Language selection

Search

Patent 1323228 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent: (11) CA 1323228
(21) Application Number: 1323228
(54) English Title: OPTICAL FIBER FEEDTHROUGH
(54) French Title: CONNECTEUR DE FIBRE OPTIQUE
Status: Expired and beyond the Period of Reversal
Bibliographic Data
(51) International Patent Classification (IPC):
  • G02B 6/42 (2006.01)
  • G02B 6/44 (2006.01)
(72) Inventors :
  • ABBOTT, KATHLEEN SUE (United States of America)
  • HODGSON, MICHAEL JOHN (United Kingdom)
  • MACDONALD, BRIAN MICHAEL (United Kingdom)
  • SMITH, DAVID ROBERT (United Kingdom)
(73) Owners :
  • AGILENT TECHNOLOGIES, INC.
(71) Applicants :
  • AGILENT TECHNOLOGIES, INC. (United States of America)
(74) Agent: MARKS & CLERK
(74) Associate agent:
(45) Issued: 1993-10-19
(22) Filed Date: 1987-12-03
Availability of licence: N/A
Dedicated to the Public: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): No

(30) Application Priority Data:
Application No. Country/Territory Date
86 29158 (United Kingdom) 1986-12-05

Abstracts

English Abstract


TITLE
OPTICAL FIBER FEEDTHROUGH
ABSTRACT
An optical fiber feedthrough comprising a glass
seal for sealing the optical fiber within a metal
sleeve. The fiber is held in a fixed position with
respect to the sleeve while a glass solder, pre-
ferably an annular preform, is heated to its glass
transition temperature and then cooled to form a
glass to metal seal.


Claims

Note: Claims are shown in the official language in which they were submitted.


ED-0357 19
CLAIMS
1. An optical fibre feedthrough for feeding a fibre
through a wall of a package, the feedthrough
comprising a metallic sleeve, an optical fibre in the
sleeve and a glass seal between the optical fibre and
the sleeve forming a fibre to glass sealing interface
at the fibre surface and a glass to metal sealing
interface at the inner surface of the sleeve, the
sleeve and the fibre each having an end, the end of
the fibre protruding past the end of the sleeve, the
exterior of the sleeve being able to be mounted to a
wall of a package such that the sleeve and the fibre
pass therethrough.
2. An optical fibre feedthrough according to claim 1 in
which the glass seal comprises a glass capillary
member having a bore through which the optical fibre
is threaded.
3. An optical fibre feedthrough for feeding a fibre
through a wall of a package, the feedthrough
comprising a metallic sleeve, an optical fibre in the
sleeve and a glass seal between the optical fibre and
the sleeve forming a fibre to glass sealing interface
at the fibre surface and a glass to metal sealing
interface at the inner surface of the sleeve, the
sleeve and the fibre each having an end, the end of
the fibre protruding past the end of the sleeve, the
exterior of the sleeve being bale to be mounted to a
wall of a package such that the sleeve and the fibre
pass therethrough, and wherein the glass seal
comprises a glass capillary member having a bore
through which the optical fibre is threaded and
wherein the materials and the dimensions of the glass
capillary and metallic sleeve are selected to have
19

predetermined thermal expansion properties such that
after heating the assembly to a predetermined
temperature and then cooling to form the sealing
interfaces any residual stresses in the glass
capillary member in the radial, circumferential and
axial directions are largely compressive, thereby to
limit the susceptibility of the glass capillary to
the propagation of cracks.
4. An optical fibre feedthrough according to Claim 1
incorporating an internal spacer for maintaining a
fixed spatial relationship between the fibre and the
sleeve.
5. An optical fibre feedthrough according to Claim 2
incorporating an internal spacer for maintaining a
fixed spatial relationship between the fibre and the
sleeve.
6. An optical fibre feedthrough according to Claim 3
incorporating an internal spacer for maintaining a
fixed spatial relationship between the fibre and the
sleeve.
7. An optical fibre feedthrough according to Claim 1 in
which the fibre has a lensed end and is
concentrically disposed within the metallic sleeve.
8. An optical fibre feedthrough according to Claim 2 in
which the fibre has a lensed end and is
concentrically disposed within the metallic sleeve.
9. An optical fibre feedthrough according to Claim 3 in
which the fibre has a lensed end and is
concentrically disposed within the metallic sleeve.

21
10. An optical fibre feedthrough according to Claim 4 in
which the fibre has a lensed end and is
concentrically disposed within the metallic sleeve.
11. An optical fibre feedthrough according to Claim 5 in
which the fibre has a lensed end and is
concentrically disposed within the metallic sleeve.
12. An optical fibre feedthrough according to Claim 6 in
which the fibre has a lensed end and is
concentrically disposed within the metallic sleeve.
13. An optical fibre feedthrough according to Claim 1 in
which the metal sleeve has a coefficient of thermal
expansion of at least 12 x 10-6 per °C.
14. An optical fibre feedthrough according to Claim 2 in
which the metal sleeve has a coefficient of thermal
expansion of at least 12 x 10-6 per °C.
15. An optical fibre feedthrough according to Claim 3 in
which the metal sleeve has a coefficient of thermal
expansion of at least 12 x 10-6 per °C.
16. An optical fibre feedthrough according to Claim 7 in
which the metal sleeve has a coefficient of thermal
expansion of at least 12 x 10-6 per °C.
17. An optical fibre feedthrough according to Claim 8 in
which the metal sleeve has a coefficient of thermal
expansion of at least 12 x 10-6 per °C.
18. An optical fibre feedthrough according to Claim 9 in
which the metal sleeve has a coefficient of thermal
expansion of at least 12 x 10-6 per °C.
21

22
19. An optical fibre feedthrough according to Claim 4 in
which the metal sleeve has a coefficient of thermal
expansion of at least 12 x 10-6 per °C.
20. An optical fibre feedthrough according to Claim 5 in
which the metal sleeve has a coefficient of thermal
expansion of at least 12 x 10-6 per °C.
21. An optical fibre feedthrough according to Claim 6 in
which the metal sleeve has a coefficient of thermal
expansion of at least 12 x 10-6 per °C.
22. An optical fibre feedthrough according to Claim 10 in
which the metal sleeve has a coefficient of thermal
expansion of at least 12 x 10-6 per °C.
23. An optical fibre feedthrough according to Claim 11 in
which the metal sleeve has a coefficient of thermal
expansion of at least 12 x 10-6 per °C.
24. An optical fibre feedthrough according to Claim 12 in
which the metal sleeve has a coefficient of thermal
expansion of at least 12 x 10-6 per °C.
25. A method of sealing optical fibres in a feedthrough
comprising threading an optical fibre through a
sleeve, disposing a sufficient quantity of glass
solder with a lower glass transition temperature than
the fibre in at least a portion of the sleeve and
heating the glass solder so that it forms a glass to
fibre sealing interface at the fibre surface and a
glass to metal interface at the surface of the
sleeve.
22

23
26. A method according to Claim 25 including the step of
locating the fibre on a spacer to maintain a fixed
spatial relationship between the fibre and the sleeve
as the seal is formed.
27. A method according to Claim 26 in which the spacer
comprises member threaded on the fibre.
28. A method according to Claim 25 including the step of
locating the fibre end in a centering jig and
locating the end of the sleeve proximate the end
within an annulus on the jig that has a lower
coefficient of thermal expansion than the sleeve so
that during heating the sleeve expands sufficiently
to reduce circumferential clearance between the
sleeve and the annulus and any eccentricity between
the annulus and sleeve is minimized by permitting
radial movement of the sleeve within the annulus.
29. A method according to Claim 26 including the step of
locating the fibre end in a centering jig and
locating the end of the sleeve proximate the end
within an annulus on the jig that has a lower
coefficient of thermal expansion than the sleeve so
that during heating the sleeve expands sufficiently
to reduce circumferential clearance between the
sleeve and the annulus and any eccentricity between
the annulus and sleeve is minimized by permitting
radial movement of the sleeve within the annulus.
30. A method according to Claim 27 including the step of
locating the fibre end in a centering jig and
locating the end of the sleeve proximate the end
within an annulus on the jig that has a lower
coefficient of thermal expansion than the sleeve so
23

