Language selection

Search

Patent 2702358 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent Application: (11) CA 2702358
(54) English Title: COPPER TIN NICKEL PHOSPHORUS ALLOYS WITH IMPROVED STRENGTH AND FORMABILITY
(54) French Title: ALLIAGES A BASE DE CUIVRE, ETAIN, NICKEL, PHOSPHORE, A RESISTANCE ET APTITUDE AU FORMAGE ACCRUES
Status: Deemed Abandoned and Beyond the Period of Reinstatement - Pending Response to Notice of Disregarded Communication
Bibliographic Data
(51) International Patent Classification (IPC):
  • C22C 9/02 (2006.01)
  • B21B 3/00 (2006.01)
  • C22F 1/08 (2006.01)
(72) Inventors :
  • TRYBUS, CAROLE LYNNE (United States of America)
  • ROBINSON, PETER WILLIAM (United States of America)
(73) Owners :
  • GBC METALS, LLC
(71) Applicants :
  • GBC METALS, LLC (United States of America)
(74) Agent: GOWLING WLG (CANADA) LLP
(74) Associate agent:
(45) Issued:
(86) PCT Filing Date: 2008-10-10
(87) Open to Public Inspection: 2009-04-16
Examination requested: 2013-10-09
Availability of licence: N/A
Dedicated to the Public: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): Yes
(86) PCT Filing Number: PCT/US2008/079573
(87) International Publication Number: US2008079573
(85) National Entry: 2010-04-12

(30) Application Priority Data:
Application No. Country/Territory Date
12/249,530 (United States of America) 2008-10-10
60/979,064 (United States of America) 2007-10-10

Abstracts

English Abstract


A new copper-based
alloy is described along with a processing
method to make a strip that can be used
for various automotive interconnects.
The alloy process combination yields a
material with high strength and electncal
conductivity with excellent formability.
The combination of properties result
from a Cu-Sn-Ni-P alloy with optional
Mg additions and thermal-mechanical
processing to make an alloy with a
conductivity of 40%iACS, yield strength
of 80 KSI, bend formability of 11/11
minimum, and stress relaxation of 65% at
150°C after 1000 hours. Processing can
be modified to increase formability at the
expense of yield strength. Improvements
to conductivity come from changes in
chemistry as well as processing. The new
chemistry-process optimization results in
a low cost alloy of Cu-Sn-Ni-P-Mg.


French Abstract

Cette invention concerne un alliage novateur à base de cuivre, ainsi qu'un procédé de traitement conçu pour former une bande qui puisse être utilisée pour diverses interconnexions pour automobiles. La combinaison de traitement de l'alliage donne un matériau à haute résistance et conductivité électrique dont l'aptitude au formage est excellente. La combinaison de propriétés résulte d'un alliage Cu-Sn-Ni-P avec des ajouts de Mg et d'un traitement thermomécanique pour produire un alliage ayant une conductivité de 40%iACS, une limite d'élasticité de 80 KSI,une aptitude au formage par cintrage de 11/11 au minimum, et une relaxation en contrainte de 65% à 150°C après 1000 heures. Le traitement peut être modifié pour accroître l'aptitude au formage aux dépens de la limite d'élasticité. Les améliorations de la conductivité proviennent des modifications de la composition chimique ainsi que du traitement. L'optimisation novatrice de la composition chimique et du traitement produit un alliage de Cu-Sn-Ni-P-Mg de coût réduit.

Claims

Note: Claims are shown in the official language in which they were submitted.


What is claimed is:
1. A copper base alloy comprising between about 1 % and about 2% Sn;
between about 0.3% and about 1%Ni; between about 0.05% and about 0.15% P,
and at least one of up to about 0.20% Mg and between about 0.1 and about 0.4%
Fe, the balance being copper.
2. The copper base alloy according to claim 1 containing Mg but no Fe.
3. The copper base alloy according to claim 1 containing Fe but no Mg.
4. The copper base alloy according to claim 1 containing both Mg and Fe.
5. The copper base alloy according to claim 1 containing up to about
0.06% Mg.
6. The copper base alloy according to claim 1 processed to have a yield
strength of at least about 77 ksi, while maintaining bend formability
(90° GW/BW)
of 1.0/1Ø
7. The copper base alloy according to claim 6 wherein the alloy is
processes to have a conductivity of at least about 37% IACS.
8. The copper base alloy according to claim 6 wherein the alloy is
processed to have a conductivity of at least about 40% IACS
9. The copper base alloy according to claim 1 wherein the Ni:P ratio is
less than about 9.
10. The copper alloy according to claim 1 wherein the (Ni+Mg):P ratio is
between about 4 and about 8.5.
11. The copper base alloy according to claim 1 wherein the Sn is between
about 1.2% and about 1.5%, the Ni is between about 0.5% and 0.7%, and the P
is between about 0.09% and about 0.13%.
23

12. The copper base alloy according to claim 11 wherein the Ni:P ratio is
less than about 9.
13. The copper alloy according to claim 11 wherein the (Ni+Mg):P ratio is
between about 4 and about 8.5.
14. The copper base alloy according to claim 11 processed to have a
yield strength of at least about 77 ksi, while maintaining bend formability
(90
GW/BW) of 1.0/1Ø
15. The copper base alloy according to claim 14 wherein the alloy is
process to have a conductivity of at least about 37% IACS.
16. The copper base alloy according to claim 14 wherein the alloy is
process to have a conductivity of at least about 40% IACS.
17. A copper base alloy comprising between about 1.2% and about 1.5%
Sn; between about 0.5% and about 0.7%Ni; between about 0.09% and about
0.13% P, and at least one of up to about 0.20% Mg and between about 0.1 and
about 0.4% Fe, the balance being copper, the alloy processed to have a yield
strength of at least about 77 ksi, and an electrical conductivity of at least
about
37% EACS.
18. The copper base alloy according to claim 17 wherein the alloy is
processed to have a conductivity of at least about 40% IACS.
19. The copper base alloy according to claim 17 processed to have a
bend formability (90° GW/BW) of 1.0/1Ø
20. The copper alloy according to claim 11 wherein the (Ni+Mg):P ratio is
between about 4 and about 8.5.
21. A method of processing a copper base alloy comprising between
about 1% and about 2% Sn; between about 0.03% and about 1%Ni; between
24

