Language selection

Search

Patent 2184647 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent Application: (11) CA 2184647
(54) English Title: HEAT EXCHANGER WITH ADAPTER
(54) French Title: ECHANGEUR THERMIQUE AVEC ADAPTATEUR
Status: Deemed Abandoned and Beyond the Period of Reinstatement - Pending Response to Notice of Disregarded Communication
Bibliographic Data
(51) International Patent Classification (IPC):
  • F28F 09/007 (2006.01)
  • F28D 01/053 (2006.01)
  • F28F 09/04 (2006.01)
(72) Inventors :
  • VOSS, MARK G. (United States of America)
  • GRANETZKE, DENNIS C. (United States of America)
(73) Owners :
  • MODINE MANUFACTURING COMPANY
(71) Applicants :
  • MODINE MANUFACTURING COMPANY (United States of America)
(74) Agent: CASSAN MACLEAN
(74) Associate agent:
(45) Issued:
(22) Filed Date: 1996-09-03
(41) Open to Public Inspection: 1997-03-08
Availability of licence: N/A
Dedicated to the Public: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): No

(30) Application Priority Data:
Application No. Country/Territory Date
08/525,979 (United States of America) 1995-09-07
08/690,145 (United States of America) 1996-07-31

Abstracts

English Abstract


The lack of flexibility in selecting locations for inlets or outlets or crossovers for
a heat exchange fluid in a heat exchanger can be minimized in a heat exchanger
construction including first and second spaced, generally parallel, tubular headers
(10), (12) having opposed ends with a plurality of tubes (20) in parallel and spaced
from one another which extend between and have their ends in fluid communication
with the interior of the headers (10), (12). An adapter in fluid communication with
the interior of the headers (10), (12) is fixed to the exterior of the heat exchanger to
place the heat exchanger in communication with fluid conduits that may be disposed
in a variety of locations in relation to the heat exchanger.


Claims

Note: Claims are shown in the official language in which they were submitted.


The embodiments of the invention in which an exclusive
property of privilege is claimed are defined as follows:
1. A heat exchanger comprising:
first and second spaced, generally parallel, tubular headers having opposed
ends;
a plurality of tubes in parallel and spaced from one another extending between
and having their ends in fluid communication with the interiors of said headers;
a plurality of fins located between said headers and in heat exchange relation
with said plurality of tubes;
side pieces flanking said plurality of tubes and plurality of fins and extending
between and fastened to corresponding ones of said opposed ends of said headers,
one of said side pieces including an internal passage terminating in a first port at and
in fluid communication with one of said headers at one of said opposed ends and a
second port at the other end of said passage; and
an adaptor having a first duct in communication with said first port and a
second duct in communication with said second port thereby extending said internal
passage, said internal passage terminating at a first adaptor port and a second
adaptor port spaced from said first and second ports respectively.
2. The heat exchanger of claim 1 wherein said fins are serpentine fins and are
bonded to said side pieces.
3. The heat exchanger of claim 1 wherein there are two said passages, two
said first ports and two said second ports to provide first and second ports for each
said passage; and said first ports are in fluid communication with different ones of
said headers.
13

4. The heat exchanger of claim 1 wherein said second port is located in a side
of said side piece remote from said plurality of tubes and said plurality of fins.
5. The heat exchanger of claim 1 further including an additional header closely
adjacent said one of said headers; and wherein said second port is in fluid
communication with said additional header.
6. The heat exchanger of claim 1 further including an additional set of said first
and second headers and said plurality of tubes, and located in side by side relation to
said first named first and second headers and plurality of tubes, with the first headers
being in close adjacency to one another and the second headers being in close
adjacency to one another; and there are three said passages, each having first and
second ports, the first ports of said first and second passages being in fluid
communication with respective ones of said first headers, and the second ports of
said first and second passages being located oppositely of the respective said plurality
of tubes; the ports of said third passage being in fluid communication with respective
ones of said second headers.
7. The heat exchanger of claim 1 wherein said one side piece comprises a pair
of plates with said passage being located at the interface of said plates.
8. The heat exchanger of claim 7 wherein one of said plates has a peripheral
flange and the other of said plates is nested within said peripheral flange in substantial
abutment with the other of said plates.
14

