgc 120
tggaaacagc agaggacatc caggagaggc ggcagcaggt cctagaccga taccaccgct 180
tcaaggaact ctcaaccctt aggcgtcaga agctggaaga ttcctatcga ttccagttct 240
ttcaaagaga tgctgaagag ctggagaaat ggatacagga aaaacttcag attgcatctg 300
atgagaatta taaagaccca accaacttgc agggaaagct tcagaagcat caagcatttg 360
aagctgaagt gcaggccaac tcaggagcca ttgttaagct ggatgaaact ggaaacctga 420
tgatctcaga agggcatttt gcatctgaaa ccatacggac ccgtttgatg gagctgcacc 480
gc,cagtggga attacttttg gagaagatgc gaga 514
<210> 285
<211> 383
<212> DNA
<213> Homo Sapiens
<400> 285
gaattcggca cgaggccggg ctccaccgcg catcctgctc cactctggcg accgcccccg 60
gggcccccgc cgcgggcgcg gcgcccgcca tgggcgagga ggactactat ctggagctgt 120
gcgagcggcc ggtgcagttc gagaaggcga accctgtcaa ctgcgtcttc ttcgatgagg 180
ccaacaagca ggtttttgct gttcgatctg gtggagctac tggcgtggta gttaaaggcc 240
cagatgatag gaatcccatc tcatttagaa tggatgacaa aggagaagtg aagtgcatta 300
agttttcctt agaaaataag atattggctg ttcagaggac ctcaaagact gtggattttt 360
gtaattttat ccctgataat tcc 383
<210> 286
<211> 943
<212> DNA
<213> Homo Sapiens
<400> 286
gaattcggca ccagggccgt ggcggaggag gagcgctgca cggtggagcg tcgggccgac 60


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
120
ctcacctacg cggagttcgt gcagcagtac gtgcgcccct gatcgcggag gtcgcgtcct 120
gttcaccggc ccgtctgccc cgaccgccca aggccgcctt cccctgacct cgcgcgcacg 180
cgtggggctg gggcggcgag gctggcggtc cggcctggcc gcgactctgc ccttctttcc 240
agaggttccg ggccctgtgc tcccgcgaca ggttgctggc ttcgtttggg gacagagtgg 300
tccggctgag caccgccaac acctactcct accacaaagt ggacttgccc ttccaggagt 360
atgtggagca gctgctgcac ccccaggacc ccacctccct gggcaatggt gaggcagccc 420
taggcggcgg tagggggtgg ggacgcttgg agtctccagg tgccaggatc cctgtccccg 480
ccgtctctgt tggcagacac cctgtacttc ttcggggaca acaacttcac cgagtgggcc 540
tctctctttc ggcactactc cccaccccca tttggcctgc tgggaaccgc tccagcttac 600
agctttggaa tcgcaggagc tggctcgggg gtgcccttcc actggcatgg acccgggtac 660
tcagaagtga tctacggtcg taagcgctgg ttcctttacc cacctgagaa gacgccagag 720
ttccacccca acaagaccac actggcctgg ctccgggaca catacccagc cctgccaccg 780
tctgcacggc ccctggagtg taccatccgg gctggtgagg tgctgtactt ccccgaccgc 840
tggtggcatg ctacgctcaa ccttgacacc agcgtcttca tctccacctt cctcggctag 900
ccaaaacagc tggcaggact gccggtcaca caccagcacg tcc 943
<210> 287
<211> 1143
<212> DNA
<213> Homo Sapiens
<400> 287
gaattcggca cgagggaaga acagctgttg gaacaacaag aatatttaga aaaagaaatg 60
gaggaagcaa agaaaatgat atcaggacta caggccttac tgctcaatgg atccttacct 120
gaagatgaac aggagaggcc cttggccctc tgtgaaccag gtgtcaatcc cgaggaacaa 180
ctgattataa tccaaagtcg tctggatcag agtatggagg agaatcagga cttaaagaag 240
gaactgctga aatgtaaaca agaagccaga aacttacagg ggataaagga tgccttgcag 300
cagagattga ctcagcagga cacatctgtt cttcagctca aacaagagct actgagggca 360
aatatggaca aagatgagct gcacaaccag aatgtggatc tgcagaggaa gctagatgag 420
aggaaccggc tcttgggaga atataaaaaa gagctggggc agaaggatcg ccttcttcag 480
cagcaccagg ccaagttaga agaagcactc cggaaactct ctgatgtcag ttaccaccag 540
gtggatctag agcgagagct agaacacaaa gatgtcctct tggctcactg tatgaaaaga 600
gaggcagatg aggcgaccaa ctacaacagt cacaactctc aaagcaatgg ttttctcctt 660
ccaacggcag gaaaaggagc tacttcagtc agcaacagag ggaccagcga cctgcagctt 720
gttcgagatg ctctccgcag cctgcgcaac agcttcagtg gccacgatcc tcagcaccac 780
actattgaca gcttggagca gggcatttct agcctcatgg agcgcctgca tgttatggag 840
acgcagaaga aacaagaaag aaaggttcgg gtcaagtcac ccagaactca agtaggtagt 900
gaataccggg agtcctggcc ccctaactca aagttgcctc actcacagag ctctccaact 960
gtcagcagca cctgtactaa agtgctctat ttcactgacc ggtcacttac gcccttcatg 1020
gtcaatatac caaagaggtt ggaggaggtg acgttaaagg attttaaagc agctattgat 1080
cgggaaggaa atcaccggta tcacttcaaa gcactggatc'ctgagtttgg cactgtcaaa 1140
gag 1143
<210> 288
<211> 881
<212> DNA
<213> Homo Sapiens
<400> 288
gtgagagcgg gccgaggaga ttggcgacgg tgtcgcccgt gttttcgttg gcgggtgcct 60
gggctggtgg gaacagccgc ccgaaggaag caccatgatt tcggccgcgc agttgttgga 120
tgagttaatg ggccgggacc gaaacctagc cccggacgag aagcgcagca acgtgcggtg 180
ggaccacgag agcgtttgta aatattatct ctgtggtttt tgtcctgcgg aattgttcac 240
aaatacacgt tctgatcttg gtccgtgtga aaaaattcat gatgaaaatc tacgaaaaca 300
gtatgagaag agctctcgtt tcatgaaagt tggctatgag agagattttt tgcgatactt 360
acagagctta cttgcagaag tagaacgtag gatcagacga ggccatgctc gtttggcatt 420
atctcaaaac cagca,gtctt ctggggccgc tggcccaaca ggcaaaaatg aagaaaaaat 480
tcaggttcta acagacaaaa ttgatgtact tctgcaacag attgaagaat tagggtctga 540


