Sélection de la langue

Search

Sommaire du brevet 2620479 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Demande de brevet: (11) CA 2620479
(54) Titre français: ECHANGEUR THERMIQUE DESTINE A DES APPLICATIONS THERMOELECTRIQUES
(54) Titre anglais: HEAT EXCHANGER FOR THERMOELECTRIC APPLICATIONS
Statut: Réputée abandonnée et au-delà du délai pour le rétablissement - en attente de la réponse à l’avis de communication rejetée
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • F25B 21/02 (2006.01)
  • F28F 07/00 (2006.01)
(72) Inventeurs :
  • ALAHYARI, ABBAS A. (Etats-Unis d'Amérique)
  • SPADACCINI, LOUIS J. (Etats-Unis d'Amérique)
  • YU, XIAOMEI (Etats-Unis d'Amérique)
  • VANDERSPURT, THOMAS H. (Etats-Unis d'Amérique)
(73) Titulaires :
  • CARRIER CORPORATION
(71) Demandeurs :
  • CARRIER CORPORATION (Etats-Unis d'Amérique)
(74) Agent: NORTON ROSE FULBRIGHT CANADA LLP/S.E.N.C.R.L., S.R.L.
(74) Co-agent:
(45) Délivré:
(86) Date de dépôt PCT: 2005-08-25
(87) Mise à la disponibilité du public: 2007-03-01
Requête d'examen: 2010-08-12
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Oui
(86) Numéro de la demande PCT: PCT/US2005/030389
(87) Numéro de publication internationale PCT: US2005030389
(85) Entrée nationale: 2008-02-25

(30) Données de priorité de la demande: S.O.

Abrégés

Abrégé français

L'invention concerne un système thermoélectrique (10) permettant de pomper de la chaleur, comprenant au moins un échangeur thermique à mousse (45) et permettant d'améliorer le transfert de chaleur à distance du système (10), de manière à améliorer le rendement et les performances globaux du système.


Abrégé anglais


A thermoelectric system (10) for pumping heat having at least one foam heat
exchanger (45) is provided that enhances heat transfer awayfrom the system
(10) to increase overall system efficiency and performance of the system.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


WHEREFORE WE CLAIM:
1. A system (10) for enhancing the efficiency of a thermoelectric heat
pumping system comprising:
an array of thermoelectric elements (15) having a temperature at a
first surface of said array (70) and a temperature at a second surface of
said array (75) opposite said first surface and
at least one foam heat exchanger (45) located adjacent one of said
first surface and said second surface
wherein fluid flowing through said at least one foam heat exchanger
reduces a difference between said temperature at a first surface of said
array (70) and said temperature at a second surface of said array (75)
thereby enhancing the efficiency of said system (10).
2. The system (10) of claim 1, further comprising a foam heat exchanger (45)
adjacent a first surface of said array (70) and a foam heat exchanger (55)
adjacent a second surface of said array (75).
3. The system (10) of claim 1, comprising a current flowing through said
array of thermoelectric elements to generate a temperature difference
between a first surface of said array (70) and a second surface of said
array (75).
4. The system (10) of claim 3, wherein said at least one foam heat
exchanger (45) at one of said first surface of said array (70) and said
second surface of said array (75) transport heat away from said array
thereby reducing the current flowing through said array.
9

5. The system (10) of claim 2, wherein said foam heat exchanger (45)
adjacent said first surface of said array (70) and said foam heat exchanger
(55) adjacent said second surface of said array (75) each have a porosity
to enhance heat transfer through said array.
6. The system (10) of claim 1, wherein said at least one foam heat
exchanger (185) incorporates fins for heat dissipation.
7. The system (10) of claim 1, wherein said at least one foam heat
exchanger (45) is made from a material selected from a group consisting
of aluminum, graphite and copper.
8. A system (10) for enhancing the efficiency of a thermoelectric heat
pumping system of as herein before described with reference to any one
of Figures. 1, 3, 5, and 6 of the accompanying drawings.
9. A method of enhancing the efficiency of a thermoelectric system (10)
comprising:
providing a thermoelectric array (15) having a series of
thermoelectric pairs (20) arranged electrically in series;
providing a first foam heat exchanger (45) adjacent a first surface of
said thermoelectric array (70) and a second foam heat exchanger (55)
adjacent a second surface of said thermoelectric array (75) opposite said
first surface;
generating a temperature at said first surface of said thermal array
(70) and a temperature at a second surface of said array (75) that is
different from said temperature at said first surface of said array;

