Language selection

Search

Patent 1269372 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent: (11) CA 1269372
(21) Application Number: 1269372
(54) English Title: PROCESS FOR PREPARING ANTHRAQUINONES
(54) French Title: PREPARATION D'ANTHRAQUINONES
Status: Expired and beyond the Period of Reversal
Bibliographic Data
(51) International Patent Classification (IPC):
  • C07C 46/00 (2006.01)
  • C07C 50/18 (2006.01)
  • C07C 50/24 (2006.01)
(72) Inventors :
  • OKAMOTO, YOSHIYUKI (United States of America)
  • KRISHNAN, RAGHAVAN (United States of America)
  • VICARI, RICHARD (United States of America)
(73) Owners :
  • INDSPEC CHEMICAL CORPORATION
(71) Applicants :
  • INDSPEC CHEMICAL CORPORATION (United States of America)
(74) Agent: BORDEN LADNER GERVAIS LLP
(74) Associate agent:
(45) Issued: 1990-05-22
(22) Filed Date: 1986-05-01
Availability of licence: N/A
Dedicated to the Public: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): No

(30) Application Priority Data: None

Abstracts

English Abstract


Abstract of the Disclosure
Anthraquinone and mono-substituted anthraquinones are provided
wherein the substituent is selected from hydrogen, halogen, acyl, and alkyl in
a one step reaction which comprises reacting 1,4-naphthaquinone with 1,3-
butadiene which may be substituted as above, in the presence of a transition
metal salt.


Claims

Note: Claims are shown in the official language in which they were submitted.


THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A process for preparing compounds of the formula:
<IMG>
wherein X is selected from halogen, acyl, alkyl and hydrogen which comprises
reacting 1,4-naphthaquinone with a 1,3-butadiene compound of the forumla:
<IMG>
wherein X is as previously defined, in the presence of a catalytic amount of a
transition metal salt.
2. The process of Claim 1 wherein the catalyst is an iron salt.
3. The process of Claim 1 wherein the catalyst is FeC13.
4. The process of Claim 1 wherein the catalyst is Fe(N03)3.
- 6 -

5. The process of Claim 1 wherein the catalyst is a cobalt salt.
6. The process of Claim 1 wherein the catalyst is Co(N03)2.
7. The process of Claim 1 wherein the catalyst is a nickel salt.
8. The process of Claim 1 wherein the catalyst is Ni(N03)2.
9. The process of Claim 1 wherein the catalyst is NiC12.
10. The process of Claim 1 wherein the reaction is conducted in
he presence of phthalic acid.
11. The process of Claim 1 wherein 1,4-naphthaquinone and 1,3-
butadiene are reacted to produce anthraquinone.
12. The process of Claim 1 wherein a solvent is employed.
13. The process of Claim 1 wherein an alcohol is employed as a
solvent.
-7-

14. The process of Claim 11 wherein a solvent is employed.
15. The process of Claim 11 wherein an alcohol solvent is
employed.
16. The process of Claim 11 wherein an iron salt is employed as
the catalyst.
17. The process of Claim 11 wherein the catalyst is FeC13.
18. The process of Claim 11 wherein the catalyst is Fe(N03)3O
19. The process of Claim 1 wherein the molar ratio of
naphthaquinone to butadiene is 1:1.1-1.4.
20. The process of Claim 11 wherein the molar ratio of
naphthaquinone to butadiene is 1:1.1-1.4.
-8-

Description

Note: Descriptions are shown in the official language in which they were submitted.


