Language selection

Search

Patent 1054027 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent: (11) CA 1054027
(21) Application Number: 274336
(54) English Title: FAIL SAFE FLUID POWER DEVICE
(54) French Title: DISPOSITIF FLUIDIQUE A L'EPREUVE DES PANNES
Status: Expired
Bibliographic Data
Abstracts

English Abstract


FAIL SAFE LIQUID POWER DEVICE

Abstract of Disclosure

The present invention relates to a fluid power device
such as one for opening and closing clam shell gates and
operated by a ram under fluid pressure. A tank is provided
for storing fluid under pressure and by a system of valving,
extension of the ram, as for a gate opening operation,it is
inhibited until enough fluid under pressure is stored in
the tank to assure completion of reverse operation of the
ram to close the gates.


Claims

Note: Claims are shown in the official language in which they were submitted.



The embodiments of the invention in which an ex-
clusive property or privilege is claimed are defined as
follows:
1. In a system for performing work by operation
of a hydraulic ram having a piston therein forming in said
ram a foreward chamber and a reverse chamber,
said system comprising a source of fluid at fore-
ward operating pressure,
a fluid pressure storage container including fluid
passage means connecting said container to said source,
operating valve means having fluid passage means
connecting said operating valve means respectively to said
source, said container and said ram for selectively direct-
ing fluid at said foreward operating pressure to said fore-
ward chamber,
said operating valve means having one adjustment
wherein said foreward operating pressure is passed to said
foreward chamber and said reverse chamber has a connection
to exhaust,
sequence valve means connected respectively to
said container, said source and said operating valve means,
said sequence valve means having an adjustment at
pressures less than said foreward operating pressure which
inhibits passage of fluid by said operating valve means to
said foreward chamber until said container is at said fore-
ward operating pressure,
said operating valve means having another adjust-
ment connecting said foreward chamber to exhaust,
and a fluid connection between said container and
said reverse chamber operative to reverse action of said ram


16


when said foreward chamber is connected to exhaust,
2. A system as in Claim 1 wherein said sequence
valve means includes an unloading vent operative prevent
overloading said system with fluid pressure.
3. A system as in Claim 1 wherein the source of
fluid pressure is air and said operating valve means

prises a selector valve unit connected to said source and a
pilot operated valve unit responsive to said sequence valve
means when at said foreward operating pressure, said pilot
operated valve unit having one position wherein passage of
air from the selector valve unit is blocked and the foreward
chamber is connected to exhaust and another position wherein
air is passed to the foreward chamber.
4. A system as in Claim 3 wherein said fluid con-
nection between the container and the reverse chamber con-
tains a pressure relief valve set at a pressure less than
said foreward operating pressure and a pressure regulator
set at a pressure less than the setting of said pressure
relief valve.
5. A system as in Claim 3 wherein the sequence
valve means is connected directly to the container and there
is a pilot fluid pressure line from said sequence valve
means to said pilot operated valve unit.
6. A system as in Claim 3 wherein there is a
constantly open restricted vent connected to said sequence
valve means.
7. A system as in Claim 4 wherein the pressure
regulator is set at a pressure not higher than about one
fourth the foreward operating pressure.
8. A system as in Claim 1 wherein said operating

17


valve means comprises a selector valve unit connected to
said source, a pilot operated valve means responsive to
said sequence valve means when at said foreward operating
pressure, said pilot operated valve means having one position
wherein passage of air from the sequence valve means is
blocked and another position wherein air is passed to the
foreward chamber, an air line from the pilot operated valve
means to said foreward chamber and a quick exhaust valve
unit in said air line.
9. A system as in Claim 1 wherein said container
has a gas chamber, a liquid chamber and a movable separator
therebetween, the liquid chamber being in communication with
the fluid passage means which is connected to said source.
10. A system as in Claim 9 wherein said source of
fluid comprises a liquid reservoir and a power operated
pump.
11. A system as in Claim 10 wherein there is an
unloading relief valve connected respectively to said se-
quence valve means and said operating valve means having a
pressure setting in excess of said foreward operating pres-
sure and a discharge from said relief valve to said reser-
voir.
12. A system as in Claim 9 wherein said operating
valve means comprises two valve members, one of said mem-
bers having one adjustment wherein the liquid reservoir is
connected to said sequence valve means and disconnected from
said ram and another adjustment wherein the liquid chamber
is disconnected from said sequence valve means and connected
to said ram.
13. A system as in Claim 9 wherein said operating

