Language selection

Search

Patent 2668254 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent: (11) CA 2668254
(54) English Title: OIL SAND SLURRY TRANSPORTATION SYSTEM AND METHOD FOR VARIABLE SLURRY FLOW RATES
(54) French Title: TRANSPORT DE BOUE DE FORAGE DE SABLES BITUMINEUX, SYSTEME DE TRANSPORT DE BOUE DE FORAGE DE SABLES BITUMINEUX ET METHODE APPLICABLE AUX DEBITS VARIABLES DE BOUE
Status: Granted and Issued
Bibliographic Data
(51) International Patent Classification (IPC):
  • F17D 1/14 (2006.01)
  • B65G 53/30 (2006.01)
  • B65G 53/58 (2006.01)
  • E21B 43/12 (2006.01)
(72) Inventors :
  • ODEGARD, MARK L. (Canada)
(73) Owners :
  • SUNCOR ENERGY INC.
(71) Applicants :
  • SUNCOR ENERGY INC. (Canada)
(74) Agent: ROBIC AGENCE PI S.E.C./ROBIC IP AGENCY LP
(74) Associate agent:
(45) Issued: 2014-03-11
(22) Filed Date: 2009-06-04
(41) Open to Public Inspection: 2009-12-04
Examination requested: 2012-11-20
Availability of licence: N/A
Dedicated to the Public: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): No

(30) Application Priority Data:
Application No. Country/Territory Date
61/058.720 (United States of America) 2008-06-04

Abstracts

English Abstract

Provided is a system for transporting an oil sand slurry, comprising a pump, upstream and downstream lines, a shaft connectable to the pump, a driving mechanism driving the pump and a regulator for regulating the torque applied to the shaft between positive and negative torque modes, to pump the slurry at higher or lower flow rates. Also provided is a method comprising pumping the slurry through a pipeline using a pump driven by a motorised shaft and adjusting the flow rate of the slurry by varying the torque applied to the motorised shaft between positive and negative torque modes. The oil sand slurry transportation system and method enable positive head (regular pump action) for normal and high flow rates and negative head (pump brake action) for low flow rates, which reduces system energy loss, pipeline wear, vapour breakout and sanding off.


French Abstract

L'invention porte sur un système de transport de boue de sables bitumineux comprenant une pompe, des conduites amont et aval, un arbre pouvant être branché à la pompe, un mécanisme d'entraînement activant la pompe et un régulateur pour réguler le couple appliqué à l'arbre entre les modes de couple positif et négatif, pour pomper la boue à des débits plus élevés ou plus faibles. La présente invention a également trait à un procédé consistant à pomper la boue dans une canalisation au moyen d'une pompe entraînée par un arbre motorisé et à régler le débit de la boue en faisant varier le couple appliqué sur l'arbre motorisé entre les modes de couple positif et négatif. Le système et le procédé de transport de boue de sables bitumineux permettent une charge de pression positive (mouvement de pompe normal) pour des débits normaux et élevés et une charge de pression négative (mouvement de freinage de pompe) pour les débits faibles, ce qui réduit la perte d'énergie du système, l'usure de la canalisation, les échappées de vapeur et l'abrasion.

Claims

Note: Claims are shown in the official language in which they were submitted.


11
WHAT IS CLAIMED IS:
1. A slurry transportation system for transporting an oil sand slurry,
comprising:
a pump having an inlet for receiving the slurry and a discharge for
discharging the slurry;
an upstream line in fluid communication with the inlet and a downstream line
in fluid communication with the discharge;
a shaft connectable to the pump;
a driving mechanism connectable to the shaft to drive the same to operate
the pump;
a regulator connectable to the driving mechanism for regulating discharge
flow rate from the pump, the regulator configured to:
regulate torque applied to the shaft, and
operate the driving mechanism in a positive torque mode during tines of high
process
flow rates to cause the pump to discharge the slurry at a higher flow rate,
and in a
negative torque mode during times of low process flow rates to cause the pump
to
discharge the slurry at a lower flow rate.
2. The slurry transportation system of claim 1, wherein the oil sand slurry
comprises at-face mined oil sand slurry, primary middlings slurry or secondary
middlings slurry, or tailings slurry.
3. The slurry transportation system of claim 1 or 2, wherein the driving
mechanism
comprises a motor and the regulator is configured to cause the motor to
operate
between the positive torque mode and the negative torque mode.

