Language selection

Search

Patent 2051414 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent Application: (11) CA 2051414
(54) English Title: PROCESS FOR FORMING WATER RESISTANT MAGNESIAN CEMENT INTRODUCTION
(54) French Title: PROCEDE DE FORMATION DE CIMENT A LA MAGNESIE IMPERMEABLE
Status: Dead
Bibliographic Data
(51) International Patent Classification (IPC):
  • C04B 9/02 (2006.01)
  • C04B 9/04 (2006.01)
  • C04B 9/20 (2006.01)
  • C04B 22/16 (2006.01)
  • C04B 28/30 (2006.01)
(72) Inventors :
  • RALSTON, JOHN (Australia)
  • SMART, ROGER ST. (Australia)
  • MAIR, ALEXANDER D. (Australia)
  • CSAVAS, JULIANNA (Australia)
(73) Owners :
  • MERZ AUSTRALIA PTY. LTD. (Australia)
(71) Applicants :
(74) Agent: RICHES, MCKENZIE & HERBERT LLP
(74) Associate agent:
(45) Issued:
(86) PCT Filing Date: 1990-04-05
(87) Open to Public Inspection: 1990-10-06
Availability of licence: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): Yes
(86) PCT Filing Number: PCT/AU1990/000132
(87) International Publication Number: WO1990/011976
(85) National Entry: 1991-10-04

(30) Application Priority Data:
Application No. Country/Territory Date
PJ 3522 Australia 1989-04-05
PJ 6616 Australia 1989-09-27

Abstracts

English Abstract



-23-
ABSTRACT OF THE DISCLOSURE

A process for the formation of magnesian cement
having low water solubility and long term retention of
mechanical properties. The process comprises acidulating
insoluble basic, hydroxy and/or fluorophosphatic mineral
material to activate it prior to or after mixing the mineral
material with reactive magnesium oxide source material such
as calcined dolomite or calcined magnesite, source material
for magnesium chloride and/or sulphate such as bitterns,
magnesium chloride hexahydrate or epsomite and sufficient
water to make a workable slurry, with or without other
common additives. The mineral material may be in the form
of low grade phosphate rock and in some cases it may be
desirable to calcine the phosphate mineral material prior to
acidualtion and mixing the cementitious components.


Claims

Note: Claims are shown in the official language in which they were submitted.


VO90/11976 PCT/AU90/00132

-21-
CLAIMS:
1. A process for forming a water resistant magnesian
cementitious product which comprises admixing oxide
phosphatic material with a reactive magnesium oxide
source material, a magnesium salt source material, the
salt being selected from one or both of chloride and
sulphate, and sufficient water to provide a workable
slurry and setting the slurry, and wherein the phosphatic
material comprises an insoluble basic, hydroxy and/or
fluoro phosphatic mineral material which is activated at
least by partial acidulation.
2. A process according to claim 1 wherein acidulation
is performed on the phosphatic mineral material using
phosphoric acid, sulphuric acid or a combination of the
two acids.
3. A process according to claim 1 wherein acidulation
of the phosphatic mineral material is performed prior to
mixing with the reactive magnesium oxide source material
and the magnesium salt source material.
4. A process according to claim 3 wherein a
substantially dry premix comprising the acidulated
phosphatic mineral material with some or all of the
reactive magnesium oxide source material is mixed with
the magnesium salt source material and sufficient water
to provide the workable slurry.
5. A process according to claim 1 wherein the
phosphatic mineral material is calcined prior to
acidulation and to mixing with the reactive magnesium
oxide source material and the magnesium salt source
material.
6. A process according to claim 1 wherein the

SUBSTITUE SHEET

VO90/11976
-22- PCT/AU90/00132
phosphatic mineral material comprises calcian
hydroxyphosphates, calcian flurophosphates or mixtures
of the two.
7. A process according to claim 6 wherein the
phosphatic mineral material comprises calcium aluminium
hydroxyphosphates.
8. A process according to claim 1 wherein the magnesium
salt comprises magnesium chloride which is present as
magnesium chloride hexahydrate.
9. A process according to claim 1 wherein the magnesium
salt comprises magnesium chloride which is present as
bitterns.
10. A process according to claim 9 wherein the bitterns
has an Mg/Na ratio greater than 8.
11. A process according to claim 1 wherein the reactive
magnesium oxide source material comprises a calcined
magnesium carbonate mineral selected from one or both of
magnesium and doiomite, calcined brucite, calcined
magnesium hydroxide or mixtures of any two or more.
12. A water resistant magnesian cementitious product
comprising a cured reaction product of a slurry of a
reactive magnesium oxide source material and a magnesium
salt source material with water, said salt being selected
from one or both of chloride and sulphate in its lattice
structure which is derived from at least partially
acidulated basic, hydroxy and/or fluorophosphosphatic mineral
material.

SUBSTITUTE SHEET


Description

Note: Descriptions are shown in the official language in which they were submitted.


SEhlT ~Y:D,~VIES & C9LLIS0;'~ 3~ 17'07; .~ELl3~V~ t;E~4~ 00~ fj
,,.~
JO PO/I 1~76 2 ~ 1 4 ~/AO~J~13~

-- 1 --

PROCESS ~OR ~OR~IN~ WATER ~13SIST~N~
MAGNESIAN C:EMENT INTRODUC~ION




The pre~ L; lnv~ntion ~elate~3 t4 a pro~c~s~ for
producing m~ne~ian cl3ment~ tious materlal~ ~nd
particularly, ~ut not es~entiall~ to ~e prod~lction of
magne~3ium ox~chlorlde hyd:rate and m~gnl3sium ~xysulphate
10 hyd~ate c~E3mentitious compo~itlon~ o~en knowrl as So~l
men~

BACRC~RC~uND ~ ~R I~ENq~ N
-
15 1. ~2~Inv~ation

Magnesium cem~nts b~sed on r~e:tior~ o~ m4~ne~ium
oxide wlth In~gne i-lm c:;hlorlde or ~ lph~ate h~ve heen known
fo~ a long ~ime. ~3uch a cem~nt ~o~med wl~h magnes:Lum
~0 c~hlor:~de, in parti~;ula~ conlmonly known as Sor~l
cemen~. ~his magne~ium ox~c:hlorlde ~ydri~te C;~men-t, when
cured, i~ yenerally chara::-t6~ri~e~ l~y th~ pr~senc~ of 9;1le
cr~r3talline compoun~2 SMg{ OH )2 ~ Mg~'12 . a~;~o an~ior
3~5g(0H)2.M~C~ .8~20, the rel~tlt7e propor~ion~ o~ the t:wo
25 ~onlpound~ dependlnr~ on -th~ s~oi~:hl~m~tr~r of ~h~ ::ured
mixtuIe . Formati~n o~ th2 5Mg~ O~ 2 . ~ 20 cotnpound
18 gene:~all~ pref~rr~dq OfteI~ on ~ns~, -She Cem~nt,
e~pecl~lly at the ~ur~cer c:arbona~ fo~m another
ar~at~lllne. c~s)mpound, My~ ~H~ Mg~12~ CO3 ~H2~ These
30 magn~sium ox~c:hl c~ide hydr~t~3 cemen-titio~ materlal s are
renown~3d for ~h~3ir ultlnlate hl~h s~en~th and ~or the
rapidlty with whlch ~hey ~ttaln ~uoh str~n~th, but
unfortun~tely su~i~er ~Yere ~ d~raslt~ hich have
di~cou~sge~ wlde use.
The ~o~emo~t prohlem wl~h m~gne~31um o~yahlorid~
cem~3nts is ~he~ir la~k of ~ter r~3~ig1:anGe, :~or~ i~fter