18

valve means comprises two valve members, a second of said
valve members having a first adjustment wherein said sequence
valve means is connected to a first of said ram chambers and
a second of said ram chambers is connected to exhaust and a
second adjustment wherein said second of said ram chambers
is connected to said sequence valve means and said first of
said ram chambers is connected to exhaust.
14. A system as in Claim 13 wherein said second
of said valve members has a third position wherein the fluid
passage means from said sequence valve means to said operat-
ing valve means is blocked.
15. A system as in Claim 9 wherein said operating
valve means comprises two valve members, one of said valve
members having one adjustment wherein the liquid reservoir
is connected to said sequence valve means and disconnected
from said ram and another adjustment wherein the liquid
chamber is disconnected from said sequence valve means, the
other of said valve members having a first adjustment where-
in said sequence valve means is connected to the first of
said ram chambers and a second of said ram chambers is con-
nected to exhaust, and a second adjustment wherein said
second of said ram chambers is connected to said sequence
valve means and said first of said ram chambers is connected
to exhaust.


19

16. In a system for performing work by operation of
a gas actuated ram comprising a cylinder and a piston
therein forming in said cylinder a forward chamber and a
reverse chamber wherein said reverse chamber has a re-
verse exhaust means at a pressure exceeding ambient pres-
sure, and wherein said piston is movable between full
forward and reverse positions, said system comprising a
source of gas at forward operating pressure, a gas storage
container means of capacity at least equal to the capacity
of the reverse chamber with the piston at said full reverse
position, said container means including gas passage means
connecting said container means to said source, operating
valve means comprising a forward acting member and a for-
ward exhaust member, said forward acting member including
gas passage means interconnecting said source, said con-
tainer means and said forward chamber, said operating
valve means having one adjustment wherein said forward
acting member is in a position wherein said source is
connected to said forward chamber for passing gas at
forward operating pressure to said forward chamber and
wherein said reverse chamber has a connection to said
reverse exhaust means, sequence valve means interconnected
with said container means and said operating valve means,
said sequence valve means having a first automatic adjust-
ment at pressures less than said forward operating pres-
sure operative to inhibit passage of gas by said operating
valve means to said forward chamber, said sequence valve
means having a second automatic adjustment when said con-
tainer means is at said forward operating pressure, said
operating valve means having another adjustment in response




to said second automatic adjustment of the sequence valve
means wherein said forward exhaust member connects said
forward chamber to exhaust and said source is disconnected
from said forward chamber, a gas connection between said
container means and said reverse chamber, said last con-
nection being operative to pass gas under pressure to said
reverse chamber whereby to reverse action of said ram when
said forward chamber is connected to exhaust.
17. A system as in claim 16 wherein said sequence
valve means includes an unloading vent operative to prevent
overloading said system with fluid pressure.
18. A system as in claim 16 wherein the source of gas
pressure is air and said operating valve means comprises a
selector valve unit connected to said source and a pilot
operated valve unit responsive to said sequence valve means
when at said forward operating pressure, said pilot oper-
ated valve unit having one position wherein passage of air
from the selector valve unit is blocked and the forward
chamber is connected to exhaust and another position wherein
air is passed to the forward chamber.
19. A system as in claim 18 wherein said gas connec-
tion between the container and the reverse chamber contains
a pressure relief valve set at a pressure less than said
forward operating pressure and a pressure regulator set
at a pressure less than the setting of said pressure relief
valve.
20. A system as in claim 18 wherein the sequence
valve means is connected directly to the container and
there is a pilot gas pressure line from said sequence valve
means to said pilot operated valve unit.


21

21. A system as in claim 18 wherein there is a con-
stantly open restricted vent connected to said sequence
valve means.
22. A system as in claim 19 wherein -the pressure
regulator is set at a pressure substantially less than
the forward operating pressure.
23. A system as in claim 16 wherein said operating
valve means comprises a selector valve unit connected to
said source, a pilot operated valve means responsive to
said sequence valve means when at said forward operating
pressure, said pilot operated valve means having one
position wherein passage of gas from the sequence valve
means is blocked and another position wherein gas is
passed to the forward chamber, a gas line from the pilot
operated valve means to said forward chamber and a quick
exhaust valve unit in said gas line.
24. A system as in claim 16 wherein said last con-
nection is constantly open and the pressure between said
last connection and said reverse chamber is less than
the pressure at said source.