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
121
aggaaaagta gaagaagccc aggggatgat gaaattagtt gagcaattaa aagaagagag 600
agaactgcta aggtccacaa cgtcgacaat tgaaagcttt gctgcacaag aaaaacaaat 660
ggaagtttgt gaagtatgtg gagccttttt aatagtagga gatgcccagt cccgggtaga 720
tgaccatttg atgggaaaac aacacatggg ctatgccaaa attaaagcta ctgtagaaga 780
attaaaagaa aagttaagga aaagaaccga agaacctgat cgtgatgagc gtctaaaaaa 840
ggagaagcaa gaaagagaaa aaaaaaaaaa aaaaactcga g 881
<210> 289
<211> 987
<212> DNA
<213> Homo Sapiens
<400> 289
gaattcggca cgagggactg tggtttccag gaatggtggc gtctcacgct tcttgtgctt 60
tttcctttgg ggcctccgag cggctggggt tgggggactg ggcaggaggc tccctgtaaa 120
catttggact tgggctgggg caggggctgg tgttgggcaa agctgggggt ccaggctgga 180
gaagcagggg cccctccaga cgcagccttg ggagactcag catgtgcccc cctcccctca 240
tcacagaaca agacaatggt taaaaaccag aacagatgcc cagaaggggg taccatggcc 300
attaccagca tctcagacaa gggcaggctt caaacaggga ggcctgtggc aacccctccc 360
ctacgtotgg agctgagggg acagggggag ctgagaacaa agagaggaaa gaggagaaaa 420
gcggcggggg aacaggcggg gagcgtgatc ttcttgcccc catcttcctc aggggttggg 480
gggtacaaag tcggcggtgg cccatcccgc caggccccgc tgcccctcag aagaggccgc 540
agtccttcag gttgttcttg atgatgacat cggtgacggc gtcaaacacg aactgcacgt 600
tcttggtgtc ggtggcgcac gtgaagtgcg tgtagatctc cttggtgtct ttgcgcttat 660
tcaggtcctc aaacttactc tggatgtagc tggctgcctc atcatatttg ttggcccctg 720
tatactcagg gaagcagatg gtcaggggac tgtgtgtgat Cttctcctca aacaggtcct 78O
tcttgttgag gaagaggatg atggacgtgt ctgtgaacca cttgttgttg cagatgctat 840
cgaatagctt catgctctca tgcatgcggt tcatctcctc gtcctcagct agcaccaagt 900
cataggcgct caaggctacg cagaagatga tggctgtgac gccctcaaag cagtggatcc 960
acttcttccg ctcagaccgc tgaccac 987
<210> 290
<211> 300
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (2). .(300)
<223> n = A,T,C or G
<400> 290
gattcaagat gtaccccatt gactttgaga aggatgatga cagcaacttt catatggatt 60
toatcgtggc tgcatccaac ctccgggcag aaaactatga cattccttct gcagaccggc 120
acaagagcaa gctgattgca gggaagatca tcccagccat tgccacgacc acagcagccg 180
tggttggcct tgtgtgtctg gagctgtaca aggttgtgca ggggcaccga cancttgact 240
cctacangaa tgggtgcctc aacttgagcc ctgcctttct ttggtttctc tgaacccctt 300
<210> 291
<211> 352
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1). .(352)
<223> n = A,T,C ox G