24
that during heating the sleeve expands sufficiently to
reduce circumferential clearance between the sleeve and
the annulus and any eccentricity between the annulus
and sleeve is minimized by permitting radial movement
of the sleeve within the annulus.
31. A method of forming a hermetically sealed optical fibre
feedthrough assembly that is resistant to the
propagation of cracks comprising:
a) taking an optical fibre with an inner and outer
buffer layer and stripping a predetermining length
of the inner and outer buffer layer from the
optical fibre to form a stripped and a buffered
portion thereon;
b) positioning a glass capillary member around the
fibre and within the sleeve so that the glass
capillary rests against a constriction in the
sleeve and the end of the fibre protrudes a
predetermined distance beyond the end of the
sleeve;
c) coating a central depression formed in a centering
bead with a lubricant, the centering bead having a
positioning collar thereon;
d) placing the centering bead over the protruding end
of the fibre such that the positioning collar
extends down and over the metal sleeve; and
e) heating the assembly formed by the preceding steps
a) through d) to a temperature above the glass
transition temperature of the glass capillary
member without exceeding 600°C for approximately
four minutes and thereafter cooling the assembly.
32. The method of Claim 31 wherein the assembly is heated
to a temperature approximately ninety degrees above the
glass transition temperature.
24

33. An optical fibre feedthrough comprising an optical
fibre threaded through a sleeve, with a sufficient
quantity of glass solder with a lower glass transition
temperature than the fibre in at least a portion of the
sleeve, said glass solder forming a glass to fibre
sealing interface at the fibre surface and a glass to
metal interface at the surface of the sleeve.
34. An optical fibre feedthrough according to Claim 33
wherein the fibre is located on a spacer to maintain a
fixed spatial relationship between the fibre and the
sleeve.
35. An optical fibre feedthrough according to Claim 34
wherein the spacer comprises a member threaded on the
fibre.
36. An optical fibre feedthrough according to Claim 33
wherein the fibre end is centered by a centering jig
and the end of the sleeve is located proximate the end
within an annulus on the jig that has a lower
coefficient of thermal expansion than the sleeve so
that when the sleeve is heated the sleeve may expand
sufficiently to reduce circumferential clearance
between the sleeve and the annulus and any eccentricity
between the annulus and sleeve may be minimized by
permitting radial movement of the sleeve within the
annulus.
37. A hermetically sealed optical fibre feedthrough
assembly, that is resistant to the propagation of
cracks, having:
a) an optical fibres with an inner and outer buffer
layer, said inner and outer buffer layer being
stripped a predetermined length, thus forming a
stripped and a buffered portion thereon;

26
b) a sleeve;
c) a glass capillary member positioned around the
fibre and within the sleeve so that the glass
capillary rests against a constriction in the
sleeve and the end of the fibre protrudes a
predetermined distance beyond the end of the
sleeve;
d) a central depression formed in a centering bead,
coated with a lubricant, the centering bead
having a positioning collar thereon; and
e) the centering bead being placed over the
protruding end of the fibre such that the
positioning collar extends down and over the
metal sleeve.
38. An optical fibre feedthrough according to Claim 37
wherein the assembly has been heated to a temperature
above the glass transition temperature of the glass
capillary member without exceeding 600°C for
approximately four minutes and then cooled.
39. An optical fibre feedthrough according to Claim 37 or
Claim 38 wherein the assembly has been heated to a
temperature approximately ninety degrees above the
glass transition temperature of the glass capillary
member.
40. An optical fibre feedthrough according to Claim 34
wherein the fibre end is centered by a centering jig
and the end of the sleeve is located proximate the
end within an annulus on the jig that has a lower
coefficient of thermal expansion than the sleeve so
that when the sleeve is heated, the sleeve may expand
sufficiently to reduce circumferential clearance
between the sleeve and the annulus and any
eccentricity between the annulus and sleeve may be
26

27
minimized by permitting radial movement of the sleeve
within the annulus.
41. An optical fibre feedthrough according to Claim 35
wherein the fibre end is centered by a centering jig
and the end of the sleeve is located proximate the
end within an annulus on the jig that has a lower
coefficient of thermal expansion than the sleeve so
that when the sleeve is heated, the sleeve may expand
sufficiently to reduce circumferential clearance
between the sleeve and the annulus and any
eccentricity between the annulus and sleeve may be
minimized by permitting radial movement of the sleeve
within the annulus.
42. An optical fibre feedthrough according to any one of
Claims 1 to 3 in which the fibre comprises silica.
43. An optical fibre feedthrough according to any one of
Claims 4,5 or 6 in which the fibre comprises silica.
44. An optical fibre feedthrough according to any one of
Claims 7, 8 or 9 in which the fibre comprises silica.
45. An optical fibre feedthrough according to any one of
Claims 10, 11 or 12 in which the fibre comprises
silica.
46. An optical fibre feedthrough according to any one of
Claims 13, 14 and 15 in which the fibre comprises
silica.
47. An optical fibre feedthrough according to any one of
Claims 16, 17, 18, 19, 20, 21, 22, 23 or 24 in which
the fibre comprises silica.
27

28
48. An optical fibre feedthrough according to any one of
Claims 33, 34, 35, 36, 37, 38 or 39 in which the fibre
comprises silica.
49. An optical fibre feedthrough according to any one of
Claims 40 or 41 in which the fibre comprises silica.
50. An optical fibre feedthrough according to any one of
Claims 1 to 3 in which the fibre comprises fluoride.
51. An optical fibre feedthrough according to any one of
Claims 4, 5, 6, 7, 8, 9, 10, 11 or 12 in which the
fibre comprises fluoride.
52. An optical fibre feedthrough according to any one of
Claims 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or 24
in which the fibre comprises fluoride.
53. An optical fibre feedthrough according to any one of
Claims 33, 34, 35, 36 or 37 in which the fibre
comprises fluoride.
54. An optical fibre feedthrough according to any one of
Claims 38, 39, 40 or 41 in which the fibre comprises
fluoride.
55. A method of forming a hermetically sealed optical fibre
feedthrough assembly that is resistant to the
propagation of cracks comprising:
a) taking an optical fibre with an inner and outer
buffer layer and stripping a predetermined length of
the inner and outer buffer layer from an optical fibre;
b) inserting the fibre into a metal sleeve and
centering the fibre with respect thereto;
c) positioning a glass capillary member around the
fibre and within the sleeve so that the end of

29
the fibre protrudes a predetermined distance
beyond the and of the sleeve;
d) heating the assembly formed by the preceding
steps a), b) and c) to a temperature above the
glass transition temperature of the glass
capillary member without exceeding 500 degrees C
for four minutes.

Description

Note: Descriptions are shown in the official language in which they were submitted.


1 323228 '
Ca~e No; A23459 ~D-o3s7
WP No: 0307S
TITL~ !
~15~1~5
BACK ROU~D OF ~ INv~?aTI
~IEl.D 0~ T~ INv~ S ON
This i~ventlon relate~ to feedthrouqh o~
10 optical ~boc~ an~ in p~cticular but not ex~lu~lve~y
to f eedth~ough in'co device pac~ages .
~ESCEIIPTSON 0~ T~ P~
Deviee packa~e~ that inco~poeat~ all opt~ Gal
oc op~o-elect~onlo co~nponent hav~ ~ a~ertu~ ~or th~
lS f eedthcough o~ the opticDl f ~bera th~t conduct light
to or ~ro~ the ~ackage~ St h~ ~e~rl u~u~l peaoti~e
tO 6up~oct th~ Go~n~et~ng ~o~tlon o~ th~ ~ibar~ in a
~etal 61eev~ ar~d the~ ~o~ tho alae~lo to be ~ounte~
th~ a~ertu~o, the ~ibo~s bei~ h~ tha ~leeYe ~y
20 ~ metal ~ola~ or ~o~y re~
~ f ~ ~ber 1~ to be Boldel:e~ ~nto t~e ~lee~
~t 1~ naco~sa~y to ~tallize ~h~ ~ilbeL ~o that tt~
al ~oldor w~ll adl~e to e~ r ~r~d ~h~ ~a~-
tiQn~l handling o~ ~h~ dol~aat~ Pll~er dur~g th~
25 ~etalliz~tion pro~s~ can cau~e d~n~g~ ~38pcc~ally tC~
~e en~ of t~e t~b~r Whi~h in ~o~e ~n~ta~c~ will -
already h~ve be~n proY~ded W~th a l~n~. The lensir~g
o~es~ canno~ be ~et~oe~e~ e~ly a~t~ ~e~alllzae~o
b~?ci~u~e the ~roY~mitr ~ a ~et~l 8U~CI~ tend~ to
30 lllter~r~ with t!~e ar~ ch~eg~ t~ctlnlqu~ g~;~era~
e~10yed. A1~o, ~et~1 ~ol~r ~ ~ub~ to ~roe~ an~
thi~ ~an l~aa to 10~8 o~ a1ig~ t o t21a ~lbe~ t~ ~e
o~tlcal OE op~o-~le~tron~c ~ . ar~d ove~ ell~ ~our~ :
o~ tl~e i~ ~aay e~en c~ u~e~cien~ co ~2U~O lo~
35 of l~ermetla 6ealln~ tweo~ lCb~ ~ib~r ~na ~lee~e.
.
, ;
;i.