about 0.05% and about 0.15% P, and at least one of up to about 0.20% Mg and
between about 0.1 and about 0.4% Fe, the method comprising:
casting the alloy;
hot rolling the alloy at about 850 to about 1000°C;
subjecting the alloy to at least one cold rolling and annealing to
substantially
recrystalize the alloy;
cold rolling the alloy to the desired thickness and mechanical strength; and
subjecting the alloy to a thermal stress relief treatment, to provide an alloy
with a
yield strength of at least about 77 ksi and an electrical conductivity of at
least
about 37% IACS.
22. The method according to claim 21 wherein there are at least three cold
rollings and annealings.
23. The method according to claim 22 wherein the at least three cold
rollings and annealings comprise:
a first cold rolling up to about a 75% reduction followed by annealing
between about 450 and about 600°C for 1 to 48 hours;
a second cold rolling up to about a 60% reduction followed by annealing at
about 425 and about 600°C for 1 to 48 hours; and
a third cold rolling up to about a 50% reduction followed by an annealing at
between about 400 and about 550°C for 1 to 48 hours.
24. The method according to claim 22 wherein one of the annealings
comprises a step anneal.
25. The method according to claim 24 wherein the step anneal comprises
a first anneal at between about 400 and about 500 °C followed by a
second
anneal at between about 300 and about 400 °C.

Description

Note: Descriptions are shown in the official language in which they were submitted.


CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
COPPER TIN NICKEL PHOSPHORUS ALLOYS WITH IMPROVED STRENGTH AND FORMABILITY
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Provisional Patent
Application Serial No. 60/979,064, filed October 10, 2007, the entire
disclosure
of which is incorporated herein.
BACKGROUND
[0002] This invention relates to copper alloys, and in particular to
copper-tin-nickel-phosphorus alloys with improved strength and formability.
[0003] There is a continued need for high strength copper alloys of
good formability and reasonable cost for use in electrical connectors, and in
particular for use in automotive electrical connectors. Current connector
alloys in the low cost Cu-Sn-Ni-P family lack the combination of properties of
practical strength (77 KSI), intermediate conductivity (37 %IACS), excellent
formability, and decent stress relaxation (65% at 150 C). Formability in the
document is measured by forming a strip by roller bending it 90 - about a die
of known radii. The ratio of the smallest die radii that the strip can be
formed
without cracking is divided over the strip thickness. Bends were measured
both parallel (bad way, BW) and perpendicular (good way, GW) to the
direction of rolling. Table 1 shows currently available Cu-Sn-Ni-P alloys:
1

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
Table 1: Available connector alloys in the Cu-Sn-Ni-P family
Alloy Yield Conductivity Bends __ Stress
(Company) Strength (%IACS) 90 GW 90 BW relaxation
(KSJ) ( /%SR @
150 C
C19025 76 40 0.8 1 77%
(Olin)
C19020 67 50 0.8 1.0 75%
(Olin)
C19500 77 40 1.5 1.5 54%
(Olin)
C19210 60 90 0.5 1.5
PMX
C18665 67 60 1,0 2.0 *
(KME,
Mitsubishi)
C50715 77 35 0.5 0.5 *
(Kobe)
C50725 77 33 0.5 0.5 *
(Kobe)
C198 69 60 0.5 0.5
(Kobe)
C40820 80 35 S S *
(Kobe)
[0004] C19025 comes close to achieving the desired properties but
lacks the strength with acceptable formability; 040820 has the strength and
superior formability but does not have the electrical conductivity.
SUMMARY
[0005] Embodiments of the present invention provide a copper-tin-
nickel-phosphorus alloy with an improved combination or properties, and in
particular improved combination of yield strength and formability. In one
preferred embodiment the alloy comprises between about 1% and about 2%
Sn; between about 0.3% and about 1 %Ni; between about 0.05% and about
0.15% P, and at least one of between about 0.01% and about 0.20% Mg and
about 0.02% and about 0.4% Fe, the balance being copper. The addition of
iron can be used as a low cost substitute for of Mg if good stress relaxation
is
2

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
not required for the application. More preferably the alloy comprises between
about 1.1% and about 1.8% Sn, between about 0.4% and about 0.9% Ni,
between about 0.05% and about 0.14% P, and between about 0.05 and about
0.15 Mg. Fe may be substituted for some of the Mg. Most preferably the
alloy comprises, between about 1.2% and about 1.5% Sn; between about
0.5% and about 0.7%Ni; between about 0.09% and about 0.13% P, and
between about 0.02% and about 0.06% Mg, the balance being copper. The
alloy is preferably processed to have a yield strength of at least about 77
KSI,
electrical conductivity of at least about 37 %IACS, and formability (90
GW/BW) of 1.0/1Ø The alloy preferably also has a stress relaxation of 65%
at 150 C.
[0006] The Sn gives the alloy solid solution strengthening. Ni and
Mg are added to form precipitates of phosphorus with the added benefit of Mg
increasing strength without lowering the electrical conductivity. The metal
(Ni+Mg) to P ratio (the M/P ratio) is preferably controlled to a range of 4 to
8.5. If the ratio falls below 4 strengthening is not obtained and if is
greater
that 8.5 the material does not achieve 40% IACS.
[0007] In accordance with the preferred embodiment of this
invention, the alloy is processed by melting and casting, hot rolling from
about
850 C to about 10002C cold rolling up to about 75% annealing between
about 450 C - about 6002C, cold rolling up to about a 60% reduction
followed by annealing at 425 2C to about 6002C, cold rolling to about 50%
prior to the final anneal between about 400 C and 550 -C. A final cold roll
reduction is given to achieve the desired thickness and mechanical strength
prior to a thermal stress relief treatment. In another preferred embodiment
3

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
the processing includes a double final anneal treatment and the elimination of
an upstream anneal which improves formability and strength respectively.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008] Fig. 1 is a photomicrograph of the alloy in Example 1;
[0009] Fig. 2 is a graph showing the relationship between YS and
MIP ratio, and illustrating the preferred M/P ratio for a Cu-Sn-Ni-P-Mg alloy;
[0010] Fig. 3 is a graphs showing the relationship between %IACS
and M/P ratio, and illustrating the preferred M/P ratio of 4-8.5 ratio for a
Cu-
Sn-Ni-P-Mg alloy;
[0011] Fig. 4A is a flow chart of a preferred embodiment of a
method of processing alloys in accordance with the principles of the present
invention;
[0012] Fig. 4B is a flow chart of an alternate preferred embodiment
of processing alloys in accordance with the principles of this present
invention;
[0013] Fig. 4C is a flow chart of an alternate preferred embodiment
of processing alloys in accordance with the principles of this present
invention; and
[0014] Fig. 5 is a photomicrograph of an alloy 4 after double
anneal, showing a grain size of between 6 - 7 pm, with some areas appearing
to have not fully recrystallized grains; and
[0015] Fig. 6 is a photomicrograph of an alloy 4 from the process 3
after strip anneal, showing a grain size of 4 - 5 pm.
4

