Language selection

Search

Patent 2252815 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent Application: (11) CA 2252815
(54) English Title: NOVEL SUBSTANCE LIBRARY AND SUPRAMOLECULAR COMPLEXES PREPARED THEREWITH
(54) French Title: NOUVELLE BIBLIOTHEQUE DE SUBSTANCES ET COMPLEXES SUPRAMOLECULAIRES OBTENUS AU MOYEN DE LADITE BIBLIOTHEQUE
Status: Deemed Abandoned and Beyond the Period of Reinstatement - Pending Response to Notice of Disregarded Communication
Bibliographic Data
(51) International Patent Classification (IPC):
  • C07H 21/00 (2006.01)
  • C07B 61/00 (2006.01)
  • C07H 19/06 (2006.01)
  • C07H 19/16 (2006.01)
  • C07K 1/04 (2006.01)
  • C07K 2/00 (2006.01)
  • C08B 37/00 (2006.01)
  • G01N 33/53 (2006.01)
(72) Inventors :
  • MICULKA, CHRISTIAN (Germany)
  • WINDHAB, NORBERT (Germany)
  • QUINKERT, GERHARD (Germany)
  • ESCHENMOSER, ALBERT (Switzerland)
(73) Owners :
  • HOECHST RESEARCH & TECHNOLOGY DEUTSCHLAND GMBH & CO. KG
  • NANOGEN RECOGNOMICS GMBH
(71) Applicants :
  • HOECHST RESEARCH & TECHNOLOGY DEUTSCHLAND GMBH & CO. KG (Germany)
  • NANOGEN RECOGNOMICS GMBH (Germany)
(74) Agent: SMART & BIGGAR LP
(74) Associate agent:
(45) Issued:
(86) PCT Filing Date: 1997-05-09
(87) Open to Public Inspection: 1997-11-20
Examination requested: 2002-04-16
Availability of licence: N/A
Dedicated to the Public: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): Yes
(86) PCT Filing Number: PCT/EP1997/002387
(87) International Publication Number: WO 1997043232
(85) National Entry: 1998-10-28

(30) Application Priority Data:
Application No. Country/Territory Date
196 19 373.7 (Germany) 1996-05-14

Abstracts

English Abstract


The invention relates to a substance library, a process for the production
thereof, a process for the production of supramolecular complexes using said
substance library, the use of said supramolecular complexes produced using the
substance library, and the use of the substance library itself.


French Abstract

La présente invention concerne une bibliothèque de substances, son procédé de production, un procédé de préparation de complexes supramoléculaires au moyen de ladite bibliothèque, l'utilisation desdits complexes supramoléculaires ainsi obtenus, ainsi que l'utilisation de ladite bibliothèque de substances elle-même.

Claims

Note: Claims are shown in the official language in which they were submitted.


claims:
1. A substance library obtainable by coupling different or identical
molecular species to a molecular pairing system.
2. A substance library as claimed in claim 1, wherein the molecular
species are present in a substance library.
3. A substance library as claimed in claim 1 or 2, wherein the pairing
system is a nucleic acid.
4. A substance library as claimed in claim 3, wherein the pairing
system is a DNA.
5. A substance library as claimed in claim 3, wherein the pairing
system is an RNA.
6. A substance library as claimed in claim 3, wherein the pairing
system is a pyranosyl-RNA.
7. A substance library as claimed in claim 1 or 2, wherein the pairing
system is a PNA.
8. A substance library as claimed in claim 1 or 2, wherein the pairing
system is a CNA.
9. A substance library as claimed in one or more of claims 1 to 8,
wherein the molecular species are molecules with a linear
constitution.
10. A substance library as claimed in claim 9, wherein the molecular
species are peptides.
11. A substance library as claimed in claim 9, wherein the molecular
species are peptoids.
12. A substance library as claiimed in one or more of claims 1 to 9,
wherein the molecular species are oligo- or polysaccharides.

