Language selection

Search

Patent 2253470 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent: (11) CA 2253470
(54) English Title: DETERGENT COMPOSITIONS
(54) French Title: COMPOSITIONS DETERGENTES
Status: Term Expired - Post Grant Beyond Limit
Bibliographic Data
(51) International Patent Classification (IPC):
  • C11D 3/10 (2006.01)
  • C11D 3/08 (2006.01)
  • C11D 3/12 (2006.01)
  • C11D 3/39 (2006.01)
(72) Inventors :
  • BOSKAMP, JELLES VINCENT
(73) Owners :
  • UNILEVER PLC
(71) Applicants :
  • UNILEVER PLC (United Kingdom)
(74) Agent: SMART & BIGGAR LP
(74) Associate agent:
(45) Issued: 2006-02-14
(86) PCT Filing Date: 1997-04-29
(87) Open to Public Inspection: 1997-11-20
Examination requested: 2002-03-01
Availability of licence: N/A
Dedicated to the Public: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): Yes
(86) PCT Filing Number: PCT/EP1997/002496
(87) International Publication Number: WO 1997043370
(85) National Entry: 1998-11-03

(30) Application Priority Data:
Application No. Country/Territory Date
9609699.5 (United Kingdom) 1996-05-09

Abstracts

English Abstract


In order to provide a particulate zero-phosphate laundry detergent composition
with reduced tendency to agglomeration, the
composition comprises: (i) from 30 to 80 wt.% of a granular base powder
comprising: a) from 5 to 60 wt.% (based on the composition)
of organic surfactant, and b) from 10 to 80 wt.% (based on the composition) of
alkali metal aluminosilicate detergency builder, (ii) from
1 to 5 wt.% of sodium silicate not within the granular base powder, wherein
the sodium silicate (ii) is all present in the form of separate
cogranules consisting essentially of sodium silicate and sodium carbonate in a
ratio within the range of from 3:1 to 1:3, and where the
tendency of the composition to form granules having a particles size of 2000
µm or larger on storage is less than if the sodium silicate (ii)
were present in the form of separate granules of sodium disilicate.
Optionally, the composition may comprise from 1-50 wt.% of separate
granules of sodium carbonate, 10 to 35 wt.% of separate granules of peroxy
bleach compound and other detergent materials up to 100 wt.%.


French Abstract

L'invention concerne une composition particulaire détergente pour lessive sans phosphate, ayant moins tendance à s'agglomérer. Cette composition comprend (i) entre 30 et 80 % en poids d'une poudre de base granulaire, comprenant (a) 5 à 60 % en poids (basés sur la composition) d'un tensio-actif organique, et (b) 10 à 80 % en poids (basés sur la composition) d'un adjuvant de détergence d'alumino-silicate de métal alcalin, (ii) 1 à 5 % en poids de silicate de sodium non compris dans la poudre de base granulaire. Le silicate de sodium (ii) est présent sous forme de cogranulés séparés se composant essentiellement de silicate de sodium et de carbonate de sodium dans un rapport compris entre 3/1 et 1/3. Lors du stockage, la composition a moins tendance à former des granulés dont la granulométrie est supérieure ou égale à 2000 mu m que lorsque le silicate de sodium (ii) est présent sous forme de granulés séparés de disilicate de sodium. Eventuellement, la composition peut comprendre entre 1 et 50 % en poids de granulés séparés de carbonate de sodium, 10 à 35 % en poids de granulés séparés d'un composé de blanchiment peroxy et d'autres matières détergentes jusqu'à atteindre 100 % en poids.

Claims

Note: Claims are shown in the official language in which they were submitted.


-16-
CLAIMS
1 A particulate zero-phosphate laundry detergent
composition comprising:
(i) from 30 to 80 wt% of a granular base powder comprising
(a) from 5 to 60 wt% (based on the composition) of
organic surfactant, and
(b) from 10 to 70 wt% based on the composition of
alkali metal aluminosilicate detergency builder,
(ii) from 1 to 5 wt% of sodium silicate not within the
granular base powder and all present in the form of separate congranules
consisting essentially of sodium silicate and sodium carbonate in a ratio
within
the range of from 3:1 to 1:3,
(iii) from 1 to 50 wt% of separate granules of sodium
carbonate,
(iv) optionally from 10 to 35 wt% of separate granules of a
peroxy bleach compound; and
(v) optionally conventional detergent ingredients to 100 wt%,
whereby the tendency of the composition to form granules having a particle
size
of 2000 µm or larger on storage is less than if the sodium silicate (ii)
were
present in the form of separate granules of sodium disilicate.