1 323228
On ttle othe~ hand ~ epoxy ~esin i~ u~ed ~o
hold ttle optic~l f ~bers in posltion there 1B a ~lo~
releage o~ gases ~ro~ tl~e ~e~in (even aft~r heat
treatment ) ~nd the S~ e8 that are difi~harged ~an be
5 ha~ful to component~ within the pac~ags. A ~urthç~r
problem ~ha~ i8 encountered wieh bo~h me~al ~older
an~ epoxy re~n i~ tha~ the f lb~ ~ay not be
concentric uith the sl~eve an~ ther~or~ ~he preci6e
po~lt~on o~ the tibar may not ~e l~nown 80 that onae
10 the sleeve ha~ been allgned lt i~ nece~sary to ~er~orm
compen6~t~nq ~d3~tmenta in order to en~ure allgr~ment
o~ the o~t~cal ~e~ w~th the opto-electronlc o;
opelcal coa~ponent in t5~ cka~.
The pre~erlt inv~nt~o~ i~ directe~ tow~rd~
lS provi~ing a hermetic ~eal between an optl~al ~lber and
~eedthrou~h sleeve utilizing ~l~ss ~ol~er.
SUMMARY O~ T~ NSlON
~ o~dlnglr ~h~ p~ t inve~tion ~ ovide~ a~
opt~cal f lhoL ~eq~through co~prl~ng ~ ~etalli~
20 sleev~. an opt~ ~al 1~iber in tho ~lee~,re and a gl~8
~eA1 b~t~een the opt~cal ~lbe~ an~a t~e ~le~e for~ln~
~ lber to ~la~ ~ea~in~ inter~a~o ~t l;he t~b~r
au~face an-~ a qla~s eo ~tal ~aling int~rfaee at the
i ~ne~ ~ur~ace o~ th~ ~le
~5 ~ a inve~tlon al~o pco~l~es ~ ~etho~ o~
~e~}in~ ept~al f~e~ ~n a g~ hrou~h ~o~nprl~ing
thcea~insJ an opt~¢~l ~lber through ~ ~leeve, dl~posins
a ~u~5cient ~uantity o~ glaRs ~ol~er with ~ lower
~low t~por~tura th~rl t2~e ~ber ~a ~t lea~t a po~tion
30 of ~he ~ ve an~ he~t1~ t.be ~la~ ~ol~e~ so ~at ie
focD~ la3~ to ~bec ~e~ g interl~ce A!t the ~lbes
~ur~e~ ~nd gl~ to Det~l ~neer~a~ at the ~ur~ac~
o~ t~ 7
P~ bly th~ ql~ al ~empr~an 1I gl~
3s cag~llury et~s~d~ on to th~ ~b@r.
.
, . .
.: . . .
~,
..
,

1 32322~:
BRlEF D~scaIpTIoN OF THE DRA~IN~S
The in~.rention i~ now de6cr1bed by way of
exampl~ with re~rence to ehe accompar~ylng drawing~
in whic~ lgure l ~ a ecl~o~atic ~C0~8 ~c~ional
5 ~iew ehrou~h a f ~rst es~bodin~en~ Or ~he invent~on;
~ igure 2 iB a ~hem~tlc ¢EOS6 ~ect~onal view
thcough a ~econd embo~iment of the ~nvenelol-:
Plgure 3 ~how~ a modif lca~on to th~ ambodi-
ment o~ ~lgur~ 2, ~nd P`igu~d~ 4 ~nd 5 show r~p~c-
lO tively, the e~bo~imen~ o Figuce 2 be~ore and du~ingheating.
~ lgure ~ showc an ~lt~rnate embodimerlt or
ehorm~l con19uction oe~ber.
I)ETAlLED D~S~IP~ON OF THE I~V~NT10~
Referrln~ tO F~guYe 1, a ~eedthrouqh ~s~e~bly
gGner~lly indlc~te;~ by reference characte~ 100
comprl~as an outer meta~l~c ~leevo 1 ehrou~h v~lc~ ~n
op~lcal ~ er 2 o~ 0~ lic~ glaE~R 15 thr~aded . I~be
lnr~er ~ur~ac~ o the oleeve 1 18 p~ovld~d wlt~ at
20 le~t on~ inw~r~ p~otrll~ion clo~a to ono end o~ ti~
~leeve wh~ ch con~tri~t~ the ~leeY~ and whlct~ can b~
~o~d conran~ontly by di~pl~ng tho 31e~ 1 lerosP. ~he
outs~de by p~esaing a point ~nto the ~le~ wall to
~o~ ~ d~tosa~at~oll. In the dsa~i~g a pDlr o~ di~plo~
zs 3 ~r~ illu~tr~t~d ~ T~e f lber ~ i~ t~rea~e~ througb
the ~lee~e l ~o th~S lts te~ at~on pcotcu~ a ~host
a~ance beyo~a tl~e ~l~ple~ ena o~ ~h~ æl~vo, PP~
to lnsartion lnto tl e 31eev~ 1 th~ fi~ee Z l~ ~tr~pped
o~ ally ~rote~tlve ~oaein~s ~na. ~lE appropr~e~, tP~
3Q ~nd ~ay b~ foe~od l~o a len~. ~h~ ~ilo~ e~en
slld o~ e fl~E 2 ~o t~iat ~i ~ho~e leal~h o~ ~nna~
pro~es~tiY~ ~oat~ng~ ~OE ~Xillll~l2 ~bo~ 3~ xt~nd~i
ineo the 0lee~e 1 A~t the ~n~ ot~ tro~ t2~is dl~leoi
3. t~l~eena~l~aly the sl~eve 1 laay ~ pl~aedl o~re~ tho
35 ti~er 2 ~ir~ n~ ~ilil away ~co~n th~ ea~ o~ ~hH
. .
.:
`
: . :

