Language selection

Search

Patent 2843802 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent: (11) CA 2843802
(54) English Title: ARCHITECTURE DE PROPULSION D'AERONEF INTEGRANT UN SYSTEME DE RECUPERATION D'ENERGIE
(54) French Title: AIRCRAFT PROPULSION ARCHITECTURE INTEGRATING AN ENERGY RECOVERY SYSTEM
Status: Granted and Issued
Bibliographic Data
(51) International Patent Classification (IPC):
  • B64C 27/12 (2006.01)
  • B64C 27/82 (2006.01)
  • B64D 33/04 (2006.01)
(72) Inventors :
  • RECHAIN, BRUNO (France)
  • SMAOUI, HICHEM (France)
  • JOUBERT, EMMANUEL (France)
  • BEZES, GILLES (France)
  • SAUTREUIL, MATTHIEU (France)
(73) Owners :
  • EUROPEAN AERONAUTIC DEFENCE AND SPACE COMPANY EADS FRANCE
  • AIRBUS HELICOPTEURS
(71) Applicants :
  • EUROPEAN AERONAUTIC DEFENCE AND SPACE COMPANY EADS FRANCE (France)
  • AIRBUS HELICOPTEURS (France)
(74) Agent: BCF LLP
(74) Associate agent:
(45) Issued: 2019-08-27
(86) PCT Filing Date: 2012-08-03
(87) Open to Public Inspection: 2013-02-07
Examination requested: 2017-07-12
Availability of licence: N/A
Dedicated to the Public: N/A
(25) Language of filing: French

Patent Cooperation Treaty (PCT): Yes
(86) PCT Filing Number: PCT/EP2012/065221
(87) International Publication Number: WO 2013017680
(85) National Entry: 2014-01-31

(30) Application Priority Data:
Application No. Country/Territory Date
1157122 (France) 2011-08-03

Abstracts

English Abstract

The object of the invention is a drive system of at least one rotor of an aircraft via electrical energy in addition to or as a replacement of a mechanical system, characterised in that the electrical energy is provided at least in part by at least one device (104) for recovering thermal energy from hot gases of an internal combustion engine (1) of the aircraft.


French Abstract


Dans un aéronef pourvu d'un rotor principal, d'un rotor arrière, d'au moins
une turbine
propulsive et un système d'alimentation électrique, un dispositif de
récupération
d'énergie thermique est installé sur la turbine pour générer de l'énergie
électrique en
utilisant une énergie thermique contenue dans des gaz d'échappement de la
turbine
comme source chaude et l'une des sources suivantes comme source froide: l'air
ambient, une huile moteur, un fuel ou un fluide de refroidissement de la
turbine. Le
dispositif de récupération comprend une machine de transformation incluant un
générateur électrique connecté au système d'alimentation électrique pourvu
d'un
système de reconfiguration apte à se reconfigurer de façon à alimenter une
barre
principale d'alimentation électrique de l'aéronef au moyen du dispositif de
récupération d'énergie thermique en cas de perte d'une génération principale.

Claims

Note: Claims are shown in the official language in which they were submitted.


16
REVENDICATIONS
1 - Aéronef ayant un rotor principal et un rotor arrière, ledit aéronef étant
pourvu d'au moins une turbine propulsive et comprenant un système
d'alimentation
électrique pour alimenter au moins un équipement, dans lequel ledit aéronef
comporte
un dispositif de récupération d'énergie thermique, installé sur ladite au
moins une
turbine propulsive, pour générer de l'énergie électrique en utilisant une
énergie
thermique contenue dans des gaz d'échappement de ladite au moins une turbine
propulsive comme source chaude et en utilisant l'une des sources suivantes
comme
source froide: l'air ambient, une huile moteur, un fuel ou un fluide de
refroidissement
de la turbine, et dans lequel ledit dispositif de récupération d'énergie
thermique
comprend une machine de transformation incluant un générateur électrique, dans
lequel ledit générateur électrique est connecté au système d'alimentation
électrique
dudit aéronef pourvu d'un système de reconfiguration apte à se reconfigurer de
façon
à alimenter une barre principale d'alimentation électrique de l'aéronef au
moyen du
dispositif de récupération d'énergie thermique en cas de perte d'une
génération
principale.
2 - Aéronef selon la revendication 1, pour lequel la machine de transformation
transforme une énergie thermique d'un fluide de travail en une énergie
mécanique, et
pour lequel le dispositif de récupération d'énergie thermique comporte:
un évaporateur pour transférer une partie de l'énergie thermique contenue
dans la source chaude au fluide de travail, l'évaporateur étant installé au
niveau d'une
tuyère de ladite au moins une turbine propulsive;
un condenseur pour condenser le fluide de travail en sortie de la machine de
transformation grâce à des échanges thermiques avec la source froide;
une pompe pour compresser le fluide travail en sortie du condenseur et le
faire
circuler dans l'évaporateur; et