12
13. A substance library as claimed in claim 9, wherein the molecular
species are nucleic acids or analogs thereof.
14. A substance library as claimed in one or more of claims 1 to 8,
wherein the molecular species are monomers.
15. A substance library as claimed in one or more of claims 3 to 8,
wherein the pairing system consists of one longer and two shorter
base strands, with the two shorter strands being complementary to
the longer strand at different points but not being complementary to
one another, and with a gap of at least one base remaining between
the short strands in the event of base-pairing with the longer strand,
while at least one base remains unpaired in the region of this gap
corresponding to the size thereof on the longer strand, with those
bases on each of the two shorter strands which are located at the
start and at the end of the pairing gap being linked by a linker to one
molecular species as claimed in one or more of claims 1, 2 and 9 to
14 in each case, while at least one of the unpaired bases in the
longer strand is linked by a linker to a molecular species as claimed
in one or more of claims 1, 2 and 9 to 14.
16. A process for the preparation of a supramolecular complex, which
comprises exposing a substance library as claimed in any of
claims 1 to 15 to an interaction with a substrate, and identifying and,
where appropriate, isolating the supramolecular complex formed
thereby.
17. The process as claimed in claim 16, wherein the substrate is a
peptide.
18. The process as claimed in claim 16, wherein the substrate is a
peptoid.
19. The process as claimed in claim 16, wherein the substrate is an
oligo- or polysaccharide.
20. The process as claimed in claim 16, wherein the substrate is a

13
nucleic acid or analog thereof.
21. The process as claimed in claim 16, wherein the substrate is a
medicinal substance.
22. The process as claimed in claim 16, wherein the substrate is an
active substance for crop protection.
23. The process as claimed in claim 16, wherein the substrate is an
analog of one or more molecules in the transition state of a chemical
reaction.
24. The process as claimed in claim 16, wherein the substrate is a
metabolite.
25. The process as claimed in claim 16, wherein the substrate is a
physiological messenger.
26. The process as claimed in claim 16, wherein the substrate is a
substance which is produced, or produced to an increased extent, in
the human or animal body in the event of pathological changes.
27. The process as claimed in claim 16, wherein the substrate is sites of
action of drugs, preferably receptors, voltage-dependent ion
channels, transporters, enzymes and biosynthetic units of
microorganisms.
28. A supramolecular complex obtainable by a process as claimed in
any of claims 16 to 27.
29. The use of a supramolecular complex as claimed in claim 28 for the
preparation of a medicinal active substance.
30. The use of a supramolecular complex as claimed in claim 28 for the
preparation of an active substance for crop protection.
31. The use of a supramolecular complex as claimed in claim 28 for the
preparation of a catalyst.

14
32. The use of a supramolecular complex as claimed in claim 28 for the
diagnosis of diseases.
33. The use of a supramolecular complex as claimed in claim 28 for the
production of a diagnostic kit.
34. A diagnostic kit comprising a supramolecular complex as claimed in
claim 28.
35. The use of a substance library as claimed in one or more of claims 1
to 15 for the diagnosis of diseases.
36. The use of a substance library as claimed in one or more of claims 1
to 15 for the production of a diagnostic kit.
37. The use of a substance library as claimed in one or more of claims 1
to 15 for the preparation of a catalyst.
38. A process for the preparation of a substance library as claimed in
one or more of claims 1 to 15, which comprises coupling molecular
species, which may be different or identical, to a pairing system.
39. A cyclohexylnucleooligoamide comprising aminocyclohexylethanoic
acid units.

Description

Note: Descriptions are shown in the official language in which they were submitted.


