Language selection

Search

Patent 2206454 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent Application: (11) CA 2206454
(54) English Title: METHOD AND APPARATUS FOR CODING DIGITAL VIDEO SIGNALS
(54) French Title: METHODE ET APPAREIL DE CODAGE DES SIGNAUX VIDEO NUMERIQUES
Status: Deemed Abandoned and Beyond the Period of Reinstatement - Pending Response to Notice of Disregarded Communication
Bibliographic Data
(51) International Patent Classification (IPC):
  • G06T 09/00 (2006.01)
(72) Inventors :
  • HERPEL, CARSTEN (Germany)
  • RIEMANN, UWE (Germany)
(73) Owners :
  • DEUTSCHE THOMSON-BRANDT GMBH
(71) Applicants :
  • DEUTSCHE THOMSON-BRANDT GMBH (Germany)
(74) Agent: SMART & BIGGAR LP
(74) Associate agent:
(45) Issued:
(22) Filed Date: 1997-05-29
(41) Open to Public Inspection: 1997-12-28
Availability of licence: N/A
Dedicated to the Public: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): No

(30) Application Priority Data:
Application No. Country/Territory Date
196 26 108.2 (Germany) 1996-06-28

Abstracts

English Abstract


For future digital television broadcasting and
the interactive communications services associated
therewith, video data must be greatly reduced in terms
of their volume of data by means of suitable coding
devices. One coding method provided for this is the
MPEG2 standard. If, during the coding, a change in the
picture scene occurs within successive Groups of
Pictures, no rational basis for the prediction of the B
and P frames exists for the current Group of Pictures.
As a result, the reconstruction result in the decoder
will remain unsatisfactory. According to the invention,
such scene changes are detected and the first picture
of the new scene is intraframe-coded.


French Abstract

La télédiffusion numérique future et les services de communication interactifs qui lui sont associés exigent une réduction importante du volume des données vidéo correspondantes, cette réduction étant réalisée par des dispositifs de codage appropriés. La norme MPEG2 est une méthode fournie dans ce but. Si, pendant le codage, un changement se produit dans la scène d'image à l'intérieur de groupes d'images successifs, il n'existe pas de fondement rationnel pour la prédiction des trames B et P pour le groupe d'images actuel. Il en découle que le résultat de la reconstitution dans le décodeur demeurera insatisfaisant. La présente invention permet la détection de ces changements et la première image de la nouvelle scène subit un codage intratrame.

Claims

Note: Claims are shown in the official language in which they were submitted.


Claims
1. Method for coding (8) digital video signals, in
which, in each case with a defined sequence, an
intraframe-coded picture (I) and at least one other
picture coding type (P, B) for a further picture or
further pictures are used in a group (GOP) of
successive pictures, characterized in that pixel values
which change greatly from one picture to another
picture or greatly changing picture contents are
determined in a detector (10) and the further coding
(8) is controlled in such a way that intraframe coding
is carried out for a picture having greatly changing
pixel values or greatly changing picture contents,
independently of the position of this picture within
the group (GOP).
2. Method according to Claim 1, wherein, in the
detector (10), the sum of the absolute value
differences between the pixels of two adjacent frames
(n, n-1) or fields is formed (5) and compared (6) with
a threshold value in order to generate a control signal
for the subsequent coding (8).
3. Method according to Claim 1 or 2, wherein,
prior to the formation of the absolute value
differences, the video data are horizontally and/or
vertically low-pass-filtered and subsampled in the
corresponding direction.
4. Method according to one or more of Claims 1 to
3, wherein, in the detector (10), a search is made for
global motion parameters by means of prediction and, if
such parameters are present, no additional intraframe
coding is effected.
5. Method according to Claim 4, wherein the global
motion parameters are used or taken into account during
the further coding (8).
6. Apparatus for coding (8) digital video signals,
in which, in each case with a defined sequence, an
intraframe-coded picture (I) and at least one other

picture coding type (P, B) for a further picture or
further pictures are used in a group (GOP) of
successive pictures, characterized by:
- a detector (10), which determines pixel values which
change greatly from one picture to another picture or
greatly changing picture contents;
- a coder (8), which is controlled by the detector in
such a way that intraframe coding is carried out for a
picture having greatly changing pixel values or greatly
changing picture contents, independently of the
position of this picture within the group (GOP).
7. Apparatus according to Claim 6, wherein the
detector (10) contains a predictor (11) which
determines global motion parameters and, if such
parameters are present, controls the coder in such a
way that no additional intraframe coding is effected
therein.
8. Data medium, in particular optical disk, which
contains video data which are coded using a method
according to Claim 1.

Description

Note: Descriptions are shown in the official language in which they were submitted.