17
un système de contrôle pour ajuster une puissance produite par le dispositif
de
récupération d'énergie thermique via un contrôle d'au moins un débit ou une
pression
de la pompe.
3 - Aéronef selon la revendication 1 pour lequel un fluide de travail est un
gaz
de travail et pour lequel le dispositif de récupération d'énergie thermique
comporte:
un évaporateur, installé en sortie de la turbine, pour transférer une partie
de
l'énergie thermique contenue dans la source chaude au gaz de travail;
la machine de transformation pour transformer une énergie thermique du gaz
de travail en une énergie mécanique; et
un compresseur et un système de contrôle associé pour prélever le gaz de
travail et le compresser en amont de l'évaporateur.
4 - Aéronef selon la revendication 1 pour lequel le dispositif de récupération
d'énergie thermique comporte un ensemble de cellules thermoélectriques pour
convertir une chaleur issue d'une tuyère de la turbine directement en
électricité.
- Aéronef selon l'une quelconque des revendications 1 à 4, comportant un
système électronique de puissance intégré en aval du générateur électrique du
dispositif de récupération d'énergie thermique, le système électronique de
puissance
étant configuré pour fonctionner à un point de puissance maximum disponible au
niveau du dispositif de récupération d'énergie thermique par l'intégration
d'une
fonction de Maximum Power Point Tracking, pour régler une tension et pour
contrôler
une qualité de l'énergie électrique, pour mettre en forme l'énergie électrique
en sortie
du générateur électrique pour son utilisation par une ou plusieurs charges ou
un
système de distribution alimentés, pour adapter une consigne de puissance
donnée
au dispositif de récupération d'énergie thermique à une puissance demandée par
la
ou les charges alimentées, et pour protéger le dispositif de récupération
d'énergie
thermique et le générateur électrique contre une surcharge.

18
6 - Aéronef selon l'une quelconque des revendications 1 à 5, pour lequel le
dispositif de récupération d'énergie thermique comporte des moyens pour
générer
une puissance optionnelle électrique en remplacement de toute ou partie des
génératrices alimentées par des prises de mouvement sur une BTP (Boîte de
Transmission Principale)/accessoires moteur.
7 - Aéronef selon l'une quelconque des revendications 1 à 6, pour lequel le
dispositif de récupération d'énergie thermique comprend des moyens pour
alimenter
au moins l'une des charges suivantes: un système de dégivrage/antigivrage, un
compresseur de climatisation ou système de chauffage électrique.
8 - Aéronef selon la revendication 1, pour lequel le dispositif de
récupération
d'énergie thermique alimente un réseau électrique principal de l'aéronef en
remplacement de, ou en complément par une mise en parallèle avec, l'énergie
électrique générée par des prises de mouvement sur une BTP (Boîte de
Transmission
Principale) ou un boîtier accessoires moteur.
9 - Aéronef selon la revendication 8, pour lequel le dispositif de
récupération
d'énergie thermique alimente au moins un auxiliaire hydraulique ou
mécanique/pneumatique.
- Aéronef selon la revendication 1, pour lequel le dispositif de récupération
d'énergie thermique alimente un bus électrique indépendant en supplément de
barres
de distribution principales alimentées par des sources BTP (Boîte de
Transmission
Principale), créant ainsi une source d'alimentation supplémentaire
indépendante.
11 - Aéronef selon la revendication 1, comprenant un système électronique de
puissance intégré en aval du générateur électrique du dispositif de
récupération
d'énergie thermique pour gérer une mise en parallèle du générateur électrique
avec
au moins un générateur principal de l'aéronef.

19
12 - Aéronef selon la revendication 1, pour lequel l'énergie électrique
générée
par le dispositif de récupération d'énergie thermique est associée à des
batteries
utilisées pour une hybridation au moins du rotor principal ou du rotor
arrière, et placée
en série ou en parallèle de ces dernières.
13. Système d'entraînement d'au moins un rotor d'un aéronef par énergie
électrique en complément, ou en remplacement, d'un système mécanique,
comprenant au moins un dispositif de récupération d'énergie thermique pour
récupérer de l'énergie thermique issue de gaz chauds d'un moteur à combustion
interne de l'aéronef pour fournir au moins en partie l'énergie électrique pour
entraîner
ledit au moins un rotor, et pour lequel ledit au moins un dispositif de
récupération
d'énergie thermique comporte un machine thermodynamique utilisant un cycle
thermodynamique entre des gaz d'échappement du moteur à combustion interne
comme source chaude et l'air ambient comme source froide, et un générateur
électrique couplé à une unité de transformation pour produire une
transformation
mécanique/électrique, et pour lequel ledit générateur électrique est connecté
à un
système d'alimentation électrique dudit aéronef pourvu d'un système de
reconfiguration apte à se reconfigurer de façon à ce que ledit au moins un
rotor dudit
aéronef est alimenté par ledit au moins un dispositif de récupération
d'énergie
thermique en cas de perte du système mécanique.
14 - Système d'entraînement selon la revendication 13, pour lequel la machine
thermodynamique comprend un premier échangeur sur la source chaude, un second
échangeur sur la source froide, et un fluide caloporteur circulant entre le
premier et le
second échangeurs, et pour lequel l'unité de transformation transforme
l'énergie
thermique en énergie mécanique entre les échangeurs.
15 - Système d'entraînement selon la revendication 14, pour lequel les gaz
chauds sont des gaz d'échappement d'un moteur à pistons de propulsion de
l'aéronef.

20
16 - Système d'entraînement selon la revendication 15, pour lequel le premier
échangeur est couplé à une tubulure d'échappement du moteur à pistons.
17 - Système d'entraînement selon la revendication 14, pour lequel les gaz
chauds sont des gaz générés par une turbine de propulsion de l'aéronef.
18 - Système d'entraînement selon la revendication 17, pour lequel le premier
échangeur est disposé dans une tuyère de sortie de la turbine.
19 - Système d'entraînement selon la revendication 13, pour lequel le
dispositif de récupération d'énergie thermique alimente tout ou partie des
circuits
auxiliaires suivants: des circuits électriques, des circuits hydrauliques ou
des circuits
pneumatiques de l'aéronef.
20 - Système d'entraînement selon la revendication 19, pour lequel le
dispositif de récupération d'énergie thermique comporte un dispositif de
conversion
mécanique/pneumatique d'alimentation des circuits pneumatiques de l'aéronef.
21 - Système d'entraînement selon la revendication 19, pour lequel le
dispositif de récupération d'énergie thermique comporte un dispositif de
conversion
mécanique/hydraulique d'alimentation des circuits hydrauliques de l'aéronef.
22 - Système d'entraînement selon l'une quelconque des revendications 13 à
21, pour lequel ledit au moins un rotor est un rotor d'aéronef à voilure
tournante.
23 - Système d'entraînement selon la revendication 22 pour lequel ledit au
moins un rotor est un rotor arrière d'hélicoptère.