, .. CA 022~281~ 1998-10-28
F~ r~ ~
...,,, .., . ~....
Hoechst AG H26359PC
Novel substance library and supramolecular complexes prepared therewith
Description
The present invention relates to a substance library, to a process for the
preparation thereof, to a process for the preparation of supramolecular
10 complexes using this substance library and to the use of the
supramolecular complexes prepared by means of the substance library,
and to the use of the substance library itself.
Combinatorial strategies are important approaches in the search for novel
15 active substances, especially in respect of finding lead structures and
optimization thereof: there is simultaneous and usually automated
synthesis of ensembles of structurally related compounds; the mixtures
resulting thereby (called libraries) contain hundreds, thousands or even
millions of individual compounds, each in a small amount. If the activity of
20 one component in the mixture is detected by screening, the subsequent
work of the chemist is restricted to determining the identity, because, after
all, the synthesis protocol is known.
Whereas initial substance libraries were mainly of molecules with a linear
25 constitution, such as peptides [K.S. Lam, S.E. Salmon, E.M. Hersh, V.J.
Hruby, W.M. Kazmierski, R.J. Knapp, Nature 1991, 354, 82-84], interest is
now centered in particular on "small" molecules which are important in the
area of active substances, such as heterocycles [L.A. Thompson, J.A.
Ellman, Chem. Rev. 1996, 96, 555-600]. The aim is to generate molecular
30 diversity in order to speed up the finding of lead structures and optimization
thereof.
The characteristic of combinatorial chemistry hitherto is that the synthesis
takes piace under kinetic control and that the variation by synthesis is
35 separated from the selection. This relates to the in vitro evolution of RNA
aptamers [J.R. Lorsch, J.W. Szostak, Nature 1994, 371, 31-36.] just as
much as to the search for receptors using combinatorial methods [Y.
Cheng, T. Suenaga, W.C. Still, J. Am. Chem. Soc. 1996, 118, 1813-1814],

_ . CA 022~281~ 1998-10-28
in which case two short peptide libraries were assembled on a steroid
framework and irreversibly linked thereto.
It is an object of the present invention by providing a new type of
5 substance library to increase by orders of magnitude, compared with
substance libraries hitherto, the number of binding sites for ligands or
substrate molecules investigated for their binding properties by means of a
substance library, by reversible combination of, in each case, two or more
identical or different molecular species present in the substance library, the
10 intention being that the combination of the molecular species present in the
substance library take place only in the presence of the substrate molecule
to be investigated, via the appropriate binding interactions with the
molecular species.
15 It is another object of the present invention to provide supramolecular
complexes which arise through combination of the molecular species
present in the substance library and through the binding interactions with
the substrate molecule to be investigated.
20 Substance libraries of this type, and supramolecular complexes of this type
ought to be suitable for producing medicinal active substances, active
substances for crop protection, catalysts or for diagnosing diseases.
The object stated at the outset is achieved by a substance library
25 obtainable by coupling different or identical molecular species, which are
preferably present in a substance library, to a molecular pairing system.
It is possible by means of the substance library according to the present
invention to prepare supramolecular complexes by exposing the substance
30 library to an interaction with a substrate, identifying and, where
appropriate, isolating the supramolecular complex formed thereby.
The present invention accordingly also relates to the provision of a
supramolecular complex prepared in this way, which is suitable, for
35 example, for producing medicinal substances, active substances for crop
protection, catalysts, for diagnosing diseases and for producing
corresponding diagnostic kits.
In the same way, the precursor of these supramolecular complexes, mainly

CA 022~281~ 1998-10-28
the substance library according to the invention, is also suitable for
producing medicinal substances, active substances for crop protection,
catalysts and for diagnosing diseases, including the production of
corresponding diagnostic kits.
The general terms mentioned above or used hereinafter for explaining the
invention and in the claims are defined below.
Molecular species: for example molecules with a linear constitution such as
10 peptides, in particular proteins, peptoids, linear oligo- or polysaccharides, nucleic acids and their analogs or, for example, monomers such as
heterocycles, in particular nitrogen heterocycles, or molecules not with a
linear constitution, such as branched oligo- or polysaccharides or else
antibodies.
Supramolecular complex: produced by association of two or more
molecular species which are held together by non-covalent forces.
Pairing systems: supramolecular systems of non-covalent interactions
20 which are characterized by selectivity, stability and reversibility and whose properties are preferably influenced thermodynamically, such as, for
example, by temperature, pH, concentration. Examples are preferably
pyranosyl-RNA, CNA, DNA, RNA, PNA.
25 Interactions are preferably hydrogen bonds, salt bridges, stacking, metal
liganding, charge-transfer complexes and hydrophobic interactions.
Substance library: ensemble of compounds of different structures,
preferably oligomeric or polymeric peptides, peptoids, saccharides, nucleic
30 acids, esters, acetals or monomers such as heterocycles, lipids, steroids.
Substrate: molecules, preferably medicinal substances and active
substances for crop protection, metabolites, physiological messengers,
derivatives of lead structures, substances which are produced, or produced
35 to an increased extent, in the human or animal body in the event of
pathological changes, transition state analogs or else peptides, in
particular proteins, peptoids, linear oligo- or polysaccharides, nucleic acids
and their analogs, or, for example, monomers such as heterocycles, in
particular nitrogen heterocycles, or molecules not with a linear constitution,