CA 022064~4 1997-0~-29
PD960037 D94/156A-Ha-300197
Method and apparatus for coding digital video signals
The invention relates to a method and an
apparatus for coding digital video signals.
Prior art
For future digital television broadcasting
(DVB = Digital Video Broadcasting) and the interactive
communications services associated therewith, vldeo
data must be substantially reduced in terms of tr.e
volume of data by means of suitable coding devices.
This step is necessary in order to be able to transmit
more programmes via existing channels or to communicate
moving picture sequences in already existing narrow-
band transmission paths. One coding method provided for
this purpose is the MPEG2 standard (ISO/IEC 13818).
Invention
In order to obtain the highest possible
compression factor during coding, the input pictures
are combined in Groups of Pictures (GOP) in the case of
MPEG. The individual pictures are coded differently
within such a Group of Pictures. According to MPEG, a
Group always consists of one intraframe-coded frame
(I frame) as well as normally a plurality of P frames
(predicted frame) and/or B ~rames (bidlrectlona y
calculated frames), it being true here as well as in
the following text that "frame" may also be replaced by
"field".
The data rate necessary for transmitting a frame from
this Group depends on the relevant frame type (I, P or
B) as well as the current picture contents. The largest
relative volume of data within a Group of Pictures is
allotted to the I frames. They contain all the data
required for complete reconstruction in the decoder. In
contrast, P frames are predicted from I frames or a
preceding P frame, that is to say the presence of a
complete I frame in the relevant Group of Pictures is

CA 022064~4 1997-0~-29
PD960037 D94/156A-Ha-300197
necessary for the reconstruction of the P frames at the
receiving end. For this purpose, it is then necessary
to code only the difference from the preceding I or P
frame. B frames, on the other hand, are essentially
calculated (interpolated) from already reconstructed I
or P frames. The volume of data which must be
transmitted for a B frame is correspondingly low.
Certain picture types may also contain individual
macroblocs of other picture types, for example
macroblocs may occur in P and B pictures at picture
excerpts which could otherwise be coded only with
insufficient efficiency.
Although the above-described classification of the
frames into different frame types permits a very high
coding efficiency, it imparts to the different frame
types different degrees of sensitivity to transmission
errors. Thus, transmission or reconstruction errors
within B frames remain restricted to the corresponding
B frame, whereas erroneous I and P frames can affect
the entire Group of Pictures (GOP). In the case of the
most frequently chosen MPEG2 parameter of 12 frames per
GOP, the time duration for this may last up to
approximately half a second (at 50 Hz frame frequency,
at 60 or 59.94 Hz frame frequency correspondingly
shorter) and is thus very disturbing to a viewer.
A similar effect regarding error degradation
may also occur when, during the coding of a feature
film, a change in the picture scene occurs within a
Group of Pictures. In this case, no rational basis for
the prediction of the B and P frames exists for the
current Group of Pictures, rather the first picture of
the new scene is largely coded with intraframe
macroblocs, on account of the internal control of the
coder. Since the allocated volume of data for a P frame
is not large enough to intraframe-code large portions
of the picture with good quality, the reconstruction
result in the decoder will remain unsatisfactory. Only
in the following Group of Pictures do stable conditions

- CA 022064~4 1997-0~-29
PD960037 D94/156A-Ha-300197
.
exist once again for the coding process, which permit
satisfactory reconstruction.
Previous coding processes for data reduction are ~ei
on feeding the volume of data !picture sequerlces;,
which originates from a film scanner, for example, tC'
an MPEG coder which continuously generates a data-
reduced bit stream. In this concept, scene cuts of the
original film coincide completely arbitrarily with a
frame type determined by the coder, which may lead to
the above-described error degradation within a Group of
Pictures.
The invention is based on the object of
specifying a method in which the coding process ls
synchronized with a scene change that is present. This
object is achieved by means of the method specified in
Claim 1.
The invention is based on the further object of
specifying an apparatus for application of the method
according to the invention. This bject lS achievel r, ,,
means of the apparatus specified ir. Claim 6.
For this purpose, a scene detector is connected
between the picture generator (film scanner, camera,
recording device or another signal source) and the
coder. The said scene detector generates a suitable
control signal and causes the coding process, in the
event of a scene change, to begin with a new Group of
Pictures, that is to say with an I-coded picture. This
advantageously prevents a scene change from falling in
the middle of a Group of Pictures, for example, and
thus reconstruction with impaired quality from being
engendered at the decoder. This measure advantageously
requires no additional outlay in the decoder and
consequently does not lead to an increase in the
complexity and hence the costs in the end unit, that is
to say a decoder in a set-top box or in a televlsion
set/video recorder/DVD player (Digital VideoDisk).
In principle, the method according to the
invention consists in the fact that, for coding digital