Description

Note: Descriptions are shown in the official language in which they were submitted.


CA 02843802 2014-01-31
WO 2013/017680 PCT/EP2012/065221
1
ARCHITECTURE DE PROPULSION D'AERONEF
INTEGRANT UN SYSTEME DE RECUPERATION D'ENERGIE
La présente invention concerne une architecture de propulsion d'un
aéronef tel qu'un aéronef à rotor ou voilure tournante tel qu'un hélicoptère
intégrant un système de récupération d'énergie.
L'aéronautique est un secteur historiquement marqué par une exigence
continue d'innovation et de progrès technologiques. La recherche de la
réduction
de l'impact environnemental du transport aérien, émission de gaz à effet de
serre
et bruit, s'inscrit naturellement dans cette démarche.
Les aéronefs à voilure tournantes sont connus pour leurs émissions de gaz
à effet de serre par passager et par kilomètre parcouru élevées.
Les futures réglementations imposeront de respecter des niveaux
d'émission de plus en plus bas d'où la nécessité d'améliorer l'efficacité du
système
de propulsion afin de réduire les émissions polluantes.
Concernant l'optimisation de la partie propulsive des hélicoptères, des
projets liés à l'amélioration du rendement des turbomoteurs ont permis
certains
gains de performances. D'autres projets liés à l'hybridation de l'hélicoptère
en
considérant différentes architectures permettent d'envisager des gains
supplémentaires.
Toutefois l'énergie électrique utilisée pour l'hybridation est généralement
stockée dans des batteries dont le poids est pénalisant pour la consommation
de
carburant et la charge utile.
Concernant les circuits auxiliaires, circuits électriques, hydrauliques et/ou
pneumatiques, l'énergie est prélevée sur la boîte accessoire ou la boîte de

CA 02843802 2014-01-31
WO 2013/017680 PCT/EP2012/065221
2
transmission principale (BTP), consommant du carburant pour l'alimentation de
ces systèmes.
La récupération d'énergie est aujourd'hui largement développée pour des
applications stationnaires telles que la cogénération.
Dans le cadre des projets d'hélicoptères hybrides, les concepts de rotors
hybrides mécanique/électrique ou bien entièrement électriques sont très
prometteurs. Il s'agit d'architectures dans lesquelles la puissance mécanique
nécessaire est fournie totalement ou en partie par un moteur électrique.
La présente invention traite de la récupération d'énergie thermique, de son
utilisation et de sa conversion en énergie électrique.
La présente invention propose en particulier un aéronef pourvu d'au moins
une turbine propulsive et comportant un système d'alimentation électrique d'au
moins un équipement, pour lequel le système d'alimentation électrique comporte
un dispositif de récupération d'énergie thermique installé sur la turbine,
fonctionnant avec comme source chaude l'énergie contenue dans les gaz
d'échappement de la turbine et comme source froide un fluide tel que l'air
ambiant, l'huile moteur, le fuel ou autre fluide de refroidissement de la
turbine.
Selon un premier mode de réalisation, le dispositif de récupération
d'énergie comporte:
20- un évaporateur, permettant de transférer une partie de
l'énergie
thermique contenue dans la source chaude à un fluide de travail, cet
évaporateur étant installé au niveau d'une tuyère de la turbine;
- une machine de transformation d'une énergie thermique du fluide de
travail en une énergie mécanique;
25- un générateur électrique alimenté par la machine de
transformation;
- un condenseur, permettant de condenser le fluide de travail en sortie
de la machine de transformation grâce à des échanges thermiques
avec la source froide;
- une pompe, pour compresser le fluide travail en sortie de
30 condenseur et le faire circuler dans l'évaporateur;
- un système de contrôle, permettant d'ajuster la puissance produite à
la puissance désirée, par exemple via un contrôle du débit et/ou de
la pression de la pompe.

CA 02843802 2014-01-31
WO 2013/017680 PCT/EP2012/065221
3
Selon un deuxième mode de réalisation, le dispositif de récupération
d'énergie comporte:
- un évaporateur, installé en sortie de la turbine, permettant de
transférer une partie de l'énergie thermique contenue dans la source
chaude à un gaz de travail, notamment de l'air;
- une machine de transformation d'une énergie thermique du gaz de
travail en une énergie mécanique;
- un générateur électrique alimenté par la machine de transformation;
10- un compresseur et son système de contrôle associé, prélevant l'air
ambiant et le compressant en amont de l'évaporateur.
Selon un troisième mode de réalisation, le dispositif de récupération
d'énergie comporte un ensemble de cellules thermoélectriques convertissant
directement la chaleur issue d'une tuyère de la turbine en électricité.
Le dispositif comporte avantageusement un système d'électronique de
puissance intégré en aval du générateur du système de récupération d'énergie,
le
système électronique de puissance réalisant une ou plusieurs des fonctions
suivantes:
- fonctionner au point de puissance maximum disponible au niveau du
système de récupération, par exemple par l'intégration d'une fonction
usuellement appelée Maximum Power Point Tracking ;
- participer au réglage de la tension, et ainsi participer à la qualité de
l'énergie électrique;
- mettre en forme l'énergie électrique en sortie du générateur pour son
utilisation par le (les) charge(s) ou le système de distribution
alimentés, par exemple la tension nominale générée par
l'électronique de puissance sera de 115Vac/400Hz, 28Vdc, 270Vdc,
540Vdc ou autre;
- adapter la consigne de puissance donnée au système de
récupération à la puissance demandée par la ou les charges
alimentées, ceci impliquant éventuellement un système de mesures /
communications entre le système de récupération, l'électronique de

