Language selection

Search

Patent 2364231 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent: (11) CA 2364231
(54) English Title: STATIC VENTILATOR INCLUDING A CORRUGATED PORTION
(54) French Title: VENTILATEUR STATIQUE COMPRENANT UN PARTIE ANNELEE
Status: Expired and beyond the Period of Reversal
Bibliographic Data
Abstracts

English Abstract

A static ventilator provided with a deformable corrugated portion is described herein. The static ventilator is provided with a tubular base to be installed to the roof, a sleeve to be connected to the tubular base and a cover to be installed to the free end of the sleeve. The tubular base is provided with a deformable corrugated portion enabling the tubular base to be installed to a sloping roof while allowing the sleeve to be positioned and maintained in a generally vertical orientation. The present invention is also concerned with a method for forming a tubular base for static ventilator provided with a corrugated portion.


French Abstract

Ventilateur statique comprenant une portion annelée. Le ventilateur statique possède une base tubulaire à installer sur le toit, un manchon à connecteur à la base tubulaire et un couvercle à installer sur l'extrémité libre du manchon. La base tubulaire est fournie avec une portion annelée permettant à la base tubulaire d'être installée sur un toit en pente tout en permettant au manchon d'être positionné et maintenu dans une orientation généralement verticale. La présente invention concerne également une méthode de formation d'une base tubulaire pour un ventilateur statique avec une portion annelée.

Claims

Note: Claims are shown in the official language in which they were submitted.


11
WHAT IS CLAIMED IS:
1. A static ventilator to be installed onto roofs comprising:
a tubular base having a proximate end and a distal end; said
proximate end being provided with an integral base plate configured and sized
to be mounted onto a roof; said tubular base also includes a deformable
corrugated portion provided between said proximate and distal ends;
a sleeve having a first end configured and sized to be connected
to said distal end of said tubular base and a second end; and
a cover configured and sized to be mounted to said second end
of said sleeve;
wherein said corrugated portion of said tubular base allows the static
ventilator
to be mounted to sloping roofs while enabling the sleeve to be positioned and
maintained in a generally vertical orientation.
2. A static ventilator as defined in claim 1, wherein said
deformable corrugated portion of said tubular base is formed by at least one
circumferential ridges adjacent to a circumferential groove.
3. A static ventilator as defined in claim 1, wherein said
deformable corrugated portion of said tubular base is formed of a plurality of
successive circumferential ridges and grooves.
4. A static ventilator as defined in claim 1, wherein said static
ventilator is configured and sized to enclose an air inlet pipe.

12
5. A static ventilator as defined in claim 4, wherein said cover
includes an internal portion configured and sized to enter a free end of said
air
inlet pipe.
6. A static ventilator as defined in claim 5, wherein said internal
portion is cylindrical.
7. A static ventilator as defined in claim 5, wherein said cover
further includes an external portion configured and sized to overlap said
second end of said sleeve.
8. A static ventilator as defined in claim 7, wherein said external
portion is cylindrical and has an internal diameter larger than an external
diameter of said sleeve.
9. A method for forming a base having a corrugated portion for
a static ventilator comprising the steps of:
providing a first mold having a distal end, a longitudinal axis and
a cylindrical portion defining a first predetermined diameter;
removably securing a metal sheet to said distal end of said first
mold;
spinning said first mold and said metal sheet about said
longitudinal axis of said first mold;
chasing said metal sheet against said first mold to form an
intermediate base provided with a cylindrical portion of said first
predetermined
diameter,

13
providing a second mold having a distal end, a longitudinal axis
and a cylindrical portion defining a second predetermined diameter smaller
than said first diameter of said first mold;
removably securing said intermediate base to said distal end of
said second mold so that said cylindrical portion of said intermediate base
overlaps said cylindrical portion of said second mold;
spinning said second mold and said intermediate base about said
longitudinal axis of said first mold;
chasing part of said intermediate base against said smaller
cylindrical portion of said second mold to form the corrugated portion of said
base having a corrugated portion.
10. A method as defined in claim 9, wherein said spinning of
said first and second molds is done on a lathe.
11. A method as defined in claim 10, wherein each said securing
step is done by placing said metal sheet between said distal end of said mold
and by applying pressure to said metal sheet through a pressure applying
element of said lathe.
12. A method as defined in claim 9, wherein said chasing steps
are done with a chasing arm provided with a chasing roller.
13, A method as defined in claim 12, wherein said second
chasing step where a part of said intermediate base is chased against said
smaller cylindrical portion of said second mold to form the corrugated portion
is done with a generally V-shaped chasing roller.