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
DETAILED DESCRIPTION
[0016] Embodiments of the present invention provide a copper-tin-
nickel-phosphorus alloy with an improved combination or properties, and in
particular improved combination of yield strength and formability. In one
preferred embodiment the alloy comprises between about 1% and about 2%
Sn; between about 0.3% and about 1%Ni; between about 0.05% and about
0.15% P, and at least one of between about 0.01% and about 0.20% Mg and
about 0.02% and about 0.4% Fe, the balance being copper. The addition of
iron can be used as a low cost substitute for of Mg if good stress relaxation
is
not required for the application.
[0017] More preferably the alloy comprises, between about 1.2%
and about 1.5% Sn; between about 0.5% and about 0.7%Ni; between about
0.09% and about 0.13% P, and between about 0.02% and about 0.06% Mg,
the balance being copper. The alloy is preferably processed to have a yield
strength of at least about 77 KSI, electrical conductivity of at least about
37
%IACS, and formability (90 GW/BW) of 1.0/1Ø The alloy preferably also
has a stress relaxation of 65% at 150 C.
[0018] The Sn gives the alloy solid solution strengthening. Ni and
Mg are added to form precipitates of phosphorus with the added benefit of Mg
increasing strength without lowering the electrical conductivity. The M/P
ration is preferably controlled to a range of 4 to 8.5. If the ratio falls
below 4
strengthening is not obtained and if is greater that 8.5 the material does not
achieve 40% IACS.
[0019] In accordance with the preferred embodiment of this
invention, the alloy is processed by melting and casting, hot rolling from 850-

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
1000 -C cold rolling up to about 75% annealing between 450- 6000C, cold
rolling about 60% followed by annealing at 425-6002C, cold rolling about 50%
prior to the final anneal between 400-550 -C. A final cold roll reduction is
given to achieve the desired thickness and mechanical strength prior to a
thermal stress relief treatment. In another preferred embodiment the
processing includes a double final anneal treatment and the elimination of an
upstream anneal which improves formability and strength respectively.
Example 1
[0020] A series of 10 pound laboratory ingots with the compositions
listed in Table 2 were melted in silica crucibles and cast into steel molds
which were after gating 4"x4"x1.75". After soaking for 2 hours at 9009C they
were hot rolled in three passes to 1.1" (1.6"/1.35/1.1"), reheated at 900 C
for
minutes, and further reduced by hot rolling in three passes to 0.50"
(0.9"/0.7/0.5"), followed by a water quench. After trimming and milling to
remove the surface oxide, the alloys were cold rolled to 0.120" and annealed
at 570 C for 2 hours. The alloys were cleaned and cold rolled to 0.048" and
annealed at 525 C for 2 hours. The alloys were cold rolled to 0.030" and
annealed at 5009C for 2 hours. The final cold roll was 60% to 0.012" and a
stress relief heat treatment was performed at 2500C for 2 hours.
Table 2: Allo s and properties from Example 1
ALLOY %Sn %Ni %P YS" EL% IACS% 90GW 90BW Ni/P
K242 0.92 0.26 0.008 65.3 8.29 51.3 nm nm 32.50
K243 1.33 0.26 0.014 68.65 9.54 42.6 nm nm 18.57
K244 0.9 0.27 0.12 70.85 10.46 38.4 1.33 1.5 2.25
K245 1.27 0.28 0.11 74.65 11.06 34.6 nm nm 2.55
K246 0.9 0.69 0.01 67.65 7.5 44 nm nm 69.00
K247 1.33 0.7 0.005 70.2 8.2 39.7 1.67 2.33 140.00
K248 0.91 0.71 0.1 75 9.455 46.5 1.32 2.25 7.10
K249 1.25 0.7 0.091 79.2 10.05 40.8 1.33 2.5 7.69
K250 1.06 0.48 0.052 74.1 9.515 43.6 1.33 2.17 9.23
6

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
*for this Table and throughout this document YS means Yield Strength and is
given in units of KSI
From the data in Example 2, it was determined that the Ni level is preferably
at
least 0.5 and the best overall alloys had a Ni/P ratio of 7-9. All the bends
were
poor due to the presence of contamination of sulfur forming long stringers as
shown in Figure 1.
Example 2
[0021] A series of 10 pound laboratory ingots with the compositions
listed in Table 3 were melted in silica crucibles and cast into steel molds
which were after gating 4"x4"x1.75". After soaking for 2 hours at 9002C they
were hot rolled in three passes to 1.1" (1.6"/1.35/1.1"), reheated at 900 -C
for
minutes, and further reduced by hot rolling in three passes to 0.50"
(0.9"10.7/0.5'"), followed by a water quench. After trimming and milling to
remove the surface oxide, the alloys were cold rolled to 0.120" and annealed
at 5702C for 2 hours. The alloys were cleaned and cold rolled to 0.048" and
annealed at 5252C for 2 hours. The alloys were cold rolled to 0.024" and
annealed at 4502C for 8 hours. The final cold roll was 50% to 0.012" and a
stress relief heat treatment was performed at 2500C for 2 hours.
7