CA 02843802 2014-01-31
WO 2013/017680 PCT/EP2012/065221
4
puissance, et éventuellement la(les) charge(s) ou le réseau de
distribution alimenté;
- protéger le système de récupération et son générateur contre les
surcharges, d'éventuels transitoires de charge indésirables,
protection spécifique du générateur (par exemple délestage en cas
de surchauffe de l'alternateur);
Selon un mode de réalisation particulier, le dispositif de récupération
d'énergie réalise préférablement la génération de puissance optionnelle
électrique
en remplacement de toute ou partie des génératrices alimentées par des prises
de
mouvement sur une BTP/accessoires moteur.
Selon un mode de réalisation alternatif ou complémentaire, le dispositif de
récupération d'énergie est dédiée à l'alimentation de charges optionnelles
telles
que système de dégivrage/antigivrage, compresseur de climatisation, ou système
de chauffage électrique, la génération électrique du dispositif de
récupération
d'énergie alimentant spécifiquement un équipement optionnel ou un ensemble
d'équipements optionnels.
Selon une variante, le dispositif de récupération d'énergie est relié à un
système d'alimentation électrique pourvu d'un système de reconfiguration
adapté
à se reconfigurer de façon à alimenter une barre principale d'alimentation
électrique de l'aéronef au moyen du dispositif de récupération d'énergie en
cas de
perte de la génération principale
Le dispositif de récupération d'énergie alimente avantageusement le réseau
électrique principal de l'aéronef en remplacement ou complément (mise en
parallèle) de la génération alimentée par des prises de mouvement sur la BTP
ou
le boîtier accessoires moteur.
De manière alternative, le dispositif de récupération d'énergie alimente un
bus électrique indépendant, en supplément des barres de distribution
principales
alimentées par les sources BTP, créant ainsi une source supplémentaire
indépendante des autres.
Selon un mode de réalisation particulier, le dispositif de récupération
d'énergie alimente en outre des auxiliaires hydrauliques et/ou
mécaniques/pneumatiques.

CA 02843802 2014-01-31
WO 2013/017680 PCT/EP2012/065221
Selon un mode de réalisation particulier, l'aéronef de l'invention est un
hélicoptère à rotor principal et rotor arrière.
Le dispositif de récupération d'énergie constitue dans ce cas
avantageusement un système d'hybridation du rotor principal et/ou arrière, la
5 génération électrique du dispositif de récupération d'énergie étant associée
en
remplacement ou en complément des batteries utilisée pour l'hybridation et
placée
en série ou en parallèle de ces dernières.
Un système d'électronique de puissance intégré en aval du générateur du
dispositif de récupération d'énergie gère avantageusement la mise en parallèle
du
générateur de récupération avec à au moins un générateur principal de
l'aéronef
en cas de besoin.
La présente invention propose en outre un système d'entraînement d'au
moins un rotor d'un aéronef par énergie électrique en complément ou en
remplacement d'un système mécanique pour lequel l'énergie électrique est
fournie
au moins partiellement par au moins un dispositif de récupération d'énergie
thermique issue de gaz chauds d'un moteur à combustion interne de l'aéronef.
Avantageusement, le dispositif de récupération d'énergie thermique
comprend une machine thermodynamique utilisant un cycle thermodynamique
entre une source chaude, les gaz d'échappement du moteur à combustion interne,
et une source froide, l'air ambiant.
La machine thermodynamique comprend préférablement un premier
échangeur sur la source chaude, un second échangeur sur la source froide, un
fluide caloporteur circulant entre le premier et le second échangeurs et une
unité
de transformation d'énergie thermique en énergie mécanique entre les
échangeurs.
Avantageusement, le dispositif de récupération comprend une génératrice
électrique assurant une conversion mécanique/électrique couplée à ladite unité
de
transformation.
Selon un mode de réalisation avantageux, le dispositif de récupération
alimente tout ou partie des circuits auxiliaires tels que les circuits
électriques,
hydrauliques ou pneumatiques de l'aéronef.

CA 02843802 2014-01-31
WO 2013/017680 PCT/EP2012/065221
6
L'énergie récupérée alimentant tout ou partie des circuits auxiliaires tels
que
les circuits électrique, hydraulique ou pneumatique, le prélèvement d'énergie
sur
la boîte accessoire et BTP sera ainsi supprimé ou diminué.
Le dispositif de récupération comporte avantageusement un dispositif de
conversion mécanique/pneumatique d'alimentation des circuits pneumatiques de
l'aéronef et/ou un dispositif de conversion mécanique/hydraulique
d'alimentation
des circuits hydrauliques de l'aéronef.
Selon un mode de réalisation particulier, les gaz chauds sont les gaz
d'échappement d'au moins un moteur à pistons de propulsion de l'aéronef.
Dans ce cas, le premier échangeur est avantageusement couplé à une
tubulure d'échappement du moteur à piston.
Selon un mode de réalisation alternatif, les gaz chauds sont les gaz
générés par au moins une turbine de propulsion de l'aéronef.
Dans ce cas le premier échangeur est avantageusement disposé dans une
tuyère de sortie de la turbine.
Le rotor est avantageusement un rotor d'aéronef à voilure tournante et en
particulier un rotor arrière d'hélicoptère.
D'autres caractéristiques et avantages de l'invention seront apparents à la
lecture de la description qui suit d'un exemple de réalisation non limitatif
de
l'invention accompagné des dessins annexés qui représentent:
en figure 1: un schéma d'une architecture conventionnelle de système de
propulsion d'aéronef à voilure tournante;
en figure 2: un schéma d'une architecture de système de propulsion d'un
aéronef selon l'invention;
en figure 3: un détail d'un schéma électrique d'un dispositif selon
l'invention;
en figure 4: un schéma d'intégration d'un système de récupération
d'énergie thermique de l'invention.
Le système proposé est adapté à produire de l'énergie électrique à partir de
l'énergie thermique des gaz d'échappement d'un moteur à combustion interne
d'un
aéronef et en particulier d'un hélicoptère pour alimenter partiellement ou
totalement des systèmes électriques et/ou les rotors principal et/ou arrière à
propulsion hybride électrique ou tout électrique.

