Language selection

Search

Patent 1206312 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent: (11) CA 1206312
(21) Application Number: 1206312
(54) English Title: COMPOSITE STRUCTURES AND METHOD OF MAKING SAME
(54) French Title: STRUCTURES COMPOSITES, ET LEUR FABRICATION
Status: Term Expired - Post Grant
Bibliographic Data
(51) International Patent Classification (IPC):
  • B32B 7/12 (2006.01)
  • B29C 48/16 (2019.01)
  • B32B 27/32 (2006.01)
  • C08J 5/12 (2006.01)
(72) Inventors :
  • SCHMUKLER, SEYMOUR (United States of America)
  • MACHONIS, JOHN, JR. (United States of America)
  • SHIDA, MITSUZO (United States of America)
(73) Owners :
  • EQUISTAR CHEMICALS, L.P.
(71) Applicants :
(74) Agent: MEREDITH & FINLAYSONMEREDITH & FINLAYSON,
(74) Associate agent:
(45) Issued: 1986-06-24
(22) Filed Date: 1982-07-29
Availability of licence: N/A
Dedicated to the Public: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): No

(30) Application Priority Data:
Application No. Country/Territory Date
309,561 (United States of America) 1981-10-08

Abstracts

English Abstract


COMPOSITE STRUCTURES AND METHOD OF MAKING SAME
ABSTRACT
Disclosed is a method of making a composite structure
comprising polypropylene, a polar substrate and an adhesive
blend in intimate contact therebetween comprising applying
in contact with the polypropylene and the substrate an adhes-
ive blend free of polypropylene, the blend consisting essential-
ly of (a) a graft copolymer of about 70-99.999 wt. % of a poly-
ethylene backbone grafted with about 30-0.001 wt. % of at
least one compound containing at least one unsaturated
carboxylic acid or acid anhydride or both blended with
both, (b) at least 30 wt. % of the blend of at least one
elastomer selected from the group consisting of copolymers
of ethylene and an .alpha.-olefin, terpolymers of ethylene, an
.alpha.-olefin and a diene, homopolymers of chloroprene, copolymers
of isobutylene, homopolymers of isobutylene, copolymers of
a diene and a vinyl aromatic compound, copolymers of a
hydrogenated diene and a vinyl aromatic compound, homo-
polymers of butadiene, copolymers of an ethylenically
unsaturated nitrile and a diene, or a mixture of these,
and (c) at least one non-elastomeric polyolefin resin that is
either a homopolymer of ethylene, a copolymer of ethylene
and .alpha.-olefin, or a mixture of these.


Claims

Note: Claims are shown in the official language in which they were submitted.


-13-
The embodiments of the invention in which an exclusive
property or privilege is claimed are defined as follows:
1. The method of making a composite structure
comprising polypropylene, a polar substrate and an adhesive
blend in intimate contact therebetween comprising applying
in contact with said polypropylene and said substrate an
adhesive blend free of polypropylene, said blend consisting
essentially of :
(a) a graft copolymer of about 70-99.999 wt. %
of a polyethylene backbone grafted with about 30-0.001 wt.
% of at least one compound containing at least one
unsaturated carboxylic acid or acid anhydride or both
blended with both,
(b) at least 30 wt. % of said blend of at least
one elastomer selected from the group consisting of co-
polymers of ethylene and an .alpha.-olefin, terpolymers of
ethylene, an .alpha.-olefin and a diene, homopolymers of
chloroprene, copolymers of isobutylene, homopolymers of
isobutylene, copolymers of a diene and a vinyl aromatic
compound, copolymers of a hydrogenated diene and a vinyl
aromatic compound, homopolymers of butadiene, copolymers
of an ethylenically unsaturated nitrile and a diene,
and mixtures of these, and
(c) at least one non-elastomeric polyolefin resin that
is either a homopolymer of ethylene, a copolymer of ethylene
and an .alpha.-olfin, or a mixture of these.
2. The method of Claim 1 wherein said applying
comprises pressure laminating.
3. The method of Claim 1 wherein said applying
comprises co-extrusion.
4. The method of Claim 1 wherein said applying
comprises co-extrusion laminating.