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
Table 3- Alloys from Example 2.
4500/8HRS -Single Anneal
ALLOY YS EL% WAGS 90GW 9OBW Sn Ni P Fe M 1V
K279 invalid 9.41 51.2 1.00 1.17 1.07 0.41 0.048 0 0 8
K280 71.4 8.08 51 0.99 0.99 0195 0.45 0.054 0 0 8
K281 72 11.84 50.4 1.17 1.33 0.98 0.53 0.063 0 0 8
K282 71.4 11.81 49.4 1.17 1.33 1.03 0.62 0.063 0 0 9
K283 71 10.68 47.9 1.17 1.17 0.99 0.71 0.048 0 0 1.
K284 70.7 11.66 51.9 1.17 1.17 0.9 0.54 0.072 0 0 7
K285 73.5 10.33 48.9 1.17 1.00 1.11 0.54 0.067 0 0 8
K286 73.9 7.31 50.4 1.16 0.99 0.96 0.53 0.095 0 0.038 5
K287 75.5 10.75 49.8 0.99 0.99 1.06 0.56 0.12 0 0.049 5
K288 74.1 10.7 50.2 1.17 1.00 0.99 0.53 0.096 0 0.058 6
K289 69.3 8.61 54.9 1.34 1.34 1 0 0.032 0 0.058 1
K290 71.7 9.93 52.8 1.15 1,15 1 0 0.045 0 0.14 3
K291 74.4 10.88 50.5 1.16 1.32 1.1 0 0.095 0.38 0 4
K292 74.1 10.06 51.5 1.00 1.00 1.05 0 0.105 0.17 0,06= 2
K293 76.8 10.9 42.2 0.99 1.32 1.55 0.72 0.092 0 0 7
K294 80 10.62 38.4 0.99 1.16 1.79 1 0.098 0 0 11
In general the strengths are low with the exception of alloys K293 and K294.
Both these alloys contained more Sn than any of the others by about 0.5%
correlating higher Sn levels to higher strength. The strengths of K286, K287
and
K288 indicate the benefit of Mg as opposed to alloys of very close composition
but without Mg, K282 and K284. It is notable that there is no drop in
conductivity
(the %IACS) accompanying the increase in yield strength. There was an
increase in strength with the addition of iron to K291 and Mg in K289 both
without
Ni. The conductivity for the iron containing alloy is lower than the Mg
containing
alloy by about 4 %IACS. Both of these alloys are almost perfectly balanced;
Mg/P ratio is 1.81 for K289 close to the ideal of 1.2 and the Fe/P ratio for
K291 is
4.00 which is also close to the ideal of 3.6. Iron is a more effective
strengthener
but leads to lower conductivity.
Example 3
[0022] A series of 10 pound laboratory ingots with the compositions
listed in Table 4 were melted in silica crucibles and cast into steel molds
which were after gating 4"x4"x1.75". After soaking for 2 hours at 900 -C they
8

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
were hot rolled in three passes to 1.1" (1.6"/1.35/1.1"), reheated at 9002C
for
minutes, and further reduced by hot rolling in three passes to 0.50"
(0.9"/4.7"70.5"), followed by a water quench. After trimming and milling to
remove the surface oxide, the alloys were cold rolled to 0.120" and annealed
at 5702C for 2 hours. The alloys were cleaned and cold rolled to 0.048" and
annealed at 5252C for 2 hours. The alloys were cold rolled to 0.024" and
annealed at 4509C for 4 hours only for the single anneal condition and for
4509C for 4 hours plus 375 C for another 4 hours constituting the double
anneal condition. The final cold roll was 50% to 0.012" and a stress relief
heat treatment was performed at 2502C for 2 hours for both conditions.
9

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
Table 4- Alloys from example 3 including both annealing conditions.
Single Anneal 45OC14hrs
ALLOY SN NI P FE MG ZN YS EL% IACS% 90GW 908W
K310 1.54 0.51 0.042 0 0 0 74.9 13.36 38.5 0.85 1.69
K311 1.57 0,47 0,054 0 0 0.73 77.4 12.83 36.9 1.00 1.67
K312 1.64 0.53 0.167 0.41 0 0 82.2 11 37.2 0.83 1.00
K313 2.17 0.5 0.163 0.17 0 0 86.6 9.29 33.6 0.67 1.50
K314 1.58 0.500 0.136 0 0.052 0 81.4 13.72 38.1 0.83 1.00
K315 2.1 0.52 0.138 0 0.053 0 85 14.41 34 0.33 1.30
K316 1.57 0.52 0.13 0 0.049 0 82 11.09 39 0.66 0.82
K317 2.03 0.53 0.13 0 0.043 0 85.2 11.4 33.4 0.17 1.19
K318 1.59 0.5 0.073 0 0.059 0 78.4 10.42 38.5 0.83 1.16
K319 0.56 0.98 0.007 0 0 0 62 9.23 46.5 1.51 1.34
K320 0.93 0.98 0.025 0 0 0 68.5 6.34 40.8 1.03 1.03
K326 1.57 0.67 0.086 0 0 0 77.7 13.6 38.3 0.84 1.01
K327 1.54 0.69 0.127 0 0.032 0 79.1 11.49 38.8 0.84 1.01
Double anneal 450c14hrs + 375C/4hrs
ALLOY SN NI P FE MG ZN YS EL%a IACS% 90GW 90BW
K310 1.54 0.51 0.042 0 0 0 75 13.01 38.5 0.50 2.33
K311 1.57 0.47 0.054 0 0 0.73 77.3 12.7 37.1 0.33 1.64
K312 1.64 0.53 0.167 0.41 0 0 82.5 11.29 37.6 0.25 0.49
K313 2.17 0.5 0.163 0.17 0 0 87.4 13.03 34.1 0.17 0.66
K314 1.58 0.500 0.136 0 0.052 0 81.8 12.92 40 0.33 0.83
K315 2.1 0.52 0.138 0 0.053 0 85 13.52 34.2 0.66 0.82
K316 1.57 0.52 0.13 0 0.049 0 81.3 14.23 39.5 0.50 0.83
K317 2.03 0.53 0.13 0 0.043 0 85.3 11.63 33.8 0.17 0.50
K318 1.59 0.5 0.073 0 0.059 0 78.3 11.86 38.7 0.34 0.50
K319 0.56 0.98 0,007 0 0 0 62.6 4.91 46.6 0.10 1.34
K320 0.93 0.98 0.025 0 0 0 68.9 6.87 41.5 0.33 0.33
K326 1.57 0.67 0.086 0 0 0 78.2 12.16 38.5 0.10 0.82
K327 1.54 0.69 0.127 0 0.032 0 79.3 12.37 39.7 0.66 0.99
Higher Sn levels helped the strength levels considerably but at lower
conductivities. Compare alloys K320 and K319; 7KSI difference in YS and
3%IACS in conductivity. The trend holds for those alloys with iron (K312 and
K313) and those with magnesium (K 314 and K315) although the impact on
strength is less than those without any other addition. There was no overall
advantage of zinc K311 in contrast to K310; strength is increased but with
lower
conductivity. The double anneal showed an increase in formability (i.e., a
decrease in the 90 bend radii that can be achieved). Slight increases in the
conductivities are also noted.