CA 02843802 2014-01-31
WO 2013/017680 PCT/EP2012/065221
7
Les systèmes de récupération d'énergie installés sur l'aéronef fonctionnent
grâce à la présence d'une source chaude, l'énergie contenue dans les gaz
d'échappement de la turbine, et une source froide, par exemple l'air ambiant,
l'huile moteur, le fuel ou tout autre liquide de refroidissement. Le système
de
conversion de pertes thermiques en énergie, par exemple électrique, comprend
notamment:
- un évaporateur, permettant de transférer une partie de l'énergie
thermique contenue dans la source chaude (gaz d'échappement) à
un fluide de travail, cet évaporateur étant installé au niveau de la
tuyère;
- une turbine ou toute autre machine, par exemple à pistons,
permettant de transformer une énergie thermique en une énergie
mécanique;
- un générateur électrique alimenté par la machine ci-dessus;
15- un condenseur, permettant de condenser le fluide de travail en
sortie
de turbine grâce à des échanges thermiques avec la source froide;
- une pompe, pour compresser le fluide travail en sortie de
condenseur et le faire circuler dans l'évaporateur;
- un système de contrôle, permettant d'ajuster la puissance produite à
la puissance désirée, par exemple via le contrôle du débit / pression
de la pompe.
Il existe d'autres solutions de systèmes de récupération de pertes
thermiques : une variante est l'utilisation d'un système comprenant:
- un échangeur de chaleur, permettant de transférer une partie de
l'énergie thermique contenue dans la source chaude (gaz
d'échappement) à un gaz de travail, par exemple de l'air. Cet
évaporateur est installé en sortie de la turbine;
- une turbine ou toute autre machine permettant de transformer une
énergie thermique en une énergie mécanique;
30- un générateur électrique alimenté par la machine ci-dessus;
- un compresseur, prélevant l'air ambiant et le compressant en amont
de l'évaporateur, et son système de contrôle associé.

CA 02843802 2014-01-31
WO 2013/017680 PCT/EP2012/065221
8
Une autre variante est l'utilisation d'un ensemble de cellules
thermoélectriques.
Quelle que soit l'application visée, alimentation de système d'hybridation ou
alimentation du réseau électrique de bord, un système d'électronique de
puissance sera éventuellement intégré en aval du générateur du système de
récupération d'énergie. Il réalise une ou plusieurs des fonctions suivantes :
- fonctionner au point de puissance maximum disponible au niveau du
système de récupération, par exemple par l'intégration d'une fonction
usuellement appelée Maximum Power Point Tracking (suivi du
point de puissance maximale);
- participer au réglage de la tension, et ainsi participer à la qualité de
l'énergie électrique;
- mettre en forme l'énergie électrique en sortie du générateur pour son
utilisation par le (les) charge(s) ou le système de distribution
alimentés, par exemple la tension nominale générée par
l'électronique de puissance sera de 115Vac/400Hz, 28Vdc, 270Vdc,
540Vdc ou autre;
- adapter la consigne de puissance donnée au système de récupération à la
puissance demandée par la ou les charges alimentées, ceci
impliquant éventuellement un système de mesures / communications
entre le système de récupération, l'électronique de puissance, et
éventuellement la(les) charge(s) ou le réseau de distribution
alimenté;
- protéger le système de récupération et son générateur contre les
surcharges, d'éventuels transitoires de charge indésirables,
protection spécifique du générateur (par exemple délestage en cas
de surchauffe de l'alternateur);
- gérer la mise en parallèle du générateur de récupération par rapport
au(x)
générateur(s) principal(aux) , le cas échéant.
Dans la suite, l'ensemble constitué du système de récupération, son
éventuel convertisseur d'électronique de puissance associé à une ou plusieurs
des fonctions précitées sont appelés génération électrique du système de
récupération d'énergie .

