Language selection

Search

Patent 1153439 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent: (11) CA 1153439
(21) Application Number: 409613
(54) English Title: ELECTRICAL CONTACT ASSEMBLY
(54) French Title: CONTACT ELECTRIQUE
Status: Expired
Bibliographic Data
(52) Canadian Patent Classification (CPC):
  • 339/113
(51) International Patent Classification (IPC):
  • H01R 4/10 (2006.01)
(72) Inventors :
  • GALLUSSER, DAVID O. (United States of America)
  • UHLIG, HERBERT K. (United States of America)
  • PFENDLER, DONALD L. (United States of America)
  • FREAR, DAVID L. (United States of America)
  • HEMMER, VALENTINE J. (United States of America)
  • TOOMBS, GARY C. (United States of America)
(73) Owners :
  • BENDIX CORPORATION (THE) (Not Available)
(71) Applicants :
(74) Agent: MACRAE & CO.
(74) Associate agent:
(45) Issued: 1983-09-06
(22) Filed Date: 1982-08-17
Availability of licence: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): No

(30) Application Priority Data:
Application No. Country/Territory Date
79,273 United States of America 1979-09-27

Abstracts

English Abstract


ABSTRACT

An electrical contact (47) includes a tubular
liner (1) stamped and rolled from a sheet of an electrically
conductive material with an annular connector retention recess
(13) provided in the external surface thereof between a mating
end and a wire receiving end. One or more sleeves (21, 27)
are telescoped over the liner (1) with at least one sleeve
deformed in place into the annular recess (13). One of the
sleeves (21) can be axially aligned preparatory to deforming
it into the recess by an internal projection (25) which engages
an annular groove (19) on the liner (1). A second sleeve can
be axially aligned by lancing it to the liner (1) and by
prick-punching the sleeve.


Claims

Note: Claims are shown in the official language in which they were submitted.



THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. An electrical contact assembly comprising:
a tubular liner having a front mating portion, a rear
wire receiving portion and a center section defining an annular
bushing retention recess in the outer surface of the tubular
liner between said front and rear portions, said front mating
portion comprising a plurality of fingers forming a socket; and
a sleeve telescopically mounted over at least one
portion of the tubular liner and secured thereon by deforming
said sleeve in place into the annular bushing retention recess
in the tubular liner, said sleeve being axially longer than the
tubular liner and with the front portion of the sleeve being
turned inward and angularly rearward to form a guide for a
mating pin type contact leading to said socket and with the
rear portion of the sleeve extending beyond the wire receiving
portion of the tubular liner and being radially enlarged to
receive the insulating jacket adjacent the stripped end of a
wire received in the wire receiving portion of the tubular liner.
2. The electrical contact assembly of claim 1 wherein
the center section of the tubular liner also defines an annular
groove on the external surface of the tubular liner and wherein
the sleeve is provided with a radially inward projection which
engages said groove and axially aligns the sleeve with said
tubular liner preparatory to deforming said sleeve into said
annular bushing retention recess.



Description

Note: Descriptions are shown in the official language in which they were submitted.


3~3~

This invention relates to elec-trical contact
assemblies and especially to miniature contact assemblies of
the socket and pin type used in multicontact electrical
connectors.
This is a division of copending Canadian Patent
Application Serial No. 352,493, filed May 22, 1980.
With the increasing complexity of modern electronic
systems and the trend toward minia-turization of system com-
ponents, interest has been created in reducing the size of the
connectors re~uired to interconnect the wires extending between
the various system modules. It has long been the practice to
utilize multiwire socket and pin connectors for such purposes.
In such connectors the wires interconnecting the system modules
are inserted into elongated contacts and crimped in place. The
contacts are then inserted in a connector where they are removably
retained by a retention mechanism. Dozens of such contacts may
be provided in a single connector.
A common practice is to machine each individual
contact, however, this is expensive and therefore many inventors
have turned to stamping and rolling the contacts from sheet
material. Examples of contacts ~ormed in this manner are
disclosed in U.S. patents No. 3,286,223, No. 3,317,887, No.
3,721,943, No. 4,072,394 and No. 4,120,555. Many of these
contacts include an inner tubular liner forming the contact
with one or more sleeves coaxially mounted over the tubular
liner to protect and strengthen the contact. These assemblies
generally have an annular projection near their midpoint which
cooperates with the retaining mechanism to removably secure the