12
4. The slurry transportation system of claim 3, wherein the regulator
comprises a
variable frequency device electrically connectable to the motor.
5. The slurry transportation system of claim 4, wherein the regulator further
comprises a control unit coupled to the variable frequency device to
automatically control whether the shaft is in the positive torque mode or the
negative torque mode.
6. The slurry transportation system of any one of claims 1 to 5, further
comprising an energy receptor for receiving braking energy emitted in the
negative torque mode.
7. The slurry transportation system of claim 6, wherein the energy receptor is
an
electrical load resistor.
8. The slurry transportation system of any one of claims 1 to 7, wherein the
pump is a centrifugal pump having an impeller connected to the shaft for
allowing pumping of the slurry.
9. The slurry transportation system of any one of claims 1 to 8, wherein the
upstream line extends to a higher elevation than the pump, and the regulator
is configured to regulate the torque to reduce vapour breakout in the
upstream line.
10.The slurry transportation system of claim 9, wherein the downstream line
extends to a lower elevation than the pump, allowing the slurry to flow at
least
partially by gravity.

13
11. The slurry transportation system of any one of claims 1 to 10, wherein the
upstream line and the downstream line are arranged in a generally downhill
and undulating configuration.
12. The slurry transportation system of any one of claims 1 to 11, wherein the
regulator is configured to regulate the direction and magnitude of the torque
to
allow sufficient flow rate and pressure to maintain particles in suspension
within the upstream and downstream lines and reduce or avoid sanding off.
13. The slurry transportation system of any one of claims 1 to 12, wherein the
regulator is configured to regulate the torque in response to at least one of
the
following operating conditions:
pressure at the pump inlet;
pressure change in the pump;
composition of the slurry; and
friction loss in a given section of the upstream line or the downstream line.
14. The slurry transportation system of claim 1, wherein the driving mechanism
comprises a motor for operating the pump in the positive torque mode and a
generator for operating the pump in the negative torque mode, both the motor
and the generator being connected to the shaft.
15.A slurry transportation method for transporting an oil sand slurry,
comprising:
pumping the slurry through a pipeline using a pump driven by a motorised
shaft; and

14
regulating discharge flow rate from the pump by regulating torque applied to
the motorised shaft between a positive torque mode during times of high
process flow rates enabling the pump to discharge the slurry at a higher flow
rate, and a negative torque mode during times of low process flow rates
enabling the pump to discharge the slurry at a lower flow rate.
16. The slurry transportation method of claim 15, wherein the oil sand slurry
comprises at-face mined oil sand slurry, primary middlings slurry or secondary
middlings slurry, or tailings slurry.
17. The slurry transportation method of claim 15 or 16, wherein the adjusting
of the
torque is performed by operating a motor connected to the shaft between the
positive torque mode and the negative torque mode.
18. The slurry transportation method of claim 17, wherein the operating of the
motor
is regulated by a variable frequency device.
19. The slurry transportation method of any one of claims 15 to 18, comprising
controlling the direction and magnitude of the torque to allow sufficient flow
rate
and pressure of the slurry to maintain particles in suspension and reduce or
avoid sanding off.
20. The slurry transportation method of any one of claims 15 to 19, comprising
controlling the direction and magnitude of the torque to reduce or avoid
vapour
breakout upstream from the pump.
21. The slurry transportation method of any one of claims 15 to 20, further
comprising assessing at least one of the following operating conditions:
pressure at the pump inlet;

15
pressure change in the pump;
composition of the slurry;
friction loss in a given section of the pipeline; and
determining the direction and magnitude of torque to apply to the motorised
shaft based on at least one of the operating conditions.
22.The slurry transportation method of any one of claims 15 to 21, further
comprising receiving pump braking energy emitted in the negative torque
mode.
23.The slurry transportation method of claim 22, wherein the pump braking
energy is received by an electrical load resistor.
24.The slurry transportation method of claim 22 or 23, further comprising
sending
at least part of the pump braking energy to a grid.
25.The slurry transportation method of any one of claims 22 to 24, further
comprising using at least part of the pump braking energy to at least
partially
power the motor in the positive torque mode.
26. The slurry transportation method of claim 15, wherein the adjusting of the
torque is performed by operating a motor connected to the shaft for the
positive torque mode and operating a generator connected to the shaft for the
negative torque mode.