___
~JBST17 lJTE S~l~ET

SEi~T BY:DAVIES & COLLISON ; 3~ 91: 17:0~ lELBOL'R~E~41~ ~61 ~0~)0 ,~ f~
g76 2 ~ P~AU~/O~

-- 2 --
appr~nia~le cont~çt w~ th wate:~, dr~stic strens~th lo~ and
even tot~l disint~r~tlon c:an ocallr. P~csocia~ed wlth the
laok of wa~er re~ ance ls the pr~blem of corro~2iOn
arl S~ n~ from the lar~e amount~ of ma~n~sium c:hloride
5 leaohing ~om the c~ment upon con~act w~ th water. The
presence ~nd ll~ra~lon of ~olubll3 salts in the cured
cements al~o c:ausef~3 a~flore~cenc:e problem~.

th~
The prior art tea:::he~3 that mlmerou~ ~tten~p-~s have
bQen mad~e to ~olv~ th~ prl3blem of lack of wat~r
resl~tance in magnesium oxych~oride Cbmerlt Many
addit~ ve~ ha~e been t~c2ted to lmprove the water
15 r~lst~nce ei~her by lnc:o~oration ~n the cem~ntl~ious
mlx prior to sAt ing or by appllc~tion to the se~ or
hardened c~3ment. 5uch a~ldi~ives have irlc:luded ~34d$un~
sillcate~, poly~ ateY, ethyl slli~:ate, waxes,
siliconefi~ st~a~ate8, llnseed oll ~nd phosphoric ac:id or
20 i~s solubl~ ~al~ How~ver, none o:e ~he~e a~ditiv~s h~v~
apparen~ly led to Gommercially wide~pread ~ eptanae of
nagne~l~m ox}~hloride s::ements ~xcep~ ln a few 3elcc:ted
area~ ~uch el~ ~3pe~lal~ty flooring.

Of the pr~iously propo-e:ed addltlveæ inco~porated ln
the magne~um oasychlorid~ mix prior tc: æe~ting phosphoric:
a~ld ar d Etodf um }lexam~t~phosph~ ppe~r to be ~upe~ior.
R. Smi~h~-Jahannsen ha~ r~cen~ly ~s~nclllded i~ U. ~i/r Pe~ten~
4,352,6~4 that pho~;phorlc; ac~d ~ pr~fe~rad ov~r l~s
~0 ~oluble ~;alts ~Y an addltive ir~ Qb~ainln~ a ~ater
r~3si~tant cured Sor~ eme~t of eufficient strenEIth for
use in the bulldinçl in~#try~ Hc)wever, phosph~ori~ ~cid
~ æ r~l~tlvely expen~lve ~nd l~ addltlo~ to th~ mag~esian
oxy~hlorlde c~me~ m~y m~ke ~he ~n~nt c::omm~rc~ ~lly
35 unvi~ le.



SU~S~Tl.lT~ ~hlEE ii

SENT BY:DAVIES ~ ~OLLISON : 3-10-~1: 17:~ ELRO~ E~ 00~ .~12~
`!o go/ll976 2 0 5 1 ~ 1 ~ PCr/AU90/~


Addition of spar~ngly ~oluble or ~ tantially
ins~olu~ e p~o~phate has El1~3o been propo~ed ~nr lmproving
th~s properties of Sc:~rel C:sment~3. The~e lnclut~e
5 phosphate~ c~r se~::ondary phosphate~ of calcium, m~gne~;ium
and othe~ alk~line earth me~als, ~lnc, alu~inium and
copp~r (US Pat~nts ~!,3Sl,641, 4,185,066 and 4,1~,570).
Howl3ver, all of th~ descrll~d phosphælte~3 a~e elthex acld
o~ ne~r~l phc~ph~te~;. 8~1c ph~sph~teE or
10 hydroxypho~phE~te~, ~;uch ~13 cr~ndalllte, milllslts~,
~ravelllte and hy~ro~yapati~e, ar~d ~luoropho~;ph~te8, suah
a~ fluorapati~e, all fotlnd oc:curlng nat~rally as~
phosph~tlc: mlneral~, ha ~t~ no~ een pr~posed ~o~ imp~oving
the properties of Sor~l oQments dlle to thelr high r -
15 ins~lubllity ~nd ine~tne~R which results in no ben~fi~whatso~ver in lmp~ovlr~g the prop~rtie~ o~ !~;orel cement.

lMAR~' OF ~E INVENTI~N

It iS ~n ~i3J~3c~ Of ~he present lnventlon to provide
an imprc ved proce~s ~or proaucin~ a wat~3r resl8ti~nt
magnesian cem~n~itlou~ ma~rlal~

~c:cordlng to the pre~nt inven~ion, a w~ter
~5 r~t31Rtant m2~ne81an c:e~nentitious pr~oduc:t 1~; pr~du~d by
admlxlng p~r~iculBt~a phosphR~la m~t~lal with a re~c~ive
m~neslunl ox~ d~3 ~Oll~C:~ m~t~ri ~ m~gn~ m chloride
~nd/o~ m~gne~ium ~ulph~te~ ource m~erlal ~nd ~u~1qient
w~t~r ~o pro~ e a wnrka~le elurr~ and ~atking ~he
30 ~lur~yr ~nd wherein the ph~ph~ c m~eri~l compri~ an
insoluble b~C~t~, hydro~y andtor f luoro pho~pha tic mlneral
m~te~ l whi~h ~ 'civat d at le~ t by ~artlal
a~:ldula~ on~

~5 ~ur~}~er accor~lrlg t~ the pre~en~ vention th~re is
provlde~ a m~S~neslar~ cem~ntit~ou~ prod~c:t when prc)duc~ed
by ~he proce~ de~cribed in the imsnediat~ly prec~ing


S~J~s~lTuTE 51~~ 1
~,

~ENT BY:D~VIES & ~OLLISON ; ~-10~ 17:09 ; .~ELEO~R.~E~ 0~0 :~13~
g76 2 ~ PC~AU~0/00132

~ 4 -
pa~gr~ph.

