Language selection

Search

Patent 1194595 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent: (11) CA 1194595
(21) Application Number: 1194595
(54) English Title: METHOD FOR FORMING VIDEO DISCS
(54) French Title: METHODE DE FABRICATION DE DISQUES VIDEO
Status: Term Expired - Post Grant
Bibliographic Data
(51) International Patent Classification (IPC):
  • G11B 7/26 (2006.01)
  • C03C 17/36 (2006.01)
(72) Inventors :
  • WILKINSON, RICHARD L. (United States of America)
(73) Owners :
  • DISCOVISION ASSOCIATES
(71) Applicants :
  • DISCOVISION ASSOCIATES
(74) Agent: GOWLING WLG (CANADA) LLP
(74) Associate agent:
(45) Issued: 1985-10-01
(22) Filed Date: 1981-05-15
Availability of licence: N/A
Dedicated to the Public: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): No

(30) Application Priority Data:
Application No. Country/Territory Date
176,743 (United States of America) 1980-08-11

Abstracts

English Abstract


METHOD FOR FORMING VIDEO DISCS
ABSTRACT OF THE DISCLOSURE
Methods for use in producing a disc-shaped recording
master having a thin photoresist recording layer for storing
an f.m. information signal with high density. During record-
ing, an intensity-modulated writing beam is focused onto the
photoresist layer, to form a succession of spaced exposed
regions arranged in a plurality of substantially circular
and concentric recording tracks. The master further includes
a glass substrate having a specially prepared surface r and
the photoresist layer is deposited on the surface using a
technique that ensures a uniform thickness and a uniform
sensitivity to the writing beam. The peak intensity of the
writing beam is selectively adjusted such that the succession
of spaced exposed regions is formed with an optimum 50/50 duty
cycle. After development to remove the spaced exposed regions,
the recording master is used to produce a metallic stamper
that, in turn, is used to produce disc replicas. Determina-
tion of the optimum peak intensity of the recording beam is
determined by adjusting the peak intensity of the beam for
each of a plurality of adjacent tracks, developing the layer
and examining the successive sets of tracks to determine that
having the optimum value of duty cycle.


Claims

Note: Claims are shown in the official language in which they were submitted.


CLAIM
1. A method for selecting an optimum peak intensity for a
beam of light used in recording on a disc-shaped recording
medium a cyclically modulated information signal extending
between upper and lower limits, wherein the recording medium
includes a photoresist layer that is exposed whenever
impinged by a beam of light having an intensity greater than
a predetermined threshold, the method including steps of:
modulating the intensity of the beam of light in accordance
with a prescribed test signal, the intensity being alter-
nately greater than and less than the predetermined recording
threshold of the photoresist layer; directing the intensity-
modulated beam of light onto the photoresist layer as the
medium is rotated in a prescribed fashion, to form a sequence
of spaced, exposed regions arranged in a succession of
substantially circular and concentric recording tracks;
adjusting the peak intensity of the intensity-modulated beam
of light for each of a plurality of adjacent tracks, whereby
each set is recorded using a different peak intensity and
the spaced, exposed regions in each set have a different
duty cycle; developing the exposed photoresist layer, to
remove the exposed regions and thereby change each recording
track into a succession of spaced pits; examining the
successive sets of recording tracks to determine the partic-
ular set having spaced pits with a duty cycle closest to an
optimum value; and adjusting the peak intensity of the beam
of light in accordance with the determination made in the
step of examining, whereby a cyclically modulated information
signal extending between upper and lower limits can there-
after he recorded with the optimum duty cycle on unexposed
portions of the photoresist layer.
2. A method as defined in Claim 1, wherein the recording
tracks formed in the step of directing form a narrow band
located near the periphery of the photoresist layer.
16

3. A method as defined in Claim 1, wherein each set
of recording tracks is separated from an adjacent set
by a narrow, unexposed band of the photoresist layer.
4. A method as defined in Claim 1, wherein each set
of recording tracks includes several hundred tracks.
5. A method as defined in Claim 1, wherein the test
signal has a prescribed, constant frequency.
6. A method as defined in Claim 4, wherein the step
of examining includes steps of: scanning each set of
recording tracks with a reading beam of light, to
produce a modulated reading beam of light having an
intensity that varies in accordance with the recorded
pattern of spaced pits; detecting the intensity of the
modulated reading beam of light and producing a cor-
responding electrical signal; and monitoring the
electrical signal using a spectrum analyzer.
17

Description

Note: Descriptions are shown in the official language in which they were submitted.