CA 022~281~ 1998-10-28
such as branched oligo- or polysaccharides or else antibodies, and
substance libraries, also sites of action of drugs, preferably receptors,
voltage-dependent ion channels, transporters, enzymes and biosynthetic
units of microorganisms.
Transition state analogs: synthetic molecular species which are structurally
similar to the assumed transition state of a chemical reaction but are, in
contrast thereto, stable.
10 Identification can comprise isolation or characterization of the
supramolecular complex, but preferably differentiation on the basis of
particular properties of the supramolecular complex of substance libraries
coupled to pairing systems and substrate, preferably different
chromatographic, electrophoretic, spectroscopic or signal (labeling)
15 behavior by comparison with uncomplexed species or by covalent
(chemical) attachment of the species involved in the complex formation.
CNA: cyclohexylnucleooligoamide; represents a synthetic variant of the
DNA structure in which the phosphate-sugar backbone is replaced by 2-(3-
20 aminocyclohexyl)ethanoic acid units, with the units being linked together inthe manner of a peptide, and the 3-aminocyclohexyl substituents each
being provided with a nucleobase in position 4.
The substance library according to the present invention is preferably
25 distinguished by the pairing system consisting of one longer and two
shorter base strands, with the two shorter strands being complementary to
the longer strand at different points but not being complementary to one
another, and with a gap of at least one base remaining between the short
strands in the event of base-pairing with the longer strand, while at least
30 one base remains unpaired in the region of this gap corresponding to the
size thereof on the longer strand, with those bases on each of the two
shorter strands which are located at the start and at the end of the pairing
gap being linked by a linker to one molecular species in each case, while
at least one of the unpaired bases in the longer strand is linked by a linker
35 to a molecular species.
Peptides with different properties can be reversibly combined in a
controlled manner to give groups of two or three, for example by linkage to
pairing oligonucleotide ends. This means that, owing to the large number

CA 022~281~ 1998-10-28
.
of possible combinations, orders of magnitude more different binding sites
are generated in the experiment than peptides have been synthesized.
Implementation of the principle of combinatorial variation and selection
5 under thermodynamic control, and linkage thereof, represents an
elementary technological leap in combinatorial methods: the relevant
receptor is formed by combination only in the presence of the substrate.
This receptor thus reacts to the presence of the substrate: if the latter is
10 equated with an antigen, the present system can be regarded analogously
as an "artificial immune system".
Nature has produced a remarkable number of molecules which carry out
the complex processes of the living organisms - from the immune response
15 and catalysis to signal transmission. For this it has recourse to a broad
combinatorial library of precursor molecules and checks these for the
required properties. Probably the most important example of this strategy is
the immune system which is able to generate an enormous molecular
diversity and scan the latter for receptors with high affinity and selectivity
20 for foreign antigens. The combination of molecules which intrinsically bind
only weakly, if at all, to a stable binding complex is also a principle which iswidespread in nature (heteromers [D.E. Clapham, Nature 1996, 379, 297-
299]) and whose significance for use in combinatorial chemistry has not yet
been recognized.
Fig. 1 shows diagrammatically the structure and the process of formation of
such a receptor: a short peptide chain (as library) is covalently attached via
a linker unit to the middle building block of an oligonucleotide composed,
for example, of 13 monomer building blocks. An analogous procedure is
30 applied to the two end units of the short oligonucleotides consisting of 6
monomer units.
If these three units are then offered to the substrate (ellipse), a competition
for the best binding of the peptide moieties to the substrate starts: the
35 pairing between the oligonucleotides ensures approach of the peptide
moieties in space. The reversibility of the individual steps is crucial,
resulting in exchange of the individual peptide regions until the most stable
complex has been found. This process, which takes place under
thermodynamic control, corresponds to an automatic experimental