-17-
2 A detergent composition as claimed in claim 1, wherein
the alkali metal aluminosilicate builder is zeolite MAP.
3 A detergent composition as claimed in claim 2, which
contains from 20 to 60 wt% of zeolite MAP.
4 A detergent composition as claimed in claim 2 or claim
3, which is free of zeolite A.
A detergent composition as claimed in any one of claims
1 to 4, which comprises from 2 to 25 wt% of separate
granules of sodium carbonate (iii).
6 A detergent composition as claimed in any one of claims
1 to 5, wherein the sodium silicate/sodium carbonate
cogranules contain sodium silicate and sodium carbonate in a
ratio of from 0.5:1 to 1:1 and the cogranules are present in an amount of from
2
to 15 wt%.
7 A detergent composition as claimed in claim 6, which
contains from 4 to 10 wt% of the sodium silicate/sodium
carbonate cogranules.
8 A detergent composition as claimed in any one of claims 1 to 7, which
comprises as peroxy bleach compound (iv) sodium percarbonate.

-18-
9 A detergent composition as claimed in any one of claims 1 to 8 having a
calculated moisture sink capacity at 37°C and 70°C relative
humidity not
exceeding 5 wt%.
A detergent composition as claimed in claim 9, having a
calculated moisture sink capacity at .37°C and 70% relative
humidity within the range of from 3 to 5.wt%.
11 A detergent composition as claimed in claim 10, having
a calculated moisture sink capacity at 37°C and 70% relative
humidity within the range of from 4 to 5 wt%.
12 A detergent composition as claimed in any one of claims 1 to 11, wherein
the granular base powder (i) is not the direct product of a spray-drying
process.
13 A detergent composition as claimed in any one of claims 1 to 12, wherein
the granular base powder (i) has a bulk density of at least 650 g/litre.
14 Use of postdosed cogranules consisting essentially of
sodium silicate and sodium carbonate in a ratio within the
range of from 3:1 to 1:3 in a particulate zero-phosphate
zeolite-built detergent composition otherwise free of
postdosed sodium silicate to reduce the tendency of the
composition to form granules having a particle size of
2000 µm or above on storage.

Description

Note: Descriptions are shown in the official language in which they were submitted.


CA 02253470 1998-11-03
WO 97/43370 PCT/EP97/OZ496
TECHNICAL AREA
The present invention relates to particulate zero-
phosphate laundry detergent compositions containing sodium
silicate. More particularly it relates to particulate
laundry detergent compositions built with zeolite MAP and
containing sodium percarbonate bleach.
BACKGROUND AND PRIOR ART
Sodium silicate is a well-known ingredient for
particulate laundry detergent compositions, and its
incorporation is desirable for a number of reasons, for
example, in order to provide increased protection against
corrosion of metal surfaces within the washing machine, and
to control alkalinity and pH in the wash. Granular sodium
disilicate (hydrated), which can simply be dry mixed with
other powder ingredients, provides a convenient route for
the incorporation of this ingredient, especially for
powders in which the base powder contains zeolite.
It has been found that certain particulate zeolite-
built bleaching laundry detergent compositions containing
discrete sodium disilicate granules show a tendency towards
"granulation", ie to the formation of large particles, on
usage in the home. This occurs once the composition has
been exposed to ambient conditions by opening the
packaging, even when ambient conditions are relatively dry.

CA 02253470 1998-11-03
C3724PC1
- 2 -
This problem has been observed more particularly in
compositions in which the detergency builder is zeolite MAP,
the novel zeolite described and claimed in EP 384 070B
(Unilever), which is P-type zeolite having a silicon to
' aluminium ratio not exceeding 1.33. The incidence of
"granulation" is also greater in powders containing sodium
percarbonate bleach than in similar powders containing
sodium perborate monohydrate.
It has now been found that, in compositions where a
tendency toward "granulation" has been observed, the problem
may be alleviated by replacing the sodium disilicate
granules by sodium silicate/sodium carbonate cogranules.
Sodium silicate/sodium carbonate cogranules and their
use in detergent compositions are disclosed in EP 561 656A
(Rhone-Poulenc), EP 658 517A and EP 667 391A (Degussa), and
WO 95 22592A (Henkel).
WO 95 32273A (Rhone-Poulenc) discloses the use of a
cogranule of carbonate and silicate to stabilise a detergent
composition containing sodium percarbonate.
EP 488 868 (Rhone-Poulenc) discloses the use of a co-
granule of carbonate and silicate in a sodium perborate
containing powdered composition, wherein a high level of
silicate is present in the composition.
AMENDED SHEET