1 323228
f ~ber, the tlbQr ~hen being str~pped and ~ermln~3ted
~nd tlle ~10eVQ 1 slid ba~k to a~opt the Rosltion
illu~trate~ ehe drawing.
A ~acer 4 con~stin~ of an ~nnul~r membee
5 of brass, ~liea ~la68 or other su~table ~aterlal i~
thre~ded on to the æt~lpped ~ber 2 and abu~6 ~he
d~mple~ 3 for po~itlve loca~ioAJ and adjacent to ~he
~pa~er 4 a pre~or~ 5 o~ gla~s solder i~ al~o 10cated
on th~ tibor 2. I~u~ins a sub~equent l~eat t~eat~asnt
10 the gla~s ~olâer ~0 heated to le~ flow te~perature BO
th~ lt for~ a ~eal betwe~n the ~lbe ~ an~ t~e
ve ~. In the poxition~ ustraeed ~n ~e draw~n~
the glas~ ~older ~111 also 6eal to t~e ~pae~r 4, ot
at lea3t tra~ ~he l;pa~er. However, ~t ~ ~ al30
15 pos~lble to ~rm ~ ~al ~f~t~lOUt u~ng ~ spa~er or ~ith
t~le position~ of the ~pacer an~ preferlD rever~d. In
. th0 lat~r ~a~ the 6p;~CQ~ ma~ o~ ~ ma~e1al
ehat i~ no~ e~e~ to by the g1aso so1d~r or 1~ it 1~
coat~ lth gr~plllt~. for ex~nple, ther: the ~acer ~2n
20 b~ rerqo~re~ after t~l~ heat treatm~nt:. When the peeorm
5 1~ po~1t10n~d next to th~ d1PRp1e~ 3 the dimp106 ~a~c
to 10cate the pre~oe~ 5 an~ BO te,~d ~o r~ta~n the
g1as~ so1d~r to the end reg1 on of th~ elqeve 1 wnen ~t
~lo~ ~u~nq he~t~ng. ~t ~hould be un~erse~od ehæt
25 Wtl1l2 in ~ e ~mbodi~nen~ o~ ~1gure 1 ~he di~ple~ 3 are
u~ed to 10a~t~ the ~pacel ~oc th~ preform) a1t~r~ate
arranS~en~ ~ay be u~ea tD lo~ate ~he~ meh~rs. U~e
o~ ~ ~pa~r ~ en~ure~ that the ~ber ~ i8 retair~od i~
~ ~1xad ~paeial ~rrange~ent w1thiD. the ~laev~ 1 ~uElng
30 t~e ~lo~ 3ta~e o~ t~ glaç:~ ~old~r. That 1~ to ~a~,
~h~ ~p~er 4 ~er~e~ to ~d1a11y ce4t~r t~e rib~r 2
th ~s~e~ to th~ ~nn~r ~a~e~er of the 3~ee~0 1
during tn~ ~low ~aqe o~ t~'le ~o1d~r~ ID thl~ rega4rd
lt ~8 t~ ~o~itio~ o~ ~ho e~d of th~ er ~h~t ~B
35 most l~pol~e~ na the~ef o~e to h~ hc ~co~
.
!
,. ' ~
' .~
" ,~ ~ '. '

1 32322~
~mr4~diat~ly ad jacent ~tle ~lbe~ end ~ay be advar~-
tageou~. Al~e~nati~rsly, or ~n addltlon, ~n ~x~arnal
~her~al conductlon ~aelober 1~ ~Figure 5~ ~ay bo u~ad
a~ ds~crlbea l~t~r her~in.
S ~ar~ou~ types of ~1~188 ~ay be chos~rl fo~ tl~e
gla$l3 solder. t;enerally lt i~ de~ red to achlev~ ~lo~
a~ one o~ ~e low~t teu~pe~atu~eR po~ibl~ to aYoid
~ib~r e~nb~ittlement and becau~ thers ace sth~r
~omponent~ (lqcl~ding ac~yli~ co~ting~ ~urther alon~
~he ~ r ~ eh~t cannot w~thstand high te~ratu~e~ .
In oxder to minl~ ze heat ~r~n~fsr alon~ b~ ~n~
~laev~ ~he ~leeve ~8 ere~e~bly held i~ ~ont,act wleh
heat sinl~. A glas~ ~older pre~o~RI wit~ ~ Xlow
telDperatUr~ r~.e.. gl~l88 t~an~tioll te~eratulre l~a)
15 ~n the r~n~e of ~00C to 480-C 1~ prR~er~ed ~or u~e
in th0 ln~ nt~on. Flo~ ~ay be ~ ie~d a~ lo~re~
ter~4rstU~es wlt~ ~oloe ~1~BB~ bUt th~ tl~ ~ake~ ~or
ou~r~lont f lo~r beco~e~ lorlge~ .
q~ho ho~ tr~at~ t tor tho glas~ aol~
20 pr~f~r~bly conslst~ o~ heat~ th~ Bleey~ 1 hel~ ~a
an up~ ht po3~tion untll t~a ~la~ ~ol~e~ flow~ i~eo
se~lln~ cont~ct wlttl th~ ~ber ~d ~ ve. Tt~ s1e~ve
n~ ot be ll~ld up~ght, bUt t~ gen~r~l1y
pre~rre~ 1~ order to o-~ a~ n ~ e i ~
25 en~l~asle~ tl~at gl~ old~r ~ould be ~ntrs~u~ed to
tlle ~leeYe in ~ f~r~ oth~r th~ refor~k. e~psalallr
when an ~nto~n~l 2~ac~r ~ use~ ~ t~iB al~o ~or~ a
n th~ ~u~e.
tl~ ~ pa~t~ ~uldrly ~r~ge~r~ mbodl~9~t o~
3d t~ v~ntion tl~ 6pa~er ~ placefi by an ~x~ern~l
~en~erin~ o and th~ e~ ~ 18 ~o~if ~ed to l1~a~0
~e~tion~ o~ f~rlng dlaoet~r8 aE~ own ln 11~1~ur~
~n~l 3. A de~ail~ al~ #Oo~ly ~roc~u~e o~
~e~theous~h ut~alzlng a~ e~Xt~!E~al ~ent4Pr
r~ow ~e~rlb~a ~ re~on~ o F~gu~ to 5
S
- . ~ ~ . , ;
, - , ~ : .
. - :
, .. , ~ ' : '' :, ~

1 323228
Figuce~ 2 and 3 ~howin~ Co~pletea se~ nd ~lgur~ ~
and 5 ~tlowin~ t~e ~tlU~:i;UC~ beo~e and ducl~g h~at~ng.
A len~th o ~n~le o~ ~ult~-~nod~ ~b~ 2 to
be U~e~ ~or th~ ~ee~th~ougll 1~ proce~sed throtl~b
S ~ev0r~1 ~tep~ erior to ~oc~l~g the deslred ~e~ he
Siber Z ~ny be ~ol^ ~xample a ~9~1;!5~' ~lngl~ ~o~
~ber r the 19H ~eprese~t~n~ th~ diamete~ cro-
~ete~, o~ t~e puce gla~s core tor t~ans~tt~g ll~t
and the U125" repr~eent~tlg the d~a~Qeter. al~o ia
10 ~iCI:omet~. o~ an ~d~acel3e cla~dlng for r~flect~ng
t~he 1~ qh~ wh~ tr~ ttad thcou~h tb~ cor~
type o~ ~lbe~ al~o tlas ~n In~er bu~er o ~ on~ o~
~ylate over th~ ~la~ y~r WhiCh ~ u~n
coat~d wlth an ou~er b~ffer o~ nylon or ~yt~l
lS (q`radaM~rlt) poly~t~r ~ to~er . 'rhe ~ rsc pro~e~
~op 1~ to ~t~ip tho oUtetr: al~l lnner bu~e~ laysr8 ~o
expoBo A bace opt~aal ie~be~ tb, 1~t8 r~loctl~ra
cla~ lng.
This baren opt~al ~ib~r lls ~lean~
~richloroethylene and ~hen placed In ~n 019~:tr~1c
d~chac~8 ar~ and pull~d i~l ~ oorl~.roll~d fa~!hlon to
fOr~ ~n lnteg~al len~d enl~. T~e lens~a oll?t~c~l ~gber
f ~ ttl0~ ~lednod w~tb meth~aol ~ low~d to d~
t~l8 ~?~ A~ ol3lph~
~he ~t~l ~lo~vo 1 1~ ~or~d ~it~ two ln~
di~to~cs~ ~ lar~s diaDe~o~ e~a 9 eh~e i~ g~ anol-gh
to ~ e ov~r ttle ~utor ~ur~ o~ the o~tl~al ~b~r 2
a~d ~ 3ma}1e~ ~ns~de ~a~otos ~s~d lO t3~at ~ ~o~d
'Co w~t~ tw~cr-8lYo ~l~ro~etoc~ of th~ ou~s~de
dla~n~to~ o~ ehe p1e~a~0tlll 5, ~hlc?a 1~ e~atlally ~ ~ .
~hol:t l~t~geh o~ pl al:y. T~o ~e~ V~ 1 ha~ a
~n~ulu~, ol: 8~ve~ o~lt~d ~ 3 ~tay~ally
~o~e~ o~ tl~ ~n~d~ o~ eh~ ~otor ~ostlo~ o~
th~ sl~v~ Ol~ ~o wh~c~ ono O~a o~ gl~ a~la~y
35, ~p3æ~ i lo~aS~. l?r~o~ to ~ae~tion o~ t~a
. I ond ~ras~o~ th~ 810~ ol~n~ t~lc~loco~e~yl~n~
' ' ~
-
.