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
122
<400> 291


aaccaagctgccaccgggggtggatcggatgcggcttgagaggcatctgtctgccgagga 60


cttctcaagggtatttgccatgtcccctgaagagtttggcaagctggctctgtggaagcg 120


gaatgagctcaagaagaaggcctctctcttctgatggcccccacctgctccgggacggcc 180


cccttacccctgctgcttcagggtttttccccggcgggttgggaggggcaggaggtgggg 240


tggaaatngggtgggcncctttcctcaggtagagnggggggccaaaacctctgcngtccc 300


cggagngagctatggactttcttccccctcacaaggntgggggcctcctgct 352


<210> 292
<211> 511
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1)...(511)
<223> n = A,T,C or G
<400> 292


cgcggtggctgcgcactcngcctgagaaactcggcaagcgcgcagtgtcgactccccggt 60


ctatgccaggcgcatctcagctaatccaaaagtaaatgagaaacttagaaaaagattgcc 120


aattccaaatcaacatatttagagaaaattggaaaaggagaagcttactacagctttatt 180


tgaggactttttaaagaacgctgggttctatctgtgagctgcaaatcttggagcaaaaac 240


cagagacattgccagagcaaacaagaacagaaatacaaatggagaactggtcaaaagaca 300


taacccacagttatcttgaacaagaaactacggggataaataaaagtacgcanccagatg 360


agcaactgactatgaattctgagaaaagtatgcatcggaaatccactgaattagntaatg 420


aaataacatgngagaacacagaatggccaggggcagagatcaacgaattttcanatcatc 480


agttcttatccagatgatgagtctgtttact 511


<210> 293
<211> 526
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1)...(526)
<223> n = A,T,C or G
<400> 293


gataaaaagaactttaatggaaggcactgttgtccaaaatcacataaagggtaagagccc 60


acacggtaccaccctgctctcctacttctcaaacccacatccaccacccagacaggaggg 120


tgcanaccccacaggaaattacctcc,cggagcactgactgatatttttccttaaaacaaa 180


aaaatggctgtctcagactaataacagaacatcttaagagctataccagctattacagcc 240


tggtaatanaagcagctttctaanaattcccaagtttataanaggcccaanaaatgcatt 300


tattctgttgtctattaagcctccatgacaaggagaaagttatgagtaaatccttggttc 360


atcaggagttaagagctgtgngcctcatgaggagttaanagctgtgtgcataagcaggtt 420


caagaaacaaactcctgtttgtttgcctctttgatggttcaaaaacattcagctgctttc 480


acctctangacaaaatgcttaaagaatttactctcatcaccttggg 526


<210> 294 '
<211> 601
<212> DNA
<213> Homo sapien
<220>
<221> misc feature


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
123
<222> (1)...(601)
<223> n = A,T,C or G
<400>
294


actttaaaagccaaatatatttttaaaagatcatgcttataataagtaaattacncatta 60


aggaaacatcaaaataaagtagatgaataaaaaggcacactcgaaaaatttgagcgcaga 120


aaggacagttctttttgttttgtttctaatgtcggaagaaaaagaaagagatatattaaa 180


atcattgttttcaagtgaaggtttctgtcagttgaagtagttagcaatggcttcttttct 240


cccgtgtccaaagcaggctcttcctgcgctgacttctgaggaggngttcagtcctctgcc 300


atgtataggcgatacatcaaggcgacggccactgcagagatggcagggatcacccagttg 360


gtccaccaactggaactagaatcaatagtagtgataagagtttccggaggcttgtttaac 420


tttggtctgtcatctggatggagctccccaatgatgaatgttttggacatttccctggca 480


tctgtagantgcccgacatcctcaaagttctcagtagcngtcacctccacttgttccctt 540


aaaacttcttccccaccaggatgctcttccagaaatttgggncaaatcgnacaccttgtg 600


g 601


<210> 295
<211> 262
<212> DNA
<213> Homo sapien
<400> 295
cccttagccc caagggccct gggggcagcc accctcccgc ctgtcggccc gtagatttat 60
caagggtgtt atgggcccag ctttgggggg ccagtcccga tgcactttga ggggtgttgg 120
agaggggact cccccactcg cacttaactc aacggctctc gggccctggg gctgttttta 180
ccatgtttgt ttttgaagct caggtgtctc acgtctgggc tgcaccaggc gaagagagaa 240
attaaagatt tgaggttttt cc 262
<210> 296
<211> 598
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1). .(598)
<223> n = A,T,C or G
<400>
296