37~
', .
PROCE55 FOR PREPARING ANTHRAQUINONE5 B4X15
!
Back~round of the Invention
Anthraquinone is one of the most valuable intermediates in the manu-
¦ facture of dyestuffs. Anthraquinones comprise a greater number of dyes having
outstanding fastness properties than any other group of dyes.
ll Anthraquinone is manufactured from phthalic anhydride and dry benzene
¦¦us;ng a large amount of anhydrous aluminum chloride. The process involves the
¦l use of an excess of benzene that must be recovere~i and the treatment of the
hydrogen chloride and aluminum hydroxide produced.
il Pure anthra~uinone can be nlanufactured by the reaction of 1,4-naph-
ll thaquinone with a small excess of 1,3-butadiene at 100-110C in an autoclave
,I followed by air oxidation of the resultant tetrahydroanthraquinone in the
I presence of base. (Ger. Offen. 2,460~922, July 3, 1975, K. Sakuma, H. Arioka, ¦
il T. Kume, Nippon Steel Chemical Co., Ltd.).
,¦ Anthraquinone can also be prepared by the direct reaction of 1,3-
! butadiene with a mixture of naphthalene, phthalic anhydride and 1,4-naphtha-
l quinone that results from the vapor phase oxidation of naphthalene (ll.S.
i Patents No.'s 2,652,408; 2,938,913; and 2,536,833).
! Brief Description of the Inventlon
I ~
It has now been discovered that anthraquinones can be obtained in
¦ good yield in a one step process by reacting 1,4-naphthaquinone and 1,3-
¦ butadiene, which may be substituted, in the presence of a transition metal .
catalys~, and preferably phthalic acid.
More par~icularly, 1,3-butadiene may be substituted with halogens
such as chloro ~nd bromo, 2 to 4 carbon acyl such as acetyl, propionyl and

- ~26937~ - I
n-butyryl~ 1 to 3 carbon alkyl such as methyl, ethyl and isopropyl; and
hydrogen. The substitution can be in the 1 or 2 posit;on. Representative
examples of substituted butadienes include
1-acetoxy-1,3-butadiene;
2-acetoxy-1,3-butadiene;
1 1-chloro-1,3-butadiene;
i 2-chloro-1,3-butadiene;
',1 1-methyl-1,3-butadiene;
2-methyl-1,3-butadiene;
1-ethyl-1,3-butadiene;
2-ethyl-1,3-butadiene;
bromo-1,3-butadierle; and
1, 2-bromo-1,3-butadiene.
! The catalyst is a salt of a transition metal such as Cr Mn, Fe, Co,
Ni, Cu and Zn Other transition metals may be used but are less preferred
~¦because of higher cost and limited availability. The anion to form the salt
!¦may be selected from d number of inorganic and or9anic materials to include
¦!chloride, nitrate, carbonate, bicarbonate, sulfate, sulfide, oxide, phthalate,
¦Ibenzoate, naphthallate, toluate and phosphate~ If desired, the salt may be
~formed in situ. While the catalysts containing iron are preferred, the
particular anion employed as well as the cation employed (other than iron) is
not particularly important. The amount of catalyst employed will depend upon
Ithe reactants but generally from about 1 to about 20% by weight of the
'Inaphthaquinone will be sufficient.
'l Depending upon the reactants employed, it may be necessary to use a
lsolvent. Typical solvents are the 1 to 3 carbon alcohols, Typical alcohols
'ilare methanol, ethanol, propanol, and butanol. Other suitable solvents are
¦¦tetrahydrofurane and dioxane.
!l
I :

~ 6937
.
'I
'I . .
¦ For best results, a slight excess of butadiene to naphthaquinone is
,¦employed. Thus, while substantially equimolar amounts may be used, it is
'!preferred that the molar ratio of naphthaquinone to butadiene be 1~ 1.4.
The reaction can be conducted at a temperature between about 80C and
,labout 130C at a pressure between about 3 and about 8 atm. in a period of
,Ibetween about 4 hrs. and about 10 hrs. A preferred temperature range is
j¦bet~een 90C and 110C and a preferred pressure range is between 4 and 6 atm.
The following examples will serv~ to illustrate the invention and
preferred embodiments thereof. All parts and percentages in said examples and
elsewhere in the specification and claims are by weight unless otherwise indi-
cated.
i.l 1
Example 1
Chemically pure 1,4-Naphthaquinone (2.0 9, 0.013 mole), 1,3-butadiene
1(1,Q 9, 0,018 mole) and anhydrous FeC13 (0.20 g, 0.0013 mole) were dissolved
linto 12 ml absolute alcohol and placed in a thick reaction tube (O.D.1/2 ~ 5/8
¦inches, wall 3/32 inches).
Chemically pure naphthaquinone was used as colnrnercial grade naph-
thaquinone contains phthalic anhydride which causes the formakion of anthra-
¦quinone. The tube was cooled to -70C (dry ice-acetone) and evacuated by a
high vacuum pump. The tube was sealed in vacuum and heated at 90 120C for
'i17 hours. The pressure was built up to 4-~ atmospheres during the reactonO
Upon cooling the solution, the solid prec,pitated and was isolated by filtra-
¦tion and washed with dilute aqueous HCl and water. The solid was crystallized
from 95% alcohol as yellow needles (m.p. 285 - 287C) and identified as
Idnthraquinone by l.R. and by mixed melting point. Yield 2.30 9 (û8~).
i
Il l