CA 02253470 1998-11-03
C~724PC1 ~. .
- 3 -
DEFINITION OF THE INVENTION
The present invention provides a particulate zero-
phosphate laundry detergent composition comprising:
5.
(i) from 30 to 80 wto of a granular base powder comprising
(a) from 5 to 60 wt~ (based on the composition) of
organic surfactant, and
(b) from 10 to 80 wt~ (based on the composition) of
alkali metal aluminosilicate detergency builder,
(ii) from 1 to 5 wt~ of sodium silicate not within the
granular base powder,
(iii) from 1 to 50 wt~ of separate granules of sodium
carbonate,
(iv) optionally from 10 to 35 wto of separate granules of a
peroxy bleach compound; and
(v) optionally other detergent ingredients to 100 wto,
characterised in that the sodium silicate (ii) is all
present in the form of separate cogranules consisting
essentially of sodium silicate and sodium carbonate in a
ratio within the range of from 3:1 to 1:3, whereby the
tendency of the composition to form granules having a
particle size of 2000 mm or larger on storage is less than
if the sodium silicate (ii) were present in the form of
separate granules of sodium disilicate.
AMENDED SHEET

CA 02253470 1998-11-03
C3724PC1 . , ~ ;-
.' ,.~ ,.
- 4 -
The invention further provides the use of postdosed
cogranules consisting essentially cf sodium silicate and
sodium carbonate in a ratio within the range of from 3:1 to
1:3 in a particulate zero-phosphate zeolite-built detergent
5~ composition otherwise free of postdosed sodium silicate to
reduce the tendency of the composition to form granules .
having a particle size of 2000 mm or above on storage.
DETAILED DESCRIPTIOD1 OF THE INVENTION
The invention is based on the observation that certain
zeolite-built laundry detergent powders containing postdosed
granular sodium disilicate show a tendency to "granulation"
, ie particle size increase, on storage in contact with the
atmosphere, for example, in open packages; and that this
problem is solved by replacing the postdosed granular sodium
disilicate with sodium silicate/sodium carbonate cogranules.
The particulate laundry detergent composition
The compositions of the invention comprise as essential
ingredients:
(i) a multi-ingredient granular base powder comprising
organic surfactant and alkali metal aluminosilicate builder,
and
(ii) sodium silicate in the form of separate composite
sodium silicate/sodium carbonate granules, and
(iii) granular sodium carbonate.
4ME"~~~= ~~' ~~~T

CA 02253470 1998-11-03
C3724PC1 ,
- 5 -
Further separate granular or particulate ingredients
may optionally and desirably be present, notably, peroxy
bleach ingredients, especially sodium percarbonate.
5~ The granular base powder
The granular base.po~ader contains at least one organic
surfactant.
Detergent-active compounds or surfactants may be chosen
from soap and non-soap anionic, cationic, nonionic,
amphoteric and zwitterionic detergent-active compounds, and
mixtures thereof. Many suitable detergent-active compounds
are available and are fully described in the literature, for
example, in "Surface-Active Agents and Detergents", Volumes
I and II, by Schwartz, Perry and Berch.
The preferred detergent-active compounds that can be
used are soaps and synthetic non-soap anionic and nonionic
compounds.
Anionic surfactants are well-known to those skilled in
the art. Examples include alkylbenzene sulphonates,
particularly linear alkylbenzene sulphonates having an alkyl
chain length of Ce-C15; primary and secondary
alkylsulphates, particularly Cg-C15 primary alkyl sulphates;
alkyl ether sulphates; olefin sulphonates; alkyl xylene
sulphonates; dialkyl sulphosuccinates; and fatty acid
ester sulphonates. Sodium salts are generally preferred.
Nonionic surfactants that may be used include the
primary and secondary alcohol ethoxylates, especially the C8-
CZO aliphatic alcohols ethoxylated with an average of
ra.~'.:.~iJ~.t~ Jil~~~

