Sélection de la langue

Search

Sommaire du brevet 2230646 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Demande de brevet: (11) CA 2230646
(54) Titre français: PROCEDE ET COMPOSITION DESTINES A LA REALISATION DE LENTILLES OPHTHALMIQUES
(54) Titre anglais: METHOD AND COMPOSITION FOR THE MANUFACTURE OF OPHTHALMIC LENSES
Statut: Réputée abandonnée et au-delà du délai pour le rétablissement - en attente de la réponse à l’avis de communication rejetée
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • B29D 11/00 (2006.01)
  • B29C 35/08 (2006.01)
(72) Inventeurs :
  • BLUM, RONALD D. (Etats-Unis d'Amérique)
(73) Titulaires :
  • RONALD D. BLUM
(71) Demandeurs :
  • RONALD D. BLUM (Etats-Unis d'Amérique)
(74) Agent: SWABEY OGILVY RENAULT
(74) Co-agent:
(45) Délivré:
(86) Date de dépôt PCT: 1996-09-03
(87) Mise à la disponibilité du public: 1997-03-13
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Oui
(86) Numéro de la demande PCT: PCT/US1996/014098
(87) Numéro de publication internationale PCT: US1996014098
(85) Entrée nationale: 1998-02-27

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
08/522,815 (Etats-Unis d'Amérique) 1995-09-01

Abrégés

Abrégé français

Procédé de durcissement de lentilles ophthalmiques ou d'ébauches semi-finies de lentilles, selon lequel une résine durcissable est tout d'abord exposée à un rayonnement dans une plage de longueur d'onde comprise entre 400 et 800 nm avant d'être soumise à un traitement thermique ou à un rayonnement de longueur d'onde ou d'intensité différente de celle appliquée pour la première étape. Cette résine polymérisable renferme de préférence: (1) un premier photo-amorceur qui est activé par un rayonnement d'une longueur d'onde située dans la plage des 400 à 800 nm et (2) un déclencheur thermique qui est activé par la chaleur, ou bien un deuxième photo-amorceur qui est activé par un rayonnement d'une longueur d'onde ou d'une intensité différente de celle utilisée pour activer le premier photo-amorçeur.


Abrégé anglais


A curing method for ophthalmic lenses or semi-finished lens blanks wherein a
curable resin is first exposed to radiation in the wavelength range of 400-800
nm and subsequently subjected to heat or radiation of different wavelength or
intensity than that used in the first step. The polymerizable resin preferably
comprises: (1) a first photoinitiator that is activated by radiation in the
wavelength range of 400-800 nm and (2) a thermal initiator which is activated
by heat, or a second photoinitiator which is activated by radiation of
different wavelength or intensity than that used to activate the first
photoinitiator.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


8
CLAIMS
What is claimed is:
1. A curing method for ophthalmic lenses or semi-finished
lens blanks comprising:
(A) providing a mold and a polymerizable resin, said
polymerizable resin comprising
(1) a first photoinitiator that is activated by
radiation in the wavelength range 400-800 NM
and
(2) an initiator selected from the group consisting
of (a) a thermal initiator which is activated
by heat and (b) a second photoinitiator which
is activated by radiation of different
wavelength or intensity than that used to
activate the first photoinitiator;
(B) exposing the curable resin to radiation in the
wavelength range of 400-800 NM; and
(C) subsequently subjecting the curable resin to a
curing environment selected from (1) heat and (2)
radiation of different wavelength or intensity than
that used in step (B).
2. The method of claim 1, further comprising heat
treating subsequent to step (C).
3. The method of claim 1, in which light delivered by
incandescent light bulbs is used to provide said
radiation in the wavelength range of 400-800 NM.
4. The method of claim 1, in which light delivered by
fluorescent light bulbs is used to provide said
radiation in the wavelength range of 400-800 NM.
5. The method of claim 1, in which step (B) further
comprises control of temperature in the range 15°C-45°C.