Description

Note: Descriptions are shown in the official language in which they were submitted.


CA 02668254 2009-06-04
1
OIL SAND SLURRY TRANSPORTATION SYSTEM AND METHOD FOR
VARIABLE SLURRY FLOW RATES
FIELD OF THE INVENTION
The invention generally relates to the field of transporting oil sand
slurries, and
more particularly to a system and method of transporting an oil sand slurry.
BACKGROUND
In traditional mining, slurry pipeline systems are built with significant
reservoir
capacity to maintain a steady flow rate. Oil sands slurry pipeline systems
have
limited reservoir capacity and as a result may have a highly variable flow
rate.
The flow rate may be increased or decreased for a variety of reasons depending
on, for instance, changing upstream availability of oil sands slurry as well
as
other process operating constraints.
Enabling efficient flow of a slurry, such as oil sands slurry, through a
pipeline also
requires some operating conditions that are not normally required for other
liquids. For instance, it is desirable to maintain an adequate flow rate in
the
pipeline when operating at low flow rates to avoid "sanding off', which is
when
some of the oil sands normally suspended in the solvent come out of suspension
thereby hindering the flow and increasing wear on pipeline equipment.
Variable flow rate slurry flowing downhill in undulating terrain, such as in
an oil
sands mine, thus requires a smaller pipeline diameter in order to maintain
adequate line pressure during times of reduced flow rate. Unfortunately, using
a
smaller pipeline diameter results in excessive pipeline wear and system energy
loss at normal or high flow rates. Current industry practice is to accept the

CA 02668254 2009-06-04
2
energy loss and install sacrificial wear components such as reduced line size
sections, orifice plates or valves.
Oil sands mining and transportation are also fraught with harsh conditions and
oils sands slurry can be more damaging on pipeline equipment than other fluids
and suspensions traditionally transported by pipeline.
There is currently a need for a technology that overcomes at least one of the
disadvantages of what is currently known and used in the field.
SUMMARY OF THE INVENTION
The present invention responds to the above-mentioned need by providing a
slurry transportation system and method for transporting slurry.
More particularly, the present invention provides a slurry transportation
system
for transporting an oil sand slurry, comprising:
a pump having an inlet for receiving the slurry and a discharge for
discharging the slurry;
an upstream line in fluid communication with the inlet and a downstream
line in fluid communication with the discharge;
a shaft connectable to the pump;
a driving mechanism connectable to the shaft to drive the same to operate
the pump;

CA 02668254 2013-10-31
3
a regulator connectable to the driving mechanism for regulating discharge
flow rate from the pump, the regulator configured to:
regulate torque applied to the shaft, and
operate the driving mechanism in a positive torque mode during limes of high
process
flow rates to cause te pump to discharge the slurry at a higher flow rate, and
in a
negative torque mode during times of low process fiGN rates to cause the pump
to
discharge the slurry at a lower flow rate.
The present invention also provides a slurry transportation method for
transporting an oil sand slurry, comprising:
pumping the slurry through a pipeline using a pump driven by a motorised
shaft; and
regulating discharge flow rate from the pump by regulating torque applied to
the motorised shaft
between a positive torque mode during times of high process flow rates
enabling the pump to
discharge the slurry at a higher flow rate, and a negative torque mode during
times of low
process flow rates enabling the pump to discharge the slurry at a lower flow
rate.
The present invention also provides a method of recovering energy from a flow
of
an oil sand slurry, comprising:
producing the flow of the oil sand slurry from an oil sand mining operation;
applying a negative head to the flow of the oil sand slurry; and
recovering a braking energy from an application of the negative head.