CA 022~281~ 1998-10-28
molecular modeling. In fact, in such an experiment, all the possible
transiently occurring combinations of the three libraries is subjected to the
selection. This exchange process is temperature-dependent, i.e. exchange
of the individual strands is more frequent at higher temperature, but, at the
5 same time, the interactions of the peptide moieties with the substrate
become weaker.
After freezing of the equilibrium, covalent crosslinking of the pairing
partners, isolation and decomplexation, the receptor is obtained in free
1 0 form.
A process for the preparation of supramolecular complexes has therefore
been designed and comprises coupling compound libraries to pairing
systems.
Supramolecular complexes which have been prepared under
thermodynamic control by the processes below and selected coupled
under thermodynamic control are used when molecules or molecular
regions are to be recognized. The advantage is that the libraries, which are
20 always the same, are able very quickly in combination to solve increasingly
novel selection problems.
These are, in particular:
25 a) Molecular recognition of biologically relevant substances, i.e. diagnosis.The development of diagnostic methods in particular must keep up with the
variety of substrates to be recognized, such as metabolites or, for example,
continually mutating pathogens, so that the benefits of this process are
obvious.
b) Molecular recognition of biologically relevant substances, i.e. drug
design. The described process generates highly selective supramolecular
complexes which themselves act as active substances or as models for the
development of active substances in that, for example, they bind to, and
35 thus stimulate or block, pharmacological receptors. On the other hand, the
supramolecular complexes act as receptors in the development of active
substances, because a profile of interactions of the active substances can
be drawn up with their aid.

CA 022~281~ 1998-10-28
c) Thermodynamically controlled constitution of catalytically active
supramolecular complexes, for example by offering transition state analogs
as substrates in the sense of the use as catalytic antibodies [L.C. Hsieh-
Wilson, X.-D. Xiang, P.G. Schultz, Acc. Chem. Res.1996, 29, 164-170].
Procedural example 1
Pyranosyl-RNA is used as pairing system (see Fig. 2), the preparation and
properties of which are well known [S. Pitsch, S. Wendeborn, B. Jaun, A.
Eschenmoser, Helv. Chim. Acta 1993, 76, 2161-2183]. Starting from D-
ribose and the nucleobases adenine and thymine, phosphoramidites
capable of coupling are prepared as described therein, and the required
hexamer and tridecamer sequences are prepared using an oligonucleotide
synthesizer. The tridecamer has the sequence 2'-MTTMT*ATATAT, one
15 hexamer has the sequence 2'-T*TMTT-4', and the other hexamer has the
'sequence 2'-ATATAT*-4', where T* is the linker nucleotide building block.
The linker nucleotide building block is synthesized by methods known from
the literature starting from the uracil nucleoside: iodination [W.-W. Sy,
Synth. Comun. 1990, 20, 3391-3394], reaction with propargyl phthalimide,
20 and hydrogenation [K.J. Gibson, S.J. Benkovic, NucleicAcids Res. 1987,
15, 6455-6467] affords the required building block. Hydrazinolysis and
iodoacetylation of the oligonucleotide takes place as described in the
literature [T. Zhu, S. Stein, Bioconjugate Chem.1994, 5, 312-315].
Tetrapeptides are prepared as compound libraries starting from
25 commercially obtainable amino acid monomers using a multiple peptide
synthesizer, providing an N-terminal cysteine residue as linker unit. The
library is divided into three portions and allowed to react in aqueous
buffered solution at room temperature in each case with the two hexamer
sequences and the tridecamer sequence to give the required conjugates,
30 which are purified by reverse phase chromatography [T. Zhu, S. Stein,
Bioconjugate Chem.1994, 5, 312-315]. Pairing of the complementary units
is detected on the basis of the decrease in the UV extinction in the pairing
experiment.
35 Procedural example 2
- Solid-phase synthesis of a CNA pentamer (Fig. 4)
The CNA oligomer was synthesized in analogy to the peptide or