1 323228
or 6ev~ra~1 ~inuteB. ulte~Boniaally cleane~ ~ n Boapy
w~eer a~ 37C foe two mln~lte~, eln~ed in âeioni2~d
watet, ~ h cleane~ in ~nechanol and ~lown dry with
nlt~ogen .
The gla~ preko~sA capillary 5 ~ ~ade f co~
lead bo~ate ~olde~ gla~s. Th~ ~n~i~e dlame~e~ of ~he
capill~y i6 ~ocmed to wiSh~ n twenty~ re ~laro~eter~
o~ the ba~ o~tic~l ~lber oU~siae ~iamet~r. ~S~e
cap~llacy ~ polL~hed to remove para~in, ~ ~esid~
10 contam~na~t that iB depo~ted on the aap~llary~ durtng
the gla~s ~w~g operat~ on ~ml?loyed ~o eut l:hO
aapillar~ e,o t21e desi~ leng~h and 1~ tho-~ cl~n2d
with ~Q~ch~nol ~nd blown ~ry w~th.r~tcogen.
The absence o~ fore~gn cDnta~inants ~
15 lmpo~tant ~n maklrlg the ~eal, If tbe~ are Any
oeganlc tllat~L~ Y p~o~ent Whic~ could go throu~h a
phas~ cllan~ at eleYated ~eN~et~tu~ uri~ s~al~n~,
euC~ ao the ;Ioee~entloned ~a~a~n, th~ lead ~or~sent
~n the ~ n cap~l~a~y Blat~ aoula b~ r~ od a~a
20 aAu~ed to pr0cip~tate ~nd l?~event a~ aa~eptabl~ B~
f ~ go~
Th~ l~n~ nd o~ tho b~r~ o~e~c~ h~
~nse~ted i~to th~ lar~e ~ aeteY en~ g o~ tho oll~eal
sl~ til the lena p~ot~ade~ 0.0~0 lnah~ ~ro~
2S tho ~ll di~net~r end lO o~ the ~ vo. 'P~e la~g~
aia~et~ as~ o t~e ~leeVe i~s then ~4sA~d a~ 13 to
the outer buf~er o~ the opt~cal lEib~r by ~e~o~ln~ ~he
sle~ve in a c~cu~ cen~ial fashion. T3~ 1x~ t~e
ax~al r~lationæh~ o~ tha ~tal ~ee~re 1 and the ~ar~
30 ~p~ iber Z.
Next th~ a~ ry 5 ~ sli~pe~ over
tt~ opt~al gibe~ len~ ~n~ ~nto t~e s~tal ~l~o~re 1
U~til i~ coDie~ to r~e on tt~ 10~ 3.
~oc to ~aa~ng ~n axially ~xeen~
35 ~o~1tlo~1ng coll~r ~ac ~ t p~e~ion 22 o~ a ~h~r~al
..
.
' ' "~ ' :

1 3232~
cond~ction me~ber 1~ n~er~ed o~e~ ~he ~educed
dlametsr end 10 of the ~iber ieeathrough a~e~bly
100. A8 wlll be developed her~n the ther~
conductlon m~ber 14 6er~e~ to ~ov~de unl~ocm he~tl~g
o~ ~he glasc pre~oE~ S~ In ad~itio~, a~ m~y be 8een
~o~ Flgure 5, the ~hermal conduction member 14 ~ay
be Qrme~ with a ~losed end 24 ~e~eon. The ~nn~
sur~e 2~ ~f c~e c103~d end 24 may b~ p~o~ded w~
~ center~ng r~ce~s 28 whlch ~ ~ds~te~ to rec~Ye the
~o~e~t~ng len~e~ end o~ the i~ber 2. An annula~ llng
30 pro~ect~ axlally fro~ th6 lnner ~ur~e o~ th~ 26
o~ the clos~ end ~4 o ~;he ~0mbe~
r~e r i ng 30 eng~ges the ~n~e~ ~ur~a~e o~ the
~duced dis~eter en~ 10 of the ~l~e~ 1 w~ the
15 gkirt por~on 2Z ~urrounas the outer fiurfa~ o tha~
~a~n~ end o~ ~ho Bleey~ 1. Sh~ ther~nal aond~3ctiozl
ma7llbeL 14 car~ ~er~e to ra~lly C~nte~ tll~ ~ib~ ~rlth
eespect to the ~nr~ai ~iameeer o~ thfl ~Qtal ~1e~re 1.
It ~ho~ld be un~r~tood hoYevel: l;hat ~ r~ag 30 ~y
20 b~ o~ltted. iA ~hleh e~rent t~e ~ rt poreiosl 2Z,
enga~ed agalnst tt~e outer sur~ac~ o~ tho ~lee~ 1
8~r~r~B to odnter the ~lbe~ ~ wltl:l re~p~ct to th~
outer suri~ea.
Figu~e S illu~trate~ ~h~ optt~al ~lbe~ ~aed~
th~ough assfl~b~y ~00 ~ ~t ~ould loo~ au~lng tho gl~s
~aællla~y ~eatin~ oQe~at~on. Th~ rec~ 2~ Of th~
alo~2d end o~ th~ m~e~ 1~ m~y be lu~rlc~eed with a
~et graphite ~lYture 15 tD pr~Yen~ the so~ten~d gla~
c~p~lla~y ~rom wettl~ to le ~urin~ the heati~g cyele.
It ~s ~hen ~are~ully ~ p~ ovar tha len~ an~ o~ ~o
th~ ~tal ~le~ ora~r S0 aent0~ e~o l~ns
r~latlvo eo tho ~nt~ xi~ o~ ~9tal ~lee~ 1,
the cen~ec~ng ~ead r~a~ng in th~ looa~lo~ until
: Sh~ gla6~ c~illary Aa~ ~oled a~d h~r~ene~ a~t~r
35 h~atin~ ~t~

1 32322~ '
Ttl~ center~ng bead ~8 made of Kovar, ~l~ich
ha~ a r~latl~r~ly low thermal ~oe~'~clen~ of expan~lon,
and wt~n t~le op~i~al f ~ber ~eedthrougll a~elably l~
tleated, the ~lee~re expand~ ~nore ~han the Ko~ar head
5 and re~ules ~t~ a snug glt between the ~leeve ~n~ th2
be~d. Thit~ bene~lt~ the centerlng upera~on by
red~lcing the e~fect o ol~rance betwe~n the ¢erl~e~Lng
bea~ ~nd ~etal ~leuve.
T4~ oVe~ 1~ ma~ f rom a cera~ic tlub~ 16 an~
14 t~as ~n ele~tr~aal heat~ng ele~es~t 17 i~ the ~o~ of
NICHP~OMEO ~oai~tænce ~rir~.
T~e l?~lDary ~unct~og~ of the ~her~al con~
tlon ~e~ber 1~ to tr~n~mlt he~t unito~ly ~io~ the
heatlng el@n~nt into ehe raau~ed d~aMe~r e~ o~
l'i th~ as6embly 100. Tll~ mlni~lze~ thsrraal ~ra~i~nt~
~ithln t~ r~or~ S occa~oned by coill~l~ o~ tn~ Wir~
and m~ oc ~ore ef~lc~ent heatln~ o~ ~he pr~or~ 5.
Figur~ 6 illu~ te~ an alteena~ bodi~nt
o~ t~a th0r~al con~u~t~on ~el~bec 1.~ ~h ldlll~h tba
20 clol3e~ an~ poetion 1~ o~itted. The ~3~1rt portloa 22
aue~ound8 th~ outer ~u~ace o~ tlle ~l~eve 1, a~
dl~usse~ o~rli~. Tt 3ho~ be r~adily und~r~tood
~hat wtlen ~3lng this e~bodim~nt of the ~h~r21!al
con~llctl~n ~ber 14 t~ aent~r1n~ o~ the ~1bec 14
25 ~ith Jc~pe~t to t~ae 81eeY~ 1 ~UBt ~a ~oYIe u~g th~
8~a~a~ au~e~ e~r11~r.
Pre~rably the ~e~bly ~ h~ted to a
t~pecatllr~ a~ox~Qate1y ~O~C abov~ the ~lasa
tean~lt~oll t~ e~ature o~ tl~ ¢~Qe~ or S~ur
30 rd~nut8~ a~ld t~ a11~s~e~ to eoo1.
3~f~e~n~ ~la~ 801~i~ES ~l~y r~gulre ai~re~
hea~in~ aon~t10ns, but ~n g~3n~ra1 ~h~ af~691~ly 1I~ alO~:
~ub)~a~d So te~ rature~ ~ n e~cc~ o~ 600"~ be~au~
&h~ l~n%~d tlp o~ the o~ti~a1 ~b~r t~nd~ l:o ~r~elt or
35 ~realc o~ tluo ~o ~lb~r eRI~c~elt1eaen~.
~ ~ ... .. .
.~.' .
- ., :: , ;. .
: -.
,. "- . :
:

1 323228
The ICovaL centerins bead i6 ther~ rer30tted ana
cleaned ~o~ r*use, dnd anr re~idual graphite l~t on
lihe lenses end o tbe ~eedthrough i~ reroo~ed wltl
s~e tha no 1 .
S The f eedthrough i~ the~ te~ted ~or
~erme~ialty u~inq ha~ lu~. A ~eal i~ con~ldeced
h~emetlc lt the dQtect~d lealc rate do~ not ~xc~ed
10 ~ atmoa~her~ ~ub~c centimeter6/~econd Helium,
MIL ~P~C 883. The feedthrou~h as showrl in Fl~ure 2
10 i~ n~ cott~pl~te. An altern~te embodi~ent o~ th~8
feedthrou~h, ~ure 3, ~oul~ ~ to bdçk-flll the ~mpty
~pac~ in~d~ the me~al ~l~eve u81n~ arl epo3cy ees~n lB.
Thi~ re~ could be inje~te~ into the ~et~ eve
~er ~ealin~ d he~tic~cy ~e~t~ng u~n~ ~ slDall
15 acae~ hol~ 19. ~he pur~oBe of addl~s t,hia ~t~lal
uould b~ tO ~truct~rally ~upport that portlo~ P~ tlle
ba~e optiaal ~ib~r ~rom the ctr~ppea end o~ th3 ~nn~r
and outer bu~er to th~ qlafi~ oapilla~r 69al.
The l~aterlal~ 0t ~or ~h~ tal ~ n~
20 the ~la~ aap~ llary are ~elected such th~t the
ther~al p ope~ie~, ~uch a~ thel~ coeY~icient~ o~
t~er~a~, oxp~n~lo~ ~nd their ~l~en~ion, ar~ oolaated
su~h th~t, the O~tre~1~8e3 ln Sho gla~s sa~llls~y
~r~ largely ~onlpre~ive. A th~ocatic~ anal~ 8 ~y
25 be us~t to evaluate several ~tecial cand~date~ ~o~
the ~ Ve ~n~ the capillary at ~ gllran ~et o
~o~etrlc pa~a~cter~ an~ tho reBult~ u~ed to ind~ cate
lC2~oB2 eo~lnat~on~ e~timatea eo haYe ten~il0 r~ther
th~rl eom~res~ e ~tre~s~. Such an an~ la ~ S~lY~A
30 b~lGw. It ~ noted that tho~e ar~ t;o~ ~pprox1-
~a~lon~ t~ Qalc~ tl~e analy~ ou~del~n~ n~F
tha~ e~actO
Th~ ~e~l c4nsl~ o~ th~e co~x~al cylilaa~r~
wl~SI d~erlng pso~ert~ . The b~r~ opti~l i~ec
d~lg~ata~ ~B~ re571Orl 1, th~ EI$ ~plllary 8
` ~ ' :` ' ~' `
;
, . . . . ..
` ; :. ` - . ~ ~ ~ ,
: '

1 323228
leg~on 2, ~nd ~he D~etal ~lee~e ce~on ~; ~he outer
radiu~ of the optical ~ber ~aken as e~luAl to the
Lnner r~dlu0 of the gla~ capillary 6e~13 rl, the~
outer rsdius o~ ~he glas~ capil~sry ~e~l (t~lteZI a~
S egud~ to the lnner ~ad~u~ o the ~et~ eY~ r;~,
an~ el~e ou~er ~adiu~ of ~he ~eeal ~leeve ~3,
E:a~h reglon hag it~ O~dR ~e~ og phy~
~roperties: t~odulu~ o~ elasti~lty ~ PO1B~O~B r~lo
o, ~nd coe~lcient of th~al expans~ on ~L. {ba~tl
10 r~gion al~o ha3 i&fi own ~et o phys~ca~ d~nslon~.
The dl~en~lon~ sel~ted are ty~lcal ~or th~ ~nt~n~ed
app~l~nt~on oî 'che ~dth~o~lgh.
TA~31,12 I: P~OPE~TtE38 US~:D I~ CAl rlJLAT~S
~rl,62.5 ~icro~oter~: r j~n200 m~cro~ete~s~; r3-~300 ~ro~et~
~5 ,~ ~ ~
COlSFF. B~1.157
at!a~ ( l . E-7~:) P~ P81 ) T,~
1. OPTICAL PIB15~
~SLIeA . 5 .16 1. 0
;20 2 aLI'.~S CAPI~L~RY
~o~ a 1015 QLAS8 ~ 2 1. O ~0~
"~CIIOT~ 471 ~LA~S106 .22 1.0 ~32
"Ot " ~P-lOO aLAS5 11~ . 22 1. 0 305
!~ nOI" PP-200 al,~ss 1~S .~a l.o 2~0
3. 74~TAL S~
~S l~O~AE~ ~LLOY M~TAL 52 . Z . 30 2 . o
52~ LSOY 97.2 .30 ~.
10~0 ~EI. 151. 0 . 30 2 . 9
304L STAI2~L~S8 ST15~ a . o . 30 2 l 8
E~P. COEPF. ~ L~e~ the~al ~xp~na~o
coe~ ~ la l~S
Pa Pol~son~ ~a~clo ~ lu~
3~ ~s~l~aeadl~
1~ ~ Younsl~s ~o~ul~ nl~ 6t~ o~a3
T~ r~ tlo~ o~p~r~tur~
~0~ ~ P~o~u~ vall~bl~ ~Co113
~w~n~- I l l lno~ e .
"SCHOTT~ ott Gla~werk~ r~g O F~tl .
-
,: . : .

1 32322~
~z
KOVAP~ ~ T~adem~tk o~ We~tlnghQu~2
E19CtL~C c~rpO a;a alloyed ~etal
havin~ 17~ ~obalt, 29t n~kel.
0.2~ oa~ 0.3~ ~ang~n~e.
O. 2~ carbon. re~ainder ~ICo~
l'52-ALLOY" = a ~etal alloy o~ 5a~ nlcls~
S 49~ ico~
u lo10 ~ ca r bon ~ teel
"3V4L", ~ weldable stainle~s ~te~l, 19
chro~ , 10~ nlckel, rem~lnder
l~on
The ~wo-lalfe~ comp~slte ayl~nder Wdl3
analy~ed by G.E. Red~ton ana J.X. Stanwo~th, ~,~. So~.
Gla~s Ta~hnol. . 2~ ~132~ 48-7~, 1945) ana t~e
g~ner~llzed multllayer oyl~n~r w~s ~cU~& by ~.
~ar~hr~eya, ~"Te~ati~ o~ ~a~c~le 8ci~nce éln~
'reahnology, Vol. 22, ~ 5~ }lI"~ pp. 2ql 306, ~a~. M.
TolQozawa a~d a.ll. Dore~nus, ~ca c Pre~s. NY 9
~h~ ~olutlcn 1B ob~alned aq ~!ollo~:
Th~ con~titutlve oquAclo~s rolat~n~ ~Be~s~
to str~ln ~oc ~1~ ela~tl~ oaterl~l, in pvla~ ~oor~l-
naeea. S~ T1~o~henko an~ J.N. aoo~ oosy o~
131a~tio~ty, page ~44, 3~ l~d. MoGraw-Hlll ~ook ~0. . NY,
1970 ), ar~ :
~ ~ Cf ~ E ~ la~ 3)1
zs ~e ~ ~ ~ ~ lae~ ~ ~, t~r ~ ~æ1 1 ~2~ :
~z ~ C~ aE ~ o5)l ~3
whoro ~ , a ~re th~ ra~
c~r~u~fe~ent~l (or ~oop~, ~n~ ~xlal ~c~ s: c~,
z ~ee St~9 ~e~pect~ r~ss~
Young'~ ao~llu~ o~ n'~ ~at40
i~ t~ 13t~n.
35 C~ n 11 ~T (4
12
.
,~. . ~ , ..
,, :` ` ~ ` ' ' ~ ., : .' : '
. :: ` . , : : , :
..