CA 02843802 2014-01-31
WO 2013/017680 PCT/EP2012/065221
9
Concernant l'alimentation des circuits électriques de bord (hors système
d'hybridation), trois architectures sont envisagées.
Dans une première architecture, la génération de puissance optionnelle, par
exemple toute ou partie des génératrices habituellement alimentées par des
prises
de mouvement sur la BTP/accessoires moteur, sont remplacées par la génération
électrique du système de récupération d'énergie. Cette dernière peut être
dédiée à
l'alimentation de charges optionnelles, par exemple le système de dégivrage /
antigivrage, un compresseur de climatisation, ou encore un système de
chauffage
électrique. Dans ce cas, la génération électrique du système de récupération
d'énergie alimente spécifiquement un équipement optionnel ou un ensemble
d'équipements optionnels. En cas de perte de la génération principale, le
système
peut éventuellement se reconfigurer de façon à alimenter la barre principale,
grâce
à un dispositif de reconfiguration. Cette architecture a le double avantage de
diminuer le prélèvement de puissance sur la BTP/accessoires moteur ¨ et donc
de
diminuer la consommation de carburant ¨ et d'améliorer la disponibilité de
l'énergie en cas de défaut.
Dans une seconde architecture, la génération électrique du système de
récupération d'énergie alimente le réseau principal en remplacement ou
complément (mise en parallèle) de la génération alimentée par des prises de
mouvement sur la BTP ou le boîtier accessoires moteur permettant de diminuer
la
consommation spécifique du moteur. Le dimensionnement de la génératrice
alimentée par la BTP / boîte accessoires moteur sera donc diminué comparé au
cas où la génération par récupération n'est pas installée.
Une troisième solution est que la génération électrique du système de
récupération alimente un bus essentiel indépendant, en supplément des barres
de
distribution principales et essentielles alimentées par les sources BTP,
créant ainsi
une source supplémentaire indépendante des autres.
Cette structure d'alimentation permet d'améliorer significativement la
fiabilité opérationnelle mais surtout la sécurité du système électrique
permettant
ainsi l'installation de charges à nombre important de sources indépendantes,
en
particulier des actionneurs de vol électriques.
Outre l'alimentation de systèmes auxiliaires électriques, une autre
utilisation
possible est l'alimentation d'auxiliaires hydrauliques (pompe hydraulique par

CA 02843802 2014-01-31
WO 2013/017680 PCT/EP2012/065221
exemple) ou mécaniques/pneumatiques (compresseur de climatisation par
exemple).
En ce qui concerne l'alimentation du système d'hybridation du rotor
principal et/ou arrière, la génération électrique du système de récupération
est
5 associée en remplacement ou en complément des batteries utilisée pour
l'hybridation et placée en série ou en parallèle de ces dernières.
Quelle que soit l'utilisation choisie, le principe de fonctionnement des
systèmes de récupération d'énergie nécessite une évacuation d'énergie
thermique
hors du système de récupération via un échangeur de chaleur.
10 Usuellement, cette énergie est rejetée dans l'atmosphère mais une
option
consiste à récupérer tout ou partie de cette énergie pour réchauffer de l'air
(par
exemple la cabine ¨ le système de chauffage), le fuel ou tout autre partie ou
composant de l'aéronef.
Le schéma de la figure 1 représente une architecture traditionnelle
d'hélicoptère bimoteur à rotor principal et rotor arrière pour laquelle les
deux
moteurs à combustion interne la, lb, moteurs à pistons ou turbines entraînent
une boîte de transmission principale 4 dite BTM au travers d'une liaison
mécanique primaire 20 telle qu'un arbre de transmission.
La BTM 4 distribue une puissance mécanique au travers d'une liaison
mécanique secondaire 21 vers un rotor principal 2, une boîte de transmission
arrière 5 d'entraînement mécanique d'un rotor arrière 3, une génératrice
électrique
7, un générateur de pression hydraulique 11 et un générateur de pression
pneumatique 12.
Sur ce schéma la puissance électrique délivrée par la génératrice 7 est
distribuée par un réseau de distribution électrique 10 alimentant les divers
organes
électriques de l'hélicoptère.
Le schéma de la figure 2 correspond à une architecture d'hélicoptère
bimoteur à rotor principal et rotor arrière comprenant le système de
l'invention.
Comme dans le schéma de la figure 1, les moteurs à combustion interne
la, lb distribuent une puissance mécanique vers une BTM 4 qui selon l'exemple
entraîne le rotor principal 2.

CA 02843802 2014-01-31
WO 2013/017680 PCT/EP2012/065221
11
Par contre selon l'invention, des dispositifs de récupération d'énergie
thermique 6a, 6b sont alimentés par des prises de chaleur 40a, 40b au niveau
des
sorties de gaz chauds des moteurs la, lb.
Les dispositifs de récupération d'énergie thermiques 6a, 6b sont par
exemple des turbines 104 selon la figure 4, les prises de chaleur étant des
échangeurs chauds 103 selon cette même figure.
De retour à la figure 2, l'énergie récupérée est utilisée pour alimenter les
génératrices électriques 7a, 7b, les générateurs de pression hydraulique 11a,
llb
et les générateurs de pression pneumatique 12a, 12b.
Il est bien entendu possible de n'alimenter que les génératrices électriques
par le système de l'invention.
Il est à noter que dans le cas d'un aéronef bimoteur comme représenté
comprenant des moteurs à combustion interne à pistons ou à turbine il est
possible d'associer un dispositif de récupération sur un premier des moteurs à
combustion interne à une génératrice électrique, l'autre des moteurs à
combustion
interne aux générateurs de pression 11, 12 ou tout autre arrangement tout en
restant dans le cadre de l'invention.
La ou les génératrices électriques 7a, 7b vont alimenter un réseau
électrique 50 alimentant les réseaux de distribution électrique 10a, 10b et
une
électronique de puissance 8 de commande d'un moteur électrique 9
d'entraînement du rotor arrière 3 de l'hélicoptère.
Pour accroître la puissance apportée au rotor arrière ou au système en
fonction des configurations de vol, un moteur électrique 9 couplé sur l'arbre
principal 30 est raccordé à l'électronique de puissance 8 pour alimenter cette
dernière si la puissance thermique récupérée est insuffisante.
Ainsi, le système de l'invention réalise ici une propulsion hybride
thermique/électrique de l'hélicoptère et peut réaliser en outre, si la
puissance
récupérée est suffisante, une alimentation des circuits auxiliaires de
l'aéronef et
notamment le réseau électrique, le circuit pneumatique, par exemple des
compresseurs de climatisation et/ou le circuit hydraulique, par exemple des
pompes hydrauliques.