9. The heat exchanger of claim 7 further including a spacer between said pair
of plates to define a laminated side piece.
1 5

10. A heat exchanger comprising:
a pair of side by side, heat exchange modules, each of said modules including
first and second spaced, generally parallel, tubular headers having opposed ends and
a plurality of spaced tubes extending in parallel with one another between the first
and second headers, the ends of the tubes being in fluid communication with the
interiors of the first and second headers;
a plurality of fins located between the headers and bonded to the plurality of
tubes in heat exchange relation therewith; and
side pieces flanking said plurality of tubes and said plurality of fins and
extending between and fastened to corresponding ones of the opposed ends of the
headers;
one of said side pieces including three internal passages, each terminating in
spaced first and second ports;
the first ports of two of said passages being in fluid communication with the
first headers of respective ones of said modules;
the second ports of said two passages being located on said side piece and
remote from said tubes in said fins;
the first port of the third passage being in fluid communication with the second
header of one of said modules and the second port of the third passage being in fluid
communication with the second header of the other module to define a crossover
passage; and
a generally flat adaptor mounted on said one side piece and including a pair of
internal passages, each of said internal passage having a third port aligned with and
in fluid communication with a respective one of said second ports, and each of said
internal passages having a fourth port spaced from the associated third port and on
1 6

the opposite side of the adaptor from said third ports, said fourth ports being adapted
to be connected as a fluid inlet and a fluid outlet for said heat exchanger.
11. The heat exchanger of claim 10 wherein said fin are serpentine fin and are
bonded to said tubes and to said side pieces.
12. The heat exchanger of claim 10 wherein said adapter comprises a pair of
plates with said first and second ducts being located at the interface of said plates.
13. The heat exchanger of claim 12 wherein one of said plates has a peripheral
flange and the other of said plates is nested within the peripheral flange in substantial
abutment with the other of said plates.
17

Description

Note: Descriptions are shown in the official language in which they were submitted.


- - 2184647
840a.app
SPECIFICATION
HEAT EXCHANGER WITH ADAPTER
FIELD OF THE INVENTION
This invention relates to heat exchangers, and more particularly, to manifold
systems utilized in heat exchangers.
BACKGROUND OF THE INVENTION
Many different types of heat exchangers in use today employ a core
construction that includes two or more spaced, generally parallel, tubular headers.
10 A plurality of tubes extend between the headers and are in fluid communication with
the interior of the headers. A plurality of fins are located between the headers and
in heat exchange relation with the tubes.
In this type of construction, for strength, and/or for mounting purposes, it is
customary to include side pieces. The side pieces typically are plates that extend
15 between corresponding ends of the headers. Where the fins are serpentine fins, the
end most rows of serpentine fins will customarily be bonded to the side plates.
Various mounting fixtures may also be employed in connection with the side plates.
Typical of these constructions is the use of inlet and outlet fittings which are
connected to one or the other or both of the headers. When the heat exchangers are,
20 for example, employed in vehicles, the location of other components that are
frequently disposed under the hood or dash of the vehicle may often dictate the
location of conduits that are to be connected to the heat exchanger. Other
constraints, such as the desire to obtain good aerodynamic configurations of the

46~7
vehicle exterior or maximum interior space to enhance fuel economy also bear on the
design of heat exchangers so as to accommodate them within a given envelope under
the hood or dash and at a location whereat conduits may be freely run to the inlet and
outlet fittings of the headers.
Not infrequently, the use of inlet and outlet fittings on the headers increases
the envelope that must be provided to encompass the heat exchanger in the direction
extending from one header to another.
Additionally, when connections are made to opposite headers, the conduits, at
least at their point of connection to the headers must be spaced which can also
create spacial problems in mounting the heat exchanger.
Furthermore, where tubular headers are used, they are typically pierced with
a plurality of parallel slots along their length to receive the ends of the tubes that
extend between the headers. In many of these constructions, flat sections are formed
on the headers oppositely of the slots to receive holes which in turn receive the inlet
and/or outlet or cross over fittings. This necessitates a forming operation thatdesirably would be eliminated.
The present invention is directed to overcoming one or more of the above
problems .
SUMMARY OF THE INVENTION
It is the principal object of the invention to provide a new and improved heat
exchanger. More specifically, it is an object of the invention to provide a new and
improved manifold system for connection to the headers of a heat exchanger.
An exemplary embodiment of the invention achieves the foregoing object in a
heat exchanger that includes first and second spaced, generally parallel, tubular

