Note: Descriptions are shown in the official language in which they were submitted.
CA 02230104 1998 - 02 - 20
WO 97/09856 PCT/GB96/02147
TITLE:A PORTABLE CQMPACT DISC PLAYE~
DESCRIPTION
TECHNICAL FIELD
The invention relates to portable compact disc players
and more particularly to such players incorporating
loudspeakers comprising panel-form acoustic radiating
elements.
BACKGROUND ART
It is known from GB-A-2262861 to suggest a panel-form
loudspeaker comprising:-
a resonant multi-mode radiator element being a unitary
sandwich panel formed of two skins of material with a
spacing core of transverse cellular construction, wherein
the panel is such as to have ratio of bending stiffness
(B), in all orientations, to the cube power of panel mass
per unit surface area (~) of at least 10;
... .....
~ ,, 1, .~ . .
~ CA 02230104 1998-02-20
,
-- -- ~ . , ,
a mounting means which supports the panel or attaches
to it a supporting body, in a fr-ee undamped manner;
and an electro-mechanical drive means coupled to the
panel which serves to excite a multi-modal resonance in the
radiator panel in response to an electrical input within a
working frequency band for the loudspeaker.
US-A-5,349,575 of GOLDSTAR CO. discloses a portable
compact disc player comprising a slim body and a pair of
loudspeakers detachably hinged to the body.
~ISCLOSURE OF INVENTION
Embodiments of the present invention use members of
nature, structure and configuration achievable generally
and/or specifically by implementing teachings of our co-
pending PCT publication No. W097/09842 of even date
herewith. Such members thus have capability to sustain and
propagate input vibrational energy by bending waves in
operative area(s) extending transversely of thickness often
but not necessarily to edges of the member(s); are
configured with or without anisotropy of bending stiffness
to have resonant mode vibration components distributed over
said area(s) beneficially for acoustic coupling with
ambient air; and have predetermined preferential locations
or sites within said area for transducer means,
particularly operationally active or moving part(s) thereof
effective in relation to acoustic vibrational activity in
said area(s) and signals, usually electrical, corresponding
to acoustic content of such vibrational activity. Uses are
envisaged in co-pending International publication No.
AMENDED SHEET
~ CA 02230104 1998-02-20
- . ~
~~~~ 2a
W097/09842 filed for such members as or in "passive"
acoustic devices without transducer means, such as for
reverberation or for acoustic filtering or for acoustically
~lENDE~SHEET
: CA 02230104 1998-02-20
- ~- 3
"voicing" a space or room; and as or in "active" acoustic
devices with transducer means, such as in a remarkably wide
range of sources of sound or loudspeakers when supplied
with input signals to be converted to said sound, or in
such as microphones when exposed to sound to be converted
into other signals.
This invention is particularly concerned with active
acoustic devices e.g. in the form of loudspeakers for
portable compact disc players. In the following
description and claims, it is to be understood that the
term 'compact disc' is intended to encompass analogous
digitally encoded discs, such as for example digital video
discs.
Members as above are herein called distributed mode
radiators and are intended to be characterised as in the
above PCT application and/or otherwise as specifically
provided herein.
The invention is a portable compact-disc player
characterised by an opposed pair of panel-form
loudspeakers, and in that each loudspeaker comprises a
member having capability to sustain and propagate input
vibrational energy by bending waves in at least one
operative area extending transversely of thickness to have
resonant mode vibration components distributed over said at
least one area and have predetermined preferential
locations or sites within said area for transducer means
and having a transducer mounted wholly and exclusively on
said member at one of said locations or sites to vibrate
AMFND~ tT
~ CA 02230104 1998-02-20
.~ .1.
the member to cause it to resonate forming an acoustic
radiator which provides an acoustic output when resonating.
The portable compact-disc player may comprise a body
portion having a turntable and a lid adapted to close over
the turntable, and the loudspeakers may be mounted to the
lid. Thus the loudspeakers may be hinged to the lid.
Alternatively the loudspeakers may each be housed in a slot
in the lid for sliding movement between a stored position,
in which the loudspeakers are substantially wholly housed
in the slot, and a use position in which the loudspeakers
are positioned on opposite sides of the lid. Each radiator
may comprise a stiff lightweight panel having a cellular
core sandwiched by opposed skin layers. The ra~iator may
be supported in a surrounding frame. A resilient
suspension may be interposed between the frame and the
radiator.