CA 022064~4 1997-0~-29
PD960037 D94/156A-Ha-300197
video signals, in which, in each case with a defined
sequence, an intraframe-coded picture and at least one
other picture coding type for a further picture or
further pictures are used in a group of successive
pictures, pixel values which change greatly from one
picture to another picture or greatly changing picture
contents are determined in a detector and the further
coding is controlled in such a way that intraframe
coding is carried out for a picture having greatly
changing pixel values or greatly changing picture
contents, independently of the position of this picture
within the group.
Advantageous developments of the method
according to the invention emerge from the associated
dependent claims.
In principle, the inventive apparatus for
coding digital video signals, in which, in each case
with a defined sequence, an intraframe-coded picture
(I) and at least one other picture coding type (P, B)
for a further picture or further pictures are used in a
group of successive pictures, is provided with:
- a detector, which determines pixel values whlch
change greatly from one picture to another picture or
greatly changing picture contents;
- a coder, which is controlled by the detector in such
a way that intraframe coding is carried out for a
picture having greatly changing pixel values or greatly
changing picture contents, independently of the
position of this picture within the group.
Advantageous developments of the apparatus
according to the invention emerge from the associated
dependent claim.
Drawing
An exemplary embodiment of the invention is
described with reference to the drawing, in which:
Figure 1 shows an example of a scene-controlled MPEG
coder.

CA 022064~4 1997-0~-29
PD960037 D94/156A-Ha-300197
Exemplary embodiments
The video signal is drawn from a picture
generator 1, which may be a film scanner, a television
camera or any desired analog picture source (for
example tape recording device). This signal is first of
all fed to an analog/digital converter 2 in order that
digital input data can be made available for the coder.
If the signal generator which is available is already a
digital signal source, the latter can be connected to
the circuit arrangement via input 3. The signal at
input 3 is then fed to a scene detector lu, wrlic.~.
comprises, for example, a frame memory 4, a subtractlon
stage 5 and a threshold value decision circuit 6. The
current frame n of the signal source is available at
the input of the frame memory 4 and the preceding frame
n-1 delayed by one frame period is available at the
output. The sum of the absolute value differences
between the pixels of the two frames, for example, is
calculated by means of the subtraction stage 5. This
summation value is then fed to the threshold value
decision circuit 6. Depending on this summation value,
the threshold value decision circuit generates a
control signal for the MPEG coder 8. The characteristic
of the threshold value decision circuit is in this case
dimensioned in such a way that differences in the same
picture scene which are caused, for example, by moving
objects or by slow camera panning trigger no cGntrol
signal or a first control signal (in the case of a
relatively small summation value), but that a scene
change which is characterized by completely different
picture information leads to an unambiguous control
signal or a second control signal (in the case of a
relatively large summation value).
In order that the control signal is present
contemporaneously with the scene change at the coder 8,
the frame of the signal source must be correspondingly
delayed by one frame period in the buffer 7. The coder

CA 022064~4 1997-0~-29
PD960037 D94/156A-Ha-300197
8 then identifies from the control signal whether the
frame present at its input belGngs to a new picture
scene and, if this is the case, causes the coding
algorithm to begin with a new Group of Pictures and
therefore with an I-coded picture. The data-red~cei
output signal is available at output 9.
In order, for example, to identify greater
camera panning as such, the scene detector 10 can also
carry out internally a global video signal prediction
in a global predictor 11. Such a global predictor is
described, for example, in EP-A-0 414 113. For this
purpose, the input signal and the output signal of
memory 4 are fed to the predictor 11. If this predictor
identifies global motion in the picture, the
subtraction stage 5, the threshold value decision
circuit 6 and/or the coder 8 are controlled in such a
way that the coder 8 does not deviate from the nGrmal
I-picture sequence. The global motion parameters can be
forwarded by the predictor 11 to the coder 8. The
advantage in doing this is that pictures with global
motion can be coded with good efficiency as P or B
pictures and, therefore, the number of I-coded pictures
and hence the data rate do not have to be increased
unnecessarily, that is to say that detectable (global)
camera panning is not interpreted as a scene change. It
is advantageously possible for the result of this
global prediction to be included during "normal"
prediction in the coder. This enables the prediction in
the coder 8 to be simplified or improved.
In further exemplary embodiments of the
invention, the storage capacity for the scene detector
can be reduced. A scene change can also be identified
on the basis of fields. The memories 4 and 7 are then
field memories and the pixel values of two adjacent
fields are then correspondingly processed with one
another in the subtractor 5. The two fields may also
originate from adjacent frames.