2 1 84647
headers having opposed ends. A plurality of tubes are located in parallel with one
another and are spaced from one another and extend between and have their ends
in fluid communication with the interiors of the headers. A plurality of fins are located
between the headers and in heat exchange relation with the plurality of tubes. Side
5 pieces flank the plurality of tubes and the plurality of fins and extend between and are
fastened to corresponding ones of the opposed ends of the headers. One of the side
pieces includes an internal passage terminating in a first port at and in fluid
communication with one of the headers at one of the opposed ends and an opposite,
second port at the other end of the passage.
In a preferred embodiment, the fins are serpentine fins and are bonded to the
side pieces.
In one embodiment of the invention, there are two of the passages, two of the
first ports and two of the second ports to provide first and second ports for each
passage. The first ports are in fluid communication with different ones of the
1 5 headers.
In a preferred embodiment of the invention, the second port is located in a side
of the side piece remote from the plurality of tubes and the plurality of fins so as to
be readily connectable to a fixture or the like.
One embodiment of the invention contemplates the provision of an additional
20 header closely adjacent the one of the headers connected to the passage. The
second port of the passage is in fluid communication with the additional header.
According to another embodiment of the invention, there is an additional set
of the first and second headers and the plurality of tubes, and the same is located in
side by side relation to the first set thereof with the first headers in each set being in
25 close adjacency to one another and the second headers in each set being in close

; ` 2 1 84647
adjacency to one another. There are three of the passages within- the side piece and
each has first and second ports. The first ports of the first and second passages are
in fluid communication with respective ones of the first headers and the second ports
of the first and second passages are located oppositely of the plurality of tubes of the
5 respective set. The ports of the third passage are in fluid communication with
respective ones of the second headers to define a crossover passage.
In one embodiment of the invention, the side piece comprises a pair of plates
with the passage being located at the interface of the plates. In one embodiment of
the invention, the plates have a spacer there between to define a laminated side
10 piece. In another embodiment, one of the plates has a peripheral flange and the other
of the plates is nested within the peripheral flange in substantial abutment with the
other of the plates.
Other objects and advantages will become apparent from the following
specification taken in connection with the accompanying drawings.
1 5 DESCRIPTION OF THE DRAWINGS
Fig. 1 is an elevation of a heat exchanger made according to the invention;
Fig. 2 is an elevation of the heat exchanger taken from the right of Fig. 1;
Fig. 3 is a view of part of a side piece made according to a modified
embodiment of the invention;
Fig. 4 is a view of another part of the side piece of the modified embodiment
of the invention;
Fig. 5 is an exploded view illustrating the intended assembly of the parts of
Figs. 3 and 4 together;

21 84647
Fig. 6 is an expioded elevation view of the adapter made according to the
invention;
Fig. 7 is a side elevation of the adapter made according to the invention; and
Fig. 8 is a side elevation of a heat exchanger having the adaptor mounted
5 thereon.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
An exemplary embodiment of a heat exchanger made according to the
invention is illustrated in Figs. 1 and 2 and with reference thereto is seen to include
a pair of generally tubular headers,10, 12, of oval cross section. The headers 10 and
10 12 are elongated and disposed in a generally parallel relationship with one another as
well as being spaced from one another.
On their facing sides, the headers 10 and 12 include pressure domes 14 in the
shape of a compound curve as is known in the art. The pressure domes 14 are
separated by slots 16 which receive the ends 18 of elongated, flattened tubes 20,
15 typically, but not always, of extruded construction .
A plurality of the tubes 20 extend in parallel, spaced relationship between the
headers 10 and 12 as illustrated in Fig. 1. A plurality of fins 22 are located between
the headers 10 and 12 and are in heat exchange relationship with the tubes 20. In
the usual case, the fins 22 will be brazed to the tubes 20 as when the fins 22 are
20 serpentine fins as illustrated in Fig. 1. However, if plate fins are used, a mere
mechanical contact may be employed in lieu of a metallurgical bond.
The construction is completed by first and second side pieces, generally
designated 30 and 32, respectively. The side piece 30 is conventional and includes
inwardly directed tabs 34 at its opposite ends which are secured as by brazing to