BRIEF DESCRIPTION OF DRAWINGS
The invention is diagrammatically illustrated, by way
of example, in the accompanying drawings, in which:-
Figure 1 is a diagram showing a distributed-mode
loudspeaker as described and claimed in our co-pending
International publication No. W097/09842;
Figure 2a is a partial section on the line A-A of
. Figure 1;
Figure 2b is an enlarged cross-section through a
distributed mode radiator of the kind shown in Figure 2a
and showing two alternative constructions;
Figure 3 is a perspective view of a first embodiment
~ FNr'~ T
CA 02230104 1998-02-20
4a
of portable compact disc player in a storage position;
Figure 4 is a perspective view of the player of Figure
3 in a use position;
Figure 5 is a scrap view of part of the player of
Figures 3 and 4;
Figure 6 is a perspective view of a second embodiment
of portable compact disc player, and
Figure 7 is a scrap view of part of the player of
CA 02230104 1998-02-20
. _
-- .. . . .. .
Figure 6.
BEST MODES FOR CARRYING OUT THE INVENTION
Referring to Figure 1 of the drawings, there is shown
a panel-form loudspeaker (81) of the kind described and
claimed in our co-pending International publication No.
W097/09842 of even date herewith comprising a rectangular
frame (1) carrying a resilient suspension (3) round its
inner periphery which supports a distributed mode sound
radiating panel (2). A transducer (9) e.g as described in
detail with reference to our co-pending International
publication Nos. W097/09859, WO97/09861, W097/09858 of even
date herewith, is mounted wholly and exclusively on or in
the panel (2) at a predetermined location defined by
dimensions x and Y, the position of which location is
calculated as described in our co-pending International
publication No. W097/09842 of even date herewith, to launch
bending waves into the panel to cause the panel to resonate
to radiate an acoustic output.
The transducer (9) is driven by a signal amplifier
(10), e.g. an audio amplifier, connected to the transducer
by conductors (28). Amplifier loading and power
re~uirements can be entirely normal, similar to
conventional cone type speakers, sensitivity being of the
order of 86 - 88dB/watt under room loaded conditions.
Amplifier load impedance is largely resistive at 6 ohms,
power handling 20-80 watts. Where the panel core and/or
skins are of metal, they may be made to act as a heat sink
for the transducer to remove heat from the motor coil of
, . _ .
CA 02230104 1998-02-20
W O 97/09856 PCT/GB96/02147
the transducer and thus improve power handling.
Figures 2a and 2b are partial typical cross-sections
through the loudspeaker (81) of Figure 1. Figure 2a shows
that the frame (1), surround (3) and panel (2) are
connected together by respective adhesive-bonded joints
(20). Suitable materials for the frame include lightweight
framing, e.g. picture framing of extruded metal e.g.
aluminium alloy or plastics. Suitable surround materials
include resilient materials such as foam rubber and foam
plastics. Suitable adhesives for the joints (20) include
epoxy, acrylic and cyano-acrylate etc. adhesives.
Figure 2b illustrates, to an enlarged scale, that the
panel (2) is a rigid lightweight panel having a core (22)
e.g. of a rigid plastics foam (97) e.g. cross linked
polyvinylchloride or a cellular matrix (98) i.e. a
honeycomb matrix of metal foil, plastics or the like, with
the cells extending transversely to the plane of the panel,
and enclosed by opposed skins (21) e.g. of paper, card,
plastics or metal foil or sheet. Where the skins are of
plastics, they may be reinforced with fibres e.g. of
carbon, glass, Kevlar (RTM) or the like in a manner known
~er se to increase their modulus.
Envisaged skin layer materials and reinforcements thus
include carbon, glass, Kevlar (RTM), Nomex (RTM) i.e.
aramid etc. fibres in various lays and weaves, as well as
paper, bonded paper laminates, melamine, and various
synthetic plastics films of high modulus, such as Mylar
(RTM), Kaptan (RTM), polycarbonate, phenolic, polyester or
CA 02230104 1998-02-20
wos7/osss6 PCT/GB96/02147
related plastics, and fibre reinforced plastics, etc. and
metal sheet or foil. Investigation of the Vectra grade of
liquid crystal polymer thermoplastics shows that they may
be useful for the injection moulding of ultra thin skins or
shells of smaller size, say up to around 30cm diameter.