CA 02668254 2013-10-31
3a
The present invention also provides a system for recovering energy from a flow
of
an oil sand slurry, comprising:
an upstream line in fluid communication with an oil sand mining operation
and a downstream line, the upstream and downstream lines being configured
for conveying the oil sand slurry from the oil sand mining operation;
a negative head assembly mountable to the upstream and downstream lines
to apply a negative head to the flow of the oil sand slurry; and
an energy receptor electrically connectable to the negative head assembly for
recovering a braking energy from the negative head assembly upon an
application of the negative head.
The oil sand slurry transportation system and method enable positive head
(regular pump action) for normal and high flow rates and negative head (pump
brake action) for low flow rates. This pump brake action can reduce system
energy loss and pipeline wear, for instance due to eliminating the requirement
for
a reduced size section and allowing larger overall line size, while enabling
efficient reduction of vapour breakout and sanding off.
In an optional implementation, the regulator further comprises a control unit
coupled
to the variable frequency device to automatically control whether the shaft is
in the
positive torque mode or the negative torque mode.
The positive-negative torque regulation allows efficient adaptation to
variable oil
sands processing and transportation conditions. By allowing a negative torque
to
be applied to the shaft, the flow rate can be reduced in a simple and
efficient
manner.

CA 02668254 2009-06-04
4
BRIEFDESCRIPTION OF THE DRAWINGS
Fig 1 is a block diagram schematic of one embodiment of the present invention.
Fig 2 is a block diagram schematic of another embodiment of the present
invention.
Fig 3 is a block diagram schematic of yet another embodiment of the present
invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
Preferred embodiments of the oil sand slurry transportation system 10 are
illustrated in Figs 1-3.
The oil sand slurry transportation system 10 is preferably integrated into a
pipeline system for transporting slurry such as oil sands slurry to downstream
reservoirs or processing units. The slurry may include a variety of oil sands
slurries, such as at-face mined oil sand slurry, primary or secondary
middlings or
tailings slurries, fine tailings or mature fine tailings slurry. Depending on
their
origin and stage of processing, the oil sand slurries contain various
quantities of
sand, bitumen, clay, chemical processing additives and other compounds
inherent to the mined oil sand ore.
The slurry transportation system 10 includes a pump 12, an upstream line 14
and
a downstream line 16, a shaft 18 connected to the pump 12, a driving mechanism
20, and a regulator 22.
It should be understood that the upstream and downstream "lines" are
preferably
pipelines but may also be the inlet or outlet of processing equipment such as
tanks, reaction vessels, and the like.

CA 02668254 2013-03-12
Referring to Fig 1, the pump 12 may be a centrifugal pump having an impeller
(not
illustrated) connected to a shaft that is driven by the driving mechanism 20
which in
this case consists of a motor 24. The driving mechanism 20 is in turn coupled
to the
regulator 22 which regulates the torque applied to the shaft 18, to allow the
driving
5 mechanism 20 to drive the shaft 18 in a positive torque mode to cause the
pump 12
to discharge the slurry at a higher flow rate, or in a negative torque mode to
cause
the pump 12 to discharge the slurry at a lower flow rate.
It should be understood that "negative torque mode" includes the point at
which
zero torque is applied. At this point, there will only be a pressure drop
across the
pump that amounts to the friction losses within the pump. It should also be
understood that "higher flow rate" and "lower flow rate" are meant relative to
each
other.
The pump 12 has an inlet 26 for receiving the slurry from the upstream line 14
and a discharge 28 for expelling the slurry through the downstream line 16. It
should be noted that the centrifugal pumps 12 used in this system 10 can be
further adapted to improve efficiency of providing negative head, for example
with
tailored impeller design.
Referring to Fig 1, the driving mechanism 20 is a single motor 24 and the
regulator 22
includes a variable frequency device 32 (hereafter referred to as a VFD). The
VFD 32
is programmed to operate the motor 24 in such a way that a positive torque
is
applied to the shaft 18 during times of high process flow rates and a negative
torque
is applied to the shaft 18 during times of low process flow rates. The VFD 32
may be
powered by the power grid 34.
Still referring to Fig 1, the regulator 22 may also include a control unit 36
that is
coupled to the VFD 32. The control unit 36 monitors various operating
conditions,
makes caculations to determine the direction and magnitude of torque to be
applied,