Description

Note: Descriptions are shown in the official language in which they were submitted.


'' CA 02364231 2001-12-07
1
STATIC VENTILATOR INCLUDING A CORRUGATED PORTION
The present invention relates to static ventilators. More
spec~cally, the present invention relates to a static ventilator incorporating
a
corrugated portion enabling the installation of the ventilator onto roofs of
various pitches and to a method for forming such a static ventilator.
The prior art is replete with various designs of static ventilators
designed to be installed onto roofs in view of providing ventilation in
attics.
These static ventilators, conventionally made of galvanized steel, are usually
provided with a base to be fixed to the roof under the roof covering, a
vertical
sleeve having an end~connected to the base and a cover mounted to the free
end of the vertical sleeve.
To install static ventilators onto sloping roofs, the connection
between the vertical sleeve and the base has to be angled. One.method used
to connect the sleeve to the base is to cut an end of the sleeve at the known
roof angle and then to solder the angled end to the base. A major drawback of
this method is that the intense heat generated during the soldering operation
weakens or destroys the rust-proofing treatment of the galvanized steel which
eventually leads to water leaks.
Another method of joining the angled end of the sleeve to the
base is to use plastic-cement type material to provide a leak proof joint.

CA 02364231 2001-12-07
2
However, it has been found that, with time, the elasticity of such materials
is
greatly reduced by the constant exposure to the elements, again potentially
leading to water leaks.
Canadian patent application N° 2,009,776 filed on February 9,
1990 by Claude E. MAHEU and entitled "TILTED SEAMLESS VENT AND
METHOD FOR MAKING THE SAME" describes a method for making a
seamless static vent where the vertical sleeve is integral with the base.
While
this is a major improvement over the conventional soldering method described
hereinabove, a drawback of the method of Maheu is that a different static
ventilator must be made for each roof angle.
An object of the present invention is therefore to provide an
improved static ventilator free of the above-mentioned drawbacks of the prior
art.
Another object of the invention is to provide a static ventilator
provided with a corrugated portion allowing the sleeve to be installed onto
various roof pitches while maintaining the vertical orientation of the sleeve.
More spe~cally, in accordance with the present invention, there
is provided a static ventilator to be installed onto roofs comprising:
a tubular base having a proximate end and a distal end; the
proximate end being provided with an integral base plate configured and sized
to be mounted onto a roof; the tubular base also includes a deformable
corrugated portion provided between the proximate and distal ends;

CA 02364231 2001-12-07
3
a sleeve having a first end configured and sized to be
connectable to the distal end of the tubular base and a second end; and
a cover configured and sized to be mounted to the second end
of the sleeve;
wherein the corrugated portion of the tubular base allows the static
ventilator
to be mounted to sloping roofs while enabling the sleeve to be positioned and
maintained in a generally vertical orientation.
According to another aspect of the present invention, there is
provided a method for forming a base having a corrugated portion for a static
ventilator comprising the steps of:
providing a first mold having a distal end, a longitudinal axis and
a cylindrical portion defining a first predetermined diameter,
_ removably securing a metal sheet to the distal end of the first
mold;
spinning the first mold and the metal sheet about the longitudinal
axis of the first mold;
chasing the metal sheet against the first mold to form an
intermediate base provided with a cylindrical portion of the first
predetermined
diameter;
providing a second mold having a distal end, a longitudinal axis
and a cylindrical portion defining a second predetermined diameter smaller
than the first diameter of the first mold;
removably waxing the intem~ediate base to the distal end of the
second mold so that the cylindrical portion of the intermediate base overlaps
the cylindrical portion of the second mold;
spinning the second mold and the intermediate base about the
longitudinal axis of the first mold;