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
Example 4
[0023] A series of 10 pound laboratory ingots with the compositions
listed in Table 4 were melted in silica crucibles and cast into steel molds
which were after gating 4"x4"x1.75". After soaking for 2 hours at 9000C they
were hot rolled in three passes to 1.1" (1.6'71,35/1.1"), reheated at 900 -C
for
minutes, and further reduced by hot rolling in three passes to 0.50"
(0.9'70.770.5"), followed by a water quench. After trimming and milling to
remove the surface oxide, the alloys were cold rolled to 0.120" and annealed
at 570 -C for 2 hours. The alloys were cleaned and cold rolled to 0.048" and
annealed at 525 C for 2 hours. The alloys were cold rolled to 0.024" and
annealed at 450 C for 4 hours only plus 375"C for another 4 hours. The final
cold roll was 50% to 0.012" and a stress relief heat treatment was performed
at 2509C for 2 hours.
11

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
Table 5. Data from example 4
ALLOY YS EL% IACS% 90GW 90BW SN NI P FE MG M
K335 71.5 11.41 42.4 0.26 0.26 1.13 0.52 0.086 0 0 6.1
K336 71.2 9.93 41.4 0.34 0.17 1.28 0.69 0.053 0 0 13
K337 72.5 12.08 41.7 0.08 0.17 1.46 0.51 0.075 0 0 6.K338 76.3 12.78 38.2 0.08
0.25 1.38 0.53 0.099 0.37 0 9.
K339 78.9 11.99 36.6 0.08 0.67 1.7 0.53 0.105 0.33 0 8.
K340 73.6 12.66 41.4 0.17 0.50 1.45 0.52 0.079 0 0 6.
K341 73.5 11.79 39.1 0.17 0.34 1.47 0.69 0.064 0 0 10
K342 73.5 11.76 41.7 0.25 0.16 1.43 0.53 0.067 0 0 7.
K343 75.2 12.77 38.4 0.08 0.33 1.71 0.53 0.08 0 0 6.
K344 71.9 10.51 38 0.67 0.67 1.67 0.52 0.033 0 0 15
K345 74.8 11.84 38.6 0.08 0.17 1.61 0.69 0.076 0 0 9.
K346 74.8 10.02 38.4 0.08 0.08 1.35 0.32 0.105 0.4 0 6.
K347 76.5 10.58 41.4 0.08 0.17 1.38 0.3 0.143 0.23 0 3.
K348 75.4 12.48 32.8 2.00 3.00 1.71 0.32 0.139 0 0 2.
1(349 70.5 12.53 41.5 0.50 0.50 1.35 0.53 0.035 0 0 15
K350 76.3 13.37 38.1 0.17 0.25 1.62 0.7 0.081 0 0.031 9.
K351 76.3 10.72 40.6 0.08 0.33 1.35 0.69 0.092 0 0.049 8.
K352 75.8 12.55 41 0.17 0.17 1.37 0.54 0.129 0 0.021 4.
K355 78.7 13.83 37.1 0.25 0.50 1.74 0.32 0.145 0.21 0 3,
1(356 75.6 11.99 41.5 0.67 0.67 1.42 0.54 0.09 0 0.041 7.
K361 78.7 15.11 34.2 0.34 0.50 1.7 0.33 0.151 0.043 0 2
Thirteen of the twenty-two alloys in this group had yield strengths of 75 KSI
or
above. Six contained iron (K338, K339, K345, K346, K355 and K361) none of
which made electrical conductivity of 40%IACS, although K338 is the closest at
38%IACS. Four contained Mg (K350, K351, K352 and K356) and 3 of these 4
exceeded 40%IACS. Note that K350 which did not achieve 40%IACS had a
metal to phosphorus ratio of 9, greater that the recommended 8.5. Three of the
alloys with yield strengths of 75 ksi or greater contained neither iron nor Mg
(K343, K345, and K348), but none of these alloys had conductivities of
40%IACS.
Example
[0024] All the data for Mg containing alloys and Mg-free alloys are
combined in Tables 6 and 7. These data are from example 2, (Table 3 alloys
which were double annealed and included in Tables 6 and 7), Example 3
(Table 4), and Example 4 (Table 5), and include data from Example 3. The
12

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
process used for all the alloys is identical to the process used in the final
double anneal of 4 (or 8 hours; see note) at 450 C+ 4 hours at 375 C.
13