gttagaacaactcagcaaaataaaattcctgtttattgttggacaacattgtttcacaca 60


tacatcaaacaggccaaaaaaaataaacagcaacttcatagacaaaaaaggaaaaaaaaa 120


gaaaccttttatctttggcctttttaaccatctcatacaaaccaactacttatagtacag 180


ctaagtacatacacaaaaaagttactggaatgctcggaataagattgtttttctgttgtc 240


atttttgctttttttacaaggntttttttctcctttgagattataatgaacatggncaca 300


ccacaagtaaagtcagaagtaggacaganaacgctccgaaggctggtttggtcatccgan 360


atcattaaaaatggctgaccctaacaatatgtacaaaaatataaaatgtaaataaaaaat 420


acaaacaaatttcctttttaaagtacttttaagaaaaaaagcagggccttggaagttttg 480


gttcttttttcctcccctgttgcaaattctcatggtttgggttgggtggngganancccg 540


tgtcatctgcgggtggcactgccccggngggcgggcgggcctctctctcgaangngac 598


<210> 297
<211> 509
<212> DNA
<2l3> Homo sapien
<400> 297
agaacacagg tgtcgtgaaa actaccccta aaagccaaaa tgggaaagga aaagactcat 60
atcaacattg tcgtcattgg acacgtagat tcgggcaagt ccaccactac tggccatctg 120


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
124
atctataaatgcggtggcatcgacaaaagaaccattgaaaaatttgagaaggaggctgct 180


gagatgggaaagggctccttcaagtatgcctgggtcttggataaactgaaagctgagcgt 240


gaacgtggtatcaccattgatatctccttgtggaaatttgagaccagcaagtactatgtg 300


actatcattgatgccccaggacacagagactttatcaaaaacatgattacagggacatct 360


caggctgactgtgctgtcctgattgttgctgctggtgttggtgaatttgaagctggtatc 420


tccaagaatgggcaggacccgagagcatgcccttctggcttacacactgggtgtgaaaca 480


actaattgtcggtgttaacaaaatggatt 509


<210> 298
<211> 267
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1)...(267)
<223> n = A,T,C or G
<400>
298


gggacgggggaaaggagacgcttcttcctcttgctgctcttctcgttcccgagatcagcg 60


gcggcggtgaccgcgagtgggtcggcaccgtctccggctccgggngcnaacaatgctgac 120


tgatagcggaggcggnggcacctccttnnaggaggacctggactctgtggctccgcgatc 180


cgccccagctggggcctcggagccgcctccgccgggaggggtcggtctggggatccncac 240


cgngaggctntttggggagggogggcc 267


<210> 299
<211> 121
<212> DNA
<213> Homo sapien
<400> 299
ggcacgaggg ccctcggagc tcgtttccag atcgaggtaa gagggacttt cttaaaggcc 60
tagtctatgg gatggggcgg cggagggaat tttttgagaa ataaaatgaa gctgcagtgt 120
a 121
<210> 300
<211> 533
<212> DNA
<213> Homo sapien
<400>
300


aaggtgcacagtatttgatgcaggctgctggtcttggtcgtatgaagccaaacacacttg 60


tccttggatttaagaaagattggttgcaagcagatatgagggatgtggatatgtatataa 120


acttatttcatgatgcttttgacatacaatatggagtagtggttattcgcctaaaagaag 180


gtctggatatatctcatcttcaaggacaagaagaattattgtcatcacaagagaaatctc 240


ctggcaccaaggatgtggtagtaagtgtggaatatagtaaaaagtccgatttagatactt 300


ccaaaccactcagtgaaaaaccaattacacacaaagttgaggaagaggatggcaagactg 360


caactcaaccactgttgaaaaaagaatccaaaggccctattgtgcctttaaatgtagctg 420


accaaaagcttcttgaagctagtacacagtttcagaaaaaacaaggaaagaatactattg 480


atgtctggtggctttttgatgatggaggtttgaccttattgataccttacctt 533


<210> 301
<211> 560
<212> DNA
<213> Homo sapien
<220>
<221> misc feature


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
125
<222> (1)...(560)
<223> n = A,T,C or G
<400> 301