This material self forms an orientated crystal structure in
the direction of injection, a preferred orientation for the
good propagation of treble energy from the driving point to
the panel perimeter.
Additional such moulding for this and other
thermoplastics allows for the mould tooling to carry
location and registration features such as grooves or rings
for the accurate location of transducer parts e.g. the
motor coil, and the magnet suspension. Additional with
some weaker core materials it is calculated that it would
be advantageous to increase the skin thickness locally e.g.
in an area or annulus up to 150% of the transducer
diameter, to reinforce that area and beneficially couple
vibration energy into the panel. High frequency response
will be improved with the softer foam materials by this
means.
Envisaged core layer materials include fabricated
honeycombs or corrugations of aluminium alloy sheet or
foil, or Xevlar (RTM), Nomex (~TM), plain or bonded papers,
and various synthetic plastics films, as well as expanded
or foamed plastics or pulp materials, even aerogel metals
if of suitably low density. Some suitable core layer
materials effectively exhibit usable self-skinning in their
CA 02230l04 l998-02-20
W O 97/098~6 PCT/GB96/02147
manufacture and/or otherwise have enough inherent stiffness
for use without lamination between skin layers. A high
performance cellular core material is known under the trade
nsme 'Rohacell' which may be suitable as a radiator panel
and which is without skins. In practical terms, the aim is
for an overall lightness and stiffness suited to a
particular purpose, specifically including optimising
contributions from core and skin layers and transitions
between them.
Several of the preferred formulations for the panel
employ metal and metal alloy skins, or alternatively a
carbon fibre reinforcement. Both of these, and also
aesigns with an alloy Aerogel or metal honeycomb core, will
have substantial radio frequency screening properties which
should be important in several EMC applications.
Conventional panel or cone type speakers have no inherent
EMC screening capability.
In addition the preferred form of piezo and electro
dynamic transducers have negligible electromagnetic
radiation or stray magnet fields. Conventional speakers
have a large magnetic field, up to 1 metre distant unless
specific compensation counter measures are taken.
Where it is important to maintain the screening in an
application, electrical connection can be made to the
conductive parts of an appropriate DML panel or an
electrically conductive foam or similar interface may be
used for the edge mounting.
The suspension (3) may damp the edges of the panel (2)
CA 02230104 1998-02-20
W o 97/098~6 PCTIGB96/02147
to prevent excessive edge movement of the panel.
Additionally or alternatively, further damping may be
applied, e.g. as patches, bonded to the panel in selected
positions to damp excessive movement to distribute
resonance equally over the panel. The patches may be of
bitumen-based material, as commonly used in conventional
loudspeaker enclosures or may be of a resilient or rigid
polymeric sheet material. Some materials, notably paper
and card, and some cores may be self-damping. Where
~esired, the damping may be increased in the construction
of the panels by employing resiliently setting, rather than
rigid setting adhesives.
Effective said selective damping includes specific
application to the panel including its sheet material of
means permanently associated therewith. Edges and corners
can be particularly significant for dominant and less
dispersed low freguency vibration modes of panels hereof.
Edge-wise fixing of damping means can usefully lead to a
panel with its said sheet material fully framed, though
their corners can often be relatively free, say for desired
extension to lower frequency operation. Attachment can be
by adhesive or self-adhesive materials. Other forms of
useful damping, particularly in terms of more subtle
effects and/or mid- and higher frequencies can be by way of
suitable mass or masses affixed to the sheet material at
predetermined effective medial localised positions of said
area.
An acoustic panel as described above is bi-
CA 02230104 1998-02-20
W O 97/09856 PCT/GB96/02147
directional. The sound energy from the back is not
strongly phase related to that from the front.
Consequently there is the benefit of overall summation of
acoustic power in the room, sound energy of uniform
frequency distribution, reduced reflective and standing
wave effects and with the advantage of superior
reproduction of the natural space and ambience in the
reproduced sound recordings.
While the radiation from the acoustic panel is largely
non-directional, the percentage of phase related
information increases off axis. For improved focus for the
phantom stereo image, placement of the speakers, like
pictures, at the usual standing person height, confers the
benefit of a moderate off-axis placement for the normally
seated listener optimising the stereo effect. Likewise the
triangular left/right geometry with respect to the listener
provides a further angular component. Good stereo is thus
obtainable.