1 323228
13
where a i~ the linear thermal expansion coefflcient
and ~T i8 the temperaturs change ~nega~lv~ when
coolin5~ he ~tr~n0 ~ra d~lned ~n ter~6 o~ th2
radlfll diapla~ement. u, e~
s
c~ ~ dU/d~ ( S )
c~ r ( 6 )
wheee r 1% the radial coordinat~ ng ~qUa~iO~B
10 (1) - (6) it can be shown that the ~tre~s
distribut~on in ~ cyl~rAder h~ the for~:
a~n ~ P~n ~ 2
~ Pn + ~ 2 ~
15 tJz~ ~ Cn t93
wh~ An~ Bn~ ~nd C~ on~ant~l. A
~t~erent ~et dppl~e toc O~C~I ~r~vloualy ~le~ine~
re~ion: u a~ n~ 3- Tbe f~trl@s~e~ ~uot ~e
20 ~inite at r ~ o ~quat~on~ (7) ~nd t~) lmply Cll~t
~1 mu~t ~e Zero. ~rhls 12ave~ hlC eon~tant3 to ~o
deterr4~ned usln~ the followi~ boundaey condltlon~
1~ The di~pla~e~ntB ~U~ atch ~t eA~
~oundarle~ e ~egion~ (~he lay~r~ do ltOt ~e~ar~te
25 OL lnterpenet~ate~. 8Q
UL(C~ ) ~ U2(r~ )
U~r2~ ~ U3~r2) . ~11)
30 2) Th~ ~adial sSrea~e~ IRU~t ~:a~ch ~e the
~ound~rlez of ths ~egion~ to ~?r~ee~re ~qulll~iu~a o~
~or~
ael (r~ e2 (r
35 ~sa(rZ) ~ 3(1~2) ~L3
13
i ~ :
.
,:
~ , :
.

1 32322~
1~
3~ Th~ce c~n be no net ~orae ove~ the end of
the ~yl~nd~r, slllce a net ~orce woul~ u~e
~c~eleratll~n
~3
~zl d~ . o ~14 )
o
4) s~loilael3r, the~e ca~ be llo net ~oroe
10 norR~l to khe l~t~a~ ~u~AC~
~r3~C3) 9' ~15)
5,1 Th~ axi~l ~t~a~ ns IDuat ~atata, ~nc~ t2~e
15 reglon~ Ot, s~ld~ ~2~t one llnoth~3r
C2~ 22 ( 1~ )
e5~2 ~3 ~ )
20 Th~se condltion~ pro~ o~ht ~quation~ that f 15 th~
valu~ o~ t~o olght oon~ta~e~ ~n~ . and CD~'
T4e ~ iitlon~ b~ ~cpr~ d ~13 s~ht tlill~Ult31n20U8
.' l~n~ar ~q~latlo~, Wtllcb a~eor ~el~3elti~ no~
~or ~, Vll and e~ e~ b~ ~01Y~ ~UIaO~iCaa1Y
25 u~insl ~a ao~ut~c.
naly~l~ as~u~ he ~eor~al~ ar~
elan~ or~ tho ~ot ~ cap~ rg 18 S~OtUa11r
. v~,scola~tla, tt~ hr~roL. a~axation~ S ~nd
Co~po~t~;o~, Job~ y ~ ~on~ 98~). T~ere~o~
30 th~a~o r~ule~ ~houl~ not ~o e~r~a a~ ce~, ~u~ a~
t~ ti~B [an~l a~ ~u~h ~r~ ~?robably ~o~Qr~r~t~ ro~
w~ ow~ t~r ~ h~
b~ sre~ b~ o~ tlh~ ~hy~5~al dl~en~on~ ~o~
,~ the~ ~bOE~ a~ ~arîil~ æot ~or~h.
1~
,. .: . .
; . . . ..
,.
: . . , :

1 323228
Tabla lI ~nOws the ~t~e~e~ at the ~be~-
gla~ interfa~e fo~ ~vaciou~ cap~ cy and ~le~
~at~r 14111 .
S T~ CALCUL~T~ S~ES~S ~1 at 103P~I 3
AT FlBe~-~LP~S C~PtL~RY ~r~TEaPACE
~, ae2 ~g 2
~L ~ ~ E ~
OI E~G 1015 KO~ 10 . 7Z5 . 6 13 . 0
5~ A~t~OY -ZO . 71~ . 7
1010 -35 ~ 5 -3 . 9 -2
30~1. S~AIN-
L~ T~EL -~3 . 2 -1~ . O -~2 .1
~O~T ~tOVAR - 8 . 7 2 ~ . 9 17 . ~
5~ ~LLOY -16.3 19.8 3,5
~LO10 -27.~ $.~ -15,~
304 6~AEN _3~ 26 .0
OI PP- 100 I~C VAEI - ll . l 2 9 . 5 1a . 5
52 ALS.OY-l.~l ~ B ~ .S . 9
1~10 -~S.O 9.2 -11.1
3041. ~ASN-
Ll~ S'rE6L-30 . 7 2 . 4 -20
01 PP-200 I~O/AYI _13 ~ 31 2 20 3
2g ~,010 -~3.4 12,4 -7.5
30~t. 8T~
t.~t55 ~ L-2a . g 5 . 9 -16 . 6
POSI~ ~I.UeS 1~D',CCATI5 Tl~SI~
U13GP~TIV~ C~SeR~SS10N, ~1 x 1O3PSI
O~ co~binatlon~ 1~sted ~bo~ th~
o~ pr~or~ ~n~ e ~or1~ u11
~tcuatur~ Wll~ch all thre~ e~tc~ o~onen~c~ ac~
com~ ion, Y~ Ol ESG 1015 ~1as~ GaE~S llac~
1010 ~ e; ~) OI ~G 1015 ql~ and ~ea~Lnl~
35 ~t~l s1e0~: ana 3 ) Saho~t g~ a~ in1e~ e
; . .
'' ' ~ : :

1 323228
~ee~e. The ~econd of the thcee above 116ted ~o~$-
n~t~on~ i~ tlle pce~ecred comb1nation o~ ~tecials ~r
the physical dlmen~ionz ~et out ~n TABt~E ~..
S~:~lnles~ ~teal 18 prell~er~d ~or the ea~e o
S weldability th~t ~ t impart~ eo the ~CU~;ure o~ ~e
~eedthrough a~s~ly.
It should be noted ~roDI foce~Joing ~h~ a
suitable ~ealing i~ter~ace ~y be de~ ed ~et~ees~ th~
~leeîre and the p~efor~ wl ether or not ~he material
10 u~ed to for~ the ~leeve is wett~ble by the 5~1a~B o~
the p~Q~orm. The lOlo slQeVe ~B wet~able by the
~la~. Tho ~tainle~ ~teel sle~vs i~ not. ~By
~ealing lnter~a~e~ 1t i8 ~earl~; that a hec~tic ~eal
~8 def l~e~ bet~een ~w~ ~ember~ haYing a ~ ty
15 le~k cat~ ot le~6 than lo 8 ~t~o~phe~es ~u~1
ce~ ters~second Hel~u~.
The Rqua~ionB ~erQ gur~b~er ~l~ed to d3S4r~a~ne
the ~lnl~u~ guide1i~o va1ue of thoc~al ~paAelon
coQ~c~ t ~or the ~tal 01e~Ye at t~e l~t~
20 di~en~lonn eo yi~l~ a c~pr~lvo h~o~ 6tro~ ~lth OI
e~G 1015. and th~ re~ult va~ 1. 30 sc 10-5~C. q~hl~
thQ~ma~ expansion co~f$clQnt ln~llcate~ &abllity
o~ ~any coppor alloy~ ~ W~11 as ~eYera1~ta~nle~
~te~l co~pol~itions.
A11 of t40 ~oregolng, it 1~ empha~ized,
llolds on1y ~or the P~r~ca~ ai~en~ions above
d~cus~d. The analy~6 ~1~o Rhow~ that va~ae~o~ in
ehe di~ion of the ~eta1 f?~ 2VI~ nay r~sult ~1~ a
given ao~blna~30n o~ ~lee-re ar~ a88 ca~lllary
3~ exh1blt~nq th~ de~ired ~om~r~sive 6t e~e~. F~r
e~asup~, T~ble~ III an~ IV ~11u~eeat~ ~h~ r~lt~ for
a ~ta1nlfl~s ~teel ~10~e ~n~ PP~100 gl~s whe~ ~he
inner ra~lus r;~ anD t~æ outer ra~lu~ r3 o~ th~
81e~ Q ~ i ed ,.
, : ` , :
: . ` ' `: :
'f ~,