CA 02668254 2013-03-12
6
and provides signals to the VFD 32 to change or otherwise regulate the torque
applied to the shaft 18 to obtain given flow rates and slurry pressures.
The control unit 36 can calculate the torque to be applied based on a number
of
variables. For instance, the pressure at the pump inlet, the pressure change
in
the pump, the slurry composition, the friction loss in the pipeline system,
and
other upstream and downstream constraints, may be used to calculate the
applied torque to obtain a given slurry flow rate. There are a number of
empirical
equations and calculation methods to determine the flow rate and corresponding
torque to apply.
In operation, the slurry transportation system 10 can allow high, normal or
low
flow rates, which will be described below.
Normal and high flow rates - positive head
For a normal or high flow rate, a positive torque is applied to the shaft 18
so that
there is a head gain between the pump inlet and the pump discharge. At these
flow rates, it can be said that there is regular pump action.
Flow rate transition
In response to a requirement for a decreased slurry flow rate, the positive
torque
applied to the shaft is reduced. At zero applied torque, there will only be a
pressure drop across the pump that amounts to the friction losses within the
pump.
Low flow rates - negative head
When the flow rate is to be further decreased, for instance in response to a
requirement for greater back pressure, a negative torque is applied to the
shaft to
resist the flow of fluid through the pump 12. At such low flow rates the
control

CA 02668254 2009-06-04
7
unit 36 determines the optimal negative torque to be applied to the shaft 18,
and
communicates this to the motor 24 via the VFD 32.
The negative torque may be set in order to allow the slurry to flow at
sufficient
rate and pressure so as to maintain the oil sands solids in flowable
suspension
and thus reduce or avoid "sanding off". It is noted that a pressure above the
vapour pressure of the solvent does not impact sanding off. It is also noted
in this
regard that the turbulence of the slurry flow will be a function of the rate
and line
size.
The negative torque may also be set and transitioned to in order to minimize
the
likelihood of vapour breakout, which would occur at higher elevations relative
to
the pump where the pressure is low and may be hundreds of meters from the
pump. Applying negative torque reduces or eliminates vapour breakout, since it
increases the pressure drop across the pump thus increasing the pressure
further upstream to increase the line pressure above the vapour pressure of
the
slurry solvent. Furthermore, the negative torque mode capability of the system
allows controlled and continuous flow rate adjustment for transient conditions
experienced in oil sands mining and pipeline transport.
The slurry transportation system 10 is particularly applicable in downhill
undulating terrain such as in oil sands mining and slurry transport, as
illustrated
in Fig 3, since the system pressure in such cases is sufficient to allow the
slurry
to flow via gravity to its destination without a pump at a flow rate that may
be
called the no-pump flow rate. Thus, when an even lower flow rate is desired,
the
slurry transportation system 10 causes a braking action in the pump 12 in
negative torque mode. It should be understood that the inlet pressure is
sufficiently greater than the discharge pressure, as a result of the braking
action
of the pump 12 in low flow rate conditions.

=ANewei.,,e.WItt,1 = .= = ^r= = o= ^ ===
=v===== = == === ===-o.
CA 02668254 2009-06-04
8
In the preferred embodiment of the slurry transportation system 10 illustrated
in
Fig 1, there is a single variable speed and direction motor 24 coupled to the
pump 12 and regulated by the VFD 32 for applying positive or negative torque
to
Its shaft 18.
In another optional embodiment of the system 10 as illustrated in Fig 2, there
can
be a motor 24 and a generator 38 coupled to a single pump 12. The coupling of
the motor 24 and the generator 38 may be on different sections of the shaft
18.
The motor 24 can apply a positive torque to the pump 12 and the generator 38
can apply a negative torque. The motor/generator embodiment can be controlled
by one or more regulator 22, which may include a VFD, to enable a positive or
negative torque mode.
Referring to Fig 1, in one optional aspect of the slurry transportation system
10,
when operating in negative torque mode, the system 10 dissipates the braking
energy by either sending it back as reject energy to the power grid 34.
Referring
to Fig 3, the braking energy may be delivered to an energy receptor 40
electrical
load resistor. A variety of regenerative braking techniques may be employed to
recover the braking energy as electricity or as heat for reuse in the system
or the
mining operation at large. Thus, in negative torque mode, the inlet slurry
pressure
is divided into braking energy and the discharge fluid pressure. The discharge
fluid pressure should of course be sufficient to allow the oil sands slurry to
flow
properly downstream. The control unit 36 may monitor and control the torque
magnitude and direction.
The slurry transportation method of the present invention for transporting
slurry,
includes pumping the slurry through a pipeline using a pump driven by a
motorised shaft; and adjusting the flow rate of the slurry by varying the
torque
applied to the motorised shaft between a positive torque mode enabling the
pump to discharge the slurry at a higher flow rate, and a negative torque mode