9
6. The method of claim 1, in which said first
photoinitiator is Bisdimethoxybenzoyl Trimethylpentyl
Phosphine Oxide.
7. The method of claim 1, in which said second
photoinitiator is selected as the initiator.
8. The method of claim 7, in which said second
photoinitiator is .2-Hydroxy 2-Methyl 1-Phenyl Propane.
9 The method of claim 1, in which said thermal
initiator is selected as the initiator.
10. The method of claim 11, in which said thermal
initiator is selected from the group consisting of a
peroxide, a peracetate, a percarbonate and an azo
derivative.

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 02230646 1998-02-27
W O 97/09170 PCTrUS96/14098
k~-l~ A~D COMPOSITION FOR ~E MU~n~FACllnRE
OF ~H~ MTC T-
FIELD OF l~HE lNV~NLlON:
This invention relates to improved methods by which
plastic resins can be cured to form ophth~lmic lenses,
semifinished blanks and optical preforms. Ophthalmic
lenses o~ten have complex geometries, with certain
prescriptions having variations in thicknesses across
the optic area of greater than an order of magnitude.
Since the curing process is accompanied by shrinkage, a
key objective of curing process development efforts is
to be able to accommodate shrinkage without unduly
increasing the cure time. I have developed a curing
method for ophth~1 mi c lenses that uses visible light to
initiate cure, while nevertheless crea~ing a colorless
product.
~A~r-RO~ND:
Curing of organic polymerizable resins to form
ophthalmic lenses and semifinished blanks has
traditionally involved the use of thermal polymerization
initiators as described, for example, in US Paten~

CA 02230646 1998-02-27
W O 97/09170 PCTrUS96/14098
3,038,210, issued to Hungerford, et al., and US Patent
3,222,432, issued to Gr~n~p~ret~ More recently,
photocuring processes have been disclosed involving the
use of ultraviolet initiators, for example, US Patent
4,166,088, issued to Neefe, and US Patent Nos. 5,364,256
and 4,879,318 to Lipscomb. Photocuring processes have
allowed the development of cure cycles that are
considerably shorter than standard thermal curing
cycles.
In all cases, it is necessary to ensure that the
cure profile, which determines the rate of shrinkage,
allows the cure of the bulk resin to take place in a
controlled fashion while the surface still retains
substantial adhesion to the mold. In this way, the lens
does not undergo a prerelease, does not develop optical
aberratlons caused by the formation of local
heterogeneities in the resin mass due to uneven flow,
and does not develop surface defects or cracks due to
resin shrinkage.
In U.S. Patent No. 4,919,850, issued to me, I
disclose a two stage cure process involving the use of
ultraviolet polymerization initiators that allow the
resin to gel under a low level of ultraviolet
illumination. In this way, the initial cure rate is
25 maintained at a low level, until the resin mass becomes
a gel and mass flow ceases within the curing lens. This
is important, because the risk of developing optical
aberrations is highest at the initial stages of the
curing process when local exotherms can induce optical
30 aberrations through resin flow. After the material has
undergone gelation, the cure rate is accelerated by
increasing ultraviolet light intensity. Increasing Y
light intensity also serves to maintain the pace o~
curing as the initiator becomes depleted.
35 Alternatively, the cure rate is also accelerated in the
second stage by using W light of a shorter wavelength.