-14-
5. The method of claim 1 wherein said (c) resin
comprises an ethylene homopolymer.
6. The method of claim 1 wherein said (c) resin
comprises a copolymer of ethylene an an .alpha.-olefin.
7. The method of claim 1 wherein said (c) resin
comprises polyethylene of a density of from about 0.910-
0.965.
8. The method of claim 1 wherein said (c) resin
comprises a linear copolymer of an .alpha.-olefin containing 3-
8 carbon atoms for a total of 100 wt.%.
9. The method of claim 1 wherein said (c) resin
comprises a mixture of ethylene polymers and ethylene-.alpha.-
olefin copolymers.
10. The method of claim 1 wherein said graft
copolymer of (a) comprises a high density polyethylene
polymer and x-methylbicyclo(2.2.l)hept-5-ene-2,3-dicar
boxylic acid anhydride.
11. The method of claim 10 wherein said (b)
comprises polyisobutylene and (c) comprises high density
polyethylene.
12. The method of claim 10 wherein said (c)
comprises polyethylene and (b) comprises chlorinated
butyl rubber.
13. The method of claim 10 wherein said (c)
comprises polyethylene and (b) comprises neoprene.

-15-
14. The method of Claim 10 wherein said (c)
comprises polyethylene and (b) comprises a styrene-ethylene-
butylene-styrene block copolymer.
15. The method of Claim 1 wherein said backbone of
(a) comprises HDPE with a density of about 0.930-0.970.
16. The method of Claim 15 wherein said backbone
of (a) has a density of about 0.940-0.970.
17. The method of Claim 1 wherein said graft copolymer
of (a) comprises a high density polyethylene polymer and
4-methylcyclohex-4-ene-1, 2-dicarboxylic acid anhydride.
18. The method of Claim 1 wherein said graft copolymer
of (a) comprises a high density polyethylene polymer and at
least one monomer comprising tetrahydrophthalic anhydride.
19. The method of Claim 1 wherein said carboxylic
acid anhydride of (a) consists essentially of x-methyl-
bicyclo(2.2.1)hept-5-ene-2,3-dicarboxylic acid anhydride.
20. The method of Claim 1 wherein said elastomer
of (b) is selected from the group consisting of block
copolymers of a diene and a vinyl aromatic compound, and
hydrogenated block copolymers of a diene and a vinyl
aromatic compound.

-16-
21. A composite structure of components com-
prising:
(a) polypropylene;
(b) a solid substrate, and adhered therebetween
(c) an adhesive blend as recited in claim 1.
22. The composite structure of claim 21 wherein
said substrate comprises a member of the class consisting
of polar polymers, solid metals, glass, paper, wood and
Cellophane TM.
23. The composite structure of claim 21 wherein
said substrate comprises nylon.
24. The composite structure of claim 21 wherein
said substrate is polar.
25. The composite structure of claim 21 wherein
the total of said components is greater than three.
26. The composite structure of claim 21 wherein
said composite structure comprises polypropylene/adhe-
sive blends of this invention/nylon.
27. The composite structure of claim 21 wherein
said composite structure comprises polypropylene/adhe-
sive/ethylene-vinyl alcohol copolymer.
28. The composite structure of claim 21 wherein
said composite structure comprises polypropylene/adhe-
sive/aluminum.
29. The composite structure of claim 21 wherein
said composite structure comprises polypropylene/adhe-
sive/steel.