By the pre~ent ln~entlon lnsoluble pho~phatlc
mineral materi~l ca~ be readlly ln~orpor~te~ lnto a
5 mAgnesi~rl CemRntitiOu~ mat~ria~ to promote water
r~3slstAnCe ~nd superlor long terln mechanlc~l properties.
Thi~ ~as ths ad~r~nt2ge of bell g ~bl~ to utili~e
relativ~ly ch~p phosphatic Rour ;:~ mate~ial to 1Inprove
the physi~al prop~rti~s o~ ~a~nes~an ~e~nt~.
19
A ~ound ~n the pre~ent invention, Addition of the
~n301uble basic, hydrox~phoæphata and~or fluorophosphat~
mlne~al materi~ls to the ce~nt mix confer~ no water
resi~tance ~ene~i~ to th~ cu~d ~em~nt unles~ they can ~e~'
a~tiva~ed. The water sQluhil~ty of ~ magnesian cem~nt
ineorpora~in~ such lnacti~2t~d inso~uble miner~l
materi~ls i~ in th~ range ~5 to 30~, usu~lly about 27~.
Solublllty is a m~asure of perc~ntag2 w~l~h~ los~ after
be~ng su~Qcted to e wat~r ~r~m~t. In th~s inven~lon
it has been di~covered th~ such benef~cial acti~ation of
insolubla pho~phatlo mlnerals, parti~ul~rly b~ ic,
hyd~xy- a~d/or fluoro-ph~pha~e~ al~h~u~h others may 4e
~ppropriate, c~n ~e ~chi~ve~ by pa~tlal acidula~ion,
optionally wi~h ~ pre-calolning ~t~p. The p~rtial
acldulation o the pho~p~atl~ miner~l ms~ri~l may he
carried out ~ore, durlng or atsr i~ ~dditlon to the
n~ment~ ~f~er such actlvatl~n, the pr~sence of ~he
pho~pha~l~ m~t~r~l in ~h~ ~ement conf~rQ a ~i~nlficant~y
incr~ased w~ter xesi~tanc~ to the ~ement o~ ZD~ or 1~5,
3~ pre~era~ly a~ou~ lD~ or le~ ~nd mo~t p~afer~bly ~40~t 7~
or le38. A m~nesi~n oeme~t h~vlng ~ w~ter ~olubill~y of
~he ord~r o~ 10-20% m~ ~e mo~ appr~pr~ate ~s a fil~r
but at lower level~ ~ay b~ re~di?y ~s~d in stru~ural
~it~a~ion~. In additlon to ~h~ advantageousl~ lvw ~a-ter
sol~blllty char~eri~lc~, the mechani~al properties,
p~rti~ul~rly ~ompres~lon ~tren~thr m~y only deg~ad~
rli~htly over ~xtende~ p~lod~ ~f ~l~e, ln s~me ~ases


SUBSTlTUT~ SI~Eli
~._

SENT ~Y:DAVIES ~ ~OLLISON , .3-10-~1 ; 17~ EL~()LR~E~ 000
~ Mf11976 2 0 5 ~ 414 P~T/A~9ut~ol3~

_ 5 _
only by a maxlmum in ~h~ ord~r of 20 ~o 25~ and ~ommonly
lO to 15~ or le-~s.

The ~dmlxin~ m~ generally be per~ormed at a~blent
S or r~om temperature, but ~here m~y be oircumstances where
lt l~ adv~nt~geous -to mlx a~ elevate~ temper~tures, and
by w~y o~ ex~mple only atten~ion is dir~cte~ to the
pro~ess ~nd product d~s~ibed ln Int~rn~tl~nal Patent
A~pli~tlon WO 87~04145, the content of which i~
lncorporated herein b~ ~e~erenoe, w~ich process and
produ~t m~y be modl~ed ln aocord~nce with the pr~sent
lnve~tlon,

Advant~geou~ly, the magne~ian ~ment i ~ produc~d r
from low ~ost ~r byproduc~ magne~ium o~mpo~ltions, s~ch
bi~terns a~ a ~o~ce o~ magneslum ch~oride and low
~r~d~ m~gne~ite as ~ souroe o~ magnRslum oxlde~ ~it~erns
is the r~sidual liquor ~rom the ~o~trolled evapor~tlon of
~eaw~ter. It m~y n~t 4~ nece~ary to pro~ide addltion~l
~0 wat~r in th~ mi~ture to yl~e th~ slu~ry a w~rkable
~si~enc~ if thq ~urce m~ter~al~ ~ompri~e ~u~ ient
water. I~ the ~agne~ium chloride ~ouree m~terial ls
partlcul~te it ls prefQrably rlnely divldad, wi~h, for
example, a part~ size o~ le~s ~han abou~ 2S0 ml~ron.

I~ ha~ bee~ dl~overed that the u~e o~ ~ low ~od ium
con' en~ bi~ern& with A M~N~ waight r~tlo of gr-3ater
than thr~, pr~e~b~y grea~er than elgh~
par~i~ularly adv~ntageou~ ln ~h~ und~sir~ble
~f~l~re~c~nce ~n ~h~ ~ ul~ant magnQ i~n ce~ent m~y ~e
markedly r~duced.

Wl~h regard to ~he ma~nQ l~m o~id~ ~our~e m~t~lal,
a magnesium carbonat~ min~ral such a~ magnesl~e or
d~lomi~e c~n b~ utlli~ed ~te~ calcln~ion ~t
~uf~lcien~ly low te~peratur~s to provlde ~uf~icient
re3c~ivity in ~he re~ult~nt MgO. M~gnesi~e is pre~erably


5lJBSTlT~JT~ S~IEE-r ~
~,

SENT ~[~IE~ ~ C~LLISON ;.3-10-~1 ; 17:10 ; .~EL~ E~ J~ 1}'~
; WQ ~ 2 0 ~ CTJAU~iwi~
~ 6 -
oalc~ned ~t tempe~ture~ o le~ th~n 4bou~ 820~C to
re~ain ~u~fic~nt 3^ar~ce ~aa a~ re~ctl~ty ~r. th~
p~oduct MgO. Dolomite is prefer~bly p~rt calcined to
rO ~ SgO cln.d cc~lclt_ ~o~oro u~: . Th~J~G ~ cl in Lh~:
art will appreclate th~t other YoIlrc~ of M~O ~h as
~ lned brucite or ~lcin~d m~gne~ium hydroxide, aY C~n
l:~o dorl~d ~r~m cz~wator, or mlx~ Lo ~ Rn~ o th~
~bove, ara alæo sul~able io~ ~ho pr~c~ice o~ ~ho ~rOOGss
of the pre~en~ inv~n~on, Preferably th~ magne~ium oxlde
sourc~ m~te~ial is fl~ly dl~ide~.
A phosphat~c m~terlal Comp~i~in~ ~ a m~Jor portion
oalci~n hydroxypho3phat~ ~nd/or fluorophosphates may be
u~ed in ~he pre~erred ~mbodiment. Such a ~omposition is~
found oc~uring n~tu~lly ln commerci~lly ml~ed phosphate
~sposits ~ubstanti~lly a~ the mlneral ~p~ite, elther
fl~o~8pa~ite Ca5(PO~)3F, hydroxyapatite Ca$~PO~)30H, or
aY a mixed ~luoro-hydroxy deriva~ive. In sediment~ry
depo~its, ~ppreclabl~ sub~titutlon of the pho~ph~e ~y
~0 ~ar~onat~ o~ten ocaur~ in the ~p~tite cry~t~l Y~rUC~re,
to give ~rbonate 8patit~3 ( ~ran~ollte~); the~e also ~e
~ui~abl~ composi~lon~, as are ohloro apati~es.