CA 022~281~ 1998-10-28
-
oligonucleotide synthesis, by stepwise incorporation of individual building
blocks on a solid phase. For this the necessary reagents were added in
excess and unreacted amounts were removed again by simple washing
steps. The polymeric support used was a polyoxyethylene (POE)/poly-
styrene copolymer (Tentagel S HMB, 0.23 mmol/g), which has good
swelling properties both in aqueous solution and in organic solvents.
The aminoethyl functionalities of the polymer were derivatized with a
hydroxymethylbenzoyl (HMB) linker; the loading with the first building block
took place using a 5-fold excess by the symmetrical anhydride method
(addition of 2.5 eq of DIC) and by adding the acylation catalyst DMAP
(2.5 eq) over the course of 20 h in DCM. The resulting loading amounted to
0.17 mmol/g. The Boc protective group of the amino functionality was
eliminated with 50% TFA in DCM, and then the resin was neutralized with
1 M DIEA/DMF. The subsequent cycles consisted of repetitive coupling of
the next monomer and elimination of the Boc protective group. The
couplings took place after preactivation of the monomer building block
(3 eq.) with the activation reagent HATU (3 eq.) in DMF (40,ul) and with
addition of 1 M DIEA/DMF (6 eq.) and 2 M lutidine/DMF (12 eq.). The
coupling times were 3-4 h at room temperature. After four coupling cycles,
the N-terminal Boc protective groups were eliminated and the pentamer
was cleaved off the resin with 2 N NaOH in methanol over the course of
15 min. The elimination solution was removed from the resin by filtration
and kept at 55~C for 2 h. Neutralization with 2 N HCI was followed by
purification with C18 RP-HPLC (Hibar prepacked column 250-4, RP-18,
5 ~um) with gradient elution (1 ml/min) from 10% to 40% B in 30 min
(solvents A: water + 0.1 % TFA, B: acetonitrile + 0.1 % TFA).
The synthesis of CNA(MTAT) was carried out with 10 mg (1.7 ,umol) of
Tentagel-HMB resin which was loaded with (S)-CNA-thymine monomer
building block. All the CNA building blocks have the S configuration. The
sequence reading from left to right corresponds to the way of writing from
the N to the C terminus usual in peptide chemistry.
CNA(MTAT): HPLC: Rt = 14.30 min; UV: ~max = 264 nm; ESI-MS:
[M + H]+Calc 1362.0, [M + 2H]2+Calc 681.0; [M + H]+eXp 1361.8, [M + 2H]2+eXp
681.5.
Desalting of the CNA pentamer CNA(MTAT) was followed by measure-
ment, in a Perkin Elmer Lambda 2 UV-VIS spectrometer, of the
temperature-dependent extinctions at 265 nm with six different concen-
trations over a range from 0 to 80~C (1.5-50 ,uM in TrisHCI buffer at pH