22

Description

Note: Descriptions are shown in the official language in which they were submitted.


~59~ 7
The present invention relates to a fluid power
device SUCll for example as one for opening and closing clam
shell gates and operated by a ram under fluid pressure.
The device makes use of a fluid actuated ram for
S doinc~ work, customarily referred to as a hydraulic ram. A
commercial construction device usually manipulated by employ-
rnent of such a ram consists of clam shell gates such as are
used on concrete placement buckets. Another consists of a ,~!.
pair of hooks such as are used by cranes for lifting and
placing construction material. These however are merely
examples in that the reciprocating action of a ram may be
adapted to a great assortment of uses.
A popular pneuma-tic gate actuating device for con-
crete buckets may be found disclosed in U.S. Patent No.
2,856,222, which makes use of a portable air pressure res-
ervoir for the purpose of manipulating a ram. A more recent
gas actuated power device is found disclosed in U.S. Patent
No. 3,104,125 where a portable gas pressure device is coupled
with mechanisms capable of operating semi-automatically.
Although devices of the kind disclosed in the
~:
patents mentioned have long been effectiva~ there has been
a noteworthy shortcoming in that there is no assurance after
a palr of clam sheel gates for example, have been opened,
that there is enough air pressure left to completely close
them. Gauges and the like of course can be made use of but
such expendients are always subject to human error. When
for example, a large bucket of wet concrete has been opened
or perhaps partially opened for dumping ~he load, inability
to promp ly and effectively close the gates before dumping
the entire load could be extremely disadvantageous, causing

~i~5~
wet concrete to be d~ ed in the wrong place. Inability to disengage a hook
could be equally disadvantageous.
It is therefore amony the objects of the invention to provide a
new and improvecl fail safe fluid power device of a reciprocating character
wh~re operation in one direction is inhibited until there is assurance that
operation in a reverse direction can be run to oompletion once operation in
a forward direction has been undertaken.
Another object of the invention is to provide a new and improved
fail safe fluid power device which is completely portable and which auto-
matically assures a complete reciprocating cycle of the ram prior to initi- ~ ~`
ation of operation.
Still another object of the invention is to provide a new and
improved hydraulic ra~ system operating under liquid pressure wherein
adequate pressure and v~lume must ke stored to complete a reverse operation
` prior to initiation of a forward operation and wherein there is an overload
; relief capable of preventing strain on the system should forward operation
be interrupted for any reason.
With these and other objects in view, the invention provides,
accordIng to one aspect thereof, a system for performing work by operation
- 20 of a hy~raulic ram having a piston therein forming in the ram a forward
cha~ber and a reverse chamber, the system comprising a source of fluid at
-` forward operating pressure, a fluid pressure storage container including
fluid passage means connecting the container to the source, and operating
valve means having fluid passage means connecting the operating valve means
respectively to the source, the container and the ram for selectively
; directing fluid at the forward operating pressure to the forward chamber.
The operating valve means has one adjustment wherein the forward operating
pressure is passed to the forward chamker and the reverse chamber has a ~ ~ ;
connection to exhaust. Sequence valve means are connected respectively to
the container, the source and the operating valve means. The sequence
valve means has an adjustment at press~es less than the forward operating
pressure which inhibits passage of fluid by the operating valve ~.eans to



