Base de données sur les brevets canadiens / Sommaire du brevet 2632513 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web à été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fournit par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 2632513
(54) Titre français: SYSTEME DE CHARGE A DISTANCE DE BATTERIE AVEC REGLAGE DYNAMIQUE DE TENSION, ET METHODE D'UTILISATION
(54) Titre anglais: REMOTE BATTERY CHARGING SYSTEM WITH DYNAMIC VOLTAGE ADJUSTMENT AND METHOD OF USE

Abrégé français

Dans un système de charge de batterie à distance comprenant un circuit de charge, il y a toujours une perte de tension en raison de résistances inhérentes dans le système attribuables à des éléments comme des connecteurs et des conducteurs. Ces résistances créent des pertes de tension dans le système, ce qui entraîne une augmentation considérable des temps de charge. La présente invention compense les pertes de tension dans le système en générant une tension d'ajustement dynamique durant la période de charge. Un circuit translateur de tension est utilisé pour mesurer la tension et le courant de sortie du circuit de charge au cours d'une pluralité de périodes de temps incrémentielles durant la période de charge et calculer un signal proportionnel aux changements dans la tension et le courant de sortie au cours de la période de temps incrémentielle. Le signal est alors appliqué au circuit de charge pour compenser toute perte de tension.


Abrégé anglais

In a remote battery charging system comprising a charging circuit there is always a voltage loss due to inherent resistances in the system from such things as connectors and conductors. These resistances create voltages losses in the system such that charging times are increased substantially. The present invention compensates for voltage losses on the system by generating a dynamic adjustment voltage over the charging period. A voltage translator circuit is used to measure charging circuit output voltage and current over a plurality of incremental time periods during the charging period an calculate a signal proportional to changes in output voltage and current over the incremental time period. The signal is then applied to the charging circuit to offset any voltage losses.


Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.

CLAIMS
1. A remotely operated dynamically-compensated battery charging system having
an dynamic voltage
source having a system output voltage V o and a system output current l o for
charging at least one
battery having a maximum voltage V satt over a charging time period T, said
system comprising:
a. a positive conductor and a ground conductor for connecting said at least
one battery to the
system, wherein said positive and ground conductors have an undetermined
aggregate, and
dynamic inherent resistance R i causing a dynamic inherent voltage loss V i;
b. a microprocessor for measuring changes to I o(dl o /dt) and changes to V
o(dV o /dt) caused by R i,
over incremental time periods t;
c. said microprocessor generating a signal S proportional to one of dV o /dt
and dI o /dt;
d. a voltage translator circuit for receiving said signal S and calculating an
incremental offset
voltage V off/dt;
e. said voltage translator circuit adding V off/dt to V o thereby dynamically
compensating for V,
over charging period T.
2. The system of claim 1 wherein T comprises a T cc and a T cv during which
times the system is in a
constant current mode and a constant voltage mode respectively and a
transition point between T CC and
T cv, so that:
a. during T CC V off is zero:
b. at said transition point and during T cv point the microprocessor:
i. measures V o during time periods t;
ii. calculates dV o /dt;
iii. measures lo during said time periods t:
iv. calculates dl o /dt:
v. calculates changes in R i (dR i /dt) subtracted from dV o /dl o;
vi. calculates V off /dt as dR i/dt X l o: and,
23

c. wherein the voltage translator circuit adds V off /dt to V o the result
being that V o is always
greater than V Batt during T cv.
3. The system of claim 2 wherein the microprocessor includes a first sub-
program to reduce V o during T cc
so that V o plus V off is less than that V Batt.
4. The system of claim 3 wherein the microprocessor includes a second sub-
program to sum V off and V o
during T cv so that V o is always greater than V Batt.
5. The system of claim 1 wherein the system has an undetermined, aggregate and
dynamic resistance
R sys causing a dynamic inherent system voltage loss V sys and wherein the
least one battery includes a
safety thermistor having an R therm said system further comprising:
a. a current limiter connected between the dynamic voltage source the positive
conductor;
b. a current monitor connected between the dynamic voltage source and the
ground conductor;
c. said microcontroller connected to a third conductor through an A/D
converter and wherein
said third conductor has a biasing current source;
d. wherein said safety thermistor is connected to the microprocessor by the
third conductor
having a resistance R3 and a biasing current I bias wherein R3 is negligible
compared to R therm and
I bias is negligible compared to I o and wherein l bias and R3 produce a
voltage V3 at said
analogue/digital converter;
e. wherein when l bias is zero. R3=R sys so that said microcontroller
calculates V off as a function of
R sys and adds V off to V o.
6. The system of claim 5 wherein when the positive conductor comprises a
single wire and the ground
conductor comprises a first and a second parallel wires, the result being that
the resistance in the
positive wire is twice the resistance in any of said first and said second
wires.
7. The system of claim 6 wherein the at least one battery comprises a
thermistor and the
microprocessor comprises a mathematical summing node in series with a current
monitor and an A/D
converter connected to said thermistor by a third conductor having similar
resistance to the positive and
ground conductors and wherein said current monitor transmits the magnitude of
dl o/dt to said
mathematical summing node where it is converted into a control signal S' for
transmission to the
24