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
Table 6. Grouped data from Examples with Mg, all double annealed
a- 00 co - r (0 co Ca m DJ 0, ) CD
rn Q co;: q) cr) co n n c~ v
LO L6 6 -: V5 4 4 r-, L6 a) co 4 <6
co Cco CO N CCAN 0)
co -r LC) LO LC} V' LO Cr) C') <t 04 'et'
Q Q Q Q r g q n n Q Q (õ)
0d00n 0 Cac ciQca ~"yt)
r1
C")
CS)
O
0 Q n 010 0 0 0 Q 0 0 0 0
+
L() CONLO CO C]i~YNa)
0 0 0 0 d ci a ca ci n
co
(D c) LNn
u) ~~Lr"iL~yn q)
LnLnnn,~ CD
000 '50000000 LID
d
n
(0(00 ODN N LD N.N C
Cri n a7 .- ,- 19 LC'y LC) CO (c) d; Cd
n
~~~~ ~nDODtoQMMN
Y r C7 r-^ r 0 0 Ca r Ca O Ca C ..C,
C
C[)
~tn..Q~CN0.7C-jLClf')NN E
Q rrr .-0000000 C ~'*
0)
e)
C)
~rnn~t CDQ~~r~ ~n
0) ~r 0) 0) CO 0) (0 0
TLO LI)LC) co 0)C')C') V
Ca
c~yy 0)
o N W cm aNY
N N W C~*) C~'J LO
C~
r e-^ r '- ems- Y CV @a n N
C_
C7
CD0 NOR 0chc+7 c') c! cC 0 _C7)
I- N- N- Co W CO ~ r ~ r- r-
t~
C
0) C) - 0) OR W r: r,% CA
IvtiNr -fl-i 0C C)CO
co C) CO CO n N r`- E` Q
0
CDN 0)(n 0 "4- CO OD N0 NCD
C) LC) tt,,([yy
0 i.: CC3 C4
N CD (0V C0N ) r C+) N Ch L0 L C7 Ch
N
Q~Y`C`..GXYYYYYYYY
14

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
Table 7. Grouped data from all Examples without Mg, all double annealed
ALLOY TS YS EL% SiGMA 90GW 9OBW Sn Ni P Mg Ni/P
K279 74 71.8 8.61 511 1.1 1.1 1.07 0.41 0.048 0 8.54
K280 73.3 71.6 9.36 50.7 1.0 1.1 0.95 0.45 0.054 0 8.33
K281 74.7 73 10.9 51 1.0 1.2 0.98 0.53 0.063 0 8.41
K282 73.5 71.8 9.41 49.2 1.5 1.5 1.03 0.62 0.063 0 9.84
K283 73.2 71.2 7.96 47.9 1.2 1.2 0.99 0.71 0.048 0 14.79
K284' 725 70.5 7.92 51.7 1.0 1.0 0.9 0.54 0.072 0 7.50
K285 75.4 73.2 11.8 49 1.2 1.3 1.11 0.54 0.067 0 8.06
K293 81.5 79.2 10.44 427 1.3 1.3 1.55 0.72 0.092 0 7.83
K294 83.3 81.3 10.78 38.5 1.1 1.3 1.79 1 0.098 0 10.20
K310 77.5 75 13.01 38.5 0.5 2.3 1.54 0.51 0.042 0 12.14
K319* 63.7 62.6 4.91 46.6 0.1 1.3 0.56 0.98 0,007 0 140.00
K320* 70.4 68.9 6.87 41.5 0.3 0.3 0.93 0.98 0.025 0 39.20
K326 80.7 78.2 12.16 38.5 0.1 0.8 1.57 0.67 0.086 0 7.79
K335 76.5 71.5 11.41 42.4 0.3 0.3 1.13 0.52 0.086 0 6.05
K336 75.2 71.2 9.93 41.4 0.3 0.2 1.28 0.69 0.053 0 13,02
K337 76.9 72.5 12.08 41.7 0.1 0.2 1.46 0.51 0.075 0 6.80
K340 77.2 73.6 12.66 41.4 0.2 0.5 1.45 0.52 0.079 0 6.58
K341 76.7 73.5 11.79 39.1 0.2 0.3 1.47 0.69 0.064 0 10.78
K342 77 73.5 11.76 41.7 0.2 0.2 1.43 0.53 0.067 0 7.91
K343 79.2 75.2 12.77 38.4 0.1 0.3 1.71 0.53 0.08 0 6.63
K344 75.5 71.9 10.51 38 0.7 0.7 1.67 0.52 0.033 0 15.76
K345 78.7 74.8 11.84 38.6 0.1 0.2 1.61 0.69 0.076 0 9.08
K348 80.9 75.4 12.48 32.8 2.00 3.00 1.71 0.32 0.139 0 2.37
K349 73.7 70.5 12.53 41.5 0.5 0.5 1.35 0.53 0.035 0 15.14
`Alloys K 319 and K320 are similar to C19020 and C19025, but with lower P.
Alloys in highlighted in light gray had a slightly different final double
anneal 4502C for 8
hours + 4 hours at 375 -C
[0025] Overall the YS in Table 6 with Mg are higher than those in
Table 7 without Mg. Only a few Mg-free alloys reach a minimum YS of 75
KSI: K293, K294, K310, K326, K343, K345, and K348, with corresponding
electrical conductivities of: 42.2, 38.5, 38.5, 38.5, 38.4, 38.6 and 32.8
%IACS
respectively. Note with the exception of K293 none of the alloys achieve
40%IACS. Alloys K293, K294 and K326 all have properties of YS and
conductivities close to C19025 but have better bends. In contrast the Mg
alloys in Table 6 all have YS of at least 75 KSI with the exception of K289
and
K290 (which had no Ni and an M/P ratio below 4). The electrical

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
conductivities of all the alloys are at or above 40%IACS except for K318 (38.7
%IACS) with an M/P of 7.66 and K350 (38.1 %IACS) with an M/P ratio of
9.02. As the metal to phosphorus ratio increases the conductivity decreases
and the combination of desirable properties becomes more difficult to reach.
The addition of Mg enables the combination of yield strength over 75 KSI and
conductivity of at least 40 %IACS achievable when employing appropriate
processing and maintaining an M/P ratio between 4 and 8.5. Figures 2 and 3
illustrate the relationships between the ratios and YS and %IACS respectively.
The vertical lines in Figs. 2 show the preferred M/P ratio of 4-8.5.
Example 7
[0026]A series of 10 pound laboratory ingots with the compositions
listed in Table 8 were melted in silica crucibles and cast into steel molds
which were after gating 4"x4"x1.75". After soaking for 2 hours at 9009C they
were hot rolled in three passes to 1.1" (1.6"/1.35/1.1"), reheated at 900 -C
for
minutes, and further reduced by hot rolling in three passes to 0.50"
(0.9"/0.7"/0.5"), followed by a water quench. After trimming and milling to
remove the surface oxide, the alloys were cold rolled to 0.080" and annealed
at 550 C for 2 hours. The alloys were cleaned and cold rolled to 0.036" and
annealed at 4500C for 4 hours only plus 375 C for another 4 hours. The final
cold roll was 60% to 0.012" and a stress relief heat treatment was performed
at 250 C for 2 hours.
16

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
Table 8. Data from Example 7
ALLOY TS YS EL% IACS% 90GW 9OBW SN NI P MG Metal/P
K340 84.4 81.2 9.72 41.2 0.2 1.0 1.45 0.52 0.079 0 6.58
K341 84.1 80.9 12.16 39.2 0.3 1.2 1.47 0.69 0.064 0 10.78
K350 87.6 84.4 14.24 37.3 0.1 0.8 1.62 0.7 0.081 0.031 9.02
K352 87.6 83.8 11.58 41 0.2 1.3 1.37 0.54 0.129 0.021 4.35
Increased cold work improved strength for all alloys. However, the Mg
containing
alloy with an M/P ratio below 9 (K352) was the only one to improve YS while
maintaining or improving conductivity.
Example 8
[0027]A series of 10 pound laboratory ingots with the compositions
listed in Table 3 were melted in silica crucibles and cast into steel molds