~Z~93
il
Example 2
The reaction was carried out under the same conditions as described
in Example 1 except that a catalyst was not employed. The white solid
¦produced was filtered and identi~ied as 1,4-dihydro, 9,10-anthraquinone (m.p.
105 - 108C). Yield 2.29 g, (86%).
Il I
Example 3
The reaction was carried out under the same conditions as described
in Example 1 except that equal molar amounts of FeCl3 and phthalic acid were
used. Anthraquinone, (m.p. 284 - 286C) was obtained~ Yield 2.33 g, (90
Example 4
i I
,I The reaction was carried out under the same conditions as described
¦lin Example 1 except that equal molar amounts of NiCl2 and phthalic acid were
jused~ Anthraquinone (m.p. 284 - 286C) was obtained. Yield 1.4 9, (54%). In
~¦addition to anthraquinone, many side-products were obtained and the structures
¦were not identified.
i! l
il Example 5
The reaction was carried out under the same conditions as described
in Example 1 except that equal molar amounts of Ni(NC3)2 and phthalic acid
¦were used. Anthraquinone, (m.p. 284 - 286C) was obtained. Yield 1.5 9,
¦ (56g). Other side products were also obtained.
Example 6
The reaction was carried out under the same conditions as described
l¦in Example 1 except that e~ual molar amounts of Co(Nn3)2 and phthalic acid
I¦ were used. Anthraquinone (m.pO-284 - 2B6C) was isolated. Yield 1.4 g,
!¦ (54~)- Other side products were also obtained.
- 4 -

Example 7
1,4-Naphthaquinone (7.9 9, O.OS mole), 1,3-butadiene (3.5 9, 0.07
mole), Fe(N03)3 (1.0 9, 0.002S mole) and phthalic acid (0.4 9, 0.0025 mole)
llwere dissolved into 60 ml absolute alcohol. The mixture was placed in an
,lautoclave. This was then cooled in dry ice/acetone and degassed.
~I The autoclave was then heated at llQC for 6 hours. The pressure was
built up to 6 atmospheres during the reaction. After the reaction, the con-
jtainer was cooled to room temperature. The volatile gases were analyzed by
!¦mass spectrum and found to be hydrogen and unreacted butadiene.
!I The solid produced was isolated and recrystallized from 95% alcohol
¦(mp. 285 - 287C). The solid was identified as anthraquinone by I.R.
measurement and by mixed meltiny point measurement. YiPld 9.3 y, (89.5%).
1! i
i! Example 8
The reaction was carried out using the same conditions as described
in Example 7 except that Co(N03)2 (0.073 9, 0.0025 mole) instead of FeCl3 was
used as the catalyst. Hydrogen and unreacted butadiene were detected and
anthrdquinrne (m.p. 2ûS - 287C) was obtained. Yield 8.5 9, (87.lX).
Il .
.
~ I 5

Representative Drawing

Sorry, the representative drawing for patent document number 1269372 was not found.

Administrative Status

2024-08-01:As part of the Next Generation Patents (NGP) transition, the Canadian Patents Database (CPD) now contains a more detailed Event History, which replicates the Event Log of our new back-office solution.

Please note that "Inactive:" events refers to events no longer in use in our new back-office solution.

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Event History , Maintenance Fee  and Payment History  should be consulted.

Event History

Description Date
Inactive: Adhoc Request Documented 1994-05-22
Time Limit for Reversal Expired 1993-11-23
Letter Sent 1993-05-24
Grant by Issuance 1990-05-22

Abandonment History

There is no abandonment history.

Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
INDSPEC CHEMICAL CORPORATION
Past Owners on Record
RAGHAVAN KRISHNAN
RICHARD VICARI
YOSHIYUKI OKAMOTO
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Abstract 1993-09-20 1 11
Claims 1993-09-20 3 48
Drawings 1993-09-20 1 10
Descriptions 1993-09-20 5 157
Fees 1992-04-22 1 30
Correspondence 1992-06-09 1 32