whereby fluid flowing through said first foam heat exchanger (45)
and said second foam heat exchanger (55) reduce a temperature
difference between said first surface (70) and said second surface (75),
thereby enhancing the efficiency of the thermoelectric system (10).
10. The method of claim 9, wherein said first foam heat exchanger (45) and
said second foam heat exchanger (55) each have a porosity to enhance
heat transfer capability.
11. The method of claim 9, wherein as a temperature between said first
surface (70) and said second surface (75) is reduced, a coefficient of
performance of said system is increased.
12. The method of claim 9, wherein a reduced porosity of said first foam heat
exchanger (45) and said second foam heat exchanger (55) further
enhance heat transfer to or away from said first surface (70) and said
second surface (75).
13. The method of claim 9, wherein enhanced heat transfer across said first
surface (70) and said second surface (75) reduces required current
flowing through said array.
14. The method of claim 9, wherein at least one of said first foam heat
exchanger and said second foam heat exchanger (185) incorporate fins.
15. A method of enhancing the efficiency of a thermoelectric system as
herein before described with reference to any one of Figures 1, 3, 5, and
6.
11

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 02620479 2008-02-25
WO 2007/024229 PCT/US2005/030389
HEAT EXCHANGER FOR THERMOELECTRIC APPLICATIONS
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to foam heat exchangers, and more
particularly, to an apparatus and method for enhancing heat transfer in
thermoelectric systems using foam heat exchangers.
2. Description of Related Art
The use of heat exchangers to dissipate heat in power electronics
applications is well known. Heat exchangers or heat sinks are frequently metal
radiators designed to remove heat from power electronics components,
particularly, power transistor modules, by thermal conduction, convection or
radiation. Without heat exchangers power electronics component would suffer
from reduced performance and reliability.
Heat exchangers are often structured to have a maximum number of fins
per unit volume radiating in a direction perpendicular to a heated surface. In
particularly demanding applications, heat exchangers dissipate heat using
forced
convection to a cooling fluid over the heat exchangers to increase the heat
dissipation of the exchanger. An even more efficient apparatus for dissipating
heat is the use of foams, and in particular metal forms, which have a more
effective surface area for heat transfer. Metal foams have recently been used
to
dissipate heat in power electronic applications; however, they have not been
used in thermoelectric systems.
Accordingly, there exists a need for foam heat exchangers to be used with
thermoelectric elements to build systems for a variety of heating and cooling

CA 02620479 2008-02-25
WO 2007/024229 PCT/US2005/030389
systems that reduce energy consumption and increase heat pumping capacity in
such systems.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide thermoelectric heating
and cooling systems that use foam heat exchangers.
It is also an object of the present invention to provide thermoelectric
heating and cooling systems that use metal foam heat exchangers.
It is another object of the present invention to provide thermoelectric
heating and cooling systems that use foam heat exchangers to dissipate heat.
It is a yet another object of the present invention to provide thermoelectric
heating and cooling systems having thermoelectric elements that use foam heat
exchangers to reduce the energy consumption of the thermoelectric elements.
It is still yet another object of the present invention to provide
thermoelectric heating and cooling systems having thermoelectric elements that
use foam heat exchangers to increase the heat pumping capacity of the
thermoelectric elements.
It is a further object of the present invention to provide a method for
enhancing heat transfer of thermoelectric elements using foam heat exchangers.
A system for enhancing the efficiency of a thermoelectric heat pumping '
system including an array of thermoelectric elements having a temperature at a
first surface of the array and a temperature at a second surface of the array
opposite the first surface and at least one foam heat exchanger located
adjacent
one of the first surface and the second surface is provided. The fluid flowing
2