CA 022064~4 l997-0~-29
PD960037 D94/156A-Ha-300197
A different or a further reduction in the
storage capacity is possible with the aid of video data
reduction upstream of the input of memory 4 and
possibly also buffer 7, which can be carried out by
means of horizontal and/or vertical low-pass filtering
of the video data in conjunction wlth subsa~.pllng
the corresponding direction.
In the case of a scene change, either the I
coding can be additionally inserted into the sequence
present. Alternatively, the normal sequence can be
continued again from the scene change, in other words,
for example, every 12 pictures an I picture, the
picture with the scene change being the first of these
I pictures.
The invention is not just restricted to the
studio sector, but can also be employed in the consumer
sector on data media, in particular optical disks,
which contain video data coded according to the
invention. For example, the invention can be used to
improve the quality of the recording of video signals
on a digital home video recorder or DVD recorder in the
manner illustrated. In this case, the scene de-ector
not to be regarded as part of the picture generator,
but rather is implemented as an additional circu't
element in the recording unit.
In the case of received video signal which are
coded with a fixed GOP length, these signals may first
of all be decoded and then encoded with a variable GOP
length for the recording. During the recording of
digital video signals which are coded according to the
invention, are provided with corresponding, variable
GOP length information and are publicly transmitted, or
in the case of the reproduction only of prerecorded
data media, the scene detector in the recording unit
can then be omitted or it is possible not to evaluate
its output signal for the recording.
The invention is not restricted to the MPEG2 or
MPEG1 coding standard. The invention can be applied to

CA 02206454 1997-05-29
PD960037 D94/156A-Ha-300197
all coding processes which perform segmentation of the
video data into groups of pictures, for example MPEG4.

Representative Drawing
A single figure which represents the drawing illustrating the invention.
Administrative Status

2024-08-01:As part of the Next Generation Patents (NGP) transition, the Canadian Patents Database (CPD) now contains a more detailed Event History, which replicates the Event Log of our new back-office solution.

Please note that "Inactive:" events refers to events no longer in use in our new back-office solution.

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Event History , Maintenance Fee  and Payment History  should be consulted.

Event History

Description Date
Inactive: IPC expired 2014-01-01
Inactive: IPC expired 2014-01-01
Inactive: IPC from MCD 2006-03-12
Inactive: IPC from MCD 2006-03-12
Time Limit for Reversal Expired 2003-05-29
Application Not Reinstated by Deadline 2003-05-29
Inactive: Abandon-RFE+Late fee unpaid-Correspondence sent 2002-05-29
Deemed Abandoned - Failure to Respond to Maintenance Fee Notice 2002-05-29
Application Published (Open to Public Inspection) 1997-12-28
Letter Sent 1997-10-23
Classification Modified 1997-09-02
Inactive: First IPC assigned 1997-09-02
Inactive: IPC assigned 1997-09-02
Inactive: Correspondence - Transfer 1997-08-28
Inactive: Courtesy letter - Evidence 1997-08-12
Inactive: Filing certificate - No RFE (English) 1997-08-06
Application Received - Regular National 1997-08-05
Inactive: Single transfer 1997-08-01

Abandonment History

Abandonment Date Reason Reinstatement Date
2002-05-29

Maintenance Fee

The last payment was received on 2001-02-16

Note : If the full payment has not been received on or before the date indicated, a further fee may be required which may be one of the following

  • the reinstatement fee;
  • the late payment fee; or
  • additional fee to reverse deemed expiry.

Patent fees are adjusted on the 1st of January every year. The amounts above are the current amounts if received by December 31 of the current year.
Please refer to the CIPO Patent Fees web page to see all current fee amounts.

Fee History

Fee Type Anniversary Year Due Date Paid Date
Application fee - standard 1997-05-29
Registration of a document 1997-08-01
MF (application, 2nd anniv.) - standard 02 1999-05-31 1999-02-08
MF (application, 3rd anniv.) - standard 03 2000-05-29 2000-02-10
MF (application, 4th anniv.) - standard 04 2001-05-29 2001-02-16
Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
DEUTSCHE THOMSON-BRANDT GMBH
Past Owners on Record
CARSTEN HERPEL
UWE RIEMANN
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Representative drawing 1998-02-04 1 4
Description 1997-05-28 8 336
Abstract 1997-05-28 1 20
Claims 1997-05-28 2 70
Drawings 1997-05-28 1 8
Filing Certificate (English) 1997-08-05 1 165
Courtesy - Certificate of registration (related document(s)) 1997-10-22 1 116
Reminder of maintenance fee due 1999-01-31 1 110
Reminder - Request for Examination 2002-01-29 1 117
Courtesy - Abandonment Letter (Request for Examination) 2002-07-23 1 170
Courtesy - Abandonment Letter (Maintenance Fee) 2002-06-25 1 183
Correspondence 1997-08-11 1 30