METHOD FOR FORMING VIDEO DISCS
This invention xelates generally to methods for
forming video discs, and, more particularly, to methods
for producing optically-readable video disc masters and
stampers for use in forming video disc replicas.
Optically-readable video disc replicas are useful
in storing vast quantities of information, usually in
the form of a frequency-modulated (f.m.) carrier signal,
with a high recording density. The f.m. signal is
typically recorded as a sequence of spaced pits or
bumps arranged in a succession of substantially circular
and concentric recording tracks. Each pit and adjacent
space between pits represents one cycle of the f.m.
signal.
Disc replicas are typically formed in injection-
molding apparatus using disc-shaped stampers derived
from recording masters. A recording master typically
includes a glass substrate having a disc shaped,
planar surface, with a thin recording layer such as a
metal film overlaying it. Information is normally
'~,,.

¢~
recorded in the recording layer by focusing an
intensiky-modulated writing beam of light onto the
layer using a radially-mo~able objective lens, as the
master is rotated at a prescribed rate. The intensity
of the beam is modulated in accordance with the f.m.
-signal to be alternately greater ~han and less than a
predetermined threshold at which the metal film is
melted, whereby the succession of spaced pits is formed
in the film. The succession of pits and spaces
preferably has a nominal duty cycle of 50/50, whereby
the signal is recorded with minimum second harmonic
distortion.
The present invention resides in methods employed
in the manufacture of video disc mastexs of a type
having a photoresist recording layer, and in methods
for producing stampers from such masters. The master
includes a glass substrate with a smooth, planar surface
on wh~ch a thin, uniform recording layex of photoresist
is deposited. An f.mn information signal is recorded
in the photoresist recording layer using an intensity-
modulated writing beam of light, producing a succession
A of spaced exposed regions arranged in a succession of
substantially circular and concentric recording tracks.
In one aspect of the invention, the glass substrate
is initially prepared by dispensing an adhesion promoter
such as stannous chloride onto the surface of the
substrate while the substrate is rotated at a relatively
low velocity, e.g., about 75 ~o 100 r~p.m. The surface
is then rinsed with water while still being rotated at
the relatively slow velocity, thereby removing residual
adhesion promoter, after which the rinsed surface is
dried by being rotated at a relatively high velocity,
e.g., about 750 to 1000 r.p.m.

The method for preparing the substrate can further
include preliminary s+eps of polishing the surface
-using a polishing compound having a submicron particle
size, and then cleaning the polished surface. The
cleaning step can include stleps of flushing the surface
~first with a detergent solution and then with water,
drying the surface by rotating the substrate at the
relatively high velocity, and wiping the surface with
acetone to remove traces of dust and oil.
In another aspect of the invention, the photo-
resist recording layer is applied to the prepared
surface of the glass s~strate by dispensing a photo-
resist solution onto the surface as the substrate is
being rotated at the relatively low velocity, by then
rotating the substrate at the relatively high velocity
to partially dry the photoresist solution and form a
l;~yer having a substantially uniform thickness, and by
finally baking the photoresist-coated substrate in a
prescribed fashion to completely dry the photoresist
layer. The photoresist solution is preferably Shipley
AZ 1350 photoresist having a viscosity of about 1.3
centipoi~e, and in the step of baking, the master is
preferably baked at about 80 degrees centigrade, for
about 20 minutes.
In another aspect of the invention, a thin metal
layer is formed on the glass substrate prior to the
application of the photosensitive recording layer.
Still another aspect of the invention resides in a
method for selecting an optimum peak intensity for the
intensity-modulated writing beam of light used in
recording the f.m. signal on thP photoresist recording
layer. In this aspect of the invention, a prc~cribed
test signal is initally recorded on ~hc disc in ~
succession of narrow sets of reo~rding tracks, each set
bei~g recorded using a wrlting beam havin~ a diferent