CA 02620479 2008-02-25
WO 2007/024229 PCT/US2005/030389
through the at least one foam heat exchanger reduces a difference between the
temperature at a first surface of the array and the temperature at a second
surface of the array thereby enhancing the efficiency of the system.
A method of enhancing the efficiency of a thermoelectric system having a
thermoelectric array having a series of thermoelectric pairs arranged
electrically
in series is provided. The method provides for a first foam heat exchanger
adjacent a first surface of the thermoelectric array and a second foam heat
exchanger adjacent a second surface of the thermoelectric array opposite first
surface; for generating a temperature at a first surface of the thermal array
and a
temperature at a second surface of the array that is different from the
temperature at the first surface of the array; whereby fluid flowing through
the
first foam heat exchanger and the second foam heat exchanger reduces a
temperature difference between the first surface and the second surface,
thereby
enhancing the efficiency of the thermoelectric system.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 illustrates a thermoelectric system having foam heat exchangers of
the present invention;
Fig. 2 shows a table that compares the heat transfer coefficients of
different foams used in the thermoelectric system of the present invention and
the weight savings compared to a conventional heat exchanger;
Fig. 3 illustrates a thermoelectric system functioning in a heating mode
and using foam heat exchangers of the present invention;
Fig. 4 illustrates a graph showing increased coefficient of performance of
thermoelectric systems as the heat transfer coefficient of heat exchangers
increase;
3

CA 02620479 2008-02-25
WO 2007/024229 PCT/US2005/030389
Fig. 5 illustrates a foam heat exchanger of the present invention shown in
Fig. 3; and
Fig. 6 illustrates a foam heat exchanger according to a second
embodiment of the heat exchanger of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Referring to Fig. 1, a thermoelectric system 10 having a thermoelectric
elements 15, is shown. Thermoelectric elements 15 are grouped in several P
and N pairs or couples 20 that are arranged electrically in series. Electrical
connectors 25 provide the connection between adjacent couples 20 and to a
power source (not shown). Substrates 30 and 35 are ceramic substrates that
provide insulation to system 10. Substrates 30 and 35 hold system 10 together
mechanically and insulate couples 20 electrically. Substrate 30 has a surface
40
that is in contact a with foam heat exchanger 45. Similarly, substrate 35 has
a
surface 50 that is in contact with foam heat exchanger 55. Fans 60 and 65 are
used to force fluid through heat exchangers 45 and 55, respectively. Although
fans 60 and 65 are shown forcing air through heat exchangers 45 and 55,
respectively, other types of mechanisms for removing other types of fluid
could
also be used. Surfaces 40 and 50 may be integral to heat exchanger 45 and 55,
respectively, and form a base for connecting to surface 30 and 35 of
thermoelectric array.
In Fig. 1, foam heat exchangers 45 and 55 are located immediately
adjacent to substrates 30 and 35 to maximize heat transfer from the surfaces
70
and 75 of thermoelectric elements 15. Foam heat exchangers 45 and 55
provide enhanced heat transfer area from surfaces 70 and 75, respectively.
4