adjustable voltage source to determine V off/dt and adjust V o dynamically
over charge time T in order to
optimize l o and wherein the microprocessor controls a bias current in the
third conductor for battery
temperature measurement, so that when the microprocessor terminates said bias
current, it is able to
measure a voltage loss in the third conductor and calculate V off as twice
said voltage loss in the third
conductor.
8. A method of dynamically compensating a battery charging system having a
charging circuit for
generating a dynamic output voltage V o and a dynamic output current l o for
charging an at least one
battery, said at least one battery having a thermistor and a predetermined
maximum battery voltage
V Batt said method comprising the steps of:
a. connecting said at least one battery to said charging circuit by a positive
conductor and a
ground conductor wherein said positive and ground conductors have an aggregate
inherent
resistance R i causing an aggregate voltage loss V i at a current level of I o
b. connecting said thermistor between a second ground conductor and a third
conductor;
c. connecting a microprocessor to said third conductor:
d. connecting an A/D converter serially between said third conductor and said
microprocessor:
e. applying a bias current I bias to the third conductor for measuring
resistance within the
thermistor:
f. terminating I bias:
g, measuring a voltage loss V3 in the third conductor:
h. calculating V off based upon V3 such that V off =2V3 : and,
i. dynamically adjusting V o by V off using a voltage translator circuit.
9. A method of dynamically compensating a battery charging system haying a
charging circuit for
generating an dynamic output voltage V o and a dynamic output current I o for
charging an at least one
battery during a time T and a current monitor and a voltage monitor, said at
least one battery having a
predetermined maximum battery voltage V Batt said system having an
approximated aggregate system
resistance R sys said method comprising the steps of:


a. setting said charging circuit to compensate for R sys:
b. connecting a mathematical summing node in series with said current monitor;
c. measuring the magnitude of I o:
d. measuring during time T and at intervals of t, changes in I o:
e. transmitting changes in I o to said mathematical summing node:
f, using the mathematical summing mode to convert the changes in I o into a
control signal S':
and,
g. transmitting said control signal S' to said adjustable voltage source to
adjust V o by a V off based
on changes in I o.
10. The method of claim 9 further comprising the steps of:
a. providing a microprocessor within said charging circuit for measuring
during T, at time
intervals of t, changes to I o and V o;
b. said microprocessor generating a signal S proportional to said changes to I
o and V o;
c. the microprocessor applying signal S to said charging circuit to generate
an variable offset
voltage V off ; and,
d. the microprocessor summing V off and V o during a constant current charging
mode so that the
sum is always less than V Batt.
11. A method of dynamically compensating a battery charging system having a
charging circuit for
generating an dynamic output voltage V o and a dynamic output current I o for
charging an at least one
battery during a time T and a current monitor and a voltage monitor, said at
least one battery having a
predetermined maximum battery voltage V Batt said method comprising the steps
of:
a. adding a temperature sensitive resistor to said at least one battery for
battery temperature
measurement;
26


b. connecting said temperature sensitive resistor between a second ground
conductor and a
third conductor wherein said third conductor has a resistance similar to first
positive and second
ground conductors;
c. providing an analogue to digital converter within the battery charger;
d. connecting said analogue to digital converter between the third conductor
and the
microprocessor;
e. applying a bias current to the third conductor for measuring resistance
within the
temperature sensitive resistor;
f. terminating said bias current;
g. measuring aggregate voltage loss V1 in the third conductor;
h. applying said V1 to the first positive and second ground conductors: and,
i. calculating variable offset voltage V off based upon the VI, in the first
positive and the second
ground conductors; and,
j. adjusting V o by V off.
12. A method of dynamically compensating a battery charging system having a
charging circuit for
generating a dynamic output voltage V o and a dynamic output current lo for
charging an at least one
battery, said at least one battery having a thermistor and a predetermined
maximum battery voltage
V Batt said method comprising the steps of:
a. connecting said at least one battery to said charging circuit by a positive
conductor and a
ground conductor wherein said positive and ground conductors have an aggregate
inherent
resistance R i causing an aggregate voltage loss V i at a current level of I
o
b. connecting said thermistor between a second ground conductor and a third
conductor;
c. connecting a microprocessor to said third conductor:
d. connecting an A/D converter serially between said third conductor and said
microprocessor:
27

e. applying a bias current I bias to the third conductor for measuring
resistance within the
thermistor:
f. terminating l bias:
g. measuring a voltage loss V3 in the third conductor:
h. calculating V off based upon V3 such that V off =2V3: and,
i. dynamically adjusting V o by V off using a microprocessor.
28


Une figure unique qui représente un dessin illustrant l’invention.