which were after gating 4"x4"x1.75". After soaking for 2 hours at 9002C they
were hot rolled in three passes to 1.1" (1.6"/1.35/1.1"), reheated at 900 C
for
minutes, and further reduced by hot rolling in three passes to 0.50"
(0.970.7"10.5"), followed by a water quench. After trimming and milling to
remove the surface oxide, the alloys were cold rolled to 0.120" and annealed
at 5702C for 2 hours. The alloys were cleaned and cold rolled to 0.048" and
annealed at 5259C for 2 hours. The alloys were cold rolled to 0.024" and
annealed at 450 -C for 4 hours minimum. The final cold roll was 50% to
0.012" and a stress relief heat treatment was performed at 2500C for 2 hours.
The samples were subjected to stress relaxation testing at 150 C for
1 000hrs. The results are given in Table 9 below:
17

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
Table 9. Data from Example 8
Alloy Composition %Stress
Remaining
K291 Cu-1.1Sn-0.38Fe-0.095P 56.6
K312 Cu-1.64Sn-0.53Ni-0.41Fe-0.167P 58.7
K314 Cu-1.58Sn-0.50Ni-0.052Mg-0.136P 66.8
Alloys K291 and K312 with iron did not maintain 60% of the initial stress. The
results are similar between the two despite the presence of Ni in K312. K314
with Ni and Mg combination maintained more than 65% of the initial stress.
Example 9
[0028] A set of Mg and Mg-free alloys were processed using the
indicated schedules. Tables 10 and 11 summarize the results. Both sets of
alloys
achieved yield strengths over 80 KSI. The Mg-containing alloys, all exceeded
the
target conductvity of 38% IACS, whereas the Mg-free alloys, with the exception
of
K412, did not. In addition, the formability of the Mg-containing alloys was
generally
better.
18

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
Table 10 Summary of Results for Mg-Containing alloys
ALLOY YS EL% %IACS 90GW 9OBW Sn Ni P Mg Metal/P
K373 80.3 11.69 43.7 0.50 1.01 1.13 0.5 0.077 0.016 6.70
K374 81 11.17 42.9 0.17 1.0o 1.17 0.71 0.085 0.01 8.47
K375 83.3 13.17 38.8 0.08 1.33 1.54 0.7 0.091 0.014 7.85
K376 83 11.14 39.1 0.17 1.00 1.52 0.52 0.104 0.017 5.16
K351 83.8 10.45 40.9 0.17 0.83 1.35 0.69 0.092 0.049 8.03
K356 82.1 10.57 42.4 0.08 1.01 1.42 0.54 0.09 0.041 6.46
K394 87.6 10.13 39.9 0.08 0.83 1.41 0.51 0.16 0.06 3.56
K395 84.1 9.81 43.3 0.08 0.83 1.27 0.5 0.06 0.055 9.25
K399 84.7 12.78 39.9 0.25 2.33 1.42 0.5 0.094 0.042 5.77
K400 84.9 10 39.4 0.08 1.18 1.61 0.51 0.159 0.044 3.48
6
K401 82.7 9.53 38.4 0.08 0.67 1.54 0.71 0.074 0.02 9.8
K402 87.2 11.09 39.4 0.08 0.83 1.51 0.71 0.11 0.028 6.71
YS is in KSI
Process Details: HRP + CR to 0.060 gage + 500 C/8hrs + CR 50% to 0.030 gage +
450 CI4hrs + 375 C/4hrs + CR 60% to 0.012 gage + 250 C/2hrs
Table 11 Summary of Results for the Mg-free alloys
Alloy YS EL% IACS% 90GW 90BW Sn Ni P Ni/P
K378 86.3 12.58 37.8 0.98 1.48 1.5 0.99 0.12 8.25
K412 83.1 12.88 39.5 0.99 1.32 1.6 0.49 0.05 9.80
K413 83.4 12.44 35.9 0.83 1.17 1.65 1.1 0.048 22.92
K414 83.3 10.4 35.8 0.85 1.69 1.89 0.48 0.03 16.00
K415 85.7 12.36 37.1 0.08 1.67 1.9 0.48 0.08 6.00
K416 86.1 7.35 32.6 0.25 1.51 1.93 1.1 0.044 25.00
YS is in KSI
Process Details: HRP + CR to 0.060 gage + 475 C/16hrs + CR 50% to 0.030 gage +
450 C14hrs + 375 C/4hrs + CR 60% to 0.012 gage + 250 C/2hrs
19

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
Example 10
[0029] Plant processing was conducted on six alloys whose nominal
compositions are set forth in Table 12. The processes are detailed in Table
13,
where Process 1 is a laboratory process for comparison purposes, and
Processes 2, 3, and 4 are plant processes.
Table 12 Chemistry of Plant-Processed Bars
Alloy
Sn Ni P M
1 1.64 0.88 0.074 0
2 1.7 0.65 0.1 0
3 1.39 0.65 0.1 0.035
4 1.42 0.68 0.11 0,038
1.66 1 0.1 0
1 6 0.91 0.98 0.056 0
[0030] The chemistry given in the Table 12 is the analyzed chemistry
for the cast bars. Alloy 6 lies within the CDA range for C19025 and is present
as
a comparative example. All alloys were processed the same way: They were all
hot rolled from 900 C, coil milled and then cold rolled to 0.125 or 0.100
gauge.

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
Table 13 Definition of Processes for Example 10
Process l Process 2 Process 3 Process 4
HR HR+CR----*0.100 HR+CR-}0.125 HR+CR->0.125
CR-0.060 CR---X0.060
Anneal500 C/8hr Anneal500 C Anneal520 C Annea1520 C
to adequately to adequately to adequately
recrystalize recrystalize rec stalize
CR->0.030 CR-}0.0295 CR-0.0295 CR---40.0513
450 /6h+25 C/h slow 570 C 580 C
450 C/4h+375 CI4h cool to 375 C/5.5h
CR-- 0.012 CR-X0.0118 CR-+0.0118 CR-->0.0118
250 C/2h 400 C 400 C 400 C
The resulting properties at final gage are shown in Table 14. Alloy 6
processed using
Processes 3 and 4 possessed the expected properties for this alloy, having
higher yield
strength and poorer bends for Process 4 versus Process 3. Alloy 5 had a lower
yield
strength (YS) and poorer bad way bends when processed according to Process 2
in
contrast to the Process 3 metal. Alloy 3 had comparable yield strength and
conductivity
for both the Process 2 and Process 3 processing but metal processed according
to
Process 3 had better bad way bends.
Table 14 Results from the Plant Trial as Compared to the Laboratory Processed
Metal
Alloy Process 2 Process 3 or 4* Process 1
Results YS IACS GW BW YS IACS GW BW YS IACS OW 71
Alloy 6 77.2 41.5 0.17 1.36
- - - - 75.3 41.6 0.09 0.88 - - - -
- - - - 79* 41.4* 0.18* 1.67* - - - -
Alloy 5 82.6 35.4 0.08 1.27 85.3 34.8 0.08 1.03 - - - -
Alloy 1 80.5 35.4 0.08 1.11 - - - -
81.0 36.6 0.08 O.E
Alloy 2 81 37.4 0.08 0.94 - - - - - - -
Alloy 3 81.6 40.7 0.08 1.10 81.8 39.7 0.08 0.68 - - -
Alloy 4 81.5 40.5 0.08 1.28 82.7 39.6 0.08 0.59 81.6 40.9 0.17 0.:
These results are from process 4.
21

CA 02702358 2010-04-12
WO 2009/049201 PCT/US2008/079573
Processes 3 and 4 generally gave the best results. The results for Processes 1
and 2 on
alloys 1 and 4 show slightly different results if the process is conducted in
the plant
(Process 2) rather than in the lab (Process 1) may have caused grain growth.
Table 15
shows that the double anneal process (Process 2) gives good bends when
simulated in
the lab.
Table 15 Additional results for Alloy 4
TS (KSI) YS KSl Eton % %IACS GW90 BW90
86.5 83.7 10.27 40.4 0.09 0.52
Plant processed alloys were subjected to stress relaxation testing at 150 C.
Results for the transverse direction only are shown below in Table 16. All
alloys except for
alloy 2 had at least 65% stress remaining after 1000h at 150 C.
Table 16 Stress Relaxation Data from the Plant Trial
Process 2 Process 3 or 4*
Results SR% 500h SR% 1000h SR% 500h SR% 1000h
Alloy 6 70.0 66.5
74.8 71.6
79.4 75.8
Alloy 5 72.5 68.7 76.2 72.1
Alloy 1 74.4 67.8 - -
Alloy 2 69.0 64.3 - -
Alloy 3 74.2 66.6 75.3 69.2
Alloy 4 71.4 66.5 73.8 68.2
22

Representative Drawing
A single figure which represents the drawing illustrating the invention.
Administrative Status

2024-08-01:As part of the Next Generation Patents (NGP) transition, the Canadian Patents Database (CPD) now contains a more detailed Event History, which replicates the Event Log of our new back-office solution.

Please note that "Inactive:" events refers to events no longer in use in our new back-office solution.

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Event History , Maintenance Fee  and Payment History  should be consulted.

Event History

Description Date
Time Limit for Reversal Expired 2016-10-13
Application Not Reinstated by Deadline 2016-10-13
Deemed Abandoned - Failure to Respond to Maintenance Fee Notice 2015-10-13
Amendment Received - Voluntary Amendment 2015-08-25
Inactive: S.30(2) Rules - Examiner requisition 2015-02-27
Inactive: Report - No QC 2015-02-18
Letter Sent 2013-10-17
Request for Examination Requirements Determined Compliant 2013-10-09
All Requirements for Examination Determined Compliant 2013-10-09
Request for Examination Received 2013-10-09
Letter Sent 2012-01-19
Inactive: Office letter 2012-01-19
Letter Sent 2012-01-16
Letter Sent 2012-01-16
Letter Sent 2012-01-13
Inactive: Reply to s.37 Rules - PCT 2011-12-22
Inactive: Single transfer 2011-12-22
Reinstatement Requirements Deemed Compliant for All Abandonment Reasons 2011-12-22
Reinstatement Requirements Deemed Compliant for All Abandonment Reasons 2011-12-22
Inactive: Correspondence - PCT 2011-12-06
Inactive: Abandoned - No reply to s.37 Rules requisition 2011-10-04
Inactive: Request under s.37 Rules - PCT 2011-07-04
Inactive: IPC assigned 2010-07-16
Inactive: IPC removed 2010-07-14
Inactive: Cover page published 2010-06-11
IInactive: Courtesy letter - PCT 2010-06-03
Inactive: Notice - National entry - No RFE 2010-06-03
Inactive: First IPC assigned 2010-06-02
Inactive: IPC assigned 2010-06-02
Inactive: IPC assigned 2010-06-02
Inactive: IPC assigned 2010-06-02
Application Received - PCT 2010-06-02
National Entry Requirements Determined Compliant 2010-04-12
Application Published (Open to Public Inspection) 2009-04-16

Abandonment History

Abandonment Date Reason Reinstatement Date
2015-10-13

Maintenance Fee

The last payment was received on 2014-10-02

Note : If the full payment has not been received on or before the date indicated, a further fee may be required which may be one of the following

  • the reinstatement fee;
  • the late payment fee; or
  • additional fee to reverse deemed expiry.

Patent fees are adjusted on the 1st of January every year. The amounts above are the current amounts if received by December 31 of the current year.
Please refer to the CIPO Patent Fees web page to see all current fee amounts.

Fee History

Fee Type Anniversary Year Due Date Paid Date
Basic national fee - standard 2010-04-12
MF (application, 2nd anniv.) - standard 02 2010-10-12 2010-04-12
MF (application, 3rd anniv.) - standard 03 2011-10-11 2011-09-30
2011-12-22
Registration of a document 2011-12-22
MF (application, 4th anniv.) - standard 04 2012-10-10 2012-09-19
MF (application, 5th anniv.) - standard 05 2013-10-10 2013-09-20
Request for examination - standard 2013-10-09
MF (application, 6th anniv.) - standard 06 2014-10-10 2014-10-02
Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
GBC METALS, LLC
Past Owners on Record
CAROLE LYNNE TRYBUS
PETER WILLIAM ROBINSON
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column (Temporarily unavailable). To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Description 2010-04-11 22 1,077
Abstract 2010-04-11 1 160
Claims 2010-04-11 3 126
Cover Page 2010-06-10 1 38
Abstract 2015-08-24 1 21
Claims 2015-08-24 2 52
Description 2015-08-24 22 1,068
Drawings 2010-04-11 4 402
Notice of National Entry 2010-06-02 1 210
Courtesy - Abandonment Letter (R37) 2011-11-28 1 166
Notice of Reinstatement 2012-01-18 1 171
Courtesy - Certificate of registration (related document(s)) 2012-01-12 1 103
Courtesy - Certificate of registration (related document(s)) 2012-01-15 1 103
Courtesy - Certificate of registration (related document(s)) 2012-01-15 1 103
Reminder - Request for Examination 2013-06-10 1 118
Acknowledgement of Request for Examination 2013-10-16 1 189
Courtesy - Abandonment Letter (Maintenance Fee) 2015-11-30 1 174
PCT 2010-04-11 1 53
Correspondence 2010-06-02 1 20
Correspondence 2011-07-01 1 22
Correspondence 2011-12-05 2 111
Correspondence 2011-12-21 2 60
Correspondence 2012-01-18 1 13
Fees 2013-09-19 1 25
Amendment / response to report 2015-08-24 14 519