-17-
30. The composite structure of claim 21 wherein
said composite structure comprises polypropylene/adhesive/
glass.
31. The composite structure of claim 21 wherein
said composite structure comprises polypropylene/adhesive/
wood.
32. The composite structure of claim 21 wherein
said composite structure comprises polypropylene/adhe-
sive/leather.
33. The composite structure of claim 21 wherein
said composite structure comprises polypropylene/adhe-
sive/nylon/adhesive/polypropylene.
34. The composite structure of claim 21 wherein
said composite structure comprises polypropylene/adhe-
sive/EVOH/adhesive/polypropylene.
35. The composite structure of claim 21 wherein
said composite structure comprises polypropylene/adhe-
sive/aluminum/adhesive/polypropylene.
36. The method of claim 1 wherein said graft
copolymer of (a) comprises a high density polyethylene
and maleic anhydride.
37. The method of claim 1 wherein said graft
copolymer of (a) comprises a high density polyethylene
and fumaric acid.
38. The method of claim 1 wherein said graft
copolymer of (a) comprises a high density polyethylene
and bicyclo(2.2.1)hept-5-ene-2,3-dicarboxylic acid anhy-
dride.
39. The method of claim 1 wherein said graft
copolymer of (a) comprises a high density polyethylene
and acrylic acid.

-18-
40. The method of Claim 20 wherein said elastomer
is a block copolymer of a hydrogenated diene and a vinyl
aromatic compound.

Description

Note: Descriptions are shown in the official language in which they were submitted.


Composite Structures and Method of Making Same
Backqround of the Invention
Usually, polypropylene is adhered to polar pol-
ymers, like nylon, ethylene-vinyl alcohol copolymers
(EVOH) and polyvinyl alcohol polymers and to metals like
aluminum, steel, copper, tin, brass, etc., by interposing
a blend of polypropylene grafted with an unsaturated car-
boxylic acid or acid derivative and polypropylene. This
material is used directly as an adhesive layer between
the polypropylene and the polar substrate.
It would sometimes be preEerable to use poly-
ethylene gra~ted with unsaturated carboxylic acid or acid
derivatives because it can be prepared very easily in a
melt reaction system. If one blends the polyethylene
graft copolymers with polypropylene, however, relatively
poor adhesion is obtained to polar polymers and other
; polar substrates. In some instances, no adhesion at all
is obtained between the graft copolymer blend with poly-
~~ ~ propylene and the polar substrate. The methods and re-
sulting structures of this invention avoid these diffi-
culties.
Summary of the Invention
By grafting suitable unsaturated carboxylic
acids or acid derivatives, for example anhydrides, to
2S polyethylene and blending the resulting graft copolymer
with a mixture of polyethylene and an elastomer we have
obtained adllesives with-excellent adhesive strength to
both polypropylene and to various substrates including
polar polymers like nylon, ethylene vinyl alcohol
copolymers, polyvinyl alcohol polymers and copolymers,
metals, glass, paper, wood and the like. The elastomer
aids the blend in adhering to polypropylene since wi-thout
its presence, poor adhesion is obtained to polypropylene.
This result could not have been predicted by those skilled
in the art, and is, therefore, surprising.

IL~
~ la -
The invention in one aspect comprehends the method
of making a composite structure comprising polypropylene,
a polar substrate and an adhesive blend in intimate contact
therebetween comprising applying in contact with the polypropy-
lene a~d the substrate an adhesive blend free of polypropylene,the blend consisting essentially of (a~ a graft copolymer
of about 70-99.999 wt. % of a polyethylene baokbone grafted
with about 30-0.001 wt. % of at least one compound containing
at least one unsaturated carboxylic acid or acid anhydride,
or both blended with both, (b~ at least 30 wt. % of the
blend of at least one elastomer selected from the group
consisting of copolymers of ethylene and an ~-olefi.n, ter-
polymers of ethylene, an a-olefin and a diene, homopolymers
of chloroprene, copolymers of isobutylene, homopolyers
of isobutylene, copolymers of a diene and a vinyl aromatic
compound, copolymers of a hydrogenated diene and a vinyl
aromatic compound, homopolymers of butadiene, copolymers
of an ethylenically unsaturated nitrile and a diene, or
mixtures of these, and (c) at least one non-elastomeric poly-
olefin resin that is either a homopolymer of ethylene, a co-
polymer of ethylene and an ~-olefin, or a mixture of these.
The invention also comprehends the composite
structure of components comprising polypropylene, a solid
substrAte and adhered therebetween the blend as recited
above.