~ 1 84647
respective ones of the headers 10 and 12. The adjacent fin 22 is also typically brazed
to the side piece 30. The side piece 30 and the side piece 32 tend to stabilize the
overall construction against the various forces that it may incur in use. For example,
if used in a vehicular application, the heat exchanger will typically be subjected to
5 substantial vibration, pressure cycling and thermal cycling; and the side pieces 30 and
32 provide strength to resist the destructive forces generated during such vibration
and/or cycling.
The ends of the headers 10 and 12 adjacent the side piece 30 are sealed by
conventional end caps 36.
The side piece 32 is considerably different from the side piece 30. It is made
up of an inner manifold plate 38, an outer manifold plate 40 and a spacer plate 42.
The inner manifold plate 38 includes an integrally formed nipple 44 at each end. Each
nipple 44 is sized to be snugly received within the adjacent open end of a
corresponding one of the headers 10, 12 and to be brazed thereto to be sealed
15 thereto.
A spacer plate 42 includes three internal passages as will be described in
greater detail hereinafter while the outer manifold plate 40 includes a pair of integrally
formed nipples 46 that extend oppositely of the nipples 44, that is, away from tubes
20 and the fins 22. The nipples 46 may receive fittings 48 which terminate in
20 threaded ends 50 whereby fluid conduits may be connected to the same. The nipples
44 and 46 may be formed in the plates 38 and 40 by a stamping operation.
As seen in Fig. 2, there are in actuality two rows of the tubes 22 extending
between two of the headers 10 and two of the headers 12. That is to say, two
cores, each including a header 10, a header 12 and tubes 22 extending between the
25 same are provided. They are located in side by side relationship with the headers 10

- 21~46~7
in close adjacency to each other and with the headers 12 in close adjacency to each
other.
The fins 22 may be a single set of fins extending between both cores or each
core may have its own set of fins 22 as desired. In this configuration, the inner
5 manifold plate 38 has four of the nipples 44, two at each end. The two upper nipples
44 as seen in Fig. 2 are respectively disposed in an associated one of the headers 10
while the two lower nipples 44 are respectively disposed in an associated one of the
two headers 12.
The spacer plate 42 includes a first internal cut-out 60 that aligns with the two
10 upper nipples 44. As a consequence, fluid communication between the two upper
headers 10 is established via the cut-out 60 but serves as a crossover passage from
one module to the other.
The spacer plate 42 also includes an internal passage 62 having the
configuration shown and still another internal passage 64 having the configuration
15 shown. The internal passages are formed by cut-outs in the spacer plate 42. It will
be seen that the passage 62 extends between the uppermost one of the nipples 50
and the left lower most one of the nipples 44. Thus, the upper fitting 48 is in fluid
communication with the lower left header 12.
The cut-out 64 extends from the lower right header 12 to the lower fitting 48
20 and thus places the latter in fluid communication with the former.
Thus, it will be appreciated that one of the fittings 50 may be used as a fluid
inlet to the heat exchanger while the other fitting 50 may be used as a fluid outlet.
Fluid is passed into one of the modules, entering the header 12 thereof, to pass
upwardly through the tubes 20 to the upper header 10 where it crosses over to the
other header 10 via the passage 60. The fluid then descends through the tubes 20

~ 1 ~4647
of that module to the header 12 and ultimately exit the system through the other of
the fittings 48.
As illustrated in Figs. 1 and 2, the side piece 32 is a laminated construction
that results in the passages being disposed at the interface between the inner and
outer plates 38 and 40. In some instances, a two piece construction may be
preferred. Such a two piece construction will be described with reference to Figs. 3-
5, inclusive.
Referring first to Figs. 3 and 5, an inner plate 70 is basically planar but includes
a peripheral flange 72 extending from one side thereof and integrally formed nipples
74 at the ends projecting from the opposite side thereof. The nipples 74 serve the
same function as the nipples 44 and will not be further described.
Because the plate 70 is flat, it is ideally suited for bonding to the serpentine fins
22.
An outer plate 76 is also provided and is sized and shaped so as to nest within
the peripheral flange 72 of the inner plate 70. Near its upper end, the plate 76includes an elongated bubble 78 stamped in one side thereof so as to extend between
and overlie the two upper nipples 74 to thereby establish a crossover passage
corresponding to that shown at 60 in Fig. 2.
The outer plate 76 includes an additional bubble 80 that is configured as the
cutout 62 as well as a further bubble 82 which is configured as the cutout 64. Both
the bubbles 80 and 82 have, at their upper ends, integral stamped nipples 84 which
extend away from the plate 70 and which are adapted to receive fixtures for
connection to heat exchange fluid as is well known. The lower ends of the bubbles
80 and 82 extend downwardly to respectively overlie the left and right lower nipples
74 and thus provide for a passage of heat exchange fluid through the heat exchanger