CA 02843802 2014-01-31
WO 2013/017680 PCT/EP2012/065221
12
Le système de récupération d'énergie décrit un cycle thermodynamique
entre une source chaude, les gaz d'échappement du moteur à combustion interne,
et une source froide, l'air ambiant.
Il comprend notamment au niveau du ou des récupérateurs d'énergie
thermique 6a, 6b un élément moteur ou une turbine, turbine vapeur, machine à
vapeur moteur Stirling ou autre moteur dit à combustion externe couplés à une
génératrice 7a, 7b assurant une conversion mécanique/électrique.
Une variante remplace l'élément moteur par un générateur
thermoélectrique.
Le système inclut aussi un système de conversion mécanique/hydraulique
11a, llb et mécanique/pneumatique 12a, 12b permettant l'alimentation de tout
ou
partie des circuits auxiliaires.
Cette solution permet d'augmenter sensiblement l'efficacité énergétique de
la chaine de propulsion par une valorisation des rejets thermiques du ou des
moteurs à combustion interne.
Le couplage du convertisseur d'énergie thermique/électrique à un moteur
électrique 9 du rotor arrière 3 permet une plus grande flexibilité au niveau
des
régimes de rotation comparée à une adaptation mécanique directe sur la boite
de
transmission 5 de l'architecture antérieure. La nouvelle architecture permise
par
l'invention permet également une diminution de la masse des batteries à
embarquer du fait de l'alimentation au moins en partie directe des moteurs
électriques par le système de récupération de chaleur.
De plus, la suppression du prélèvement d'énergie pour faire fonctionner les
circuits auxiliaires sur la boîte accessoire dite BTP participe aussi à la
diminution
de consommation de carburant de l'aéronef.
Il est à noter qu'il reste toutefois possible dans le cadre de l'invention de
faire fonctionner toute ou partie des circuits auxiliaires hors rotor arrière
sur la
BTP, dans le cas par exemple d'un hélicoptère monomoteur pour lequel la
puissance récupérable au niveau des gaz d'échappement serait trop limitée.
Enfin, l'échangeur de chaleur entre la source chaude gaz d'échappement et
la source froide l'air ambiant source froide peut être utilisé pour une
fonction
secondaire, celle de réchauffer l'air ambiant et ainsi alimenter la cabine en
air
chaud. Il n'est donc plus nécessaire de prélever de l'air chaud du turbomoteur
en

CA 02843802 2014-01-31
WO 2013/017680 PCT/EP2012/065221
13
sortie de compresseur comme dans une architecture conventionnelle de moteur à
turbine, ce qui permet d'améliorer l'efficacité de la turbine.
La solution est basée sur une intégration d'un système de
récupération/conversion de chaleur en énergie électrique, machine à cycle
thermodynamique couplée à une génératrice dans la tuyère de la turbine ou la
ligne d'échappement.
Ce système inclus trois ensembles principaux :
- Un premier échangeur de chaleur au niveau de la source chaude,
échangeur placé dans le ligne des gaz d'échappement d'un moteur à pistons ou
dans la tuyère d'une turbine de l'aéronef, permettant de récupérer une partie
de
l'énergie thermique des gaz d'échappements,
- Un second échangeur de chaleur au niveau de la source froide placé en
aval du système de conversion permettant d'évacuer la chaleur du cycle
thermodynamique mais pouvant également réchauffer l'air ambiant pour alimenter
la cabine en air chaud ce qui permet de réduire le besoin de prélèvement d'air
dans la turbine d'hélicoptère et d'améliorer son efficacité énergétique.
- Un système de conversion de l'énergie thermique récupérée entre les
deux échangeurs en énergie électrique.
Dans le cas d'un aéronef à plusieurs turbines, deux configurations sont
envisagées.
Dans la première configuration on installe un système échangeur de
chaleur par turbine et un seul système de conversion de l'énergie thermique
récupérée en énergie électrique pour l'aéronef.
Dans la deuxième configuration on installe un système de conversion
d'énergie thermique en énergie électrique par échangeur de chaleur.
La figure 3 représente un exemple du circuit électrique de la figure 1 plus
détaillé pour lequel les génératrices 7a, 7b alimentent un dispositif de
répartition et
de régulation 13 comportant un calculateur définissant des lois de contrôle
pour
permettre la bonne distribution/répartition de puissance.
Au final, le système de récupération pourra être utilisé pour réaliser une ou
plusieurs des fonctions suivantes :

CA 02843802 2014-01-31
WO 2013/017680 PCT/EP2012/065221
14
-
Alimentation du rotor principal, dans ce cas la BTP 4 alimentera un
générateur similaire au générateur 9 intercalé entre la BTP et un moteur
électrique
d'entraînement du rotor principal,
-
Alimentation du rotor arrière comme décrit dans l'exemple de la
figure 2;
-
Alimentation des réseaux électrique / pneumatique / hydraulique
toujours selon l'exemple de la figure 2.
Le système de récupération alimentera un réseau électrique distribué à la
tension de 270Vdc, 115Vac/200Vac, 28Vdc ou tout autre niveau de tension
alternative ou continue souhaité.
Dans le cas où la puissance produite par le système de récupération est
insuffisante pour alimenter l'un des rotors, on peut coupler un générateur
électrique 9 à la boite de transmission d'origine pour fournir la puissance
complémentaire nécessaire selon l'exemple de la figure 2.
La figure 4 représente un schéma possible d'intégration d'un système de
récupération d'énergie thermique sur un moteur à combustion interne 1 de type
à
turbine comprenant de manière connue des étages 100, 101 de compresseurs et
une tuyère de sortie 102.
Le dispositif de récupération d'énergie thermique comprend une machine
thermodynamique 200 utilisant un cycle thermodynamique entre une source
chaude, les gaz d'échappement du moteur à combustion interne et une source
froide, l'air ambiant.
La machine thermodynamique ou turbine à vapeur à cycle fermé
notamment à cycle de Rankine comprend un premier échangeur 103, échangeur
chaud, sur la source chaude, ici la tuyère 102 du moteur à combustion interne,
un
second échangeur 105 sur la source froide, par exemple un radiateur en contact
avec l'air extérieur que traverse l'aéronef, un fluide caloporteur circulant
entre le
premier et le second échangeurs par un circuit tubulaire 107 et une unité de
transformation d'énergie thermique en énergie mécanique ici sous forme d'une
turbine 104.
La machine thermodynamique comprend en outre une pompe 106 faisant
circuler le fluide dans le circuit de fluide caloporteur 107.