9~
peak intensity. Since the photoresist layer i5 exposed
whenPver ~he intensity of the beam exceeds a prede-
termined threshold, a higher peak intensity results in
exposed regions of greater length. Each separate set
of recording tracks thus has a different duty cycle.
In o n e method, three vr four sets of
tracks are recorded, having peak intensities that vary
in steps of about five percent. After deveLopment, in
which the exposed regions forming each track are trans-
formed into a succession of spaced pits, the developeddisc is examined to determine the particular set of
tracks having spaced pits with a duty cycle closest to
an optimum value. The peak intensity of the beam is
then adjusted in accordance with this determination,
whereby the f.m. information signal can thereafter be
recorded with the optimum duty cycle on the remaining,
unexposed portions of the photoresist layer.
The test signal preferably has a prescribed,
constant frequency, and the sets of recording tracks
are preferably located near the periphery of the photo-
resist layer. Also, each set preferably includes
several hundred tracks, and is separated from an
adjacent set by a narrow unexposed band of the photo-
resist layer. The developed photoresist layer is
prefexably examined by scanning each set of tracks with
a reading beam of light, to produce a reflected beam
that i5 modulated in intensity in accordance with the
recorded pattern of spaced pits, and by then detecting
the modulated intensity and monitoring it using a
spectrum analyzer.
In yet another aspect of the invention, the exposed
photoresist layer is developed by dispensing onto the
layer, whi:Le it is rotating at the relatively low
velocity (e.g., 75 to 100 r~p.m.), first water, to

pre-wet the layer, then both water and a developer
solution of a prescribed normality, to partially develop
the layer, and finally developer solution, alone, to
fully develop the layer. The developed photoresist
layex is then rinsed with water, to eliminate residual
developer solution, and finally rotated at the rela-
tively high velocity of preferably 750 to lO00 r.p.m.,
to dry the developed layer. The photoresist layer is
preferably derived from Shipley AZ 1350 photoresist,
and the developer solution is preferably either
potassium hydroxide or sodium hydroxide, with a
normality of about .230 to .240. In another more
detailed aspect of the invention, the step of dispensing
both water and developer solution has a time duration
of about 5 to lO seconds, the step of dispensing
developer solution, alone, has a time duration of about
20 seconds, and the step of rinsing has a time duration
of about 30 to 60 seconds.
Still another aspect of the invention resides in a
technique for producing a stamper from the developed
recording master, for use in molding video disc replicas.
In this aspect of the invention, a first thin~ uniform
metallic film is vapor deposited onto the developed
recording layer, after which a second thin, uniform,
metallic film is electroplated onto the first film, the
two films together forming an integral metallic layer.
The integral metallic layer is then separated from the
underlying master recording, and residual photoresist
material is removed from the undersurface of the sepa-
rated metallic layer using a suitable solvent, therebyforming the stamper. The first metallic film preferably
has a thickness of about 500 to 600 A, and the second
metallic film preferably has a thickness of about 15
mils. Both films are preferably formed of nickel.

6~ ¢~
Many other aspects and advantages of the invention
will become apparent from ~he following detailed
description, taken in conjunction with the accompanying
drawings, which disclose, by way of example, the
principles of the invention. The accompanying
- drawlngs illustrate the invention. In such drawings:
FIG~ 1 is a simplified schematic diagrc~m of
apparatus for recording an f.m. information signal on a
recording master produced in accordance with the methods
of the present invention;
FIG. 2 is an enlarged plan view of a segment of
the recording master of FIG. 1, showing a succession of
spaced exposed regions arranged in a plurality of
substantially circular and concentric recording tracks;
FIG~ 3 is a graph showing the modulated intensity
of the writing bec~m in the recording apparatus of
FIG. l;
FIG. 4 is a sectional, elevational view of a
portion of the recoxding master, taken along a recording
track, and showing the photoresist recording layer to
be exposed whenever the intensity of the writing beam
of FIG~ 3 exceeds a predetermined threshold;
FIG. 5 is a sectional, elevational view of the
recording master of E'IG. 4, after development to remove
the spaced, exposed regions; and
FIGo 6 is a perspective view of a turntc~ble
apparatus used in forming the pho-toresist recording
layer on the recording master of FIG. 1.