CA 02668254 2009-06-04
9
enabling the pump to discharge the slurry at a lower flow rate. The
illustrated
embodiments of the system 10 may be used to perform this method.
The embodiments of the slurry transportation system and method enable a
number of advantages. For instance, traditional methods of increasing back
pressure with valves and orifice plates that suffer from excessive wear can be
reduced or avoided. In addition, by using the system of the present invention,
pipeline wear and system energy loss can be reduced during times of normal and
high process flow rates. At normal and high flow rates the pump operates in
the
standard way, the reduction of energy loss and component wear results from
using larger pipes. In other words, the system exerts continuous and adaptive
control over the flow rate of the slurry so that low flow rates can be
achieved in
larger pipes while respecting the pressure requirements for maintaining the
desirable flow properties of the oil sands slurry. Thus, larger pipeline
diameters
can be used to increase the maximum flow rate, reduce pipeline wear and reduce
system energy loss.
In addition, existing pipeline systems may be retrofitted with the slurry
transportation system 10 of the present invention. In such a case, the slurry
transportation system 10 allows increased adaptability in achieving low flow
rates
by avoiding equipment such as throttling valves and orifice plates. The
continuous control of the flow rate optimizes energy use and minimizes
pipeline
wear in the transient conditions of oil sands mining.
In one preferred aspect of the slurry transportation system, the pump is
located
in-line in a pipeline and the pipeline does not require any additional units
for
increasing or decreasing the slurry pressure. For instance, the slurry
transportation system enables avoiding the necessity of open-ended cylinders
and the like integrated in the pipeline. The pipeline with in-line pump thus
may be
a closed-system. Alternatively, there may be additional units in combination
with
_ _

CA 02668254 2009-06-04
some embodiments of the present invention to further increase or reduce the
line
pressure, depending on elevation, flow rate requirements (for instance,
outside of
preferred flow rate ranges), pump design and other variables. Furthermore,
there
may be one or more additional pumps, each with its corresponding driving
5 mechanism, shaft, and regulator, arranged in series with the first. One
regulator
could also control the magnitude and direction of both pumps. This in-series
arrangement may be used in situations of high elevation change and of very
high
or low flow rates. It should also be noted that the system may include various
in-
series or in-parallel pump combinations tailored to a given pipeline
topography.
It should be understood that numerous modifications could be made to the
embodiments of the present invention described hereinabove, without departing
from what has actually been invented. For instance, different configurations
of the
system may employ one or more pumps, motors, shaft sections connected to
parts of the driving mechanism, VFDs and control units, in various
configurations,
given the constraints of the oil sands mine and desired operating conditions.

Representative Drawing
A single figure which represents the drawing illustrating the invention.
Administrative Status

2024-08-01:As part of the Next Generation Patents (NGP) transition, the Canadian Patents Database (CPD) now contains a more detailed Event History, which replicates the Event Log of our new back-office solution.

Please note that "Inactive:" events refers to events no longer in use in our new back-office solution.

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Event History , Maintenance Fee  and Payment History  should be consulted.