CA 02620479 2008-02-25
WO 2007/024229 PCT/US2005/030389
Foam heat exchangers 45 and 55 are made from highly conductive
materials such as aluminum, copper or graphite. Exchangers made from such
materials are not only highly conductive, but because they are formed as a
foam,
they have a very high porosity and surface area to further enhance their heat
transfer capacity. Traditional heat exchangers used in thermoelectric
applications have fins to dissipate heat. In comparison to foam heat
exchanges,
finned heat exchangers have a very limited surface area. Furthermore,
traditional heat exchangers are relatively heavy compared to foam heat
exchangers 45 and 55 of the present invention. Reducing the weight and/or
volume and increasing the heat transfer capacity of heat exchangers is of
great
concern when both small and large heating and cooling thermoelectric systems
are used.
Referring to Table 1 in Fig. 2, the heat transfer coefficients, maximum
temperature and weight savings of a traditional heat sink compared to three
foam
heat exchangers of differing porosities, is shown. Comparing Foam A having a
porosity of 10 PPI (pores per inch), the coefficient of heat transfer is over
eighty-
seven (87) times greater that that of the traditional heat sink. By doubling
the
porosity of the foam heat exchanger to 20 PPI, the coefficient of heat
transfer of
the Foam B is increased to one hundred and thirty (130) times that of the
convention heat sink. Again doubling the porosity of the foam heat exchanger
to
40 PPI, the coefficient of heat transfer of the Foam C is increased to one
hundred
and eighty-eight (188) times that of the convention heat sink. Not only is
there a
tremendous increase in heat transfer capacity, but the weight savings of the
foam
heat exchangers is also significant. The substantial weight savings reduces
the
overall weight of the thermoelectric refrigeration or heating system is which
these
exchangers would be used. Further, by reducing the maximum temperature of
the system, the overall temperature difference across the thermoelectric array
is
decreased significantly. The coefficient of performance (COP) of
thermoelectric
systems is defined as the heating or cooling capacity divided by the power

CA 02620479 2008-02-25
WO 2007/024229 PCT/US2005/030389
consumed. The COP is inversely proportional to the maximum temperature
difference across the array.
Referring to Fig. 3, a first embodiment of the present invention having a
thermoelectric system 90 using foam heat exchangers 95 and 100 configured in
a heating mode, is shown. A DC voltage from a power source 105 is applied
across thermoelectric elements 120 and a current 110 flows in the direction
shown. Pairs 115 (P and N pairs) of thermoelectric elements 120 absorb heat
from a surface 125 and release heat to a surface 130 at the opposite side of
device 120. Surface 125 where the heat energy is absorbed becomes cold and
the opposite surface 130 where the heat energy is released becomes hot. This
"heat pumping" phenomenon, known as the Peltier effect, is commonly used in
thermoelectric refrigeration or heating. In this embodiment, fan 135 forces
air
through heat exchanger 100 which absorbs heat and is cooled. Fan 140 forces
air through heat exchanger 95 to transport heat away from surface 130 to be
heated. Power source 105 used in this configuration can be a battery, a fuel
cell
or any other similar device used to supply current. Thermoelectric system 90
can be converted from a heating mode to a cooling by reversing the polarity of
DC poser supply 105.
Foam heat exchangers 95 and 100 provide substantial heat transfer
capacity across surfaces 130 and 125, respectively, compared to traditional
heat
sinks to increase the efficiency of system 90. By having a high heat transfer
coefficient foam heat exchangers 95 and 100, a lower the temperature
difference
between the opposing surfaces of thermoelectric elements 120, is achieved.
This low temperature difference increases the performance of the overall
system
90 by consuming less energy. Thus the overall system, whether it is configured
as a heating or a cooling system, has a very high performance.
Fig. 4 shows the relationship between performance of the system and the
coefficient of heat transfer using the foam heat exchangers of a typical
6