CA 02364231 2001-12-07
4
chasing part of the intermediate base against the smaller
cylindrical portion of the second mold to form the corrugated portion of the
base
having a corrugated portion.
' Other objects and advantages of the present invention will
become more apparent to one skilled in the art upon reading of the following
non restrictive description of a preferred embodiment thereof, given by way of
example only with reference to the appended drawings.
BRIEF DESCRIPTION OF THE D AWwrS
In the appended drawings:
-Figure 1, in a side elevational view, illustrates a static ventilator
according to an embodiment of the present invention, mounted to a sloping
roof;
Figure 2, in a side elevational view, illustrates the base of the
static ventilator of figure 1;
Figure 3, in a side elevational view, illustrates the cover of the
static ventilator of figure 1;
Figure 4, in a side elevational view, illustrates a lathe supporting
a blank piece of metal to be chased;
Figure 5, in a side elevational view, illustrates the blank piece of
metal of figure 4 being chased onto a first mold to yield an intermediate
tubular
base;

CA 02364231 2001-12-07
Figure 6, in a side elevational view, illustrates an intermediate
base mounted onto a second mold, before the chasing of the corrugated
portion; and
Figure 7, in a side elevational view, illustrates the corrugated
portion of the tubular base being chased.
Turning to figures 1 to 3 of the appended drawings, a static
ventilator 10 aooording to a preferred embodiment of the present invention
will
be described.
Figure 1 illustrates the ventilator 10 mounted to a sloping roof 12.
The ventilator 10 encloses an air inlet pipe 14 pneumatically connecting an
attic
16 to an external environment 18 so as to allow air exchange therebetween.
The static ventilator 10 includes a tubular base 20, a sleeve 22
and a cover 24.
As can be better seen from figure 2, the tubular base 20 includes
an integral base plate 26 provided with mounting apertures 28 and defining a
proximate end of the tubular base 20, a shoulder 30, a deformable corrugated
portion 32 and a sleeve receiving portion 34 defining a distal end of the
tubular
base 20.
The integral base plate 26 is generally circular and the mounting
apertures 28 are provided near the periphery of the base plate, as
illustrated.

CA 02364231 2001-12-07
6
The shoulder 30 advantageously prevents contact between the
corrugated portion 32 and the roof when the static ventilator 10 of the
present
invention is mounted to sloping roofs having a very abrupt angle (not shown)
The deformable corrugated portion 32 is formed of a plurality of
successive circumferential ridges 36 and grooves 38. Of course, as will be
easily understood by one skilled in the art, only one ridge 36 and one
adjacent
groove 38 are required to allow the corrugated portion 32 to be angled with
respect to a longitudinal axis 40 that is perpendicular to the base plate 26.
However, a plurality of successive circumferential ridges 36 and grooves 38
are
preferred since it increases the possible angle variation, with respect to the
axis
40, at which the sleeve 22 may be positioned.
As will be easily understood by one skilled in the art, the
corrugated portion 32 of the tubular base 20 allows the static ventilator 10
to
be mounted to sloping roofs such as 12 while enabling the sleeve 22 to be
positioned and maintained in a generally vertical orientation. Indeed, by
selectively deforming portions of the circumferences of the V-shaped grooves
38, it is possible to change the angle of the deformable portion 32 with
respect
to the base plate 26. Furthermore, since the tubular base 20 is made of
metallic material, the deformation of the corrugated portion 32 will remain
until
other forces are applied thereto.
The sleeve receiving portion 34 is generally cylindrical and has
an external diameter that is slightly smaller than an internal diameter of the
sleeve 22, allowing the sleeve 22 to snugly fit onto the sleeve receiving
portion
34. Of course, adhesives may be provided between the sleeve receiving