Another qom~osi~on whlch may be u~ed in th~
pref~rr2d ombod~ment is the w~gte ph~ph~ic mat~rlal
found oa~uring n~turally ~ ~he ~o-~lled "l~a~h~d-zone"
pho~ha~a~ in w~ther~d edimen~ary phosphat~ depo3ltY at
loc~tlon~ lnal~dlng ~lorlda (USA), Sen~gal (W2~ Afrl~a)
and Chri~tma~ Islan~ I Indi~n Oc~ . Thi~ ph~ph~te,
often a mlxture of ~pa~e a~d ~y~oxyph~pha~e ~in~als
such ~s crand~llit~ and ~ e, is a low ~rad~ ore
w~lch ~annot ~t. pr~n~ be economically co~verted to
oth~r us~ul prvdu~ts.

Pr~acidulation o~ ~he in~ le ph~sph~tic material,
elther p~r~ia~ly or ~holly, is adv~nt~geously p2~0rmed
uqin~ ph4~phorl~ d, ~ulphurlc acid or a combina~ion of


SU~STITU~E ~ E~

SE~T BY:DAVIES & COLLIS0~ ;.3-10-~1 ; 16:i7 : ~EL~()L~E~lfj ~fil ~0~0
. ~ V0 ~JI1~7~ 2 0 ~ 1 4 1 4 PCT/AU9~/~132

-- 7 --
the two. U~ of p~osp~oric a~id to a~tivate the
ln~oluble phosph~tlc material can beneficially provlde
water resi~an~e and me~hanical ~xeng~h superior or
~ub~tan~i~lly equlvalent to -that achleved ~ g ~ greater
~mount of phosphorlc acid alone, without the presence of
the insoluble phoæphatlc material~ Us~ of sulphurlc acid
to preacidulate the insoluble ph~phatic m~teri~l
p~vldes water re~ist~nce and ~echanical prOper~iQS
ess~ntially equlvalent to th~t obt lned using pho~phoric
acid, ben~fi~i~lly ~llowlng total replacemen~ of
expen~ive p~osphorlc ~cld by much ~haaper ~u~phurio acld.

Al~ern~t~ ~ely, the pho~phatlc ~terial in the
mlx~ure may not be prea~idula~ed ~ specified in the r
lmmediately pr~cedins paragrap~ ~ut acidulated at a later
stage w~en the phosphatia component is al~ead~ bound
wit~in ~he ~et c~me~tl~ious ~atrix, whereby the ~ment i~
imm~rYed ~ie~ly ln ~n ac~idic: :3o~ ution ~ at least
p~rtlally aoidulats th~t pllo~ph~tic mineral component
2~ wlthin, or at l~a~;t clo~e tc~ the l3urf~e of, th~3
oem~nti~ious obJec:t. Exan~ples o~ appropriate ~cid
olutions are phc~3phoric acld ~nd ~ulphuri~ ~cid.

In another embodi~ t o~ ~he pr~3sent inYen~ on, the
25 pre- or post- ~cld~latl~n c:~ the in~olu~le phc~ph~te
mineraL component to provi~e ~ r.ementi~ous produc:t o~
increa~ed wa~r re~stance is c:a~ri~d out af~e~ mildly
p~alcinin~ the in~olu~le ph~sph~tic componen~ prior ~o
mlxinSI wlth the o~h~r ~emen~ componant~. SuC:h
30 pr~ alcinlng may ~ pe~formed at temper~ 4ures in thf~
ran~e of, for ~ mple, 300 ~o 700C, p~fe~ly 4$0 to
550S;~ for ~pto ~hout 3 hours~ Whore th~ insoluble
phosphatlc ~:omponent compriE3q~, :Eor examp~, crystalline
calcium ~lumlnium ~ydroxyphosph~eg ~iuch z~; cr~ndallite
35 and milli lte ~ in ~h~- a~orem~ntloned low grade ores,
c~alcination for in~t~nce ~ soo~c wi~4h a r~ention t1me
of one hour h~ been found ~f lcient to dest~oy the

SENT ~Y:~AVIES & COLLISON ; 3~ g1 , 17~ ELBOLR~E~ D0 :~17/ifJ
~VC~gO/11976 2 0 5 ~ 4 1 4 Pt~r~A Vg0JOD13

- 8 -
miner~l cr~y~Italllnity~ con~e~tin~ the mlneral pha~es to
more rea~tive amor~hous struqture. T~iS pre~alcining
step b~n~fitQ tha u~ of acld~ ~uch R~ ~ydrochloric and
ci~lc ln the acldu~a~ion step, aclds in whlch ~lclum
aluminium hyd~oxyphosphate minerals ~uch a~ crand~llite
~nd m~ lte are ~ ti~ely insolu~le unle~ mlldly
cal~lned to de~oy ~heir cry~t~llinlty~

In aotiya~ing ~he pho~ph~lc mlneral by ac~dulation,
lt i~ ~re~err~d to Dnly p~rtlall~ ~aldulate, especlally
when si~nlfl~nt aluminous pho~ph~ts 1~ prq~ant. A~ th~
op~l~um degree o~ ac~dulat~ On dap~nd~ i~ part on ~he
~bsolute amount ~nd ~ompo~ltion of the phosphate
inoorporated o~ ~o ~ in~orpora~ed in the cem~nt, the
nature o~ th~ acld u~ed ~nd ~hP de~e of pho~phate
precalcln~tisn, i~ ~ny, 1~ mu~t ~e det~rmlned ~y trial
and ~xp~riment. Complete acldul~tion ~nd ~olubi~ iza~ion
of ~he ph~phat~ of~en conler~ no ~ddltional ~efit ~nd
may ln ~act be detr~mental to ç~m~nt propertle~,
~0 ln~luding t~ak of w~r ra~i~t~nce. Acldulation ~i~es
will c~nunonly ~e f~om 1 to 60 mlnu~e~, pr~fer~ly from 4
t~ ~0 minut~, mos~ pre~rably about 15 minute~. ~h~
amo~n~ o a~ld ~ppropri~ ur th~ acidul~ti~
dep~n~ent upon the ~mo~nt of re~ctive ~gO in th~ mlxture
25 and wlll gene~ally be upto ~bo~t 20g ~er 100~ MgO.

T~ble l ~pre3ent.~ advsnt~ous op~r~tt ny p~rama~ers
and vari~ble3 whl~h ~r~ pre~ntly considersd appr~pri~e
fo~ the m~gne~an c~me~t prod~tion proces~ u~ln~
~0 Chri~tm~ Isl~d miner~ pho~phatio material
preac~dulated with pho~phor~ acid or ~ulph~ria ~cld and
wi~h option~l pr~cal~ination of ~he phosphatic. ma~arlal.