120631Z~
..~ ,~ . .. ....
I
--2
Description of the Preferred Embodiments
The term polyethylene used herein for the
grafting backbone includes homopolymers of ethylene and
copolymers of ethylene with propylene, butene-l and other
unsaturated aliphatic hydrocarbons. Preferably, the eth-
ylene polymer is linear. Also, it is preferable sometimes
to graft blends of two or more of these homopolymers and
copolymers.
The term polyethylene polymers used herein as
a blending resin includes ethylene homopolymers and copol-
ymers of ethylene with other unsaturated hydrocarbons
with higher olefins such as propylene, butene-l andhexene-
1. It is ~ometimes preferable to use blends of two or
more of the above homopolymers or copolymers in the
blending resin.
The polyethylene homopolymers or copolymers may
be prepared by any known process using transition metal
catalysts with low or medium pressure or radical initi-
ators with high pressure. Hence, the polymers may be low
density polyethylenes, linear low density polyethylenes,
medium density polyethylenes or high density polyethyl-
enes.
By elastomer is meant copolymers of ethylene
and an ~-olefin, terpolymers of ethylene, an ~-olefin and
a diene, homopolymers of isobutylene, copolymers of iso-
butylene, homopolymers of chloroprene, copolymers of a
diene and a vinyl aromatic compound~ block copolymers of
a diene and vinyl aromatic compound~ copolymers of hydro-
genated diene and vinyl aromatic compound, hydrogenated
block copolymers of a diene and vinyl aromatic compound,
homopolymers of butadiene, and copolymers of an ethylen-
ically unsaturated nitrile and a diene.
Some examples of these elastomers are copoly-
mers of ethylene and propylene, terpolymers of ethylene,
propylene and a diene, copolymers of isobutylene with
isoprene, chlorinated copolymers of isobutylene and

~:Z(;)63~
isoprene, copolymers of butadiene and styrene, copolymers
of butadiene and vinyl toluene, block copolymers of buta-
diene and styrene, block copolymers of butadiene and vinyl
toluene, block copolymers of isoprene and s~yrene, block
; 5 copolymers of isoprene and vinyl toluene, hydrogenated
copolymers of butadiene and styrene, hydrogenated block
copolymers of butadiene and styrene, hydrogenated block
copolymers o~ isoprene and styrene, styrene-ethylene bu~
tylene styrene block copolymers, copolymers of acrylo-
nitrile and butadiene, copolymers of methacrylonitrile
and butadiene, copolymers of acrylonitrile and isoprene,
and copolymers of methacrylonitrile and isoprene.
It i5 preferred in the invention to use ethylene-
propylene copolymers, ethylene-propylene-diene terpoly-
lS mers, homopolymers of isobutylene, chlorinated copolymersof isobut~lene and isoprene, homopolymers of chloroprene,
hydrogenated block copolymers of styrene and butadiene,
and styrene-ethylene-butylene-styrene block copolymers.
he unsaturated carboxylic acids o~ acia deriva-
tives used as the grafting monomers include compounds
such as acrylic acid, fumaric acid, methacrylic acid,
maleic acid, itaconic acid, citraconic acid, mesaconic
acid, maleic anhydride, citroconic anhydride, itaconic
anhydride, 4-methyl cyclohex-4-ene-1,2-dicarboxylic acid
25 anhydride, bicyclo(2.2.2)oct-S-ene-2,3-dicarboxylic
acid anhydride, l,2,3,4,5,8,9,10-octahydronaphthalene-
2,2-dicarboxylic acid anhydride, 2-oxa-1,3-
diketospiro(4,4)non-7-ene, bicyclo(2.2.1)hept-5-ene-
2,3-dicarboxylic anhydride, maleo-pim~ric acid,
tetrahydrophthalic anhydride,x-methylnorborn~5-ene-2,3-
dicarboxylic acid anhydride, norborn-5-ene-2,3-
dicarboxylic acid anhydride, Nadic anhydride, methyl
Nadic anhydride, Himic anhydride, methyl Himic anhydride
and other fused ring monomers described in U.S. patents
35 3,873,643 and 3,882,194, both assigned to the present
assignee. Cograft copolymers as described in this U.S.

