Sélection de la langue

Search

Sommaire du brevet 2403694 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web à été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fournit par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 2403694
(54) Titre français: DISPOSITIF DE PHOTODECOMPOSITION EN CONTINU DE L'AMMONIAC
(54) Titre anglais: FLOW-THROUGH AMMONIA PHOTODISSOCIATION DEVICE
Statut: Réputé périmé
Données bibliographiques
Abrégés

Abrégé anglais



~ An ammonia photodissociation device comprises a flow-through fluid
channel, a porous membrane, a catalyst, and an ultraviolet light
source. The flow-through fluid channel has an inlet port for inflow of
gaseous ammonia (NH3), and an outlet port for outflow of a mixture of
gaseous nitrogen (N2) and gaseous hydrogen (H2). The porous membrane
separates the flow-through fluid channel into a first chamber and a
second chamber. The catalyst is disposed on the porous membrane in
order to increase the rate of chemical reactions. The ultraviolet light
source generates electromagnetic radiation in the ultraviolet (UV)
region of the spectrum, and is capable of dissociating gaseous ammonia
(NH3) into a mixture of gaseous nitrogen (N2) and gaseous hydrogen (H2)
according to formula: 2 NH3 -> N2 + 3 H2. This invention relates to
photodissociation devices, and the principal use of the invention is
for hydrogen generators.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.



Claims
~ The embodiments of the invention in which an exclusive property or
privilege is claimed are defined as follows:
1. An ammonia photodissociation device, comprising in combination:
~ a flow-through fluid channel having a middle portion, an inner
surface, an inlet port for inflow of gaseous ammonia (NH3), and an
outlet port for outflow of a mixture of gaseous nitrogen (N2) and
gaseous hydrogen (H2);
~ a porous membrane for separating the flow-through fluid channel
into a first chamber which is adjacent to the inlet port and a
second chamber which is adjacent to the outlet port, the porous
membrane being securely attached to the middle portion of the
flow-through fluid channel, the porous membrane having pores in
order to provide fluid communication between the first chamber of
the flow-through fluid channel and the second chamber of the
flow-through fluid channel;
~ a catalyst disposed on the porous membrane in order to increase
the rate of chemical reactions; and
~ an ultraviolet light source for generating electromagnetic
radiation in the ultraviolet (UV) region of the spectrum, the
ultraviolet light source mounted inside the flow-through fluid
channel;
the electromagnetic radiation from the ultraviolet light source being
capable of irradiating inside the flow-through fluid channel in order
to dissociate gaseous ammonia (NH3) into a mixture of gaseous nitrogen
(N2) and gaseous hydrogen (H2) according to formula: 2 NH3 -> N2 + 3 H2.
2. An ammonia photodissociation device as defined in claim 1, further
comprising:
~ a heating element embedded in the porous membrane in order to
increase the rate of dissociation of gaseous ammonia (NH3) by
means of thermal energy.
3. An ammonia photodissociation device as defined in claim 2, in which the
heating element is heated by combustion.
4. An ammonia photodissociation device as defined in claim 2, in which the
heating element is heated by resistive heating.
5. An ammonia photodissociation device as defined in claim 1, further
comprising:
~ an ultrasonic transducer acoustically connected to the porous
membrane in order to increase the rate of dissociation of gaseous
ammonia (NH3) by means of acoustical energy.
6. An ammonia photodissociation device as defined in claim 5, in which the
ultrasonic transducer is made of a magnetostrictive material.
7. An ammonia photodissociation device as defined in claim 5, in which the