1 323228
17
Gla~8 PP-100
Me~al ~leev~ ~;tain~.~38 Steel
rl ~ 6Z . 5 ~lcromet~r~; r3 ~ 300 ! ~icromete
e2 a~ ~l3 az
crQ~et~r~)
125 -36 . 1 -3 . 5 -2fi .
150 -3~ . 3 -:L . 7 -24 . 6
17~ -32 . 6 . 3 2~ . 9
200 -~0. 7 2 . ~ -~0 . ~ :
az5 ~28.5 5.0 -18.0
2~0 -25 . 7 ~ . 3 - 3
PO8~'rIVE VALUES YNDI~ TEN8ION,
NE~:ATI~ 113fi~;IO~103 PSI)
l~E I~
6~.5 al~ro~t~c-; r3 Rl 400 ~lcro~ot~
~2 ~r` '~e 58
~mic~o~ete2s)
1~5 -37 . 2 -5 . 0 -2? . 2
lS0 -36 . O -3 . ~i -26 .
a6 175 -34 . 9 -~.4 -25. ~
200 -33 .~ -1.a -2~.5
22~ -3Z . a . ~ . 4
a50 -3~ . 5 -2~ . 0
PO~IT~ ALU~S It~ICAT~ ~ENSIO~,
N~CA~ C0~ E8SIO~o ~lx~03 P8I)
e~n ~ola TA{~l.t J,II ~y ~ is~g ~2
f ro!ll ~;!00 I~l~CI:O~ t~rR ~;0 175 Pl~C~o~Ot~ e t~
hoo~ ~t~ a~ do~r~a~ t~ros ~400 ~a ~o 300
3~!i P~;I)o ~ns ~e~le o~ th1~ ~ t~ogol~: 1) T~ ile
17
.. ~ .
. .
` `,
.

1 32322~
1~
~eresses whlch in~luence increa6~ the ~usce~eibllity
o~ tl~ qla~ capilldry to the ~or~Ation and
qubsequent ~rvpagat~on o cr4ck~ are ~ign~fiaantly
~limin~e~; ~) The E~roc~ss ~e~peratUre ~90C plu~
5 ~1la88 tran~ on ter~p~ratu~e TG) iq ~edu~ed ~co~
49~PC ~or 1~ L015 glas~ ~0 395~ or PP100 (~ee
rABLE I) whic~ reduces ~e tende~c~r o~ ~1be~
e~4bciteleanen~ a~ elevated tem~ratUre~ ~u~3 ~o 'c~e
appcoximatlons ~ch ~uake tlle analys~ a guldeline
10 ~aSher Sh~n exAc~ u~ed her~i~ the ~erm N largQ3,y
coolp~o~ e" w~en rel~t~ng to r~idual ~tre8~e~
~houl~ b~ conæt~ue~a to ~n~ e tho~e ~tre~o~ that
Appa~r in th~ Table~ ~18 ~ htly ten~le.
~x~le a~ ay be ~e~ ~rith re~erenc~ to ~ABLE I~I
15 for L2 equ~l to 175 ~lcco~tsLs
~3 ~ htly ten~ile ~300 P~l 8tce~) yet a~
a~e~cabl~ ~al ~ s produ~d . ~ur~h~c . a~ ~a~
with r~eence tO ~ABL~ IV when l~2 ~ualo ~25
~icro~t~r~ ~0 i8 ~hown a~ ly ten~llo
20 tlOO P~I 8tr~s~) yot an accs~t~blo ~ nay b-
produceA. ~s ~ ~e~u~t, l~ acCoc~ance Wlt~ the
pre~eqt ~n~ention a ~eal 1~ ~ro~rided 1~ whlc~ ~Q
~u~optlb~lity o~ cLa~k propagatlon i~ lt~d. ~rle
hyail~d~ e~han~ '18 bQl rl~ o al~o pcevent
25 th~ for~lon ~ ccacl~a. It i~ l~oee~ that th~
~o~enc~ o2 ~ol~ t~ he~ tal ~lee~e ~y
htly lncr~as~ proces~ 2ratu~
The ~a30r be~ef~ o~ ha~r~n~ the ~la~s
ca~llla~y totnl1y 1D~ co~l?~e~lon is t4at the~ tor~t~on
30 of ~l qra~ks ~ue to te~sl1e ~tre~aes iL~ ~ n3 ~ ze~ .
Thl~ ,naees th~ nee~ to ~on~or~ onlesel~ wlt~
p~d~tlng the ~ropa~at~o~ r~t~ of ~las~ c2aq~1e~ .
re~a~dla~ o~ ~hseber th~y ~re ~x~Al~ c~LrcuD~er~nti~l
o~ ca~ial, ~n th~s ~ e o2 applio~ion. Th0 r~sult
3S 1~ ~n o~tical ~lbo~ ~o~eh~ou~l~ 0~ riq~ eo~ ru~ ~on
~Y~ng exoellent long te~ h~rRs~ele ~rop~tles.
.
. `

Representative Drawing
A single figure which represents the drawing illustrating the invention.
Administrative Status

2024-08-01:As part of the Next Generation Patents (NGP) transition, the Canadian Patents Database (CPD) now contains a more detailed Event History, which replicates the Event Log of our new back-office solution.

Please note that "Inactive:" events refers to events no longer in use in our new back-office solution.

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Event History , Maintenance Fee  and Payment History  should be consulted.

Event History

Description Date
Time Limit for Reversal Expired 2004-10-19
Letter Sent 2003-10-20
Letter Sent 2002-04-29
Letter Sent 2002-01-22
Inactive: Late MF processed 2000-11-20
Letter Sent 2000-10-19
Grant by Issuance 1993-10-19

Abandonment History

There is no abandonment history.

Fee History

Fee Type Anniversary Year Due Date Paid Date
MF (category 1, 4th anniv.) - standard 1997-10-20 1997-10-01
MF (category 1, 5th anniv.) - standard 1998-10-19 1998-09-30
MF (category 1, 6th anniv.) - standard 1999-10-19 1999-10-04
Reversal of deemed expiry 2000-10-19 2000-11-20
MF (category 1, 7th anniv.) - standard 2000-10-19 2000-11-20
MF (category 1, 8th anniv.) - standard 2001-10-19 2001-10-03
Registration of a document 2001-12-18
Registration of a document 2002-02-20
MF (category 1, 9th anniv.) - standard 2002-10-21 2002-10-03
Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
AGILENT TECHNOLOGIES, INC.
Past Owners on Record
BRIAN MICHAEL MACDONALD
DAVID ROBERT SMITH
KATHLEEN SUE ABBOTT
MICHAEL JOHN HODGSON
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Claims 1994-03-08 11 389
Cover Page 1994-03-08 1 20
Abstract 1994-03-08 1 15
Drawings 1994-03-08 3 98
Descriptions 1994-03-08 18 715
Representative drawing 2002-04-30 1 5
Maintenance Fee Notice 2000-11-16 1 178
Late Payment Acknowledgement 2000-11-27 1 171
Late Payment Acknowledgement 2000-11-27 1 171
Maintenance Fee Notice 2003-12-15 1 174
Prosecution correspondence 1988-03-17 1 33
Prosecution correspondence 1992-12-09 2 82
PCT Correspondence 1993-07-07 1 29
Prosecution correspondence 1991-08-28 28 1,432
Prosecution correspondence 1992-01-05 3 118
Courtesy - Office Letter 1988-03-01 1 27
Examiner Requisition 1992-08-13 2 103
Examiner Requisition 1992-02-05 2 92
Examiner Requisition 1991-05-21 1 49
Fees 1995-08-17 1 38
Fees 1996-09-16 1 51