CA 022~281~ 1998-10-28
7.0). The first derivative of these reversible, sigmoid transition plots yields
the melting temperature (Tm = 42~C at 13,uM) (Fig. 5).
- Solid-phase synthesis of a peptide-CNA conjugate
The CNA pentamer described above was, before elimination from the
resin, extended by a dipeptide library at the N terminus. The sequence is
XO-CNA(MTAT). X represents a mixed position in which the five L-amino
acids alanine, aspartic acid, leucine, Iysine and serine are varied. O
represents a defined position, with O = L-lysine being chosen for this
sublibrary. Coupling of Boc-Lys(Fmoc)-OH to the Boc-deprotected CNA
pentamer CNA(AATAT) took place after preactivation of the amino acid
building block (6 eq.) with the activation reagent HATU (6 eq.) in DMF and
with addition of 1 M DIEA/DMF (7 eq.). The coupling time was 3 h.
Introduction of the X position took place by the split resin method. After
èlimination of the N-terminal Boc protective group,100 ,ul of DMF:DCM
(1 :1) were added to the amount of resin (5 mg), and the mixture was
divided into five portions of equal size, each of 20,ul. Coupling of the
individual amino acids took place in parallel in separate reaction vessels
with about 1 mg of oligomer-resin in each case. The individual Boc-
protected amino acids, Boc-Ala-OH, Boc-Asp(OFm)-OH, Boc-Leu-OH,
Boc-Ser-OH and Boc-Lys(Fmoc)-OH were coupled in 50-fold excess after
preactivation with HATU (50 eq.) and with addition of 1 M DIEA/DMF
(100 eq.) at room temperature for 3 h. After elimination of the N-terminal
Boc protective groups, the Fmoc protective groups were removed with 40%
piperidine/DMF (20 min). The peptide-CNA oligomer conjugates were
cleaved off the resin in each case with 2 N NaOH in methanol over the
course of 15 min. The elimination solution was removed from the resin by
filtration and kept at 55~C for 2 h. Neutralization with 2 N HCI was followed
by purification with C18-RP-HPLC (Hibar ready acid 250-4, RP-18, 5 ,um)
with gradient elution (1 ml/min) from 10% B to 40% B in 30 min (solvents A:
water + 0.1% TFA, B: acetonitrile + 0.1% TFA).
HPLC: Ala-Lys-CNA(MTAT)Rt = 15.47 min
Asp-Lys-CNA(AATAT)Rt = 15.30 min
Leu-Lys-CNA(MTAT)Rt = 16.08 min
Lys-Lys-CNA(AATAT)Rt = 15.34 min
Ser-Lys-CNA(AATAT)Rt = 15.29 min
ESI-MS: Ala-Lys-CNA(AATAT) [M + H]+Calc 1561.6; [M + H]~eXp 1561.4

CA 022~281~ 1998-10-28
Asp-Lys-cNA(MTAT) [M + H] calc 1605.7; [M + H] exp 1605 3
Leu-Lys-CNA(MTAT) [M + H]+calc 1603.8; [M + H]+eXp 1603 4
Lys-Lys-CNA(MTAT) [M + H]+calc 1619.3; [M + H]+eXp 1619 0
Ser-Lys-CNA(MTAT) [M + H] calc 1577.7; [M + H] exp 1578 7
After characterization of the individual components, the HPLC fractions
were combined. Desalting of the peptide library CNA oligomers XLys-
CNA(MTAT) was followed by measurement, in a Perkin Elmer Lambda 2
UV-VIS spectrometer, of the temperature-dependent extinctions at 265 nm
at 50 ,uM over a range of 0-60~C (in TrisHCI buffer at pH 7.0). The first
derivative of this temperature plot yields the melting temperature (Tm =
7~C at 50 ~uM) (Fig. 6). The UV spectra of XLys-CNA(MTAT) at 0~C and
60~C differ in qualitatively the same way as the pentamer without library
CNA(MTAT). The wavelengths of the absorption maximum shifts from
261.4 nm (E = 0.3427) at 0~C to 263.8 nm (E = 0.3626) at 60~C and thus
proves the existence of the supramolecular complexes, i.e. an equilibrating
combinatorial library (Fig.7).
The meanings in this context are
Boc tert-Butyloxycarbonyl
DCM Dichloromethane
DIC Diisopropylcarbodiimide
DIEA Diisopropylethylamine
DMAP Dimethylaminopyridine
DMF Dimethylformamide
Fmoc Fluorenylmethyloxycarbonyl
HATU 0-[7-Azabenzotriazol-1-yl]-1,1,3,3-tetramethyluronium-
hexafluorophosphate
TFA Trifluoroacetic acid

Representative Drawing

Sorry, the representative drawing for patent document number 2252815 was not found.