$
Referring now to the drawings, and particularly to
FIG. 1, there is shown apparatus for recording a
- frequency-modulated (f.m.) information signal on a
recording master 11. The master includes a glass
substrate 13, with a smooth, planar upper surface on
which is deposited a phot3resist layer 15 having a
prescrihed, uniform thickness. The photoresist layer
is exposed whene~er impinged by a beam of light having
an intensity that exceeds a predetermined recording
threshold.
The recordlng apparatus includes a writing laser
17 such as an argon ion laser for producing a writing
beam of light 19 haviny a prescribed intensity, and an
intensity modulator 21 for modulating the intensity of
the writing beam in accordance with an f.m. information
signal received on line 23. The recording apparatus
further includes a spindle motor 25 for rotating the
recording master 11 at a prescribed angular velocity,
and an objective lens 27 for focusing the intensity-
modulated beam onto the photoresist layer 15 of therotating master. The objective lens in mounted on a
carriage (not shown) that is radially movable with
respect to the master, so that the focused beam traces
a spiral pattern on the photoresist layer.
As shown in FIGS. 2, 3 and 4, the intensity of the
intensity-modulated beam 19 is alternately greater than
and less than the predetermined recording threshold of
the photoresist layer 15, whereby a succession of
spaced exposed regions 29, arranged in a plurality of
substantially circular and concentric recording tracks
31, is formed in the layer. Each exposed region and
adjacent space correspond to one cycle of the f.mO

8 ;~
signal. FIG. S depicts the recording master 11 after
de~elopment to remo~e the exposed regions, the master
then being in suitable condition for use in producing a
stamper.
The recording master 11 is initially prepared for
use with the recording apparatus of FIG. 1 using a
special process in which the upper surface of the glass
substrate 13 is first ground and polished, and then
cleaned. The photore.sist layer 15 is then formed by
dispensing a photoresist solution onto the surface,
after which it is dried and baked in a prescribed
fashion. After baking, the recording master i5 in
suitable condition for recording. In another aspect of
the invention, a thin metal layer is formed on the
substrate prior to forming the photosensitive layer.
More particularly, the planar surface of the glass
substrate 13 is initially prepared by first grinding it
in a conventional manner, using an aluminum oxide
compound having about a nine-micron grit. The surface
is then polished using a zirconium oxide or cerium
oxi~e polishing compound of sub-micron particle size.
Cerium oxide has been found to polish the surface more
quickly, but is generally more difficult to clean.
The polished surface of the glass substrate 13 is
cleaned in a special three-step process. First, the
surface is flushed with high-purity, de~ionized water
and brushed with a fine brush to remove most of the
polishing compound. The de-ionized water preferably
has a resistivity of 18 mega-ohms centimeter. The
cleaned surface of the glass substrate 13 is thereafter
inspected ~y examining it with the naked eye under a
high-intensity light. Under this light, defects such
as scratches and microscopic pits appear as point

9 ~ ~4~9~:1
sources of scattered light. When a defect is detected,
a microscope is used to measure its size. If any
defects larger ~han 25 microns are detected, or if the
numher of defects under 10 microns exceed one per
square millimeter, the substrate is rejected and the
polishing and cleaning sequences are repeated. The
surface is then wiped with acetone to remove any traces
of dust and oil introduced cluring handling.
Second, the surface is flushed with a detergent
501ution, and third, the surface is again flushed with
de-ionized water for a period of about ten to twenty
minutes.
After cleaning/ the substrate 13 is placed on a
turntable, as shown in FIG. 5, and rotated at an angular
velocity of about 750-1000 r.p.m., to dry the surface.
~IG. 6 depicts apparatus for use in forming the photo-
resist layer 15 on the cleaned substrate 13. The
apparatus includes a variable speed motor 33 for
rotating the substrate in a prescribed fashion, and a
pivot arm 35 on which are mounted three dispensing
tubes 37, 39, and 41 for dispensing de-ionized water, a
stannous chloride solution, and a photoresist solution,
respectively, in a prescribed sequence.
The substrate 13 is first rotated at an angular
velocity of about 75 to 100 r.p.m., while stannous
chloride is dispensed onto the cleaned upper surface
through the dispensing tube 39. The pivot arm 35 is
pivoted manually so that stannous chloride is applied
to the entire surface. It is believed that the stannous
chloride molecules adhere to the cleaned surface of the
substrate, and thereby promote a subsequent adhesion of
the photoresist solution.