- - . ~


the forward chamber until the container is at the forward operating pressure.
The operating valve means has another adjustment connecting the ~orward
cl~amber to exhaust, and a fluid connection is provided bet~-een the containex
and the reverse c~amber operative to reverse action of the ram when the
fon~ard chamker is connected to exhaust.
According to another aspec-t of the invention a system Eor per-
forming w~r]s by operation of a gas actuated ram comprises a cylinder and a
piston therein forming in the cylinder a ~orward chamber and a reverse
chamber, wherein the reverse cha~ber has a reverse exhaust means at a
pres Æ e exceeding ambient pressure, and wherein the piston is movable
between full forward and reverse positions. The system comprises a source
of gas at forward operating pressure, a gas storage container means of
capacity at least equal to the capacity of the reverse chanber with the
piston at full reverse position, the container means including gas passage
means connecting the container means to the source~ Operating valve means
are provided, cc~prising a forward acting member and a forward exhaust
member, the forwarl acting member including gas passage means interconnecting
the source, the container means and the forward chamker, the operating valve
means having one adjustment wherein the forward acting memker is in a posi-
tion wherein the source is connected to the forward chamber ~or passing gas
at forward operating pressure to the forward chamber and wherein the
reverse chamber has a connection to the reverse exhaust means. Sequence
valve n~ans is interconnected with the cont~iner means and the operating
valve means, the sequence valve means having a first automatic adjustment
at pressures less than the forward operating pressure operative to inhibit
. .
passage of gas by the operating valve means to the forward chamber. The
sequence valve means has a second automatic adjustment when the container
means is at forward operating pressure. The operating valve means has
another adjustment in response to the second automatic ~djustment of the
sequence valve means wherein the forward exhaust mem~er connects the forward
chamber to exhaust and the source is disconnected ~rom the forward chamber.
A gas connection is provided between the container means and the reverse
.. , .~ .
- 3a -
: ~

.

5~27
cha~ker, the last mentioned connection bein~ operative to pass gas under
pressure to the reverse chamber whereby to reverse action of the ram when
t~le forwarcl chamber is connected to exhaust.
In the accompanying drawings, which illustrate emkcdLments of the
invention;
FIGURE 1 is a schematic representation of one form oE the device
~hich n~kes use of gas pressure, applied to t*~in rams operable at opposite
ends of a pair of clam shell yates.




. ... .

~, , .




~ ~?~

''`', ' ; ''

'~ " ~;'':

.. ...

''' ~--:`, .

,:
.''` '

~ - 3b -

105~7
FIGURE 2 is a schematic representation of a second
; form of the system making use of air pressure.
FIGURE 3 is a longitudinal sectional view of a
typical quick exhaust valve usable with the system of Figure
1.
FIGURE 4 is a schematic representation of the sys-
tem in a form capable of using liquid under pressure.
In one embodiment of the invention chosen for the
purpose of illustration there is shown a pair of clam shell
gates indicated generally by the reference character 10
manipulated at one end by a fluid actuated ram 11 and at the
other end by a fluid actuated ram 12. The ram 11 is pro-
vided with a piston 13 and piston rod 14 which performs the
workr namelv, opening and closing gates 15 and 16 by use of ;
the mechanism 17. The piston 13 separates the ram into a
forward acting chamber 18 and a reverse acting chamber 19/
the forward acting chamber being one which under power opens
the gates and the reverse acting chamber beiny one which
under power closes the gates. The ram 12 is similarly equip-
ped and operates a mechanism like the mechanism 17, not `~
~i shown, attached to the opposite ends of the gate. On occa-
sions one ram only may be employed.
A supply of air pressure 25 from an outside source
~ is accepted by a selector valve 26. There is a similar sup-
- 25 ply 27, normally on the opposite side of the concrete bucket
~` where the device is one set up to manipulate the clam shell
`~ gates. Air from one or another of the supplies after passing
to the selec-tor valve 26 travels through a strainer 23 and
an air passage 29. From the passage 29, depending on the
condition of the system, ai~ will travel either through an
'' ' ' ' , ' ' '"'

:, ` ' . ' ~.;
.~,
.
.. . . . : , . ,
., . . ; , . .. ...

, :, : : , . :

l~S4~1Z~
air passage 30 to air receivers 31 and 32 or through air
passage 33 -to a two-way two position pilot operated valve
34. ~ c'heck valve 35lallows passage to the air receivers
but blocks air traveliny from the receivers.
From the pilot operatecl valve 34 air is adapted
to travel both through an air passage 35 to the ram 11 and
an air passage 36 to the ram 12. ~cting in conjunction with
the ram 11 is a quick exhaust valve 37 in the air passage 35.
A similar ~uick exhaust valve 37 accommodates the ram 12 and
is in the air passage 36.
Connected to the air receivers is a sequence valve
means 40, and a pilot line.41 connects the sequence valve 40
means with the pilot operated valve 34.
':~ To complete'the fluid pressure loop air passages
', 15 42 and 43 leading respectively to the reverse acting chambers
19 of the rams 11 and 12 are connected to the air receivers
31 and 32. Actually there is provided a line 44 from the
~. air receiver 31 and a line 45 from the air receiver 32 which ~.
-.~ join a common air passage 46. In the air passage 46 is a
.' 20 pressure relief valve 47, a pressure regulator 48 and a ~
' check valve 49, the check valve 49 being oriented to permit : , .
~ flow to the rams but prevent flow from the rams.
'-', In operation of the system as shown in Figure 1
~ let it be assumed that the pressure of the air supply 25 is
.. . . . .
60 pounds per square inch'with the selector valve 26 moved '
. to accept the air under pressure and pass it through the air
~, passage 29~ In the position of adjustment shown in Figure 1 -~, d,~,
passage of air is blocked by adjustment of the pilot valve .
34, consequently, air at the selected pressure passes through '~
the air passage:30 past the'check valve 35' and i.nto the air . ':~
.
:' . ' ., ~' '