-- 1 --

~3L53~
cont~ct in a connector. Examp:Les of arranyements for, -thus,
securin~ the contacts are shown in U.S. paten-ts No. ~,072,394,
No. 4,082,398 and No. ~,120,556. Other types of socke-t and
pin contacts have an annular recess which cooperates with a
retaining mechanism to secure the contact in a connector. These
types of contacts have heretofore been machined to form the
recess.
It is an object of the present invention to provide
an improved electrical contact of the type having an annular
retention recess which can be easily and inexpensively fabricated.
It is another object of the invention to provide such
an electrical contact which can be rolled from sheet material
and in which the contac-t sleeves can be secured to the contact
liner by deforming the sleeves in place on the liner.
According to the present invention there is provided
an electrical contact assembly which includes a tubular liner
and a sleeve. The tuhular liner has a front mating portion,
a rear wire receiving portion and a center section defining
an annular bushing retention recess in the outer surface
of the tubular liner between the front and rear portions, the
front mating portion including a plurality of fingers forming
a socket. The sleeve is telescopically mounted over at least
one portion of the tubular liner and secured thereon by
deforming the sleeve in place into the annular bushing retention
recess in the tubular liner, the sleeve being axially longer
than the tubular liner and with the front portion of the sleeve
being turned inward and angularly rearward to form a guide for
a mating pin type contact leading to the socket and with the

~.~53~
rear portion of the sleeve extending beyond the wire
receiving portion of the tubular liner and being radially
enlarged to receive the insula-ting jacket adjacent the
stripped end of a wire received in the wire receiving
portion of the tubular liner.

BRIEF DESCRIPTION OF THE DRAWINGS


.... .
Eigure 1 is a longitudinal sectional view through
a contact liner made in accordance with the teachings of the
invention;
Figures 2 and 3 are longitudinal sectional views
through contact sleeves used with the contact liner shown in
Figure l;

1~S3~L3g

Figure 4 is an isometric sectional view of a contact
assembly incorporating the liner of Figure 1 and the sleeves
of Figures 2 and 3 with a portion enlarged for clarity;
~ igure 5 is a longitudinal sectional view through a
connector in which the contact assembly of Figure 4 is
retained;
Figure 6 is an isometric view of a stamping from
which the contact liner of Figure 1 is rolled; and
Figures 7 through 10 are partial longitudinal sec-
0 tional views through other embodiments of the invention.Detailed Description
Figure 1 illustrates a contact liner 1 which is
stamped.and formed from a sheet of a resilient, electrically
conductive material such as a beryllium copper alloy. The
liner 1, when rolled into the tubular shape shown, has a
longitudinal seam 3 which is not mechanically sealed. The
front or mating portion of the liner 1 has at least two spring
fingers 5 which form a socket for receiving a pin type
electrical contact. The rear portion of the liner is provided
with a plurality of internal annular projections 7 which grip
a wire inserted into the bore 9 of the liner and a plurality
of longitudinal slots 11 which assure symmetrical distortion
of the liner when it is crimped to electrically and mechani-
cally secure the contact to the wire.
` Intermediate the mating portion and the wire
receiving portions, the liner 1 is provided with an annular
recess 13. The recess 13 tapers axially toward the forward
portion of the liner and radially inward as at 15 to a
s!houlder 17 which forms an angle c~ of approximately 15 with
the plane transverse to the longitudinal axis of the liner 1.
Forward of the annular recess 13 is an annular groove 19
which, as will be discussed below, is used to align parts of
the contact during assembly.
Figure 2 illustrates the coniguration of a sleeve
21 having the edge at one end turned inward as at 23 to form a

~S3~393

guide in the assembled socket contact for the pin of a mating
pin type contact. The sleeve 21 is provided with an annular
internal projection 25 which, as will be seen, cooperates with
the annular groove 19 in the liner 1. A second sleeve 27 shown
in Figure 3 is enlarged at one end to form a cup 29 joined to
the main body of the sleeve 27 by a shoulder 31 and is
provided with an outwardly projecting annular stop ring 33.
Figure 4 illustrates the liner of Figure 1 and the
sleeves of Figures 2 and 3 in assembled ~orm. The sleeve 27
slides over the rear wire receiving portion of the liner 1 and
is secured in place by lancing to form a finger 35 which
extends into the bore 9 of the liner 1 together with a finger
37 on the liner 1. The finger 35 also serves as a stop for a
wire (not shown) inserted into the bore 9 of the liner. The
opening 39 produced by lancing serves as an inspection hole
through which full insertion of the wire into the contact
assembly can be verified. The sleeve 27 is also prick-punched
to set axial aiignment thereof relative to the liner.
The other sleeve 21 slides on the forward end of the
liner 1 over the contact fingers 5 until the internal annular
projection 25 on the sleeve engages the annular groove 19 in
the liner 1. With the sleeve 21 thus axially aligned with the
liner 1, the inwardly turned end 23 of the sleeve 21 serves as
a guide (closed entry) for urging a pin type contact (not
sho~n) into alignment with the socket formed by the contact
fingers 5.
The ends 41 and 43 of the sleeves 21 and 27
respectively are deformed by a rolling process into the
annular recess 13 in the liner 1 to permanently secure them in
place. The end 43 of sleeve 27 is rolled into engagement with
the tapered surface 15 of the recess 13 and the end 41 of
sleeve 21 is rolled over the shoulder 17 of the liner recess
so that the end thereof abuts the outer surface of the end 43
of sleeve 27 as shown in the enlarged portion of Figure 4.
Both sleeves may be rolled simultaneously by telescoping the