10 ~ 3~;
Water is then dispensed onto the surface through
the dispensing tube 37, to rinse off residual stannous
chloride solution, and the angular velocity of the
motor 33 i9 then increased to about 750-1000 r.p.m., to
dry the rinsed surface. The surface is nGw in propex
condition for dispensing of the photoresist solution.
The photoresist solution is prepared by diluting
Shipley AZ 1350 photoresist with Shipley AZ thinner,
which is believed to include cellosolve acetate, in a
ratio of about 3 to 1. This provides a solution having
a viscosity of about 1.3 centipoise, which is then
filtered to remove particle~ larger than about one half
micron. visc09ity can be measured by standard
techniques, such as, for example, using a Canon-Finske
viscometer.
The diluted photor~sist solution is then dispensed
through the tube 41 onto the prepared surface of the
substrate 13, as the substrate is being rotated by the
variable ~peed motor 33 at an angular velocity of about
75-100 r.p.m. Again, the pivot arm 35 is pivoted
manually so that the solution is dispensed across the
entire radius of the substrate. At the speeds below
about 75 r.p.m., a film of substantially uniform
thickness can be achieved only if a relatively lengthy
spread time is allowed but this increases the likelihood
of contamination of the layer. At speeds above about
100 r.p.m., on the other hand, radial streaks and flow
marks can result, affecting the quality of the
subsequent recording of information. About 35 ml of
photoresist solution are required to fully coat a
substrate having a diameter of about 35.56 cmn

After the photoresist solution has been coated
onto the surface of the substrate 13, the angular
velocity of the motor 33 is increased to about 750-lO00
r.p.m., until dry. This provides a prescribed, uniform
thickness for the photoresist layer 15.
-
Recognizing the fact that the ~hickness of thephotoresist layer 15 is inversely proportional to both
rOp.m. and temperature, the specific angular velocity
at which the substrate is rotated to partially dry the
photoresist solution can be conveniently adjusted to
provide the prescribed thickness. The appropriate
angular velocity can be determlned in a conventional
manner using, for example, a Tolansky interferometer.
This technique provides an indication of the relative
thickness of the layer and, using an iterative process,
in which the angular velocity is successively adjusted,
the optimum velocity can be determined. If the
viscosity and temperature of the photoresist solution
can be maintained substantially uniform, this angular
velocity calibration need be perfoxmed only infre
quently. It is presently preferred that the layer have
a thickness of about I150 A to 1350 A, and replica
discs subsequently produced will have information-
bearing bumps or pits of corxesponding heightO
If it i5 determined that the dried photoresist
layer 15 is defective in any way (e.g., containing
radial streaks or foreign particles), the layer can be
removed using a suitable solvent such as Shipley AZ
thinnerO A new layer can then be applied in the manner
described above.

12 ~ $
After removal from the turntable apparatus of
FIG. 6, the recording master ll is baked, to fully dry
the photoresist layer 15 and thereby maximize its
exposure tolerance. The master is preferably baked at
about 80 centigrade for about 20 minutes~ These
-parameters must be maintained to a ~ight tolerance, to
minimize variations in exposure tolerances when succes-
sively recording information on a number of recording
masters.
Since the exposure sensitivities of each of a
number of recording masters is likely to be slightly
different from the others, it is desirable to optimize
the peak intensity for the intensity modulated beam of
light l9 (FIG. l) for each master, so that the f.m.
information signal can be recorded with an optimum
50/50 duty cycle. In accordance with another aspect of
the invention, a prescribed test signal is recorded on
each master 11 in a plurality of sets of adjacent
recording tracks, each set recorded with a different
peak intensity. Ater the test signal tracks have been
developed, using a developing technique described in
detail below, the recording master is examined to
determine the particular set of tracks having a duty
cycle closest to the desired 50/50 value. The optimum
peak intensity thereby can be determined and the f.m.
information signal thereafter can be recorded with the
optimum duty cycle on the remaining, unexposed portions
of the recording master.
The test signal preferably has a constant fre~uency
of about 7 to 8 MHæ, and the signal is preferably
recorded on three or four sets of tracks each set
recorded with a peak beam in-tensity that varies by
about five percent. Each set is recorded for about lO
seconds, correspondiny to several hundred recording