CA 02253470 1998-11-03
C~724PC1
-- 6 -
from 1 to 20 moles of ethylene oxide per mole of alcohol,
and more especially the C1~-C1; primary and secondary
aliphatic alcohols ethoxylated with an average of from 1. to
moles of ethylene oxide per mole of alcohol. Non-
5~ ethoxylated nonionic surfactants include
alkylpolyglycosides, glycerol monoethers, and
polyhydroxyamides (glucamide).
The~total amount of surfactant present is suitably from
10 5 to 60 wto, and preferably from 5 to 40 wto.
Laundry detergent compositions suitable for use in most
automatic washing machines generally contain anionic non-
soap surfactant, or nonionic surfactant, or combinations of
the two in any ratio, optionally together with soap.
The detergent composition of the invention also
contains an alkali metal, preferably sodium, aluminosilicate
builder. This is suitably present in an amount of from 10
to 70 wto, preferably from 15 to 70 wto and more preferably
from 20 to 60 wto.
The alkali metal aluminosilicate may be either
crystalline or amorphous or mixtures thereof, having the
general formula:
0.8-1.5 Na20. A1203. 0.8-6 Si02
These materials contain some bound water and are
required to have a calcium ion exchange capacity of at least
50 mg Ca0/g. The preferred sodium aluminosilicates contain
1.5-3.5 SiOz units (in the formula above). Both the
amorphous and the crystalline materials can be prepared
readily by reaction between sodium silicate and sodium
aluminate, as amply described in the literature.
-,. _
~..~:~..

CA 02253470 1998-11-03
C3724PC1 . .
7 _
The crystalline materials (zeolites) are preferred.
The preferred detergent zeolites are zeolites A (4A),
X, and, most preferably, maximum aluminium zeolite P
(zeolite MAP) as described and claimed in EP 384 070B
5' (Unilever). Zeolite MAP is defined as an alkali metal
aluminosilicate.of the zeolite P type having a silicon to
aluminium ratio not. exceeding 1.33, and preferably not
exceeding 1.07. The:calci.um.binding capacity of zeolite
MAP is generally at least 150 mg Ca0 per g of anhydrous
material.
Preferred compositions of the invention contain zeolite
MAP, suitably in an amount of from 20 to 60 wto, and are
free of zeolite A.
Supplementary builders may also be present. These are
generally organic. Organic builders that may be present
include polycarboxylate polymers such as polyacrylates,
acrylic/maleic copolymers, and acrylic phosphinates;
monomeric polycarboxylates such as citrates, gluconates,
oxydisuccinates, glycerol mono-, di- and trisuccinates,
carboxymethyloxysuccinates, carboxymethyloxymalonates,
dipicolinates, hydroxyethyliminodiacetates, alkyl- and
alkenylmalonates and succinates; and sulphonated fatty acid
salts.
Especially preferred organic builders are citrates,
suitably used in amounts of from 5 to 30 wto, preferably
from 10 to 25 wt~; and acrylic polymers, more especially
acrylic/maleic copolymers, suitably used in amounts of from
0.5 to 15 wt~, preferably from 1 to 10 wto.
The total amount of detergency builder in the
compositions will suitably range from 10 to 80 wto,
preferably from 10 to 60 wt~.
AMENDED SHEET

CA 02253470 1998-11-03
C3724PC1
' .. ,>
__ g
Other ingredients that may suitably be incorporated in
the base powder include fluorescers; antiredeposition,
anti-dye-transfer and soil release polymers; sodium
carbonate; sodium sulphate.
5.
The base powder may also, if desired, contain. sodium
silicate. Generally the amount of sodium silicate present
in. the base powder will not exceed 10 wto of the whole
composition, for example, from 1 to 8 wt~. The composition
as a whole must, however, be free of postdosed sodium
silicate other than that contained in the cogranules.
The base powder may be prepared by any suitable process
giving composite granules, for example, spray-drying, spray-
drying followed by densification, or non-tower mixing and
granulation processes. The invention is believed to be
especially applicable to compositions in which the base
powder is not the direct process of a spray-drying process.
Preferred non-tower processes use a high-speed
mixer/granulator, for example, as described in EP 340 013A,
EP 367 339A, EP 390 251A and EP 420 317A (Unilever).
The base powder preferably has a bulk density of at
least 650 g/litre, more preferably at least 700 g/litre and
most preferably at least 800 g/litre.
The sodium silicate/sodium carbonate cogranules
The compositions of the invention contain sodium
silicate in the form of discrete cogranules comprising
sodium silicate and sodium carbonate in a weight ratio of
from 1:3 to 3:1.
AMENDED SHEET