CA 02843802 2014-01-31
WO 2013/017680 PCT/EP2012/065221
La turbine 104 entraîne ici un générateur électrique 108 qui sera utilisé
comme décrit précédemment.
Un avantage du système de l'invention est de diminuer la température de
sortie des gaz du moteur thermique de l'aéronef ce qui diminue sa signature
5 infrarouge.
L'invention qui n'est pas limitée à l'exemple représenté, correspondant à un
appareil bimoteur, mais qui est notamment applicable à un appareil monomoteur
s'applique en particulier aux hélicoptères ou aux drones à voilure tournante
et
permet d'améliorer l'efficacité globale du système de propulsion de l'aéronef,
10 notamment dans le cas où la ou les turbines de cet appareil fournissent
un travail
et non une poussée.

Representative Drawing
A single figure which represents the drawing illustrating the invention.
Administrative Status

2024-08-01:As part of the Next Generation Patents (NGP) transition, the Canadian Patents Database (CPD) now contains a more detailed Event History, which replicates the Event Log of our new back-office solution.

Please note that "Inactive:" events refers to events no longer in use in our new back-office solution.

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Event History , Maintenance Fee  and Payment History  should be consulted.

Event History

Description Date
Inactive: IPC expired 2024-01-01
Inactive: COVID 19 - Deadline extended 2020-07-16
Common Representative Appointed 2019-10-30
Common Representative Appointed 2019-10-30
Grant by Issuance 2019-08-27
Inactive: Cover page published 2019-08-26
Inactive: Correspondence - Transfer 2019-07-09
Pre-grant 2019-07-02
Inactive: Final fee received 2019-07-02
Letter Sent 2019-06-28
Letter Sent 2019-06-28
Inactive: Single transfer 2019-06-19
Notice of Allowance is Issued 2019-01-02
Letter Sent 2019-01-02
Notice of Allowance is Issued 2019-01-02
Inactive: Approved for allowance (AFA) 2018-12-19
Inactive: QS passed 2018-12-19
Amendment Received - Voluntary Amendment 2018-09-10
Inactive: S.30(2) Rules - Examiner requisition 2018-05-18
Inactive: Report - QC failed - Minor 2018-05-16
Amendment Received - Voluntary Amendment 2017-09-13
Letter Sent 2017-07-18
Request for Examination Received 2017-07-12
Request for Examination Requirements Determined Compliant 2017-07-12
All Requirements for Examination Determined Compliant 2017-07-12
Inactive: Cover page published 2014-03-14
Inactive: First IPC assigned 2014-03-04
Inactive: Notice - National entry - No RFE 2014-03-04
Inactive: IPC assigned 2014-03-04
Inactive: IPC assigned 2014-03-04
Inactive: IPC assigned 2014-03-04
Inactive: IPC assigned 2014-03-04
Application Received - PCT 2014-03-04
National Entry Requirements Determined Compliant 2014-01-31
Application Published (Open to Public Inspection) 2013-02-07

Abandonment History

There is no abandonment history.

Maintenance Fee

The last payment was received on 2019-07-19

Note : If the full payment has not been received on or before the date indicated, a further fee may be required which may be one of the following

  • the reinstatement fee;
  • the late payment fee; or
  • additional fee to reverse deemed expiry.

Please refer to the CIPO Patent Fees web page to see all current fee amounts.

Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
EUROPEAN AERONAUTIC DEFENCE AND SPACE COMPANY EADS FRANCE
AIRBUS HELICOPTEURS
Past Owners on Record
BRUNO RECHAIN
EMMANUEL JOUBERT
GILLES BEZES
HICHEM SMAOUI
MATTHIEU SAUTREUIL
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Description 2014-01-31 15 677
Representative drawing 2014-01-31 1 6
Abstract 2014-01-31 2 80
Claims 2014-01-31 5 211
Drawings 2014-01-31 2 24
Cover Page 2014-03-14 1 37
Abstract 2018-09-10 1 20
Claims 2018-09-10 5 197
Drawings 2018-09-10 2 27
Abstract 2019-01-02 1 20
Representative drawing 2019-07-30 1 4
Cover Page 2019-07-30 1 43
Notice of National Entry 2014-03-04 1 195
Reminder of maintenance fee due 2014-04-07 1 112
Reminder - Request for Examination 2017-04-04 1 117
Acknowledgement of Request for Examination 2017-07-18 1 174
Commissioner's Notice - Application Found Allowable 2019-01-02 1 163
Courtesy - Certificate of registration (related document(s)) 2019-06-28 1 128
Courtesy - Certificate of registration (related document(s)) 2019-06-28 1 128
Maintenance fee payment 2018-07-19 1 25
Amendment / response to report 2018-09-10 14 387
PCT 2014-01-31 28 865
Request for examination 2017-07-12 3 84
Maintenance fee payment 2017-07-28 1 25
Amendment / response to report 2017-09-13 3 75
Examiner Requisition 2018-05-18 5 286
Final fee 2019-07-02 4 90
Maintenance fee payment 2019-07-19 1 25