CA 02364231 2001-12-07
8
mount the sleeve 22 to the sleeve receiving portion 34, readjust the
deformation of the comagated portion 32 if necessary, install the cover 24 so
that its internal portion 48 is inserted in the air inlet pipe 14 and its
external
portion 46 overlaps the second end 44 of the sleeve 22 and, finally, secure
the
mover 24 to the sleeve 22 (???).
When the base plate 26 is fixedly mounted to the roof 12,
conventional roof covering material, such as, for example, asphalt shingles 50
may be installed over the base plate 26 to prevent water infiltration.
Turning now to figures 4-7 of the appended drawings, the general
steps of the fabrication of the tubular base 20 provided with a corrugated
portion 32 will be described.
The tubular base 20 is fabricated through chasing operations that
are believed to be well known in the art. Hence, only the general features of
these operations will be described hereinbelow since other specific features,
such as, for example, the choice of lathe speed and the type of molds to be
used are believed within the reach of one skilled in the art and are not
specific
to the present invention.
Figure 4 illustrates a first mold 60, including a first cylindrical
portion 62 and a distal end 64, is mounted to the spindle 66 of a lathe 68. A
generally circular plate of metallic material 70 is mounted to the distal end
64
of the first mold 60 via a pressure applying member 72 of the lathe 68.
While the spindle 66 is rotated (figure 5) about a longitudinal axis
73, a chasing arm 74, provided with a chasing roller 76, is applied to the
plate
70 to chase the plate 70 onto the first mold 60.

CA 02364231 2001-12-07
9
The result of the chasing of the plate 70 onto the first mold 60 is
an intermediate tubular base 78 (figure 6) having a cylindrical portion 80
corresponding to the cylindrical portion 62 of the first mold 60.
When the chasing operation is completed, the lathe 68 is
stopped and the intermediate tubular base 78 is disengaged from the first mold
60.
Figure 6 illustrates a second mold 82, including a second
cylindrical portion 84 and a distal end 86, mounted to the spindle 66. The
second cylindrical portion 84 has an external diameter smaller than the
external
diameter of the first cylindrical portion 62 of the first mold 60. The
position of
the second cylindrical portion 84 onto the second mold 82 is such that when
the
intermediate tubular base 78 is mounted to the distal end 86 of the second
mold 82, the cylindrical portion 80 of the intermediate tubular base 78 is in
an
overlapping and distanced relationship with the second cylindrical portion 84.
Finally fuming to figure 7 of the appended drawings, the grooves
38 are chased in the cylindrical portion 80 of the intermediate base 78 to
form
the tubular base 20. A chasing arm 76 provided with a generally V-shaped
chasing. roller 88 is used to chase the generally V-shaped grooves 38. More
specifically, the chasing roller 88 is pressed to the rotating cylindrical
portion
80 so as to chase part of the portion 80 to the second cylindrical portion 84
of
the second mold 82 to yield a V-shaped groove 38. The chasing arm is then
moved and a second V-shaped groove 38 is similarly formed. The distance
separating the successive grooves 38 is such that a ridge 36 is formed
therebetween. When all the grooves 38 are formed, the lathe is stopped and
the completed tubular base 20 is disengaged from the second mold 82.

CA 02364231 2001-12-07
Of course, the closed end of tubular base member 20 to which
pressure was applied via the member 72 is then removed to yield an open
ended tubular base member 20.
5 It is to be noted that while other metals could be used, the
different elements of the static ventilator 10 are advantageously made of
aluminum.
Although the present invention has been described hereinabove
10 by way of a preferred embodiment thereof, this preferred embodiment can be
modified at will, without departing from the spirit and nature of the subject
invention as defined in the appended claims.

Representative Drawing
A single figure which represents the drawing illustrating the invention.
Administrative Status

2024-08-01:As part of the Next Generation Patents (NGP) transition, the Canadian Patents Database (CPD) now contains a more detailed Event History, which replicates the Event Log of our new back-office solution.

Please note that "Inactive:" events refers to events no longer in use in our new back-office solution.

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Event History , Maintenance Fee  and Payment History  should be consulted.