SlJ~ST3~ S~

SENT By DAVIES ~ COLLISON . 3-10-~1; 17:12 : ~ELBOL~R~E~416 ~ 0 9O/11 l976 2 0 3 1 4 1 4 P~IAU~4f ~013

_ g _
q`ABLE 1

Proc::q~ onditlons and Opqra~ins~ Preferr~d
Par~met~rs ~an~e Range




P205 con~nt
( wel~ht percent ) 10-3~ 25-3B
Feed size (micron) <25~ c125
PI~e~cidulation ~C:id
gtlOog MgO ):
Phq3phoric: ~c:~d 1-~0 ~-6
Sulph~ric aaid 1 7C~ 10 ~-8
15 Pre21cidula~ion dur~tlon
( mlnu~e~ 60 ~_~o


~0 Ca~ cin~lon tempera~ure ( C~ 300-~50 400-600
Calcination dur~ion (~inute-~ Q~l-l80 15-60


MgO/M~C12 stoinh~ome~ry,
mole~3 4-l2 ~-8
P~o~3phati¢ mineral com~onent
)C)g MgO ) 2-lOo S-~5
Fe~d ~iz~, MgO (mi~ron~ c250 ~90
Su~fac~ a~e~, M~O ~m ~) 5-~0 ~5-60
M61/Na wei~ht ra~lo, bi~t~3rn~3 ~3 ~8
( wh~le ~ppllczlble )

By op~rating wlthin th6~s~ ~ramete~ he
35 ~toichiometry c~f the proce~ controll~d to pro~ de as
~ m~Jor ~rye~t~lline csment~tious pha~e orm~d in the
h~rd~n~3d cem~nt th63 m~nesium oxychlc~rid~ hydrate


~U33 ITUTc S~

SENT BY:DAVIES ~ ~OLLISON ..3-1~-g1 ; 17:12 : ~EL~O-R~E~ a~ o
`, ~OgO~1i97~ 2 0 51 ~ 1 ~ YCT~AU~0023

- 10 -
comp~nd 5Mg~OH~.MgCl2.~0.

I~ all em~diments t additlve~ ~nd fillsrs may ~e
lncorp~rated into the c~mentitiou~ mix prlor to setting
S to inor~ase wat~r resl~tanae and/or mechanlcal stren~th,
to provide s~itable c~lourln~ or texture, to control
shrlnka~e or expan~ion, to ~on~rol the r~eolo~lcal
prop~rti~s o~ ~he ~em~ntitlo~ ~lurry, or ~imply ~o act
~s inert ex-tend~r ~uch ~ddi~lves whloh mlght be u~ed
~O incl~d~, but ar~ not lim~ted to, i~organi~ and organic
fibres, piyments, lignlns, lignosulphonate~, s~rfactant~
an~ foam promot~rs, ~uperpl~Rticl~ers, sawd~s~,
woodchlps, ba~asse, ri~e hull~, ~la~s, flyash, tal~,
slllca ~and, clay~ and o~he~ ~lu~lnosillc~te~. It ha~ r
lS bee~ found of partiaular ~lu~ to incorpo~ate ~llica fume
or ml~r~Rilica in thP oemontitiou~ mix ~o further promot~
w~t~r reslstance in the h~rdened c~ment. In all
embodiments, th~ ma~ne~ium chloride ~urce m~erial ~ay
be repla~ed wholly o~ in pa~t b~ ~ m~n~slu~ ~ulphate
~urce mat~rial suqh as epsomlt~

The magnesi~n ~m2nti~10~ ~ompoæitio~ of the
pre~ent invention may h~ve wide appli~abill~ in the
buildlng and other indus~ie~, ~nd may hen~lcially ~e
~5 incorpor~t~d in many p~ducts includin~ foamed in~lation
panels an~ co~ln~s ~nd ah ~ binder in parti¢le- ~nd
hard-bo~d ~ompo~ltions.

EXA~P~
The ~ollowin~ example~ are given by w~ o~
illust:r~tion ~nd no-t by way oi~ nlt~tion ~31nc;e ~r~ri~
ah~nyes ~herein m~y he made by ~hose skill~d ln the ar~
w~hout d~p~rtln~ Erom ~he tru~ ~pirlt and scope ~ the
~5 pr~nt i~vention~ Un~e~ st~d other~i~e, ~hristm~s
Island p~a~ph~te rock compri ing a mlxture of calcium
alumlnium hydroxyphosphat~ mine~ nd apatit~ was used


$13~5TIT13TE S~.~E~

SE.;~IT ~Y:DAVIES ~ ~OLLISON ; ,3-10-~1; 17:13; ,~ELBOI~R~E~ 0 .X~
...
o sotals7~ 2 ~ 414 P~AU~0~00132


in the Examples, ground to 12~ mlcron~3 or le~f~. The ~CIe
of ~ gne~lum ~hlorid~ hexa~ydr~t~ sintul~ted ~he
incorporation of l:~itterns ln the process.

5 EXA~ 1

A C:elnent~ ~iou~ slurry w~s p:~ap~red by mixlng 125
part~ o~ Low ç;lrade ~loln~d Inagn~ e, oontalnin~ 100
par~s of M~O, wl~h 78 part~ of magneY~um chloride
10 hexahy~l~a~e plus 35 part~ of ~dded water. Th~ nesite
u~e~, from Copley, South Australla~ was finely ~round
after calcsin~tlon at ah~u~ 810~C to pa~;s gO m~ ons and
posse~ æd a surf~ce area o~ about 50 m2~ after
calcir~a~ion~
lS
In ~ serie~ o~ statlstically de~ n~d exp~3rlmellts
uslng such prepar~tions, it w~ found that additiorl to
the alkaline cem~ntitious ~lurry Of ~ . 3 parts ~alcined
Chri~tmas Island ~ rade phosphate ~ock ( 31 wt . ~ P205 )
20 wa signifiaant~ ( at tha ~ onfide!nae la~el ~ at
decr~aasing t:he water sol~bllity of the re~ultant ha:rdened
~em~nt to 25 . 7 ~ when c:omp~ed to oontrol prepa~tlons
cc~n~a~ ni~s~ no ~ch Christmas Island pho~phate rock, th~se
cc~nt~ols ~hibltin~ 2~n ab-~olu~e water solubillt~ of ~7 . O
25 % as h~rdened C:ement-r~ contr;~s~, ~3ddition o the
Chriæ~ nd pho~phate when 1 n an unc~ in -d ~tate
provlded no ~nhanc:~em~nt to ~e water résls~ance
~hat~o~3v~r. The solubllity te~t compris~3d i~ 3rsing
~mall qample,s of ~he har~len~d a~meF~ts in ~p w~e~
30 (Adelald~, South Au~tralia~ for 17 hours at ~UC, this
tr~tmç!r~t satlsf~ctorily s~ mul21~lng lon~ term water
i~uner~ion a~ ambient ~emperatur~. The c:alolna~ion
trea~ment of th~ C~h~lstmas I~l~nd ph~sph~ comprised
hoa~lng the ~o~k in ~ muf~l~ fu~n~ce fc~r one ho~r at
- 5Q0C, ~r~3by the cry~lllnity o~ ~he major alulninou~
pho~phate ~inera~ ~ in the rock, namely ~r;~ndallite ~nd
milli~ite, is destroy~d r ~onv~rting the ~lumlnou~

______
E S.;~

SE~T BY:DAVIES & COLLISON ; 3-10-~1 ; 17:14 ; ~ELB~UR,~E~g1~ g~ GO ;~lJ~
O ~0/11~76 2 ~ PC~rJAUgO/~132

- 12 -
pho~pha~e ~ more reactive amorphous form~.