~54~Z~
receivers 31 and 32. By setting the sequence valve means 40
to a pressure of 60 pounds per square inch the sequence
valve means will maintain the pilot line 41 closed until .
both air receivers are pressurized to 60 pounds per square
inch. At that point the sequence valve means will pass air
under pres.sure to the pilot operated valve 34 causing it to
assume a second position of adjustment which permits air to
flow from the air passage 33 to the air passage 35 and 36
and to the for~ard acting chambers 18 of the respective rams
11 and 12. As a consequence, the pistons 13 are moved down-
wardly in a direction causing the gates 15 and 16 to open.
During this portion of the cycle air pressure for example in
the air passages 35 and 36 flows through a p.ilot line in the
respective quick exhaust valve 37 to adjust the valve to the
. 15 position shown in Figure l so that there is flow of air under
.~ pressure to the forward actin~ chamber of each of the rams
ll and 12.
. When the gates are to be closed a reverse movement
is necessary. To accomplish this air pressure in the air
passages 35 and 36 is cut off by disconnecting the supply of ~:
. air at 25 or 27. ~hen this happens a change in air pressure
. in the pilot line 50 causes a shift in adjus-tment of the
. quick exhaust valve to a second position wherein the forward
acting chamber l~ is vented to exhaust and air flow in the
~ 25 air passages 35 and 36 is blocked.
: Simultaneously, air from the air receivers 31 and ~A",
32 at 60 pounds per square inch is converted to air pres- :
sure at 18 pounds per square inch for example by operation
of the pressure regulator 48. The specific pressure is some- :
what optional, 18 pounds pe~ square inch being merely by way
' ~
-6-

.

. . , . . . . ~,.

; . . . . . .

10~ 7
of example. Under such circumstances the pressure relief
valve 47 is set at a pressure higher than that of the pres-
sure regulator, 20 pounds per square inch for example in the
chosen illustration. As a consequence, air at 18 pounds per
square inch passes the check valve ~9, canno-t be vented
through the pressure relief valve 47 and therefore flows
through the respective air passages 42 ancl ~13 to the reverse
acting chc~mber 19 of each of the rams 11 and 12, causing the
piston 14 to move up~ardly to close ~he gates 15 and 16.
Closing can be stopped at any point prior to com-
plete closing by merely again manipulating the selector valve
26 to introduce air under pressure to the air passages 35 and
36 which will change the adjustment o the quick exhaust
' ` valves and again pressurize the forward acting chambers 18.
Since air pressure in the forward acting chambers 18 is al-
ways at the higher pressure namely, 60 pounds per square
inch, in the example chosen, the pressure differential on
~` opposite sides of the piston 13 will be 42 pounds and the
piston can be moved in the chosen direction despite the pre- '
sence of air at 18 pounds per square inch pressure in the
return chamber 19. As the piston continues to move expelling
air from the return chamber 19 at 18 pounds per square inch, i ,~
- pressure is built up to 20 pounds by reason of the setting
of the pressure relief valve 47 and the air is exhausted by
the pressure relief valve at the 20 pound pressure thus per-

,~ mitting the piston to continue its travel. ~ ,-
In the embodiment af the invention of Figure 2 ~;
presence of the quick exhaust valve is dispensed with and a
,different type of pilot operated valve 54 is made use o. ''~ ~'
~30 In this example also only o~e air receiver 55 is employed.




j , 7
: ~ ,
-


` ~ ::: : . : . , , ,:

~5~27
In the operation of the system set up in this fashion, prior
to the time when the sequence valve means 40 indicakes pres-
sure in the air receiver 55, to be less than 60 pouncls per
square .inGh, in the example chosen, air under pressure fxom
the source 2S is blocked by the adjust.ment shown of the pilot
operated valve 54. When the air receiver has been pres-
; surized to 60 pounds per square inch the sequence valve mem-
ber 40 will communicate with the pilot operated valve 54
through the pilot line 41 causing it to assume a new adjus-t-
ment wherein air in the air passage 33 is passed directly
to the air passages 35 and 36. This means that the forward
acting ch~nbers 18 are pressurized causiny the pis-ton 13 and
piston rod 14 to move downwardly in the illustration as
shown.
:` 15 Conversely, when the piston is to be moved in the
.
.
opposite direction the source of air pressure at 25 is dis~
continued allowing such connection as i5 provided to exhaust
directly -to atmosphere. This means that simultaneousl~ air
in the respective forward acting air chambers 18 will be
; 20 vented through the pilot operated valve 54 and air passages
33 and 29 to atmosphere through the selector valve 26. Mean-
while air which has accummulated in the air receiver 55 .:
passes through the line 44 to the pressure regulator 48
. where the pressure is reduced to 18 pounds per square inch,
--, 25 and air under the new lower pressure passes the check valve
: 49, bypasses the pressure relief valve 47 and travels through
the air passages 42 and 43 to the reverse acting chambers
l9 of the respective rams ll and 12
As air is consumed in moving the piston in the
reverse dir~ction the pressure in the air receiver 55 may `:

.
-8- . ~



: . : : ::, . ,
~ . .

~54Q27
fall below the sequence valve 40 setting, in this example 60
pSi. If that should happen, pilot operated valve 54 will
shift back to its original position allowing air to flow
from lines 36 and 35 through the valve and out to the atmos-
phere, allowing the reverse action to continue.
When the rams have become completely closed or
should closing of the rams be stopped at any point ~he re-
verse acting movement is stopped in the same manne- as has
been previously indicated, namely, by applying air under
pressure again from the source 25 to the selector valve 26 ~:
to repressurize the forward acting chambers 18. Whenever
there is movement of the piston downwardly in the chosen
. example air from the reverse acting chambers 19 is vented
through the pressure relief valve 47 which is set at a pres- :
sure slightly higher than the pressure of the pressure regu-
::
lator 48.
.` In both forms of the system as shown in Fiyures 1 ~ ::
and 2 there is provided a constantly open vent 56 which is
in communication with the pilot line 41 and sequence valve
means 40 where~y ultimately to reduce pressure in the pilot -
:: line 41, when the sequence valve no longer supplies air to. ~ -
line 41 due to the pressure in the air receiver falling be- ~.
low the preset sequencing pressure (60 psi), causing the
. pilot operated valve 34 or 54 as the case may be, to re~
: 25 assume initial position, namely, a position that exhausts ~:
the forward acting chambers 18 and redirects any newly ap-
plied air pressure to the air receiver, blocking its flow
through the pilot operated valve.
A typical quick exhaust valve suited to the system
is one shown in Figure 3, identified by reference character
.,, :.
' '


; "': , , , - -, ,: , .... . . .... . .
. :~ -. :
. . . :
.

~lO5~Z~
37'. In a valve of this description when the forward acting
chamber is to b~ supplied with air under pressure air flows
from the air passage 35 to a location above a double acting
~lexible diapllragm 57. Since the edge of the diaphracJm is
flex:ible the edye is permitted to deflect to allow air under
presC;ure t3 travel through an inside passage 58 and from
there to the air passage 51 which supplies the forward acting
chamber 18.
When air pressure is discontinued in the air pas-
sage 35 and movement of the piston 13 reversed air flow is
reversed in the air passage 51 and inside passage 58 the e~-
fect of which is to shift the position of the diaphragm up-
wardly to a location where flow is blocked into the air pas-
sage 35. ~ovement of the diaphragm blocking the air passaye
lS 35 at the same time opens flow to the exhaust 52 and in this
- way the forward acting chamber 18 is immediately and quickly
exhausted.
In the arrangement of the system as shown in Fig-
ure 4 to which this divisional application is directed where
liquid hydraulic fluid is employed, use i5 made of a gas
charged hydraulic accummulator 60 as a container. The accum-
mulator includes a gas chamber 61 and a liquid chamber 62
; s~eparated by a flexibls diaphragm 63. Hydraulic liquid is
` contained in a reservoir 64 from which it is drawn through a
- 25 strainer 65 by a pump 66 operated by a motor 67. Liquid at
pump pressure is passed through a liquid line 68 to a se-
quence valve means 69 then through a liquid line 70 and
three~way two position control valve member 71, through an-
-` other liquid line 72 to the liquid chamber 62 to the accum-
mulator. The control valve member 71 is operated by means

--10--


- . :

.. . . . ..