CA 02230646 l998-02-27
W O 97/09170 PCTrUS96/14098
A commercial version of this process has now been
introduced by the Rapidcast Corporation.
A disadvantage of the two stage process, as
disclosed in U.S. Patent No. 4,919,850 is that it
typically uses two curing chambers for efficient
implementation.
SU~$~RY OF I~E lNV~-~-lON:
An advantage of the present invention is that a
process is provided which can be efficiently implemented
using a single chamber.
Another advantage of the invention is that the
scope of the two stage curing process is expanded,
rendering it applicable to resin formulations covering a
wide range o~ chemical reactivities, f~nctionalities,
shrinkage properties, and thermal expa~sion
characteristics.
According to an embodiment of the present
invention, a curing method for ophthalmic lenses or
semi-finished lens blanks is described wherein a curable
resin is ~irst exposed to radiation in the wavelength
range o~ 400-800 NM. Then, the curable resin is
subjected to heat or radiation of di~erent wavelength
or intensity than that used in the ~irst step. The
polymerizable resin preferably comprises: (1) a first
photoinitiator that is activated by radiation in the
wavelength range 400-800 NM and (2) a thermal initiator
which is activated by heat, or a second photoinitiator
which is activated by radiation of different wavelength
or intensity than that used to activate the first
photoinitiator.
According to another embodiment of the invention,
an ophthalmic lens, semi~inished blank or optical
pre~orm is provided according to any of the methods
described or claimed herein.
The above and other objects, advantages and
embodiments will become readily apparent to those of

CA 02230646 1998-02-27
PCT/US96/14098
WO 97/09170
skill in the art upon reading the description and claims
set forth below.
Unless indicated to the contrary, each reference
cited herein is incorporated by reference in its
entirity.
DETATT-~n DESCRIPTION OF TRE lNV~N-LlON:
I have developed a cure process that utilizes room
light in a first stage to initiate cure and reach the
gel state. A second stage of the cure process can
subsequently be completed, by application of thermal
energy, by application of W light, or both. The
initial curing stage may take place either directly
under room light, or in chambers employing visible light
bulbs.
Since polymerization initiators which are activated
by visible light are generally highly colored, it may
appear at first sight that their use would be
incompatible with the proposed application (i.e., to
make an ophthalmic lens which is preferably colorless,
or water white). Recently, a new class of
photopolymerization initiators has been commercialized
which begin as a colored species and are activated by
visible light, but upon activation form colorless
photodissociation products. I discovered that such
photoinitiators can be used to develop cure processes
for ophthalmic lenses and semi-finished blanks.
A preferred photoinitiator is BAPO, available from
Ciba Geigy Corp. This photopolymerization initiator is
actually a mixture of two photoinitiators,
Bisdimethoxybenzoyl Trimethylpentyl Phosphine Oxide
(25~, by weight) and 2-Hydroxy 2-Methyl 1-Phenyl
Propanone (75~ by weight). The phosphine oxide
derivative absorbs visible light in the wavelength range
400-450 NM range, and initiates polymerization of resins
incorporating acrylic, methacrylic, vinylic or allylic
derivatives.
=

CA 02230646 1998-02-27
W O97/09170 PCTAUS96/14098
Under normal room illumination, the cure rate is
slow. Therefore, the mold assemblies do nct require
cooling or other temperature control to undergo
gelation. Nevertheless, precise temperature control
does produce a more uniform product and improves product
consistency and yield. If temperature control
mechanisms are provided, they should be employed to
control the temperature at or near room temperature,
i.e., at about 15~C to 35~C.
While not wishing to be bound by any particular
theory, it is believed that this photoinitiator works in
the following fashion. The phosphine oxide derivative
is activated and undergoes photodissociation under room
light, leaving the acetophenone derivative unaffected.
15 The phosphine oxide derivative undergoes bleaching on
photodissociation, so that the polymerizing resin mass
becomes less colored as polymerization progresses. Once
the resin has undergone gelation, the mold assembly is
placed in a chamber equipped with ultraviolet light
20 bulbs emitting radiation in the wavelength range of 300-
380 NM. The near ultraviolet radiation activates the
acetophenone derivative, causing the curing process to
become accelerated. At the same time, the dissociation
of the phosphine oxide derivative is completed,
25 completing the bleaching process. A residual faint
yellow hue can be corrected by an addition of a small
amount of a bluing additive, such as TINOPAL (available
from Ciba Geigy Corp.) to the resin formulation.
When W photoinitiators (such as the acetophenone
30 derivative) are used during the second stage of cure,
the mold assembly may be heated along a preestablished
r temperature profile, ultimately reaching a final
temperature in the range of about 90~-150~C, to complete
1 the cure process and to obtain a final lens product with
35 a glass transition temperature in the range of about
100~-175~C. If no heat is applied and the temperature
maintained at or near room temperature, the final