21 ~4647
that is the same as that previously described in connection with the embodiment
shown in Figs. 1 and 2.
Between the bubbles, the plate 76 is flat so that it will abut the plate 70 and,
when subjected to a typical bonding operation such as brazing, the flat areas on the
5 plates 70 and 76 will braze to one another to seal the passages defined by the
bubbles 78, 80 and 82 from one another and from the exterior of the heat exchanger.
As noted, brazing is a preferred method of assembly of the heat exchanger.
Typically, its components will be formed of aluminum and where brazed joints are
required, one or the other or both of the components will be provided with a braze
10 clad at that location.
From the foregoing, it will be appreciated that the invention takes the usual
function provided by a side piece and implements that as well as adding a new
function whereby the same may serve to provide an inlet, an outlet and/or a crossover
passage for the heat exchanger. As a consequence, the envelope between the
15 headers 10 and 12 is not increased in that direction by the presence of fittings.
Furthermore, the invention allows the fittings to be connected to the heat exchanger
at some location other than the headers to provide an increase in design flexibility.
And while the illustrated embodiment shows the fittings as being within the plane of
the heat exchanger, those skilled in the art will readily appreciate that, if desired,
20 plates such as the plates 70 and 76 could be extended to one side of the heat
exchanger and provided with bubbles to extend to such locations so that the fittings
could be located to the front or to the rear of the heat exchanger, rather than to the
side thereof.
Similarly, the nipples 46 and/or 84 could be directed to the sides of the heat
25 exchanger, 90O (or any other desired angle) from the position illustrated, if desired.

2184647
Additionally, while the tubular headers 10, 12 are illustrated as being formed of a
single piece of material, two or even more pieces of material may be used to form the
tubular headers of the invention, so long as the interior passage is a passage such as
illustrated .
It may be desirable to utilize the above described heat exchanger in systems
having fluid conduits out of alignment with the nipples 46, 84 described above. In
such situations, an adapter 90 can be included in the above heat exchanger.
Such an adapter 90 can be used with heat exchangers having a laminated side
piece (Fig. 2) and with embodiments having side pieces having a two piece
construction (Figs. 3-5). The adapter 90 serves to lengthen the internal passages and
to introduce new passage end points to adapt a single basic heat exchanger
configuration for use in several different environments, each having differently located
inlet and outlet port locations.
The adapter 90 is made up of an inner plate 92 and an outer plate 94 (Figs. 6-
7). The inner plate 92 has a peripheral flange 96 and first and second openings 98
that are in alignment with the nipples 46 or 84 of the above described heat
exchangers. The openings 98 are sized to snugly receive the nipples 46 or 84 andto braze thereto to form a liquid tight joint. The outer plate 94 is sized and shaped
so as to nest within the peripheral flange 96 of the inner plate 92. Near its upper
end, the outer plate 94 has first and second adapter ports 100. These ports 100 are
located to align with the particular fluid conduits of the system in which the heat
exchanger is being installed. For purposes of illustration, the ports 100 are aligned
side by side and extend perpendicularly to the side piece 32. The ports 100 could
just as easily be positioned at a different angle to the side piece 32 for any particular
installation.