~s~
of a solenoid 73 and by action oE a sprins 74. With power to
the pump motor 67 on, the valve assumes the adjustment shown
in Figure 4 where the liquid passage is open from the source
to the accummulator 60.
~lso in communication with ~he sequence valve
mealls 69 through a liquid line 75 is a four-way three posi-
tion control valve member 76. Solenoids 77 and 78 accom-
panied by springs 79 and 80 are employed to manipulate the
control valve member 76.
A liquid line 81', 81 provides communication be-
; tween the control valve member 71 and a liquid branch 84.
Another liquid branch line 82 provides communication between ~ ;-
the forward acting chamber 18 of the ram 11 and also the
- corresponding forward acting chamber of the ram 12 (not shown
in Figure ~) and control valve member 76. The reverse acting
chamber 19 i5 placed in communication with the control valve
~:~ . : .
member 76 by means of the liquid line 84. Lines 82' and 84'
`-, supply a twin ram (not shown) in this example but a second
,:~- . .
ram is not necessary to the functioning of the system. ~ -
` 20 To prevent overloading the system of Figure 4
there is additionally provided an unloading relief valve 85
in the liquid line 75 coupled with a check valve 86 permit-
ting flow through the liquid line 75 to the control valve 76.
.. ~ ,
There is also an exhaust liquid line 87 from the control
'
val~e member 76 to the reservoir 64.
In operation, let it be assumed that forward action
o~ the ram 11 and piston 13 is at 1,200 pounds per square
, inch. In this event the sequence valve means 59 is set for
~, operation at 1,200 pounds per square inch. For this type of
system the sequence valve means 69 will direct passage of
,
'', -11- ' , ~ "


,'` , :
: . ~ . : : .'. , , ~ ,

1~)54C~Z7
liquid under pressure pas-t a chec]c valve 90 to the control
valve 71 which, by me,ans of solenoid 73 being in.direct com-
munication wi-th electric power.to the pump motor 67, will
a~sume thc positi.orl shown in Figure 4 and allow passage of
liquid to the accummulator 60 while a~ the same t.ime prevent
Elow of liqu:i.d ~nder pressure through the liquid line 75,
until a p.ressure of 1,200 pounds per square inch has been
: ~uilt up in the accummulator 60. When this happens, and
with the control valve member 76 set in the position shown : ~
. 10 in Figure 4, by means oE electrical power at the solenoid 73 ,
,- which is in direct communication with the electrical power : ~,
: to the motor 67,' liquid under pressure passes through the
; liquid line'82 to the forward acting chamber 18 of the ram
11, causing the piston 13 to be moved downward a~s shown in
Figure 4. Meanwh.ile, any liquid present in the reverse act- ''
ing ch~lber 19 flows outwardly through the liquid line 84,
through the control valve member 76 to the exhaust liquid
line 87 and then bac]c to the reservoir 64. Fluid is pre-
vented from flowing from the reverse acting chamber 19 to-
ward the valve 71 via line 81, 81' by action o~ the check
valve 88 as tne chamber 19 is exhausting. ' ' ,
When-reverse operation is desired, by proper manip- ~ '
'~ ula~ion of the solenoids 77 and 78, namely deenergize sole-
.................................................................... ... . . . .
noid 77 and energize solenoid'78, the control valve member' '~
76 is shifted from left to right and as shown to the extreme '~ ~ :
position wherein travel of liquid through the control valve - .
member 76 is reversed. This means,that liquid under pres-

' sure from the liquid line 75.is passed through the liquid
- line 84 to theireverse acting chamber 19 to cause the piston
13 and piston rod 14 to move upwardly. At the same time
'~
-12-
~!
. .

.... .. ... . . , .. ,.. ... ... ,..... ~ , ~.

.. . . . .................. .