ultrasonic transducer is made of a piezoelectric material.
8. An ammonia photodissociation device as defined in claim 1, in which the
catalyst is additionally disposed on the inner surface of the
flow-through fluid channel.
9. An ammonia photodissociation device as defined in claim 1, in which the
flow-through fluid channel is cylindrical.
10. An ammonia photodissociation device as defined in claim 1, in which the
porous membrane is circular.
11. An ammonia photodissociation device as defined in claim 1, in which the
porous membrane is cylindrical.
12. An ammonia photodissociation device as defined in claim 1, in which the
porous membrane is a mesh.
13. An ammonia photodissociation device as defined in claim 1, in which the
porous membrane is a honeycomb.
14. An ammonia photodissociation device as defined in claim 1, in which the
porous membrane is corrugated.
15. An ammonia photodissociation device as defined in claim 1, in which the
catalyst is a photocatalyst.
16. An ammonia photodissociation device as defined in claim 1, in which the
catalyst is a thermocatalyst.
17. An ammonia photodissociation device as defined in claim 1, in which the
catalyst is an inorganic oxide semiconductor.
18. An ammonia photodissociation device as defined in claim 1, in which the
catalyst is a noble metal.
19. An ammonia photodissociation device as defined in claim 1, in which the
catalyst is a transition metal.
20. An ammonia photodissociation device as defined in claim 1, in which the
catalyst is an alloy.
21. An ammonia photodissociation device as defined in claim 1, in which the
catalyst comprises titanium dioxide (TiO2).
22. An ammonia photodissociation device as defined in claim 1, in which the
catalyst comprises indium tantalum oxide (InTaO).
23. An ammonia photodissociation device as defined in claim 1, in which the
catalyst comprises nickel (Ni).
24. An ammonia photodissociation device as defined in claim 1, in which the
catalyst comprises molibdenum (Mo).
25. An ammonia photodissociation device as defined in claim 1, in which the
catalyst comprises a mixture of indium (In), nickel (Ni) and tantalum
(Ta).
26. An ammonia photodissociation device as defined in claim 1, in which the
catalyst comprises a mixture of titanium dioxide (TiO2) and platinum
(Pt).


27. An ammonia photodissociation device as defined in claim 1, in which the
ultraviolet light source generates electromagnetic radiation in the
vacuum ultraviolet (VUV) region of the spectrum.
28. An ammonia photodissociation device as defined in claim 1, in which the
ultraviolet light source is a dielectric barrier discharge (DBD) lamp.
29. An ammonia photodissociation device as defined in claim 1, in which the
ultraviolet light source is an excimer lamp.

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 02403694 2002-09-27
Description
Title
o Flow-Through Aamnonia Photodissociation Device
Technical Field
o This invention relates to photodissociation devices, more particularly
to a flow-through ammonia photodissociation device.
Background Art
o There are many instances where it would be desirable to be able to
provide a flow-through device which dissociates ammonia (NH3) into
nitrogen (N2) and hydrogen (H2).
o Compared to other candidate fuels for fuel-cell vehicles, such as pure
hydrogen (H2) and methanol (CH30H), ammonia (NH3) has advantages in
energy density (high) and fire safety (non-flammable), among others. In
addition, an ammonia fuel-cell system has superior environmental
performance to a methanol fuel cell system because the exhaust contains
not C02 (greenhouse gas) or CO (toxic gas) but NZ (inert gas). What is
more, ammonia is naturally found (e. g., urine), and is a household
cleaning product (e.g., Windex (Trade Mark)). Moreover, ammonia is a
liquid at modest pressures, not unlike propane. Therefore, high
hydrogen content is possible in a relatively small volume. As for
toxicity, the smell of ammonia will prevent people from drinking it.
o Because ammonia (NH3) can be decomposed easily to yield hydrogen (H2),
it is a convenient portable source of atomic hydrogen for welding. If
an atom or molecule absorbs energy from a beam of light (E = hv), it
gains far more energy than it ever could by other methods (e. g., from
ordinary heating).
o A large number of patents disclose photodissociation devices.
o U. S. Patent 3 933 432 discloses "Photoionization" .
o U.S. Patent 4 995 955 discloses "Optically-assisted gas
decontamination process".
o These prior art arrangements do not provide a flow-through device which
uses photodissociation to crack ammonia (NH3) into nitrogen (N2) and
hydrogen (H2).
Description of the Invention
o It is a primary object of the invention to provide a flow-through
device which dissociates ammonia (NH3) into nitrogen (N2) and hydrogen
H2 ) .
o It is another object of the invention to provide a flow-through device
which uses photodissociation with ultraviolet light to crack ammonia
NH3 ) .
o It is another object of the invention to provide a flow-through device