--4--
patent 3,882,194 are also useful in this invention. The
methods of preparation of the graf~ copolymers are
described in the above U.S. patent~.
Since these blends do not contain polypropY1-
ene, the discovery that the blends of this inventionadhere to polypropylene is surprising. Examples of the
Gomposites of this invention are polypropylene/adhesive
blends of this invention/nylon, polypropylene/-
adhesive/ethylene-vinyl alcohol copolymer, polypro-
10 pylene/adhesive/alumlnum, polypropylene/adhesive/steel,polypropylene/adhesive/glass, polypropylene/adhesive/-
wood, polypropylene/adhesive/leather, polypropylene-
/adhesive/nylon/adhesive,~polypropylene r polypropylene/-
adhesive/EVOH/adhesive/polypropylene~ and polypropyl-
eneJadhesive/aluminum/adhesive/polypropylene. Othermetals ~uch as copper, steel, brass, etc., can be used~
Tt is ob~rious that many more combinations can
be made by one skilled in the art using the principles
and blends disclosed~
In preparing the three component blends of this
invention from the above graft copolymers, elastomers and
non~elastomeric ethy~ene homopolymers and copolymers, any
blending equipment or technique may be used. As an example,
only, blends can be prepared in an electrically heated
Brabender PlasticorderTM mixing head using a scroll type
mixer under the following conditions: temp rature - 400~,
rotor speed - 120 rpm and mixing time lO min. after flux.
The resultant blends were comp~ession mo~ded
into films approximately 0.005~0.007 inches thick. The
films were then heat sealed to the substrate under eval-
uation at an appropriate temperature and time. These
conditions are:

3~L~
1. Nylon 6 - 430F, 2 sc.
2. Ethylene-vinyl alcohol copolymer (EVOH)
- ~30C, 5 sec.
3. Polypropylene - 500C, 5 sec.
4. Aluminum - 430F, 2 ~ec.
The resultant composi~es were tested by cut-
ting into strips one inch wide. Adhesion is then tested
by the T-peel test similar to that described in ASTM D
187-72.
Comparative Example 1
X-methyl bicyclot2.2.1)hept-5-ene-2,3-dicar-
boxylic anhydride (XMNA) is ~e~ted with a high density
polyethylene homopolymer resin in a twin screw extruder
to give a graft copolymer resin wi~h 1.5 wt.% XMNA incor-
poration and a melt index of 1.5 g/10 min. The graftcopolymer is blended in varying amounts with a random
polypropyl~ne-ethylene copolymer having a melt 10w rate
(MFR) of 2. These blends were heat sealed to nylon 6 for
2 sec~ at 430F. T-peel adhesion resul~s are summarized
below.
Graft CopolymerAdhesion to
in Blend Nylon 6
(W`t:.Q ~ (lbsJin)
3 0
25 5 0.3
7 0.6
0.
Com~arative Example 2
~sing the same graft copolymer as described in
Example 1, blends were prepared with a propylene-ethylene
bloc~ copolymer having an MFR of 2.
Graft CopolymerAdhesion to
in Blend Nylon 6
twt.%) (lbs/in)
3510 0.0
lS 003
0.0
~9