~XAJ~PLE '~

S In a first cement preparA~ion, ~n acidul~ted ~lurry
w~s prepared from l~7 parts o~ Christ~as I~l~n~ C-grade
phosphate ~ock (25.~ wt. % P205~ and 4.2 par~ of
phos~horfe ~cld~ Water was add~d (3 pdrts) to maln~ain a
sati~a~ory ~on~l~tenc~ and prevent the mlxture rom
becomln~ too thi~k~ ~he acidul ated m1xture w~s l~ft ~or
l5 mlnutes with occasional ~tirring . CalclnQd Copley
m~gne~lte (l2~ par~ ~ontaining lOO pa~t~ M~O), magnesl~m
chloridq hexahyd~ate (7~ part.~) ~nd further w~ter (32
p~rts ? were next add~d to the slurr~. After ~tirring,
the ~ementit$~us ~lurry ~as po~ed ln~o moLds and allowed
to ~et.

Two ~ur~r pr~pa~ions ~ere m~de ln a ~imil~r
m~nner ~ithout ad~it~on of Chri~tma~ Isl~nd phosphate
mixin~ 125 part~ of ~alclned Copley m~n~æite, 78 parts
of ~a~neYlum q~lori~ ~exahydr~t~ and 35 part~ o~ w~ter.
To one o~ ~h~se ~urther preparations, 7 par~ of
p~osphoric ~c$d W~Q addition~lly in~or~orat~

2~ After ~llowln~ ~o h~rde~ ~or ~t lea~t 15 daya, the
c~ments fr~m all thLre~ pr~p~a~ion~, ~n ~h~ form of 2 cm
~ube~, w~r~ ~bjected to compr Y~i~e .~ren~th t~sting and
d~ezmin~tion ~f w~t~ r~sl-~tan~e by ~he æolu~llity tes~
~t ~0~ speoifl~d in ~xample l.
~0
A sample ~ro~ that E;~rf~p~r~tlon cs~nt~ining no
C:hristmas I~l~nd pho-~phat63 and no pho~phoric ~3cid showad
~ c:ompr~sslv~a ~trenslth of 50 MPa with no wa~er ~eat~nen~,
but wat~3r ~rea~m~nt ~t 8C) ~ ~ cau~d an identical sample
3S fro~ the prepar~ion to experience alm~Yt tot~l
di in~gr~io~, with an accomp~nylng weight l~s ~f 3Q ~.


SlJBST~'JTE ~r~:;E~i
___

~ENT BY:DAVIES & COLLISON : ,3-1~-gl : 17:14 : ~EL~OLR~E~ g61 ~000 ~22/~fJ
`~0 90/llg7~ P~r/AUg~/00132

- 13 -
A ~mple ~rom the p~epar~tlon ~o~t~ining no
~rl~a~ I31and phosph~te but con~ainlng 7 p~rts of
phosphorl~ ~id ~h~wed ~ oompres~l~e ~tren~th of 37 MPa
with no prio~ w~tex treatm~nt, while a s~mple from the
5 ~ame p~ep~ratlon after the 80~C water treatment exhlbited
a compresYlve qtren~th o~ 23 MPa and ~ water solubility
o~ 5.5 ~.

For sample~ from the prepa~tlon con~alnin~ ~oth
10 Ch~ s l~lan~ pho~ph~te ~n~ pho~phorl~ acid, a
compr~s~lve Ytrength of 3~ MPa was obtain~d ~ith n~ prio~
wa~r treatn~ent and a value o~ 30 MPa with an ~s~aiated
~ater solu~ility o~ 5.0 ~ or an identical sample
s~b~acted to the ~0C water ~reatment.

This example demonstra~es that pre~ence of
pho~pho~io ~cid, when contr~ted to ltq a~e~cP, provides
high strength re~ntion ~nd low ~olubility for hardened
cements after a S~vere water treatme~t. This ex~mple
2Q unexp~te~ly demonstrate~ fur~her ~at pre~ence o~
i~ol~ls pho~ph~tic ~.inerals ~f~er p~rti~l
pre~c~dul~tion wlth p~o~p~ori~ ac~ is benefi~ial in that
lt c~n p~ov~de gre~sr or equi~al~nt ~rangth retenti~n
after water trea~men~ than does u~ of a gr~ater amount
25 of phosphoric a~id a~on~. By contr~stlng with Exampl~ 1,
the pr~e~t e~ampl~ also dem~nstrates by the comp~rati~e
w~ter ~ol~bilitl~ of ~h~ ~emen~Q that use of the
pr~ ulat~n ~tep for th~ ol~le pho ph~e is
~uperlo-r to ux~ of ln~oluble p~osph~t~ wi~hout
30 p~ea~ldu1ation.

XA~PLE 3

An ac:idtllated slurr~ wa.~ p;repared from 1~.7 pa~t~ of
l~llristma~ I3~ and C-gr~de phosph~te rock ~?~$.2 wt. ~6 P205)
and 6.3 part~ o~ 7~ lph~ic a~id. Suffi~ient ~ater
was added ~6 parts) to pre~rer~ h~ mixture from l:~ecoining


C~STITL3T~ S~ ~E~

SENT LY:DAYIES ~ COLLISON ; ,3-10-~1; 17:1~; ~lELBOLR~iE~ 61 ;OO~ :i2.,~
--- ~o g~fll~76 PCrtAU~0~132
2 ~
- 14 -
too thl~X. ~he ~id~ated mixture w~ lef~ or 15
ml~utes with oc~a~ l s~irrlng. C~lclned Copley
magn~site (125 pa~t~ containing lOO parts M~O), magnesium
chlorlde hexahydr~te ( 7a part~ ~nd furth~r ~ater (36
p~rts) were next added to the slurry~ After ~tirring,
the cementitious ~lurry wa~ pourBd into moldR snd allo~ed
to ~et. I'e3ts performq~ on the h~rdened ~ements were
ldentl~al to tho~e ~peci~ied for Exampl~ ~.

A compre5sive ~tren~th ln ~xce~Y of 54 MP~ wa~
~xhl~lt~d by a 2 ~m ~ube of this o~ment with no water
tr~atment, whi~e a ~ater tre~te~ sample (as before at
~~) po~ses~d a ~ompre~ive ~rengkh of ~1 MPa aft~r
assoclated dl~olutlon o the qampl~ ing the water r
~reatment of 7.3 ~.

Thi~ ex~ple illust~tes a fuxther aspect of the
pref~rred embo~im~nt of ~he present invention. It
unexpectedly de~ons~ra~e~ tha~ d~plte the hlgher w~er
2U ~ol~bllity (compa~ed to tho~e ce~ent ~mpl~ ln ~xample 2
~ontal~ln~ ph~phorl~ ~Cld~ prob~bly due ~o leachln~ of
the calclum ~ulphate ~orm&d, ~ hi~h ~ ng~h is retain~d
a~ter water treatm~nt, compar~le to th~t wa~er t~Q~ed
sample in Example ~ wherein pho~phoric ~c~ was u~ed
~lon~ without mineral phosph~tP ~d~l~ion~ The pr~nt
ex~mple Xur~.her d~ons~ra~s ~hat for equival nt water
re~ t~n~e ~ quantifle~ b~ comp~es~lv~ ~reng~h
reten~ion i~ th~ ~ured ~ment, ~ulphur~c a~d, whe~ ~ed
ln con~unction with an lnsolubl~ pho3ph~ min~r~l
component, can beneficially rep~ce the mor~ ~xpe~sive
phosphorlc acid u~ed alone.