ataaatgatcccttttattgtaagtaatgcgcaacactggcctggctttgcactgcaagc 60


cctcggtcaagatatagtcaaataactatggctgcaggttccacagttccacaataacca 120


tggctgcacgatccacaattcagacacagacatagagctggggtgggtggaaggggcagg 180


agggtggcagagtgcggactgtccccagccctggcctctccatgcanagttggcccaggc 240


agacacaccccatggaatgatgagaaagtgacggcacggccccttcccacagcaagcctg 300


gggctgccaggaactgcccttcanaacctttgggcccaggtcnccctgaanccccacaac 360


tttttatctggaataagtattaaaaaacaataaattaagcaaacaacntggnccttgaag 420


gatgttgaccnacatggtccacagtt,tttggcncaaaaaaataagggctggtttgctttt 480


tttggaaggcagggtttgtggnttggctttcaaatnattttcaaaccattccccagggag 540


gganaacccccgggggggaa 560


<210> 302
<211> 599
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1)...(599)
<223> n = A,T,C or G
<400> 302


gcaaagttacaaatttattggtctggaaataaatacaaatatctcattaanaaactcctc 60


tggaaagacttgtgcacaatagtttcccatccgtactcagCCtCtCttgCCCCgatCCCC 120


gacttttctactcaaggccagggaaggcctccaaggngatgggcggcaggtaacgagtca 180


ttgcctctcacgccacctggaaggctggactacttcctcctcccaactgcggggtcccan 240


aaatcctcgggtcccagnggctgacttacaatattcaattcactctgaccaaacttccta 300


tganaaaatccacggngagccaaaatgaaaagtacaaggcagtagtacaggaacctggca 360


gccgcactggccgcccanaaacgtcagtggngctgccccattcggcgaaaggttagggag 420


caggaaaagaggaagcaggagagggaaggaaagtcccatggaatatgtattccanaatcc 480


ttacattttctcagccaccgctccccacgtgagttcccacccccaccccgacaagaagca 540


aagagttctgaggatccaagaacgtgaccgggtcanacangttcagctactgagttcac 599


<210> 303
<211> 591
<212> DNA
<213> Homo sapien
<400> 303


cggagttgtaacgctccactgactgatagagcgaccggccgaccatggcgcccggagtgg 60


cccgcgggccgacgccgtactggaggttgcgcctcggtggcgccgcgctgctcctgctgc 120


tcatcccggtggccgccgcgcaggagcctcccggagctgcttgttctcagaacacaaaca 180


aaacctgtgaagagtgcctgaagaacgtctcctgtctttggtgcaacactaacaaggctt 240


gtctggactacccagttacaagcgtcttgccaccggcttccctttgtaaattgagctctg 300


cacgctggggagtttgttgggtgaactttgaggcgctgatcatcaccatgtcggtagtcg 360


ggggaaccctcctcctgggcattgccatctgctgctgctgctgctgcaggaggaagagga 420


gccggaagccggacaggagtgaggagaaggccatgcgtgagcgggaggagaggcggatac 480


ggcaggaggaacggagagcagagatgaagacaagacatgatgaaatcagaaaaaaatatg 540


gcctgtttaaagaagaaaacccgtatgctagatttgaaaacaactaaagcg 591


<210> 304
<211> 441
<212> DNA
<213> Homo sapien


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
126
<220>
<221> misc_feature
<222> (1) . . . (441)
<223> n -- A,T,C or G
<400>
304


gctggacggagacctgctggaggaggaggagctggaggaagcagaggaggaggaccggtc 60


gtcgctgctgctgctgtcgccgcccgcggccaccgcctctcagacccagcagatcccagg 120


cgggtccctggggtctgtgctgctgccagccgccaggttcgatgcccgggaggcggcggc 180


ggcggcgggggtgctgtacggaggggacgatgcccagggcatgatggcggcgatgctgtc 240


ccacgcctacggccccggcggttgtggggcggcggcggccgccctgaacggggagcaggc 300


ggccctgctccggagaaagagcgtcaacaccaccgagtgcgtcccggtgcccagctccga 360


gcacgtcgccgagatcgtcggccgccagggttgtaaaattaaagcactganagccaagac 420


aaacacgtatatcaagactcc 441


<210> 305
<211> 491
<212> DNA
<213> Homo sapien
<400>
305


tcgccatgcccccttcttagcactgcaccgccaggtccatgctgctgccaccccagacct 60


gggctttgcctgccacctctgtgggcagagcttccgaggctgggtggccctggttctgca 120


tctgcgggcccattcagctgcaaagcggcccatcgcttgtcccaaatgcgagagacgctt 180


ctggcgacgaaagcagcttcgagctcatctgcggcggtgccaccctcccgccccggaggc 240


ccggcccttcatatgcggcaactgtggccggagctttgcccagtgggaccagctagttgc 300


ccacaagcgggtgcacgtagctgaggccctggaggaggccgcagccaaggctctggggcc 360


ccggcccaggggccgccccgcggtgaccgccccccggcccggtggagatgccgtcgaccg 420


ccccttccagtgtgcctgttgtggcaagcgcttccggcacaagcccaacttgatcgctca 480


cccgcgcgtgc 491


<210> 306
<211> 547
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1)...(547)
<223> n = A,T,C or G
<400> 306