13
tracks. Also the sets are pre:Eerably separated from
each other by narrow bands of unexposed portions of the
photoresist layer 15, and are located in a narrow
region-adjacent the inner periphery of the layer.
The successive sets of developed recording tracks
can be conveniently examined using a reading beam of
light (not shown) for scanning each set to produce a
reflected bQam having an intensity that is modulated in
accordance with the recorded test signal. The reflected
beam is modula-ted in intensity because the reflectance
of unaltered portions of photoresist layer 15 is about
4 percent, whereas the reflectance of altered portions
of the layer is essentially zero. The modulated beam
is suitably detected and monitored in a conventional
spectrum analyzer, to determine the presence of second
harmonic distortion. This distortion is a minimum when
the test signal is recorded with the optimum 50/50 duty
cycle
It is not necessary that the reading beam follow
any individual recording track in each set of tracks,
since the same test signal i5 recorded on adjacent
tracks. Care must be taken, however, to ensure that
eccentricities in the recordiny master 11 do not cause
the reading beam to scan more than a single set of
tracks at a time. The reading beam is preferably
produced by a helium-neon laser so that its wavelength
will not expose the photoresist layer 15.
Using the recording apparatus of FIG. 1, with the
- peak intensity of the writing beam 19 adjusted to the
prescribed, optimum value, the f.m. information signal
is then recorded on the remaining, unexposed portion of
the photoresist recording layer 15. The recorded
master 11 ls then developed to convert each recording

track into a succession of spaced pits of uniform depth
and width and of continuously-variable length.
In yet another novel aspect of the invention, the
exposed recording master 11 is developed in a special
process in which a succession of fluids are ~ispensed
onto the master as it is being rotated by a turntable
of the type depicted in FIG. 6, at a velocity of about
75 to 100 r.p.m. In the process, water is first
dispensed to pre-wet the layer, then both water and a
developer solution of prescribed normality are dispensed,
to partially develop the layer, and finally developer
solution, alone is dispensed, to fully develop the
layer. The developed photoresist layer is then rinsed
with water, to remove residual developer solution,
after which the angular velocity of the rotating master
is increased to about 750-1000 r.p.m., to dry the
developed layer.
The preferred developer solution is selected from
a group including potassium hydroxide and sodium
hydroxide, and has a normality of about 0.230 to 0.240.
Preferably t the step of dispensing both water and
developer solution has a duration of about 5 to 10
seconds, the step of dispensing developer solution,
alone, about 20 seconds, and the step of rinsing about
30 to 60 seconds.
A stamper, suitable for use in molding video disc
replicas, is produced from the developed recording
master 11. In another aspect of the invention, the
stamper is produced by first vapor depositing a uniform
metallic film of about 500-600 A thickness onto the
photoresist recording layer 15, and then electroplating
a second uniform metallic film of about 15 mils thick-
ness onto the first film. The undersurface of the
first film conforms exactly to the pattern of spaced

~ 5
pits formed in the photoresist layer, and the two films
together form an integral metallic layer. This integral
metallic layer can be separated from the underlying
recording master and residual photoreslst material
removed using a suitable photoresist thinner, thereby
forming the stamper. In one embodiment, both
metallic films are formed of nickel.
It will thus be appreciated from the foregoing
description that the present invention provides a
number of novel techniques for use in efficiently
producing recording masters. The masters include
photoresist recording layers in which fOm. information
signals can be recorded with high signal~to-noise
ratios and high density. In other aspects of the
invention, metallic stampers are produced rom these
recording masters, for use in molding replicas of the
master .
Although the invention has been described in detail,
it will be understood by one of ordinary skill in the
art that various modifications can be made without
departing from the spirit and scope of the invention.
Accordingly, it is not intended that the invention be
limited, except as by the appended claims.

Representative Drawing

Sorry, the representative drawing for patent document number 1194595 was not found.

Administrative Status

2024-08-01:As part of the Next Generation Patents (NGP) transition, the Canadian Patents Database (CPD) now contains a more detailed Event History, which replicates the Event Log of our new back-office solution.

Please note that "Inactive:" events refers to events no longer in use in our new back-office solution.

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Event History , Maintenance Fee  and Payment History  should be consulted.

Event History

Description Date
Inactive: IPC from MCD 2006-03-11
Inactive: Expired (old Act Patent) latest possible expiry date 2002-10-01
Grant by Issuance 1985-10-01

Abandonment History

There is no abandonment history.

Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
DISCOVISION ASSOCIATES
Past Owners on Record
RICHARD L. WILKINSON
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Cover Page 1993-06-17 1 16
Abstract 1993-06-17 1 33
Drawings 1993-06-17 1 36
Claims 1993-06-17 2 69
Descriptions 1993-06-17 15 595