CA 02403694 2002-09-27
which uses a catalyst in a porous membrane.
o An ammonia photodissociation device comprises a flow-through fluid
channel, a porous membrane, a catalyst, and an ultraviolet light
source. The flow-through fluid channel has an inlet port for inflow of
gaseous ammonia (NH3), and an outlet port for outflow of a mixture of
gaseous nitrogen (N2) and gaseous hydrogen (H2). The porous membrane
separates the flow-through fluid channel into a first chamber and a
second chamber. The catalyst is disposed on the porous membrane in
order to increase the rate of chemical reactions. The ultraviolet light
source generates electromagnetic radiation in the ultraviolet (W)
region of the spectrum, and is capable of dissociating gaseous ammonia
(NH3) into a mixture of gaseous nitrogen (N2) and gaseous hydrogen (H2)
according to formula: 2 NH3 -> N2 + 3 HZ.
Brief Description of the Figures in the Drawings
o In drawings which illustrate embodiments of the invention:
o Figure 1 is a sectional side view of one embodiment of a
flow-through ammonia ghotodissociation device according to the
invention;
o Figure 2 is a sectional top view of the invention of Figure 1;
o Figure 3 is a sectional side view of another embodiment of a
flow-through ammonia photodissociation device according to the
invention; and
o Figure 4 is a sectional top view of the invention of Figure 3.
Modes for Carrying Out the Invention
o According to the present invention shown in one embodiment in Figure 1
and Figure 2 , and in another embodiment in Figure 3 and Figure 4 , an
ammonia photodissociation device comprises a flow-through fluid channel
1-1/2-l, a porous membrane 1-4/2-4, a catalyst, and an ultraviolet
light source 1-5/2-5.
o The flow-through fluid channel 1-1/2-1 has a middle portion, an inner
surface, an inlet port 1-2/2-2 for inflow of gaseous ammonia (NH3),
and an outlet port 1-3/2-3 for outflow of a mixture of gaseous
nitrogen (N2) and gaseous hydrogen (H2).
o The porous membrane 1-4/2-4 separates the flow-through fluid channel
into a first chamber which is adjacent to the inlet port 1-2/2-2 and a
second chamber which is adjacent to the outlet port 1-3/2-3. The
porous membrane 1-4/2-4 is securely attached to the middle portion of
the flow-through fluid channel 1-1/2-1. The porous membrane 1-4/2-4
has pores in order to provide fluid communication between the first
chamber of the flow-through fluid channel 1-1/2-1 and the second
chamber of the flow-through fluid channel 1-1/2-1.
o The catalyst is disposed on the porous membrane 1-4/2-4 in order to
increase the rate of chemical reactions.
o The ultraviolet light source 1-5/2-5 generates electromagnetic
radiation in the ultraviolet (W) region of the spectrum. The
ultraviolet light source 1-5/2-5 is mounted inside the flow-through
fluid channel 1-1/2-1.