CA 02230646 1998-02-27
W 097/09170 PCT~US96114098
product has a lower glass transition temperature (e.g.,
in the range of about 30~-50~C). In all cases, the cure t
process should be completed. The extent of the cure
process can be monitored, for example, by a differential
5 sc~nn-ng calorimetric analysis of the material after
cure. Whether heating is necessary to complete the cure
generally depends on the monomers used in the resin
formulation. Thus, if monomers used in the formulation
can form homopolymers which have glass transition
10 temperatures considerably above the room temperature
(15~-30~C), then an elevated temperature is desirable to
complete the cure process.
Alternatively, a phosphine oxide derivative may be
used which initiates cure under visible light as before.
15 However, a thermal polymerization initiator, such as a
peroxide, a peracetate, a percarbonate or an azo
derivative may be used to complete the second stage
(post-gel cure) by placing the mold assembly in a
thermal curing oven, typically a convection oven.
The two stage polymerization process described
above may be carried out in glass molds, in metal molds
or in a combination thereof. Metal molds with
reflective inner surfaces may be especially useful in
reflecting radiation back into the resin mass and
conducting excess heat away from the resin mass. Metal
molds may also be made thinner, and thus can have a
lower thermal mass than glass molds. Alternatively,
glass molds with metallized sur~aces may be employed for
resin formulations which require a metal mold for
adhesion and thus prevent prerelease during cure.
The two stage polymerization method can be employed
to produce lenses from resin formulations covering a
wide range of chemical reactivities, functionalities,
shrinkage properties, and thermal expansion
characteristics. Both monomers and oligomers may be
employed, and polymeric or small molecular weight
additives can be included to alter physical properties

CA 02230646 1998-02-27
W O 97/09170 PCTAUS96/14098
of the resin formulation, such as viscosity and sur~ace
energy, as well as chemical proper~ies of the
formulation, such as oxidative and photothermal or
hydrolytic stability.

Dessin représentatif

Désolé, le dessin représentatif concernant le document de brevet no 2230646 est introuvable.

États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : CIB de MCD 2006-03-12
Demande non rétablie avant l'échéance 2001-09-04
Le délai pour l'annulation est expiré 2001-09-04
Réputée abandonnée - omission de répondre à un avis sur les taxes pour le maintien en état 2000-09-05
Inactive : CIB en 1re position 1998-06-13
Symbole de classement modifié 1998-06-13
Inactive : CIB attribuée 1998-06-13
Inactive : Notice - Entrée phase nat. - Pas de RE 1998-05-15
Demande reçue - PCT 1998-05-14
Demande publiée (accessible au public) 1997-03-13

Historique d'abandonnement

Date d'abandonnement Raison Date de rétablissement
2000-09-05

Taxes périodiques

Le dernier paiement a été reçu le 1999-08-10

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
Taxe nationale de base - générale 1998-02-27
TM (demande, 2e anniv.) - générale 02 1998-09-03 1998-02-27
TM (demande, 3e anniv.) - générale 03 1999-09-03 1999-08-10
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
RONALD D. BLUM
Titulaires antérieures au dossier
S.O.
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Description 1998-02-26 7 266
Abrégé 1998-02-26 1 42
Revendications 1998-02-26 2 51
Avis d'entree dans la phase nationale 1998-05-14 1 193
Courtoisie - Lettre d'abandon (taxe de maintien en état) 2000-10-02 1 184
PCT 1999-12-13 1 62
PCT 1998-02-26 7 249