CA 02620479 2008-02-25
WO 2007/024229 PCT/US2005/030389
thermoelectric system. Coefficient of performance is defined as heating or
cooling capacity divided by the power consumed by the system.
Referring to Figs. 5 a second configuration of a foam heat exchanger
system 150 is shown. Foam heat exchanger system 150 has a thermoelectric
array 155 having a series of thermoelectric pairs 160 arranged in series.
Thermoelectric device array 155 has surfaces 165 and 170. System 150 is
arranged to have a single foam heat exchanger 175 to dissipate heat from
surface 170. Depending upon the application, a second foam heat exchanger
may not be required. Alternatively, a traditional heat exchanger may be used
in
place of a foam heat exchanger depending upon the application and placed
adjacent surface 165. Different configurations of placing foam heat exchangers
can be used to maximize heat transfer and depending upon the application.
Similarly, a single system can include several thermoelectric array, each
having
one or more foam heat exchangers.
In Fig. 6 a third embodiment of a foam heat exchanger system 180, is
shown. System 180 is arranged similar to the system of Fig. 5, except that the
heat exchanger is a combination foam and fin heat exchanger 185. System 80
has an array 190 of thermoelectric elements 195. Elements 195 have surfaces
200 and 205. In the embodiment of Fig. 5, a second foam heat exchanger may
not be required. Alternatively, a traditional heat exchanger may be used in
place -
of a foam heat exchanger depending upon the application. Additionally,
different
configurations of placing foam heat exchangers can be used to maximize heat
transfer and depending upon the application.
While the instant disclosure has been described with reference to one or
more exemplary embodiments, it will be understood by those skilled in the art
that various changes may be made and equivalents may be substituted for
elements thereof without departing from the scope thereof. In addition, many
modifications may be made to adapt a particular situation or material to the
7

CA 02620479 2008-02-25
WO 2007/024229 PCT/US2005/030389
teachings of the disclosure without departing from the scope thereof.
Therefore,
it is intended that the disclosure not be limited to the particular
embodiment(s)
disclosed as the best mode contemplated for carrying out this invention, but
that
the invention will include all embodiments falling within the scope of the
appended claims.
8

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Demande non rétablie avant l'échéance 2012-08-27
Le délai pour l'annulation est expiré 2012-08-27
Réputée abandonnée - omission de répondre à un avis sur les taxes pour le maintien en état 2011-08-25
Lettre envoyée 2010-08-26
Modification reçue - modification volontaire 2010-08-12
Exigences pour une requête d'examen - jugée conforme 2010-08-12
Toutes les exigences pour l'examen - jugée conforme 2010-08-12
Requête d'examen reçue 2010-08-12
Lettre envoyée 2008-11-13
Inactive : Transfert individuel 2008-08-15
Inactive : Décl. droits/transfert dem. - Formalités 2008-05-20
Inactive : Page couverture publiée 2008-05-16
Inactive : Notice - Entrée phase nat. - Pas de RE 2008-05-14
Inactive : CIB en 1re position 2008-03-13
Demande reçue - PCT 2008-03-12
Exigences pour l'entrée dans la phase nationale - jugée conforme 2008-02-25
Demande publiée (accessible au public) 2007-03-01

Historique d'abandonnement

Date d'abandonnement Raison Date de rétablissement
2011-08-25

Taxes périodiques

Le dernier paiement a été reçu le 2010-08-25

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
Taxe nationale de base - générale 2008-02-25
TM (demande, 2e anniv.) - générale 02 2007-08-27 2008-02-25
Enregistrement d'un document 2008-08-15
TM (demande, 3e anniv.) - générale 03 2008-08-25 2008-08-25
TM (demande, 4e anniv.) - générale 04 2009-08-25 2009-08-24
Requête d'examen - générale 2010-08-12
TM (demande, 5e anniv.) - générale 05 2010-08-25 2010-08-25
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
CARRIER CORPORATION
Titulaires antérieures au dossier
ABBAS A. ALAHYARI
LOUIS J. SPADACCINI
THOMAS H. VANDERSPURT
XIAOMEI YU
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Description 2008-02-24 8 315
Dessin représentatif 2008-02-24 1 58
Dessins 2008-02-24 5 121
Revendications 2008-02-24 3 99
Abrégé 2008-02-24 2 112
Avis d'entree dans la phase nationale 2008-05-13 1 207
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 2008-11-12 1 122
Rappel - requête d'examen 2010-04-26 1 119
Accusé de réception de la requête d'examen 2010-08-25 1 179
Courtoisie - Lettre d'abandon (taxe de maintien en état) 2011-10-19 1 173
PCT 2008-02-24 3 155
Correspondance 2008-05-13 1 26