CA 02403694 2002-09-27
o The electromagnetic radiation from the ultraviolet light source
1-5/2-5 is capable of irradiating inside the flow-through fluid
channel 1-1/2-1 in order to dissociate gaseous ammonia (NH3) into a
mixture of gaseous nitrogen (N2) and gaseous hydrogen (H2) according to
formula: 2 NH3 -> N2 + 3 H~.
o The ultraviolet light source 1-5/2-5 may irradiate either the first
chamber of the flow-through fluid channel 1-1/2-1 or the second
chamber of the flow-through fluid channel 1-1/2-1.
o The ammonia photodissociation device may further comprise a heating
element embedded in the porous membrane 1-4/2-4 in order to increase
the rate of dissociation of gaseous ammonia (NH3) by means of thermal
energy. The heating element may be heated by combustion. Alternatively,
the heating element may be heated by resistive heating.
o The ammonia photodissociation device may further comprise an ultrasonic
transducer acoustically connected to the porous membrane 1-4/2-4 in
order to increase the rate of dissociation of gaseous ammonia (NH3) by
means of acoustical energy. The ultrasonic transducer may be made of a
magnetostrictive material such as Terfenol.-D alloy. Alternatively, the
ultrasonic transducer may be made of a piezoelectric material such as
Lead Zirconate Titanate (PZT).
o The catalyst may be additionally disposed on the inner surface of the
flow-through fluid channel 1-1/2-1.
o The flow-through fluid channel 1-1/2-1 may be cylindrical. The porous
membrane 1-4/2-4 may be circular, as shown in Figure 1 and Figure 2.
Alternatively, the porous membrane 1-4/2-4 may be cylindrical, as
shown in Figure 3 and Figure 4.
o The porous membrane 1-4/2-4 may be a mesh or a honeycomb. The porous
membrane 1-4/2-4 may be corrugated.
o The catalyst may be either a photocatalyst, a thermocatalyst, or a
mixture of photocatalyst and thermocatalyst. The catalyst may be an
inorganic oxide semiconductor, a noble metal, a transition metal, or an
alloy.
o The catalyst may comprise titanium dioxide (Ti02), indium tantalum
oxide (InTaO), nickel (Ni), molibdenum (Mo), a mixture of indium (In),
nickel (Ni) and tantalum (Ta), or a mixture of titanium dioxide (Ti02)
and platinum (Pt).
o Preferably, the ultraviolet light source 1-5/2-5 generates
electromagnetic radiation in the vacuum ultraviolet (~) region of the
spectrum, at wavelengths shorter than 254 nm.
o The ultraviolet light source 1-5/2-5 may be a dielectric barrier
discharge (DBD) lamp with a noble gas such as xenon (Xe), krypton (Kr)
or argon (Ar). The ultraviolet light source 1-5/2-5 may be an excimer
lamp with a noble gas such as xenon (Xe), krypton (Kr) or argon (Ar).

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , États administratifs , Taxes périodiques et Historique des paiements devraient être consultées.

États administratifs

Titre Date
Date de délivrance prévu 2008-02-12
(22) Dépôt 2002-09-27
(41) Mise à la disponibilité du public 2004-03-27
Requête d'examen 2007-05-30
(45) Délivré 2008-02-12
Réputé périmé 2010-09-27

Historique d'abandonnement

Il n'y a pas d'historique d'abandonnement

Historique des paiements

Type de taxes Anniversaire Échéance Montant payé Date payée
Le dépôt d'une demande de brevet 150,00 $ 2002-09-27
Taxe de maintien en état - Demande - nouvelle loi 2 2004-09-27 50,00 $ 2003-12-23
Taxe de maintien en état - Demande - nouvelle loi 3 2005-09-27 50,00 $ 2003-12-23
Taxe de maintien en état - Demande - nouvelle loi 4 2006-09-27 50,00 $ 2005-12-19
Taxe de maintien en état - Demande - nouvelle loi 5 2007-09-27 100,00 $ 2007-01-10
Requête d'examen 400,00 $ 2007-05-30
Taxe finale 150,00 $ 2007-12-04
Taxe de maintien en état - Demande - nouvelle loi 6 2008-09-29 100,00 $ 2008-01-11
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
SUNATORI, GO SIMON
Titulaires antérieures au dossier
S.O.
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(yyyy-mm-dd) 
Nombre de pages   Taille de l'image (Ko) 
Dessins représentatifs 2002-12-05 1 10
Abrégé 2002-09-27 1 24
Description 2002-09-27 3 186
Revendications 2002-09-27 3 125
Dessins 2002-09-27 4 64
Page couverture 2004-03-02 1 41
Page couverture 2008-01-24 2 46
Dessins représentatifs 2008-01-24 1 11
Correspondance 2007-11-07 1 71
Correspondance 2002-10-29 1 58
Cession 2002-09-27 2 60
Correspondance 2007-12-04 1 22
Poursuite-Amendment 2007-05-29 1 23
Poursuite-Amendment 2007-05-30 1 23
Poursuite-Amendment 2007-06-26 1 83
Correspondance 2007-10-23 1 71
Correspondance 2010-03-30 1 41
Correspondance 2009-06-30 1 54
Correspondance 2009-11-09 1 92
Correspondance 2010-06-29 2 97