EXAMPLE 4

3S Three s~ries of C~menk~ w~r~ prepared in thls
ex~mple. All ~em~nt composition~ were id~nti~al except
~o~ the pho~phate compone~t, ~nd ~ ~llgh-tly ~aryi~g w~ter


SU~5Tl ru ~ ~ S~

SENT BY:DAVIES & COLLISON ; 3-10-g1 ; 17~ ELE~LR~E ~lf ~1 'JO~ 2
- ` W O 90/11~76 2 ~ P~rIA ~90/~013

- 15 -
~o~tent t~ provide a ~uitable conaiatenoy du~ng mixln~,
In on~ serles, ~i~fer1ng amount-c of phosphori~ ~cid were
added~ In the other two ~erles a constant amount of
~hrlstmas Icl~nd C ~r~de phosph~te ro~k was added
5 togeth~r with di~erlng ~m~unt~ o~ phosphori~ acid (the
second serle~) an~ sulphu~ic ~cld ~thlrd serle~). All
cemen~s al~o cont~lned ~ a ~L~ne. ~he lOO part~ of MgO
used ~ ea~h formulation ~as contained in 125 p~rts
~alc;.ned ~pley ~gneslte.
~n the ~ir t ~eri~ a pr~lx w~s prep~rsd by
addltion o~ 29.4 parts M~O to 30 6 part~ water followed
by selected addltions of pho~phoriq ~cld ~a~ ~lven in
Tabl~ 2~ ~he premlx was lef~ to ~tand for lS minutes
lS aft~r w~ich 69 p~rts MgCl2.~H20 w~s added foiiowe~ by the
~lnal 70.6 p~rts M~O premi~ed with 3.7 p~rt~ silica fume.

In the ~ec~n~ and ~ird -qerl~s, h~lected addi~lons
of phosphoric ~ and su7phuric acid, r~spectl~ly, ~s
~0 det~ileq in T~ble 2, werQ ~dded ~o 14~7 par~ uncalcin~d
phosphate rock followed b~ a Qm~ll amount of w~ter lf the
m~tur~ wa~ dry~ ~he ~remix was l~ft ~o Qtand ~or 15
mlnu~s after wh1~ 3a part~ w~ter was ~dde~ followed b~
2~ p~rts MgO. T~1~ was l~ft ~o stand ~or 5 mlnutes.
25 At t~ poln~ ~ pa~s ~gCl~.6H~O wa~ a~ed, followe~ by
3.7 par~ lca ~um~ pre~i~d wlth 7~.6 p~rts M~O.

W~t~. ~lu~ilitie~ were d~r~nine~ ~t BOC ~y the
m~hod giv~n ~n E~ample l~ R~ults ~r~ ~hown in Table ~.
~0
The dat~ in Tabl~ 2 demon~trates tha~ the wa~r
ssl~billty fo~ ~ement~ contalning ~dula~ed ro~k
phosphate g~s ~hroug~ a mln~um ~lth ~ optimu~ ~mount
o~ a~id (fo~ bath pho~pho~lo and ~ulphurio ~ids) ~t
35 ~bo~ 5.5 p~t~ with the G~mposi~lons u ed i~ this
Example. Highe~ amounts of ~¢ld und~r these oonditions
are detrlm~n~al, de~r~ing ~hç wate~ re~ista~ce.


SIJ~STITUT~ S~
_____

sEN/r BY:DAVIES & COLLISON : 3-1O-gl . 17:16: ~ELEOL~;E~ 000 ;~
~~ ~0 90/1197~ 2 0 ~141~ P~/AU~O/D013~


Solubllltie wi~h ~ulphuric ~cld are h~ e~ th~n those
wlth phosphorlc aqid, ln part, at le~st, flue to the
~orm~tion of appre~i~bly soluble c~lcium ~ulph~e wlth
th~ forlner.

It ls further beneficl~lly demonstrated t ~s in
Example 2 ~ that the d~rea of wate~ r~3~lst~nce ilnparted
by pho~phoric ~ alone can ~ m~tc::h8d by ~
slgnif lc~ntly lowe~ amount c)f pho~phorlc: acld i~ used in
c:ombina~lon wl~h rock phosph~te. For axample, wa~er
re~ tanc~ ~c;hl~3ved by 7, 4 p~srts phc~sphoric~ acid 1~;
~gualled by u~ing orlly about 2 . 8 part~; o phosE~ho:L ia
ln com~ination with 14. 7 p~rt~ rock p}~osphate addition.

Sili~a ~um~a es~~ cQs the water reSi~tE~rlCe of ~he
c:ement~ . ~ 2~ weight ~ OB~ found wi~h sillca fume
addl~ n ~ut with no pho~phate is lc~wer than the ~8%
found in ~:~ntrol c~3ment~. The benefl~ial ~fet:t of
slliG~l f~ne it3 malntalned in pl~osph~-te contairling
cem~n~, w-~ th t~ w~Lr res;~tance ~ontrl4ution~
appar~3ntly ~u~stantial3.y ~ddltlve a~ se~3n by ~c~mpar~ ng
the ~ter ~o~bility da~a of thi~; E~ample wi~h ~xamples 2
~nd 3
TAE3~LE ~
Amount of ~ci~ A~ . and ~orre~ndinc~ $o~ ubill~ __ _
50lubll~y ~ w~ight lo~, p~r~ent
. ~ ~ ..
Amourlt of Acld Ser~e~: 1 ~ .~
( part~/100 p~ Mç~0 ) Phosp}L~ric:R~clc Pho~ph~te '~ k phosphate
Ac~id Alone~ phos ~cld ~ sulphl-rlc
0 21.~ 2~.8 ~Z.0
Q.g 8.5 5.~ 10.6
l.8 5.2 3.D ~.6
2.8 5.~ 2.6 7.0
3.7 3.5 1.9 4.5
5.~ 2.7 l.~ 4.0
7.4 ~.~ 1.7 4.7


~V~ E

SENT BY DAVIES ~ (:OLLISON ; .3~ 1; 17:17; .~iELE~O~ 'E~41~ 0~
~ ~/1 i~76 2 0 ~ ~ 414 PC~/hU~/01113~

17

~,~
~wo type~ of c~nen~ ware prep~red from tha hlgh
S gr~de cal;;lne~ m~gne~lts from Kunwa~ara, Queensl~nd: a
water reRl~nt cement oontaining ~aAd, r~ck phosphate
an~ pho~phoric a ::id and a c:ontrol ~ement containll-y no
additive ot~er than s~nd