--6--
Comparative Example 3
The same blends used in comparative Example 2
were heat sealed for 5 sec. at 430F to an ethylene-vinyl
alcohol copolymer (EVOH). All these blends give extremely
poor adhesion to EVOH. The samples could not be tested
because they fell apart.
Comparative Example 4
Ninety percent of a propylene-ethylene block
copolymer containing 7.8% ethylene was blended with 10
wt.% of the same graft copolymers as described in Example
1. This blend was heat sealed to EVOH-and gave a heat
seal adhesion of 0.5 lb/in.
Comparative Example 5
When 90% of a polypropylene homopolymer having
an MFR of 4 blended with 10~ of the same graft copolymer
as described in Example 1, was heat sealed to EVOH, the
resultant heat seal adhesion is 0Ol lb/in. If this same
blend is heat sealed to a random polypropylene copolymer
as described in Comparative Example 1, its adhesion is
greater than 10 lbs/in~
The above examples show that i~ a polyethylene
graft copolymer is blended with a polypropylene homopol-
ymer or a random or a block copolymer containing ethylene,
the adhesion is not satisfactory to polar polymers.
Invention Examples 1-7
Blends were prepared using a low density poly-
ethylene (LDPE) with a melt index of 1.8 gram per 10
minutes, an ethylene-propylene-diene monomer terpolymer
tEPDM) elastomer and the graf~ copolymer described in
Comparative Example 1. These blends were tes-ted for
adhesion to an ethylene-vinyl alcohol copolymer (EVOH),
a random polypropylene copolymer, aluminum and nylon 6.
The results are shown in Table I below:

TABLE I
Composition Adhesion To
LDPEEPDM Gra~t EVOH PP Nylon 6Aluminum ~ - Copolymer Random
- Copolymer
% % lb/inlb/~n lb/in lb/in
Example 1 90 -- 10 ~7.1 0 4.4 54
2 65 25 lO >7.6 0.5
3 60 30 lO ~8.0 2.8 >6.1 4.1
~ 50 40 lO >7~ ~6.3 >5.3 5.9 ~i
>7~7~6.5 ~9.~ 5.3
6 35 55 lO >6.5~6.5 ---
7 25 65 10 7.4>6.8 >8.1

;3~
--8--
These results show that if the blend contains
at least 30% EPDM, adhesion is excellent not only to eth
ylene-vinyl alcohol copolymer, nylon 6 and aluminum, but
also to polypropylene.
s Inven~ion Examples 8-12
Blends were prepared using the same low density
polyethylene as described in Examples 1-7; the same graft
copolymer described in Comparative Example landa styrene-
ethylene-butylene-styrene block copolymer (a styrene-hy-
dxogenated diene-styrene copolymer known as Kraton G 1650
~SEBS)). The results on adhesion are shown below in Table
II.

TABLE II
~omposition Adhesion To
LDPE- SEBS Graft EVOH~ PP Nylon 6Aluminum
Copolymer 'Random
~ Copolymer~
% ~ % lb/inlb/in lb/in lb/in
Example 8 65 25 10 6G 7 1~1 >6.3 ---
9 60 30 10 6.8 5.5 >6.5 7.7
5 . 7 >9 . 9 3 . 7 3 . 7 1 ~,
11 35 SS 10 5.6>lO.Q >5.8
12 25 6~ ~ 0~ 7.~~1 0.0 >6 .2
~.
.
.
, :
; .
~ j .