C3724PC2
CA 02253470 1998-11-03
g _
Preferred cogranules have a sodium silicate to sodium
carbonate ratio of from 0.5:1 to 1:1 and are present in an
amount of from 2 to 15 wto, more preferably from 4 to
wto.
5
Composite sodium silicate/sodium carbonate granules and
their use in detergent compositions are disclosed in
EP 561 656A and WO 95 32273A (Rhone-Poulenc), EP 658 517A
and EP 667 391A (Degussa), and WO 95 22592A (Henkel).
10 Especially preferred granules, containing 63.7 wto (as
anhydrous) sodium carbonate and 36.3 wt~ (as hydrated
disilicate) sodium silicate, are available commercially from
Rhone-Poulenc Chimie as Nabion (Trade Mark) 15.
As previously indicated, the compositions of the
invention are free of postdosed sodium silicate other than
that contained in the cogranules. Sodium silicate may,
however, be present in the base powder.
Sodium carbonate
The compositions of the invention also contain from 1
to 50 wt~, preferably from 2 to 40 wt~, more preferably from
2 to 25 wt~, of postdosed sodium carbonate, that is to say,
sodium carbonate present as discrete granules not forming
part of the base powder. The absence of postdosed sodium
carbonate appears to exacerbate the "granulation" problem.
Bleaching compositions may suitably contain from 1 to
12 wt~, preferably from 2 to 10 wt$, of postdosed sodium
carbonate. Higher levels may be appropriate to non-
bleaching compositions. Sodium carbonate may, of course,
also be present in the base powder.

CA 02253470 1998-11-03
WO 97/43370 PCT/EP97/02496
The compositions of the invention may also contain a
peroxy bleach compound. Preferred peroxy bleach compounds
5 are inorganic persalts such as the alkali metal perborates,
percarbonates, perphosphates, persilicates and
persulphates, in particular, sodium perborate monohydrate
and tetrahydrate and sodium percarbonate.
10 The present invention is especially applicable to
compositions containing sodium percarbonate, which may
suitably be present in an amount of from 10 to 35 wt%, more
preferably from 15 to 25 wto.
The peroxy bleach compound may be used in conjunction
with a bleach activator (bleach precursor) to improve
bleaching action at low wash temperatures. The bleach
precursor is suitably present in an amount of from 1 to
8 wt%, preferably from 2 to 5 wt~. Preferred bleach
precursors are peroxycarboxylic acid
precursors, more
especially peracetic acid precursors and peroxybenzoic acid
precursors; and peroxycarbonic acid precursors. An
especially preferred bleach precursor suitable for use in
the present invention is N,N,N',N'-tetracetyl
ethylenediamine (TAED).
A bleach stabiliser (heavy metal sequestrant) may also
be present. Suitable bleach stabilisers include
ethylenediamine tetraacetate (EDTA) and the
polyphosphonates such as bequest (Trade Mark), EDTMP.
As previously indicated, the scope of the invention
also extends to non-bleaching compositions.

CA 02253470 1998-11-03
WO 97/43370 PCT/EP97/02496
11
Other non-base ingredients that may suitably be
present include enzyme granules, antifoam granules, polymer
granules (instead of or in addition to polymers included in
the base powder), sodium bicarbonate, perfume.
Moisture sink capacity
Without wishing to be bound by theory, it has been
observed that particulate laundry detergent compositions
that exhibit a "granulation" problem that can be solved in
accordance with the present invention are generally
characterised by a calculated moisture sink capacity at
37°C and 70% relative humidity of the overall composition
of 5 wt% or less, preferably from 3 to 5 wt% and more
preferably from 4 to 5 wt%.
Moisture sink capacity (MSC) is defined as the amount
of water a material can take up to form a stable hydrate,
under the defined conditions. Fully hydrated materials,
for example, sodium perborate tetrahydrate, have no MSC.
For a single anhydrous or not fully hydrated material
the MSC may readily be calculated, assuming that the
material will hydrate fully, on storage under defined
conditions, to the hydrate that is stable under those
conditions. For example, under conditions of 37°C and 70%
relative humidity sodium carbonate (anhydrous) will hydrate
to the monohydrate (in a closed container) or to the
monohydrate plus sesquicarbonate tin open conditions in the
presence of carbon dioxide), giving in either case an MSC
value of 17 wt%; but will not hydrate further to the
decahydrate which is only stable at higher relative
humidity.