Event History

Description Date
Time Limit for Reversal Expired 2017-12-07
Letter Sent 2016-12-07
Grant by Issuance 2004-02-24
Inactive: Cover page published 2004-02-23
Inactive: Final fee received 2003-12-02
Pre-grant 2003-12-02
Early Laid Open Requested 2003-12-02
Publish Open to Licence Request 2003-12-02
Application Published (Open to Public Inspection) 2003-06-07
Notice of Allowance is Issued 2003-06-06
Inactive: Cover page published 2003-06-06
Notice of Allowance is Issued 2003-06-06
Letter Sent 2003-06-06
Inactive: Approved for allowance (AFA) 2003-05-22
Inactive: Correspondence - Formalities 2003-02-28
Inactive: First IPC assigned 2002-01-25
Inactive: Filing certificate - RFE (English) 2002-01-08
Inactive: Inventor deleted 2002-01-08
Inactive: Applicant deleted 2002-01-08
Application Received - Regular National 2002-01-08
Filing Requirements Determined Compliant 2002-01-08
Letter Sent 2002-01-08
Small Entity Declaration Determined Compliant 2001-12-07
Request for Examination Requirements Determined Compliant 2001-12-07
All Requirements for Examination Determined Compliant 2001-12-07

Abandonment History

There is no abandonment history.

Maintenance Fee

The last payment was received on 2003-12-02

Note : If the full payment has not been received on or before the date indicated, a further fee may be required which may be one of the following

  • the reinstatement fee;
  • the late payment fee; or
  • additional fee to reverse deemed expiry.

Please refer to the CIPO Patent Fees web page to see all current fee amounts.

Fee History

Fee Type Anniversary Year Due Date Paid Date
Application fee - small 2001-12-07
Request for examination - small 2001-12-07
Final fee - small 2003-12-02
MF (application, 2nd anniv.) - small 02 2003-12-08 2003-12-02
MF (patent, 4th anniv.) - small 2005-12-07 2004-10-21
MF (patent, 3rd anniv.) - small 2004-12-07 2004-10-21
MF (patent, 5th anniv.) - small 2006-12-07 2006-11-20
MF (patent, 6th anniv.) - small 2007-12-07 2007-10-19
MF (patent, 7th anniv.) - small 2008-12-08 2007-10-19
MF (patent, 8th anniv.) - small 2009-12-07 2009-09-28
MF (patent, 9th anniv.) - small 2010-12-07 2009-09-28
MF (patent, 14th anniv.) - small 2015-12-07 2011-10-17
MF (patent, 13th anniv.) - small 2014-12-08 2011-10-17
MF (patent, 12th anniv.) - small 2013-12-09 2011-10-17
MF (patent, 11th anniv.) - small 2012-12-07 2011-10-17
MF (patent, 10th anniv.) - small 2011-12-07 2011-10-17
Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
MICHEL POITRAS
Past Owners on Record
None
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Representative drawing 2002-06-17 1 7
Description 2001-12-07 10 368
Cover Page 2003-05-16 1 33
Description 2001-12-07 9 330
Abstract 2001-12-07 1 19
Claims 2001-12-07 3 102
Drawings 2001-12-07 4 78
Cover Page 2004-01-23 1 33
Acknowledgement of Request for Examination 2002-01-08 1 178
Filing Certificate (English) 2002-01-08 1 164
Commissioner's Notice - Application Found Allowable 2003-06-06 1 160
Notice: Maintenance Fee Reminder 2003-09-09 1 115
Notice: Maintenance Fee Reminder 2004-09-08 1 123
Notice: Maintenance Fee Reminder 2006-09-11 1 119
Notice: Maintenance Fee Reminder 2007-09-10 1 130
Notice: Maintenance Fee Reminder 2009-09-09 1 120
Notice: Maintenance Fee Reminder 2011-09-08 1 125
Notice: Maintenance Fee Reminder 2016-09-08 1 122
Maintenance Fee Notice 2017-01-18 1 178
Second Notice: Maintenance Fee Reminder 2017-06-08 1 132
Notice: Maintenance Fee Reminder 2017-09-11 1 120
Fees 2011-10-17 1 154
Correspondence 2002-01-08 1 16
Correspondence 2003-02-28 2 64
Correspondence 2003-12-02 1 95
Fees 2003-12-02 1 67
Fees 2004-10-18 1 81
Fees 2006-11-20 1 63
Fees 2007-10-19 3 168
Fees 2009-09-28 1 64