tctctttcttttaagacaggaatgtaagccacaacatttacaaatacaatgttttaactc 60


tctacatgtaggaagccaacctgctcctttttgatcttcttctttggcacaacctcagtg 120


gatttctctgattcagaacgagttctaattgatcttctctgttgcttcttttctactgag 180


cctgtagaaccagatgttgcttcaggagatgatacactctgcgttggcttttcatttctc 240


tggtttggtgtagaaattataagcctgtcttgcccccfigacacttatttctgttttgtta 300


ccaattccctttgttgaataaacaaattgatcgataaatttcccatcccctgtagcattc 360


tgaagagcaaacacttgttcaattttcacaactggagacatgttacacttctgcaaatcc 420


aggctccctttgtgcatccgtaatggaagctggtaaggatttccttgctgccgcagtttt 480


ccaggctat.tttaacaggcggnggctcttcctctttccgcacttgtgtgccgcctctggc 540


tatgtct 547


<210> 307
<211> 571
<212> DNA
<213> Homo sapien


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
127
<220>
<221> misc_feature
<222> (1)...(571)
<223> n = A,T,C or G
<400> 307
cgctgcatgtgataatgtcatcatttatttttaaatggttctaaattgcanatttaagtt 60


gatttcaaatcaaccctatttttaaattacttttaataggaanaaatgaagcaaggacat 120


acataatctactatatttgaaggactcaaacaaatacatgtttggctgtgaattctgtac 180


tctcaccaaaacagagataaaaatccacctaaaatacactttccttcatttagtgcttgt 240


ggganaaggtcaagtattgcactttaaaattactttcatctaacatttgccccaactttc 300


cccctgaattcactatatgttttcagcaaacatgattttataaattttaagtataaaagc 360


aactaggttttctaattcaactttggaaggtttactttactctacanagctatttttgta 420


aaacggcatatttacttacaaaattganagataggggcatccagctgaggtacatttcct 480


cccttggcgttgagtttctggacttgggtcgggggcacaggcttgtgtgactgccccgtg 540


gcccgatacatggcctggaccccaggatgcg 571


<210> 308
<211> 591
<212> DNA ,
<213> Homo sapien
<220>
<221> misc_feature
<222> (1). .(591)
<223> n = A,T,C or G
<400> 308


ctccttatgtgtctgcctacttcattcttcggcatttcctgcttatccaagttcaccatt 60


tcaggtcaccactggatatcagttgcctgtatataattatcaggcatttcctgcttatcc 120


aagttcaccatttcaggtcaccactggatatcagttgcctgtatataattatcaggcatt 180


tcctgcttatccaagttcaccatttcaggtcaccaCtggatatcagttgcctgtatataa 240


ttatcaggcatttcctgcttatccaagttcaccatttcaggtcaccactggatatcagtt 300


gcctgtatataattatcaggcatttcctgcttatccaagttcaccatttcaggtcaccac 360


tggatatcagttgcctgtatataattatcaggcatttcctgcttatccaagttcaccatt 420


tcaggtcaccactggatatcagttgcctgtatataattatcaggcatttcctgcttatcc 480


aaattcagcagttcaggtcaccactggatatcagttccatgtatacaattaccagatgcc 540


accgcagtgccctgttgggggagcaaaggagaaatntgtggaccgaagcat 591


<210> 309
<211> 591
<212> DNA
<213> Homo sapien
<400> 309


agggggtgcacgtactcccaactgtggtcgcgctctcaccccttctgctgctctcgtggc 60


cccctcgcgatggcgggcatcctgtttgaggatattttcgatgtgaaggatattgacccg 120


gagggcaagaagtttgaccgaggtaagtaagtgtctcgactgcattgtgagagtgaatct 180


ttcaagatggatctaatcttagatgtaaacattcaaatttaccctgtagacttgggtgac 240


aagtttcggttggtcatagctagtaccttgtatgaagatggtaccctggatgatggtgaa 300


tacaaccccactgatgataggccttccagggctgaccagtttgagtatgtaatgtatgga 360


aaagtgtacaggattgagggagatgaaacttctactgaagcagcaacacgcctgctgaga 420


ttgagagctgctgagtggcagtgctccagaatcacgggatggggccttctgtttcagctc 480
~


tgcgtacgtgtcctatgggggcctgctcatgaggctgcagggggatgccaacaacctgca 540


tggattcgaggtggactccagagtttatctcctgatgaagaagctagcctt 591


<210> 310


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
128
<211> 488
<212> DNA
<213> Homo sapien
<400> 310