21 84647
Additionally, the outer plate 94 has a first bubble 102 extending from one of
the ports 100 to an area surrounding one of the openings 98. The bubble 102 is
stamped in one side of the outer plate 94 so as to extend between and overlie the top
opening 98 and the left port 100 to thereby establish a duct from the adapter port
100 to one of the side piece nipples 46 or 84.
A second bubble 104 is stamped in the outer plate 94 and extends between
the other port 100 and the remaining opening 98 to thereby establish a duct between
such port 100 and the remaining nipple 46 or 84.
Both bubbles 102 and 104 have, at their upper ends, integral, stamped nipples
106 which define respective ports 100 and which extend away from the inner plate92 and which are adapted to receive fixtures for connection to heat exchange fluid
conduits .
Surrounding the bubbles, the outer plate 94 is flat so that it will abut the inner
plate 92 and, when subjected to a typical bonding operation such as brazing, the flat
areas on the plates 94 and 96 will braze to one another to seal the passages defined
by the bubbles 102, 104 from one another and from the exterior of the heat
exchanger.
In some instances, rather than use a two piece adaptor construction having
stamped passages, a laminated construction with cut outs in a central section may
be used.
From the foregoing, it will be appreciated that the improvement allows heat
exchangers to be adapted for use in a wide variety of systems. It is often the case
that a particular heat exchanger is right for a particular use but that the inlet and
outlet fluid conduits are not aligned with the inlet and outlet ports of the heat
exchanger, making the heat exchanger unusable in that situation. To tool up for a

21 84647
heat exchanger that could be used is costly and inefficient. However, as a result of
the above described adapter, it is possible to adapt a single heat exchanger for many
different tasks.
In all events, many of the problems encountered with prior heat exchanger
5 designs, and the use of inlets, outlets and cross over fittings therewith, are avoided
through the use of the invention.

Representative Drawing
A single figure which represents the drawing illustrating the invention.
Administrative Status

2024-08-01:As part of the Next Generation Patents (NGP) transition, the Canadian Patents Database (CPD) now contains a more detailed Event History, which replicates the Event Log of our new back-office solution.

Please note that "Inactive:" events refers to events no longer in use in our new back-office solution.

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Event History , Maintenance Fee  and Payment History  should be consulted.

Event History

Description Date
Inactive: IPC from MCD 2006-03-12
Inactive: IPC from MCD 2006-03-12
Time Limit for Reversal Expired 2004-09-03
Application Not Reinstated by Deadline 2004-09-03
Deemed Abandoned - Failure to Respond to Maintenance Fee Notice 2003-09-03
Inactive: Abandon-RFE+Late fee unpaid-Correspondence sent 2003-09-03
Application Published (Open to Public Inspection) 1997-03-08

Abandonment History

Abandonment Date Reason Reinstatement Date
2003-09-03

Maintenance Fee

The last payment was received on 2002-08-30

Note : If the full payment has not been received on or before the date indicated, a further fee may be required which may be one of the following

  • the reinstatement fee;
  • the late payment fee; or
  • additional fee to reverse deemed expiry.

Patent fees are adjusted on the 1st of January every year. The amounts above are the current amounts if received by December 31 of the current year.
Please refer to the CIPO Patent Fees web page to see all current fee amounts.

Fee History

Fee Type Anniversary Year Due Date Paid Date
MF (application, 2nd anniv.) - standard 02 1998-09-03 1998-08-17
MF (application, 3rd anniv.) - standard 03 1999-09-03 1999-08-25
MF (application, 4th anniv.) - standard 04 2000-09-05 2000-08-31
MF (application, 5th anniv.) - standard 05 2001-09-04 2001-08-22
MF (application, 6th anniv.) - standard 06 2002-09-03 2002-08-30
Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
MODINE MANUFACTURING COMPANY
Past Owners on Record
DENNIS C. GRANETZKE
MARK G. VOSS
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column (Temporarily unavailable). To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.

({010=All Documents, 020=As Filed, 030=As Open to Public Inspection, 040=At Issuance, 050=Examination, 060=Incoming Correspondence, 070=Miscellaneous, 080=Outgoing Correspondence, 090=Payment})


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Representative drawing 1998-03-29 1 25
Claims 1996-12-02 5 134
Description 1996-12-02 12 452
Abstract 1996-12-02 1 18
Drawings 1996-12-02 4 101
Reminder of maintenance fee due 1998-05-04 1 111
Reminder - Request for Examination 2003-05-05 1 113
Courtesy - Abandonment Letter (Maintenance Fee) 2003-10-28 1 176
Courtesy - Abandonment Letter (Request for Examination) 2003-11-11 1 166
Fees 2000-08-30 1 33
Courtesy - Office Letter 1996-11-12 1 45