For t}~ pho~ph~te Inodi~ied c~ment, ~ dry mlx was
prepar~d ~ronl 1170 Çl ~ flnely g~ound KunwE~rar~ calcine~
magn~sit~ alcln~d ~00 ~; free Mg0 9~ . 5 wt . ~ ) and 5 ky
4~ dry ~3harp guallty ~lldln~ ~and ln a mlxer of
conunerc:l~l deYlgn. A ~remlx wa~ separat~ly pr~pared by,
15 addins~ 50 51 phosphoric acld ~o ~ ~lurry c: f 200 g
Chrlstma~ land C s~rade phospha~e rock and lt~0 ml wat~r.
A~ter 15 mlnute~ 130 S~ of Runwarar~ c~lc~ ned Inagr~3site
was add~ad to the pho!3ph~te premlx wlt}l ~lrring. l'his
mlxtur~ ~orm~d ~ dry m~x ~nd wA~ ~ubsequantly slurrled
~0 l~7ith an<: ther 100 ml of water, and w~h~d into the ~gO-
~and dry mix with 1~0~ ~nl of magne~ium chlor$d~ ~olution
( densi~y 1. 30, 3~ ~ MgC1~ ) . Mini ~al ~ddltlonal water ~as
added wh~re nec~ ry to maitltain ~at~ tor~
cor3sis~tency in the cem~n~ ~21urr~r. The cement c~l~rry was
25 poured lnt~ 10 ~m cu~ molds, wl~ vibr~iny ~o r~duce
p~oslty .

A contr~1 o~m~nt w~.Y ~imilarly pr~3pared by m~klnSr a
d~ mlx o~ 130~ g ~Cunwarar~ c~lclne~ rnagn~ e ~nd S k
30 of ~ry sand. ~o this mlx WBs ~dde~ 1000 ml of ~he same
magr~e~ium ¢hlorlde ~30lutiQn~ Additional w~er waq ~dded
to the slllrr~ r~quired~

Th~ phc~gph~3 modii~d ::~m~n~c exhibi~ed cvmpr~ssive
3 5 ~trength~ in ~h~ dry ~t~t~: of a~out 5g t Z MPa .
Corre~pondin~ ~ompre~lve~ ~3trqngth~ af~e~ immer~iion in
tap water al: ~oom ternper~ture for 7 and 30 d~ys were


SU~ 5T~
___

SENT ~Y:DAVIES & COLLIS~N :.3~ 17:17 ; ~ELBO~R~'E~ 0~ 7/4fj
~- NOgO/1l976 ~ PCTJA~0/~132

- 18 -
~ti~l high, at 42 ~nd 4~ MP~ reBpectlvely. A wet/dry
cycl~c test a-t amblent tempe~at~re, consis~ing o~ ~
cyoles o~ one day ln freæh tap wa~er followed by two days
stored ln alr, re~ulted ln a c~pre~i~e strength ln a lO
cm cube o~ 57 MPa, practically unchan~ed from that for
continued storage in ~lr. The ~elatlvely sm~ hange ln
~mpr~sl~e refleck~ the minimal solubllity o~ the
samples noted du~ing the tqsts.

For ~ubes o~ ~he ~ontrol c~en~ cont~inln~ no
pho~ph~te, typical compres~ive stren~ths ~or dry ~toraga
reached g~ MPa. However for id~n~lcal water i~mersion
and a~ c t~tin~ dnne for the phoRphate modified
cem~nt, the cont~ol cubes d$Yinteyr~ted; no ~om~res~l~e
15 s~rength te~tiny wa~ po~ible.

~ example demon~*rate3 a novel method of
ln~orporating ~he a~dulated pho~ph~t~ ln the 4~ment,
where~ the phos~hate ~lurry ~ onverte~ to a ~lne dry
20 powder by premixln~ ~he s~ur~ h a por~i~n af the ~gO
used in the ~emen~. ~hi~ ~y pre~ix ls ~ conv~nlent w~y
Qf ~torlng the acid~l~ted ph~spha~e ~nd allows i~ to be
added to th~ c~ment mlx at a convenle~t later timer ~he
dry prem~ ould a~o b~ zldd~d hack sqith ~h~ remainder o~
25 th~ M~0, for later mixing wlth ~he m~ne~ium ~h~oride.

E ~

A ~er~ f c~me~ts were prep~red with ~hrist~as
30 Island Grade ~ phospha~e r~ck ~om ~hich ~ll the ~pa~itic
phospha~e component had ~en r~moved. Th~ ~ps~lte ~a~
removed ~y rep~ting l~aching o~ -the ~o~k wlth 2.5 molar
hy~ro~hlorl~ acid ~olution, wh~le monitorin~ the lea~h
proCe~ pr~duct~ by X-ray d1ffra tion ~naly~l~. The X-
35 ray difra~ti~n ~n~ly~is showed that ~ll apa~ite
origln~lly ~re~ent ha~ been remove~ and th~t the maJor
arystalllne pha~e~ pre ent in the le~h~d rock w~re the


S~J~S ~ ~u'r~ S~JEET

SENT BY:DAVIES ~ COLLISO~I ; 3-10-~1; 17:18; ~EL~OIjR~E~ 0~0 .~2
--~O ~ t~76 2 ~ 4L P~/A~1~/~13~

-- 19 --
~ lclum alumlniu~ hydroxy~ho~phates, cr~ndalllte and
mlll ~ site, the~ had remalned undissolvRd ln the leaching
~tep .

t~sln~ a factorially ~esigned s~rles o~ cemen~, half
of th~ s2ample~ pr~pared lncorpor~ted th1 ~ leached
pho~3phate ln the pr~sa~lcined ~tat~; the remalning Yamples
lnc:orpor~t~ th~ le~ched pho ph~te ln an uncAlcined
~t~te. Tl~e cal~::ining step lls~d a one hc3ur therm~l
tr~atmfant ~t 5~0C in ~ muffle ftlrn~c:e. Ju~t p~ior to
~nc:orp~ratinSI in the clsm~n~, ~he e~r~::ted pho~3ph~te rock
was ~o~ dulated with either concentra~d hydrochlor~o or
709~ ~ulphurl~ t ds for period~ rangln~ ;~rom S to lO
minutes. Th~ acidula~ed p~osphate w~ thsn mixed with
125 par'cs of finely ~round c:alcine~ Copley ma~nE~Slt~
(~ontalning lO~ pa~ free MgO~, 63 p~r~ of MgC12.6~120
and ahout 42 p~rt~ w~ter. The ~mou~ts of extr~cted
p~o~pha~e rc~:k and of a~id u~;~d w~s ~ystematl~ally ~arled
to be 12. 5 o:r ~5 pa~t~3~100 part~ ~r~e M~O ~nd 4. Z or l~ ~ S
20 p~rt~/lOO part~ ~ree M~O, :~esp~ctivel~.

Water ~olu~illty te~t~ were m~de ~ ~o n C ( 8S
dç~t~iled in Ex;smple 1 ) c:n th~ ment~ aft~r one wee~
m~turatlon an~ a~airl anoth~r six weeks later. ~o
25 sl~nlficant dlf~i3rence~ wex~ ob~er~Pd in th~ two sets o~
solllblll~y m~a~ur*nlen~-~ m~le ~t dif~erent times.

q'he s~lubili~y d~ta showed that w~ter ~olu~llity w~s
low lf ~al~in~d leached pho~phate :ro~k was u~d in ~he
O ~ement, ~ver~lng 4. 6~ ~d 4. S~ weight lo~s for
hydrochloric ~nd sulph~rio æl :1, re~pec:