Pour une meilleure compréhension de l’état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , États administratifs , Taxes périodiques et Historique des paiements devraient être consultées.

États admin

Titre Date
(22) Dépôt 2008-05-26
(41) Mise à la disponibilité du public 2009-11-26
Requête d'examen 2013-03-08
(45) Délivré 2014-08-05

Taxes périodiques

Description Date Montant
Dernier paiement 2017-05-22 200,00 $
Prochain paiement si taxe applicable aux petites entités 2018-05-28 125,00 $
Prochain paiement si taxe générale 2018-05-28 250,00 $

Avis : Si le paiement en totalité n’a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement prévue à l’article 7 de l’annexe II des Règles sur les brevets ;
  • taxe pour paiement en souffrance prévue à l’article 22.1 de l’annexe II des Règles sur les brevets ; ou
  • surtaxe pour paiement en souffrance prévue aux articles 31 et 32 de l’annexe II des Règles sur les brevets.

Historique des paiements

Type de taxes Anniversaire Échéance Montant payé Date payée
Dépôt 200,00 $ 2008-05-26
Taxe périodique - Demande - nouvelle loi 2 2010-05-26 50,00 $ 2010-03-12
Taxe périodique - Demande - nouvelle loi 3 2011-05-26 50,00 $ 2011-05-05
Taxe périodique - Demande - nouvelle loi 4 2012-05-28 50,00 $ 2012-03-16
Requête d'examen 400,00 $ 2013-03-08
Taxe périodique - Demande - nouvelle loi 5 2013-05-27 100,00 $ 2013-03-08
Enregistrement de documents 100,00 $ 2014-01-17
Final 150,00 $ 2014-05-23
Taxe périodique - Demande - nouvelle loi 6 2014-05-26 100,00 $ 2014-05-23
Taxe périodique - brevet - nouvelle loi 7 2015-05-26 100,00 $ 2015-05-20
Taxe périodique - brevet - nouvelle loi 8 2016-05-26 100,00 $ 2016-05-20
Taxe périodique - brevet - nouvelle loi 9 2017-05-26 200,00 $ 2017-05-22

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



  • Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)".
  • Liste des documents de brevet publiés et non publiés sur la BDBC.
  • Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.

Filtre Télécharger sélection en format PDF (archive Zip)
Description du
Document
Date
(yyyy-mm-dd)
Nombre de pages Taille de l’image (Ko)
Abrégé 2008-05-26 1 19
Description 2008-05-26 19 784
Revendications 2008-05-26 5 176
Dessins 2008-05-26 9 203
Dessins représentatifs 2009-10-30 1 6
Page couverture 2009-11-17 1 37
Dessins 2013-06-06 14 336
Description 2013-06-21 22 867
Revendications 2013-06-21 5 164
Dessins représentatifs 2013-08-02 1 7
Description 2013-10-30 22 884
Revendications 2013-10-30 6 189
Dessins 2013-10-30 15 284
Dessins représentatifs 2014-07-11 1 5
Page couverture 2014-07-11 1 37
Correspondance 2008-07-02 1 58
Correspondance 2010-01-27 1 39
Poursuite-Amendment 2013-06-13 1 29
Poursuite-Amendment 2013-03-08 1 30
Correspondance 2013-06-03 5 225
Correspondance 2013-06-06 1 14
Correspondance 2013-06-06 1 17
Poursuite-Amendment 2013-06-06 12 325
Poursuite-Amendment 2013-06-18 2 62
Correspondance 2013-06-14 1 17
Poursuite-Amendment 2013-06-21 8 245
Poursuite-Amendment 2013-07-26 1 21
Poursuite-Amendment 2013-08-22 3 97
Poursuite-Amendment 2013-10-30 21 599
Taxes 2014-05-23 1 34
Correspondance 2014-05-23 1 37
Correspondance 2015-01-08 4 141
Correspondance 2015-02-06 2 256
Correspondance 2015-02-09 2 330
Taxes 2015-05-20 2 92