There is a further advantage for a group of listeners
compared with conventional speaker reproduction. The
intrinsically dispersed nature of acoustic panel sound
radiation gives it a sound volume which does not obey the
inverse square law for distance for an equivalent point
source. Because the intensity fall-off with distance is
much less than predicted by inverse square law then
consequently for off-centre and poorly placed listeners the
intensity field for the panel speaker promotes a superior
stereo effect compared to conventional speakers. This is
CA 02230104 1998-02-20
W O 97/098~6 PCT/GB96/02147
11
because the off-centre placed listener does not suffer the
doubled problem due to proximity to the nearer speaker;
firstly the excessive increase in loudness from the nearer
speaker, and then the corresponding decrease in loudness
from the further loudspeaker.
There is also the advantage of a flat, lightweight
panel-form speaker, visually attractive, of good sound
quality and requiring only one transducer and no crossover
for a full range sound from each panel diaphragm.
Figures 3 to 6 illustrate a portable personal compact
disc player (41) of the kind having a body (85) formed with
a slot (82) through which discs are loaded into, and
removed from the player and control buttons (137) by which
the player is operated. The player (41) is provided with
an opposed pair of loudspeakers (81) in the form of thin
panelform members (40) hinged to opposite sides of the
player (41) to sandwich the player. The loudspeakers (40)
are sized to be co-extensive with the player and are
arranged to be hinged from the closed position shown in
Figure 3 to the extended position shown in Figure 4 as
indicated by arrow 'C'. In the extended position, the body
(85) of the player (41) tends to act as a central baffle
separating the loudspeakers (40) to improve channel
separation.
Each of the panelform loudspeakers (40) is in the form
of a distributed mode acoustic radiator of the kind
described above with reference to Figure 1 and 2. Thus
each loudspeaker comprises a rigid lightweight panel (2)
~ CA 02230104 1998-02-20
;: ,
12
formed from a cellular core (22) enclosed by skin layers
(21), the panel being mounted in a surrounding resilient
suspension (3), e.g. of foam rubber, which in turn is
mounted in a lightweight rectangular frame (1) e.g. of
plastics. A transducer (9), e.g. of the kind described
with reference to co-pending International publication Nos.
W097/09859, W097/09861, W097/09858 is mounted on each panel
(2) to launch bending waves into the panel to cause the
panel to resonate to produce an acoustic output. The
transducer (9) are positioned on the respective panels (2)
in predetermined locations as discussed in our said
International application No. (our file P.571~).
Figure 6 and 7 illustrate a portable compact disc
player (41) of the kind comprising a body (85) carrying a
turntable (86), operating buttons (137) and a lid (139)
hinged as shown by arrow 'D' to close over the turntable.
The player (41) is provided with an opposed pair of
loudspeakers (81) in the form of thin panelform members
which as shown at (40) may be hinged to the sides of the
lid (139) to be movable as indicated by arrow 'E' from a
closed position (not shown) to the extended position shown.
Alternatively as shown at (39) the panelform loudspeakers
(81) may be housed in a slot (not shown) in the lid (139)
and slid as indicated.by arrow 'F' between extended and
retracted positions.
Each of the panelform loudspeakers (39,40) is in the
form of a distributed mode acoustic radiator of the kind
described above with reference to Figure 1 and 2. Thus
, , . , ,, _
I CA 02230104 1998-02-20
'- . . , 9.
. ~
-- ,~. .
. 13
each loudspeaker comprises a rigid lightweight panel (2)
formed from a cellular core (22) enclosed by skin layers
(21), the panel being mounted in a surrounding resilient
suspension (3), e.g. of foam rubber, which in turn is
S mounted in a lightweight rectangular frame (1) e.g. of
plastics. A transducer (9), e.g. of the kind described
with reference to our co-pending International publication
Nos. W097/09859, WO97/09861, W097/09858 is mounted on each
panel (2) to launch bending waves into the panel to cause
the panel to resonate to produce an acoustic output. The
transducer (9) are positioned on the respective panels (2)
in predetermined locations as discussed in our co-pending
International publication No. W097/09842.
~ ~t ' .
.