tggtctcaagcctgaagaggctccgcccacaagctggcccatgaagttagcaatgcctgt 60


ggcttcagtcaattgtcttgagactgtgaagaggctgaaagacaccttcccgggtggaag 120


aaggagttcactgaaaacttatcttaaactgacccttccctttgagtgagtcttcattcc 180


tctcccatgtgggaacccagcctccgatgccccggggactaggggaaacagttggaggtc 240


cgtgccgtccccagcctgccacgggtgcgaggacagccaagtcctgagtgactcaagatg 300


cttcacttacatggaagaaacttctaaaactctaccgagtggtttttgtatatactaaag 360


ttctatttagagcttttctgttttgggcaagttcgctgctccttctatttgggcactttg 420


gtttttgtactgtcttttgtgacggcattgattgaacattttttactagtagtcttatga 480


cttttgta 488


<210> 311
<211> 511
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1)...(511)
<223> n = A,T,C or G
<400> 311


cccgtttntgnagcaaaanagggggaagatttataggtagaggcgacaaacctaccgagc 60


ctggtgatagctggttgtccaagatagaatctta,gttcaactttaaatttgcccacagaa 120


ccctctaaatccccttgtaaatttaactgttagtccaaagaggaacagctctttggacac 180


taggaaaaaaccttgtagagagagtaaaaaatttaacacccatagtaggcctaaaagcag 240


ccaccaattaagaaagcgttcaagctcaacacccactacctaaaaaatcccaaacatata 300


actgaactcctcacacccaattggaccaatctatcaccctatagaagaactaatgttagt 3~0


ataagtaacatgaaaacattctcctccgcataagcctgcgtcagattaaaacactgaact 420


gacaattaacagcccaatatctacaatcaaccaacaagtcattattaccctcactgtcaa 480


cccaacacaggcatgctcataaggaaaggtt 511


<210> 312
<211> 591
<212> DNA
<213> Homo sapien
<400> 312


gaacttgcgttgaaggaagcagaaactgatgaaataaaaattttgctggaagaaagcaga 60


gcccagcagaaggagaccttgaaatctcttcttgaacaagagacagaaaatttgagaaca 120


gaaattagtaaactcaaccaaaagattcaggataataatgaaaattatcaggtgggctta 180


gcagagctaagaactttaatgacaattgaaaaagatcagtgtatttccgagttaattagt 24.0


agacatgaagaagaatctaatatacttaaagctgaattaaacaaagtaacatctttgcat 300


aaccaagcatttgaaatagaaaaaaacctaaaagaacaaataattgaactgcagagtaaa 360


ttggattcagaattgagtgctcttgaaagacaaaaagatgaaaaaattacccaacaagaa 420


gagaaatacgaagctattatccagaaccttgagaaagacagacaaaaattggtcagcagc 480


caggagcaagacagagaacagttaattcagaagcttaattgtgaaaaagatgaagctatt 540


cagactgccctaaaagaatttaaattggagagagaagttgttgagaaagag 591


<210> 313
<211> 373
<212> DNA
<213> Homo sapien


CA 02404233 2002-09-30
WO 01/72295 PCT/USO1/09991
129
<220>
<221> misc_feature
<222> (1)...(373)
<223> n = A, T, C or G
<400> 313


ttgatttttattctgnattttattactgaaatangttgtcctantnatcccaccccacaa 60


taaaaatntnacccangccccccntttctttncctnatnccctnttccaccacaccatcc 120


cggaacaagtgctccaggattccctgcccactggccattttggagtgtgnccattgggta 180


gcaatgtggaaaccaccaaggcctttgtgganaaaatggagggggttgagggagncccan 240


gaggggctnatttgagggcctttgccacttgctcataggcgagctcnatctcctcntnat 300


ctgnacangtggaagcaaattcttcccgggcgtnggnantgctnaagnaccgatgcactc 360


cccggaaggnctn 373


<210> 314
<221> 591
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1). .(591)
<223> n = A,T,C or G
<400> 314