CA 02253470 1998-11-03
WO 97/43370 PCT/EP97/02496
12
For a full particulate detergent composition, or a
composite granular component of such a composition, the MSC
value is calculated, for the purposes of the present
invention, by adding up the capacities of the individual
ingredients each multiplied by the percentage (anhydrous
basis) of each present. This is necessarily an
approximation because it assumes that the moisture sink
capacity of each ingredient operates independently of the
other ingredients present, whereas in reality it is likely
that in a multiingredient component the different
ingredients will influence each other to some extent.
The calculated MSC values at 37°C and 70% relative
humidity of some ingredients used in particulate detergent
compositions of the invention and comparative compositions,
as hereinafter described, are shown below.
MSC (wt~)
Zeolite 4A zero
Zeolite MAP 12.5
Sodium carbonate* (anhydr) 17.0
Sodium disilicate (hydrated) zero
Sodium carbonate (63.7 wto)/
sodium disilicate 11.0
(36.3 wt~)
cogranules
Antifoa m granule (68 wt% carbonate) 11.6
Sodium sulphate zero
Sodium perborate monohydrate 54.0
Sodium perborate tetrahydrate zero
Sodium percarbonate zero
Tetrace tyl ethylene diamine (TAED) zero
Sodium sesquicarbonate zero
Sodium bicarbonate zero

CA 02253470 1998-11-03
WO 97/43370 PCT/EP97/02496
13
The invention is illustrated by the following
Examples, in which parts and percentages are by weight
unless otherwise stated.
Example 1. Comparative Exambl_es A to C
A high bulk density detergent base powder having a
moisture sink capacity at 27°C and 70o relative humidity of
3.8 wt~ was prepared to the following formulation using a
continuous high-speed mixer/granulator:
0
Na primary alcohol sulphate 21.86
Nonionic surfactant 7E0 10.91
Soap 3.42
Zeolite MAP (as anhydrous) 42.27
Light soda ash 6.15
Sodium citrate dihydrate 4.33
Sodium carboxymethyl cellulose 1.70
Moisture, salts, etc 9.35
Four fully formulated detergent compositions were
prepared by postdosing additional ingredients. The
compositions thus obtained were tested for "granulation" by
storing 100 g samples in open tubs for 60 hours at 37°C and
70o relative humidity. Material having a particle size of
2000 um or greater was then gently removed by sieving (the
agglomerates were very fragile) and weighed. The
compositions, and the percentages of oversize material
found in each composition, are shown in the following
Table.

CA 02253470 1998-11-03
WO 97/43370 ~ 4 PCT/EP97/02496
v o ~r, <r ~ ~n o
cu o 0 0 o en
0 0 0 0 0o m
o~ rn o~ u, o o ~r, 0 0 0 ~ o
. . . , . . . . . . . .
M N M tl1 Lfl O1 U1 e-I ri c--I O (y
N ~r1 ~r1 N
N O D c~
V
0 0 0 o co mn
UW -i O M O tt1O o O d~
~o . . . ~ . . . . . . p
~ .
C~ d~ N tll 01Lflc-i~-i~-1O ri
U o H ~ m n o
'' N ~-1O O
.,
Oa
0 0 0 0 00tr1
00 d~ ODO o o in o 0 0 ~r
o\o . . . . ~
M l~ M N u'1 O~lIW-Ir-I~-iO
Lll r-I
v o ~n r m n r-,
~,'' N ~-Io 0
0
c0 ~ ao 0 0 0 0 opm
0
i i ~n o 0 0
o\o M CO M Lf1 . . . . . p
01
L(l r1 L(lc-ic-Ic-iO
N
N
M
~
~ rtiO U r-
,p I
~ ~-a,.~~ O
S-a
~
~ t W.-i rti-n O
U
U rt5b1(U U 'z3 U O o
~
r3 ~ V
O ~ rtiN C1 i.~ C ~ o
II
O ,~ c~U +.~!~-I rd U14J ~ rtSN
~ U ~ ~ n
rt .--~ ~ p.~ ~ ,~ ~
-rl-.-I-.-i~., C~ ~ ~ ~~,4--~r~ ~ o\o
-r-I
-1-1~ r~ri W ~ N ~-1 .tJ ~ 1J
~
c~ it G -~ -~O ~ C~~ ~ dl O ~ 3
O
m Z ~ ~1 cna.. E-~W C7 W a, E-~ C7 ---
cn