Administrative Status

2024-08-01:As part of the Next Generation Patents (NGP) transition, the Canadian Patents Database (CPD) now contains a more detailed Event History, which replicates the Event Log of our new back-office solution.

Please note that "Inactive:" events refers to events no longer in use in our new back-office solution.

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Event History , Maintenance Fee  and Payment History  should be consulted.

Event History

Description Date
Inactive: IPC expired 2018-01-01
Application Not Reinstated by Deadline 2006-05-09
Time Limit for Reversal Expired 2006-05-09
Inactive: IPC from MCD 2006-03-12
Inactive: IPC from MCD 2006-03-12
Inactive: IPC from MCD 2006-03-12
Inactive: IPC from MCD 2006-03-12
Deemed Abandoned - Failure to Respond to Maintenance Fee Notice 2005-05-09
Letter Sent 2002-07-02
Letter Sent 2002-05-29
Request for Examination Received 2002-04-16
Request for Examination Requirements Determined Compliant 2002-04-16
All Requirements for Examination Determined Compliant 2002-04-16
Letter Sent 2000-05-31
Inactive: Single transfer 2000-04-12
Inactive: Correspondence - Formalities 1999-02-10
Inactive: Single transfer 1999-02-01
Inactive: First IPC assigned 1999-01-22
Inactive: IPC assigned 1999-01-21
Inactive: IPC assigned 1999-01-21
Inactive: IPC assigned 1999-01-21
Inactive: IPC assigned 1999-01-20
Classification Modified 1999-01-20
Inactive: IPC assigned 1999-01-20
Inactive: Courtesy letter - Evidence 1998-12-22
Inactive: Notice - National entry - No RFE 1998-12-16
Application Received - PCT 1998-12-14
Inactive: Applicant deleted 1998-12-14
Application Published (Open to Public Inspection) 1997-11-20

Abandonment History

Abandonment Date Reason Reinstatement Date
2005-05-09

Maintenance Fee

The last payment was received on 2004-04-14

Note : If the full payment has not been received on or before the date indicated, a further fee may be required which may be one of the following

  • the reinstatement fee;
  • the late payment fee; or
  • additional fee to reverse deemed expiry.

Please refer to the CIPO Patent Fees web page to see all current fee amounts.

Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
HOECHST RESEARCH & TECHNOLOGY DEUTSCHLAND GMBH & CO. KG
NANOGEN RECOGNOMICS GMBH
Past Owners on Record
ALBERT ESCHENMOSER
CHRISTIAN MICULKA
GERHARD QUINKERT
NORBERT WINDHAB
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Description 1999-02-10 12 565
Cover Page 1999-02-01 1 32
Abstract 1998-10-28 1 7
Description 1998-10-28 10 531
Claims 1998-10-28 4 135
Drawings 1998-10-28 7 120
Reminder of maintenance fee due 1999-01-12 1 110
Notice of National Entry 1998-12-16 1 192
Courtesy - Certificate of registration (related document(s)) 1999-03-02 1 118
Courtesy - Certificate of registration (related document(s)) 2000-05-31 1 115
Reminder - Request for Examination 2002-01-10 1 117
Acknowledgement of Request for Examination 2002-05-29 1 179
Courtesy - Certificate of registration (related document(s)) 2002-07-02 1 134
Courtesy - Abandonment Letter (Maintenance Fee) 2005-07-04 1 175
PCT 1998-10-28 15 550
Correspondence 1998-12-22 1 32
Correspondence 1999-02-10 4 81

Biological Sequence Listings

Choose a BSL submission then click the "Download BSL" button to download the file.

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.

Please note that files with extensions .pep and .seq that were created by CIPO as working files might be incomplete and are not to be considered official communication.

BSL Files

To view selected files, please enter reCAPTCHA code :