~53~9

end 43 of sleeve 27 into the end 41 of sleeve 21 prior to the
rolling step. The end of liner 1 is flared as at 45 to form an
abutment for the shoulder 31 of the sleeve 27 either before or
after the sleeve 27 is mounted on the liner 1.
The assembled contact 47 is inserted in a suitable
connector such as that shown in Figure 5. The connector 49,
only a portion of which is shown, includes an annular shell 51
which houses a generally cylindrical grommet 53, a wafer 55
and a generally cylindrical insert 57, all of which are made
~0 of electrically insulating materials. The insert 57 forms the
front end of the connector and the grommet 53 the rear. The
insert 57 and wafer 55 are provided with bores 59 and 61
respectively therethrough which are counterbored from the
rear. The grommet 53 is provided with a bore 63 with sections
~5 65 of reduced diameter near the rear thereof.
The bores 59, 61 and 63 are axially aligned within
the connector 49 with the resilient, longitudinal fingers 67
of an annular bushing 69 which seats against the counterbore
in the wafer 55 extending into the counterbore in the insert
~0 57. The grommet 53 is made of a resilient material so that the
assembled contact 47 can be inserted into the connector 49
from the rear through the bore 63 in the ~rommet 53 and into
the bores 61 and 59 of the wafer 55 and insert 57 respectively
until the annular stop ring 33 on the contact abuts the
bushing 69. As the sleeve 2~ of the contact slides through the
resilient fingers 67 of the bushing 69, the fingers are
radially deflected until shoulders 71 on the fingers snap into
engagement with the shoulder 72 on the contact to lock the
contact 47 within the connector. To remove the contact 47, a
tubular tool (not shown) is inserted in the bore 59 of the
insert around the contact sleeve 21 until it engages lip 73 on
the ends of fingers 67 to radially deflect the fingers and
disengage them from the shoulder 72 on the contact so that the
contact can then be pushed rearward and out through the bore
63 in the grommet 53.

53~39
Figure 6 illustrates a stamping 75 from which the
tubular liner of the contact assembly is formed. A sheet of
resilient, electrically conductive material such as a
beryllium copper alloy is placed on a form so that when the
blank is stamped ridges 77 and 79 are formed transverse to the
longitudinal axis of the blank. The ridges 77 and 79 form the
annular recess 13 and groove 19 respectively in the external
surface of the liner when the blan~ is rolled into tubular
form. In addition, transverse ridges 80 which form the
internal projections 7 are also stamped into the sheet 75.
The above described electrical contact assembly
utili~ing first and second sleeves, and the method of making
the electrical contact assembly are also disclosed and are
claimed in above-identified parent application Serial No.
352,493.
In a second embodiment of the invention illustrated
in Figure 7, one sleeve 81 extends along the entire length of
the liner 1 with an integrally formed annular projection 83
serving as the stop. In another embodiment shown in Figure 8,
the sleeve 85 covering the wire receiving end of the liner 1
does not extend axially to the annular recess 13 in the liner
1 but terminates in the annular stop ring 87. In yet another
embodiment of the invention, three sleeves are mounted on the
liner 1 as shown in Figure 9. In addition to the sleeve ~1
covering the contact fingers, a second sleeve 89 which is rolled
into the annular recess 13 extends rearward to the stop ring 91
and a third sleeve 93 covers the wire receiving ring. In this
arrangement, the stop ring may be formed by either the second
or third sleeves. Finally, Figure 10 illustrates an embodiment




-- 7 --

~L53~39
of the invention wherein the stop ring 95 is formed on the
liner 1. It should be obvious to those skilled in the art
that many other variations all within the spirit of the
invention could be made, and hence the par-ticular embodiments
shown are for illustrative purposes only and the invention is
to be limited only by the appended claims and any and all
equivalents thereof.


Representative Drawing

Sorry, the representative drawing for patent document number 1153439 was not found.

Administrative Status

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Administrative Status , Maintenance Fee  and Payment History  should be consulted.

Administrative Status

Title Date
Forecasted Issue Date 1983-09-06
(22) Filed 1982-08-17
(45) Issued 1983-09-06
Expired 2000-09-06

Abandonment History

There is no abandonment history.

Payment History

Fee Type Anniversary Year Due Date Amount Paid Paid Date
Application Fee $0.00 1982-08-17
Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
BENDIX CORPORATION (THE)
Past Owners on Record
None
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Drawings 1994-03-02 3 88
Claims 1994-03-02 1 41
Abstract 1994-03-02 1 19
Cover Page 1994-03-02 1 18
Description 1994-03-02 8 309