CA 02253470 1998-11-03
WO 97/43370 PCT/EP97/02496
5
lcontaining 18 wt~ carbonate
zNabion 15 ex Rhone-Poulenc: 63.7 wto carbonate, 36.3 wto
silicate
3Sokalan (Trade Mark) HP22 soil release polymer ex BASF on
zeolite/carbonate carrier
4Sokalan (Trade Mark) CP5 acrylic/maleic copolymer ex BASF.
Comparative Example A contained no sodium silicate and
showed very low "granulation". Addition of 2 wto postdosed
disilicate (Comparative Example B), replacing the same
amount of postdosed sodium carbonate, resulted in a large
increase in "granulation". Removal of all postdosed
carbonate (replacing by base powder) caused granulation to
increase further (Comparative Example C).
However, replacement of the postdosed silicate and part
of the postdosed sodium carbonate of Comparative Example B
by sodium silicate/sodium carbonate composite granules
(Nabion 15), to give exactly the same final formulation,
caused the "granulation" level to fall back to that of
Comparative Example A containing no sodium silicate.

Representative Drawing

Sorry, the representative drawing for patent document number 2253470 was not found.

Administrative Status

2024-08-01:As part of the Next Generation Patents (NGP) transition, the Canadian Patents Database (CPD) now contains a more detailed Event History, which replicates the Event Log of our new back-office solution.

Please note that "Inactive:" events refers to events no longer in use in our new back-office solution.

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Event History , Maintenance Fee  and Payment History  should be consulted.

Event History

Description Date
Inactive: Expired (new Act pat) 2017-04-29
Inactive: IPC from MCD 2006-03-12
Grant by Issuance 2006-02-14
Inactive: Cover page published 2006-02-13
Inactive: Final fee received 2005-12-05
Pre-grant 2005-12-05
Notice of Allowance is Issued 2005-06-20
Letter Sent 2005-06-20
Notice of Allowance is Issued 2005-06-20
Inactive: Approved for allowance (AFA) 2005-05-02
Amendment Received - Voluntary Amendment 2004-11-16
Inactive: S.30(2) Rules - Examiner requisition 2004-05-18
Amendment Received - Voluntary Amendment 2002-09-17
Letter Sent 2002-04-16
Request for Examination Requirements Determined Compliant 2002-03-01
All Requirements for Examination Determined Compliant 2002-03-01
Request for Examination Received 2002-03-01
Inactive: Single transfer 1999-02-17
Inactive: First IPC assigned 1999-01-14
Inactive: IPC assigned 1999-01-14
Classification Modified 1999-01-14
Inactive: IPC assigned 1999-01-14
Inactive: IPC assigned 1999-01-14
Inactive: Courtesy letter - Evidence 1998-12-29
Inactive: Notice - National entry - No RFE 1998-12-23
Application Received - PCT 1998-12-21
Amendment Received - Voluntary Amendment 1998-11-03
Application Published (Open to Public Inspection) 1997-11-20

Abandonment History

There is no abandonment history.

Maintenance Fee

The last payment was received on 2005-04-08

Note : If the full payment has not been received on or before the date indicated, a further fee may be required which may be one of the following

  • the reinstatement fee;
  • the late payment fee; or
  • additional fee to reverse deemed expiry.

Please refer to the CIPO Patent Fees web page to see all current fee amounts.

Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
UNILEVER PLC
Past Owners on Record
JELLES VINCENT BOSKAMP
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Description 1998-11-04 15 544
Description 1998-11-03 15 545
Abstract 1998-11-03 1 58
Claims 1998-11-03 3 89
Cover Page 1999-01-25 1 55
Claims 2004-11-16 3 84
Cover Page 2006-01-11 1 39
Notice of National Entry 1998-12-23 1 192
Courtesy - Certificate of registration (related document(s)) 1999-04-01 1 117
Reminder - Request for Examination 2002-01-02 1 117
Acknowledgement of Request for Examination 2002-04-16 1 180
Commissioner's Notice - Application Found Allowable 2005-06-20 1 160
PCT 1998-11-03 20 717
Correspondence 1998-12-29 1 30
Correspondence 2005-12-05 1 30