Event History

Description Date
Inactive: COVID 19 - Deadline extended 2020-05-28
Common Representative Appointed 2019-10-30
Common Representative Appointed 2019-10-30
Change of Address or Method of Correspondence Request Received 2018-12-04
Maintenance Request Received 2014-05-29
Grant by Issuance 2014-03-11
Inactive: Cover page published 2014-03-10
Inactive: Office letter 2014-01-06
Notice of Allowance is Issued 2014-01-06
Inactive: Q2 passed 2014-01-02
Inactive: Approved for allowance (AFA) 2014-01-02
Letter sent 2013-12-12
Amendment Received - Voluntary Amendment 2013-12-06
Inactive: S.30(2) Rules - Examiner requisition 2013-11-28
Inactive: Report - No QC 2013-11-20
Letter Sent 2013-11-13
Inactive: Final fee received 2013-10-31
Pre-grant 2013-10-31
Withdraw from Allowance 2013-10-31
Final Fee Paid and Application Reinstated 2013-10-31
Amendment Received - Voluntary Amendment 2013-10-31
Reinstatement Request Received 2013-10-31
Deemed Abandoned - Conditions for Grant Determined Not Compliant 2013-10-02
Maintenance Request Received 2013-05-30
Notice of Allowance is Issued 2013-04-02
Letter Sent 2013-04-02
4 2013-04-02
Notice of Allowance is Issued 2013-04-02
Inactive: Approved for allowance (AFA) 2013-03-27
Amendment Received - Voluntary Amendment 2013-03-12
Inactive: S.30(2) Rules - Examiner requisition 2012-12-12
Inactive: S.29 Rules - Examiner requisition 2012-12-12
Letter sent 2012-11-30
Advanced Examination Determined Compliant - paragraph 84(1)(a) of the Patent Rules 2012-11-30
Letter Sent 2012-11-29
Request for Examination Received 2012-11-20
Request for Examination Requirements Determined Compliant 2012-11-20
Inactive: Advanced examination (SO) fee processed 2012-11-20
All Requirements for Examination Determined Compliant 2012-11-20
Inactive: Advanced examination (SO) 2012-11-20
Inactive: Correspondence - MF 2010-08-10
Application Published (Open to Public Inspection) 2009-12-04
Inactive: Cover page published 2009-12-03
Inactive: Filing certificate - No RFE (English) 2009-11-30
Letter Sent 2009-11-26
Inactive: IPC assigned 2009-11-05
Inactive: First IPC assigned 2009-11-05
Inactive: IPC assigned 2009-11-05
Inactive: IPC assigned 2009-11-05
Inactive: Single transfer 2009-09-30
Inactive: IPC assigned 2009-09-30
Inactive: Office letter 2009-09-14
Inactive: Single transfer 2009-07-28
Inactive: Filing certificate correction 2009-07-17
Inactive: Office letter 2009-07-07
Inactive: Filing certificate - No RFE (English) 2009-07-03
Letter Sent 2009-07-03
Application Received - Regular National 2009-06-26

Abandonment History

Abandonment Date Reason Reinstatement Date
2013-10-31
2013-10-02

Maintenance Fee

The last payment was received on 2013-05-30

Note : If the full payment has not been received on or before the date indicated, a further fee may be required which may be one of the following

  • the reinstatement fee;
  • the late payment fee; or
  • additional fee to reverse deemed expiry.

Patent fees are adjusted on the 1st of January every year. The amounts above are the current amounts if received by December 31 of the current year.
Please refer to the CIPO Patent Fees web page to see all current fee amounts.

Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
SUNCOR ENERGY INC.
Past Owners on Record
MARK L. ODEGARD
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column (Temporarily unavailable). To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Description 2013-10-30 11 441
Claims 2013-10-30 10 304
Abstract 2009-06-03 1 23
Description 2009-06-03 10 410
Claims 2009-06-03 5 161
Drawings 2009-06-03 1 12
Representative drawing 2009-11-08 1 5
Cover Page 2009-11-29 1 40
Description 2013-03-11 11 421
Claims 2013-03-11 5 161
Claims 2013-12-05 5 161
Cover Page 2014-02-05 1 40
Maintenance fee payment 2024-05-20 52 2,158
Courtesy - Certificate of registration (related document(s)) 2009-07-02 1 102
Filing Certificate (English) 2009-07-02 1 157
Courtesy - Certificate of registration (related document(s)) 2009-11-24 1 103
Filing Certificate (English) 2009-11-29 1 156
Reminder of maintenance fee due 2011-02-06 1 112
Acknowledgement of Request for Examination 2012-11-28 1 175
Commissioner's Notice - Application Found Allowable 2013-04-01 1 163
Notice of Reinstatement 2013-11-12 1 169
Courtesy - Abandonment Letter (NOA) 2013-11-12 1 164
Correspondence 2009-07-02 1 16
Correspondence 2009-07-16 4 136
Correspondence 2009-09-13 1 18
Correspondence 2010-08-09 1 46
Correspondence 2011-02-06 1 39
Fees 2011-05-24 1 54
Fees 2012-05-30 1 58
Fees 2013-05-29 1 58
Correspondence 2013-10-30 4 90
Correspondence 2014-01-05 1 19
Fees 2014-05-28 1 37