-10-
Here again, the use of at least 30% of the elas-
tomer enables these blends to adhere to polypropylene in
addition to adhering to ethylene-vinyl alcohol copolymer,
nylon 6 and aluminum.
Invention Examples 13-15
Blends were prepared with a high density poly-
ethylene having an MI of 0.8 and a density o~ 0.96+ with
the same graft modified ~DPE described in Comparative
Example 1 and several elastomers: EPDM as described in
Invention Examples 1-7, a styrene~ethylene-butylene-
styrene block copolymer as described in Examples 8-12 and
a polyisobutylene (PIB) (Vistanex ~80)TM The results in
Table III show that blends containing 45% of the high
density polyethylene, 45% of the elastomer and 10% o the
modified high density graft copolymer give good ~o
excellen~ adhesion to all four substrates.
. , .;

TABLE III
Composition Adhesion to
HDPE EPDM PIBSEBSGraft Aluminum EVOH PP Nylon 6
Copolymer ~, Random
., Copolymer
% % % % % lb/in lb/in lb/in lb/in
~xample 1345 45 10 >6.8 6.2 2.Q >8.7 ~ :-
14 45 -- 45 . 10 3.8 8.3 3.5 >7.3 ~3
-- -- 45 10 3.7 3.4 7.5 4.1
16 90 -- -- -- 10 --- 2.2 0.2 1.9

3~;3:L~
-12-
Since adhesion can be obtained to polypropylene
and to polar polymers, various composites, laminates and
co-extrusions can be prepared using these materials. Com-
posites containing polypropylene, adhesive blend and ny-
lon, aluminum or ethylene-vinyl alcohol can be prepared
both by lamination and by co-extrusion.
In preparing composites one can use any means
for joining two or more layers known to one skilled in
the art. Preferably methods are blown film co-extrusion,
cast film and sheet co-extrusion, blow molding co-extru-
sion, lamination, co-extrusion coatlng. Other methods
are powder coating, rotomolding, profile co-extrusion,
wire coating co-extrusion, etc.
Glossary o~ Terms
EVOH ~ ethylene-vinyl asetate copolymers
;15 XMNA - X-methyl bicyclo(~.2.1)hept-5-ene-
2,3-dicarboxylic acid anhydride
MFR - melt flow rate
HDPE - high density polyethylene
LDPE ~ low density polyethylene
20 EPDM - ethylene-propylene diene monomer terpolymer
SEBS - styrene-ethylene-butylene-styrene copolymer
known as Krato~ G 1650
PIB - polyisobutylene

Representative Drawing

Sorry, the representative drawing for patent document number 1206312 was not found.

Administrative Status

2024-08-01:As part of the Next Generation Patents (NGP) transition, the Canadian Patents Database (CPD) now contains a more detailed Event History, which replicates the Event Log of our new back-office solution.

Please note that "Inactive:" events refers to events no longer in use in our new back-office solution.

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Event History , Maintenance Fee  and Payment History  should be consulted.

Event History

Description Date
Inactive: IPC assigned 2023-02-15
Inactive: First IPC assigned 2023-02-15
Inactive: IPC removed 2023-02-15
Inactive: IPC removed 2023-02-15
Inactive: IPC removed 2023-02-15
Inactive: IPC removed 2023-02-15
Inactive: IPC assigned 2023-02-15
Inactive: IPC assigned 2022-12-16
Inactive: First IPC assigned 2022-12-16
Inactive: IPC expired 2019-01-01
Inactive: IPC from MCD 2006-03-11
Inactive: IPC from MCD 2006-03-11
Inactive: IPC from MCD 2006-03-11
Inactive: IPC from MCD 2006-03-11
Inactive: IPC from MCD 2006-03-11
Inactive: Expired (old Act Patent) latest possible expiry date 2003-06-24
Grant by Issuance 1986-06-24

Abandonment History

There is no abandonment history.

Fee History

Fee Type Anniversary Year Due Date Paid Date
Registration of a document 1998-09-23
Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
EQUISTAR CHEMICALS, L.P.
Past Owners on Record
JOHN, JR. MACHONIS
MITSUZO SHIDA
SEYMOUR SCHMUKLER
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Cover Page 1993-06-28 1 17
Claims 1993-06-28 6 157
Abstract 1993-06-28 1 32
Drawings 1993-06-28 1 8
Descriptions 1993-06-28 13 390