~054t:3 ~7
exhaust is accomplished from the forward acting chamber 18
by liquid therein passing through the li.quid line 82 through
the control valve member 76 and thence -through the exhaust
].iquid line 87 to the reservolr 64.
Irrespective of whether the piston is acting for-
ward or in reverse, by suitable conventional electrical con~
nections, when the control valve member 76 has been set to :.
pass liquid under pressure to either one or the other of the
chamber 18 or 19 of the ram 11, the control valve member 71is set to an adjustment by means of power to the solenoid
73, wherein flow from the liquid line 70 is opened and flow .
from the liquid chamber 62 and liquid line 72 is prohibited
from flowing through the control valve member 71 by the check
valve 90 in the liquid line 70. If however, through leakage
or some other means pressure in the liquid chamber 62 falls .
below the selected pressure (1200 psi) the sequence valve 69
. will replenish chamber 62 before any more fluid can flow to
the line 75 insuring the-proper pressure in the accummulator :.
~ 60, and also volume.
: 20 In this form of device operation in both forward . ~.
and reverse is done under the same 1,200 pounds per square
inch condition, the pressure in the accumulator 60 being
maintained from the sequènce valve 69.
. . For holding the piston 13 in any one position the
.: 25 solenoid valve arrangement operates in a fashion such that
~ the control valve 76 is moved to center position by spr.ings
:. 79 and 80 when solenoids 77 and 78 are both deenergized
....
wherein liquid flow from the liquid line 84 is blocked.
~ There is no movement of liquid in the liquid line 75 by rea- ~
:.`` 30 son of the shift in positiOn of the control valve member 76 . ~: :

_l3-
:: ~ . , :
.1, . .
: . :

::~ - . , .

27
to the center position shown in Figure 4.
Should movement of the piston rod 1~ be blocked
for any reason while ~he pump and mokor continue to operate
to the extent that pressure gets built up in the system to a
level siynificantly above 1,200 pounds per square inch, the
unloading relief valve 85 set at a slightly higher pressure,
as for example 1,500 pounds per square inch, is adapted to
actuate releasing liquid at the higher pressure to pass
through a llquid release line 89 and thus back to the reser-

voir 64.
In the event of failure of electrical power afterthe piston 13 has been moved to the forward limit, or any
portion of the forward operation, there is still the capa~
bility to automatically return the piston to initial posi-

tion. With the control valve member 76 in the position or ~ .adjustment in the center as it would be when neither solenoid

was energized (i.e. power failure~, with the control valve .
. . ..
: member 71 set in its left hand position as would happen when - .
the solenoid 73 had no power allowing spring 74 to move the : ~
. 20 valve, liquid under pressure from the liquid chamber 62 of : .
the accumulator 60 can flow through a line 81', past the ~ -
check valve 88, through the liquid lines 81 and 84 to the
return chamber 19, there having been build up prior to ini-
tial operation enough li~uid pressure and volume in the
accumulator 60 to complete the cycle, by means of sequence
valve 69. The action described consequently moves the piston
13 upward to its original position. While piston 13 is mov- - ~
ing upward, fluid in chamber 18 flows through line 82 through ~ :
valve 76 at its center position, since with no power springs
79 and 80 move it to the center position allowing fluid to -;~ :




-14- ~
,

~54CI Z7
escape through the line 87 into the reservoir 64.




~" ~



: . .


., ~ '.
`. , ~ . .
`,' ' ' :' ~ .
`: ' , :; . ""','
' , ~-.. .'


~' :


:: . . ..
. . ~



. . ~ . . ~
'. ' ' ' ' ' '. , ~ ~:
. , :

. . .
. . -
'' ~i~ ' . ' ' ' ' '' ~


,


: ~ '~ ' ' : . :
.. . . . . .

Representative Drawing

Sorry, the representative drawing for patent document number 1054027 was not found.

Administrative Status

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Administrative Status , Maintenance Fee  and Payment History  should be consulted.

Administrative Status

Title Date
Forecasted Issue Date 1979-05-08
(45) Issued 1979-05-08
Expired 1996-05-08

Abandonment History

There is no abandonment history.

Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
GARLINGHOUSE, LESLIE H.
Past Owners on Record
None
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Drawings 1994-04-22 2 61
Claims 1994-04-22 7 310
Abstract 1994-04-22 1 21
Cover Page 1994-04-22 1 23
Description 1994-04-22 16 780