cccgtgccgccgccgcctcctgggaagagaggaagcgggagaggagcccacgtcgcctgt 60


cacccaatatctccagccgcgcagtcccgaagagtgtaagatgttcgcctgcgccaagct 120


cgcctgcaccccctctctgatccgagctggatccagagttgcatacagaccaatttctgc 180


atcagtgttatctcgaccagaggctagtaggactggagagggctctacggtatttaatgg 240


ggcccagaatggtgtgtctcagctaatccaaagggagtttcagaccagtgcaatcagcag 300


agacattgatactgctgccaaatttattggtgcaggtgctgcaacagtaggagtggctgg 360


ttctggtgctggtattggaacagtctttggcagccttatcattggttatgccagaaaccc 420


ttcgctgaagcagcagctgttctcatatgctatcctgggatttgccttgtctgaagctat 480


gggtctcttttgtttgatggttgctttcttgattttgtttgccatgtaacaaattactgc 540


ttgacatgttggcattcatattaattacngatgtaattctgtgtatcttac 591


<210> 315
<211> 591
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1). .(591)
<223> n = A,T,C or G
<400> 315


aagcccttcaccaacaaagatgcctatacttgtgcaaattgcagtgcttttgtccacaaa 60


ggctgccgagaaagtctagcctcctgtgcaaaggtcaaaatgaagcagcccaaagggagc 120


cttcaggcacatgacacatcatcactgcccacggtcattatgagaaacaagccctcacag 180


cccaaggagcgtcctcggtccgcagtcctcctggtggatgaaaccgctaccaccccaata 240


tttgccaatagacgatcccagcagagtgtctcgctctccaaaagtgtctccatacagaac 300


attactggagttggcaatgatgagaacatgtcaaacacctggaaattcctgtctcattca 360


acagactcactaaataaaatcagcaaggtcaatgagtcaacagaatcacttactgatgag 420


ggtacagacatgaatgaaggacaactactgggagactttgagattgagtccaaacagctg 480


gaagcagagtcttggagtcggataatagacagcaagtttctaaaacagccaaaagaaaga 540


tgtgggtcaaacngcgagaagtaatatatgagttggatgcagacagagttt 591






DEMANDE OU BREVET VOLUMINEUX
LA PRESENTE PARTIE DE CETTE DEMANDE OU CE BREVET COMPREND
PLUS D'UN TOME.
CECI EST LE TOME 1 DE 2
~~ TTENANT LES PAGES 1 A 264
NOTE : Pour les tomes additionels, veuillez contacter 1e Bureau canadien des
brevets
JUMBO APPLICATIONS/PATENTS
THIS SECTION OF THE APPLICATION/PATENT CONTAINS MORE THAN ONE
VOLUME
THIS IS VOLUME 1 OF 2
CONTAINING PAGES 1 TO 264
NOTE: For additional volumes, please contact the Canadian Patent Office
NOM DU FICHIER / FILE NAME
NOTE POUR LE TOME / VOLUME NOTE:

Representative Drawing

Sorry, the representative drawing for patent document number 2404233 was not found.

Administrative Status

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Administrative Status , Maintenance Fee  and Payment History  should be consulted.

Administrative Status

Title Date
Forecasted Issue Date Unavailable
(86) PCT Filing Date 2001-03-28
(87) PCT Publication Date 2001-10-04
(85) National Entry 2002-09-30
Dead Application 2005-03-29

Abandonment History

Abandonment Date Reason Reinstatement Date
2004-03-29 FAILURE TO PAY APPLICATION MAINTENANCE FEE

Payment History

Fee Type Anniversary Year Due Date Amount Paid Paid Date
Application Fee $300.00 2002-09-30
Maintenance Fee - Application - New Act 2 2003-03-28 $100.00 2003-03-06
Registration of a document - section 124 $100.00 2003-09-29
Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
CORIXA CORPORATION
Past Owners on Record
ALGATE, PAUL A.
BENSON, DARIN R.
ELLIOT, MARK
FLING, STEVEN P.
HENDERSON, ROBERT A.
INDIRIAS, CAROL YOSEPH
KALOS, MICHAEL D.
LODES, MICHAEL J.
MANNION, JANE
MOHAMATH, RAODOH
REED, STEVEN G.
SECRIST, HEATHER
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Description 2002-09-30 266 15,348
Abstract 2002-09-30 1 73
Description 2002-09-30 111 6,213
Claims 2002-09-30 4 148
Cover Page 2002-11-08 2 42
PCT 2002-09-30 6 285
Correspondence 2002-11-06 1 25
Assignment 2002-09-30 3 106
Correspondence 2003-09-29 4 154
Assignment 2003-10-06 16 609
Assignment 2003-09-29 15 577
Assignment 2002-09-30 5 167
Correspondence 2003-11-07 1 12
PCT 2002-09-30 1 69
PCT 2002-10-01 3 196

Biological Sequence Listings

Choose a BSL submission then click the "Download BSL" button to download the file.

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.

Please note that files with extensions .pep and .seq that were created by CIPO as working files might be incomplete and are not to be considered official communication.

BSL Files

To view selected files, please enter reCAPTCHA code :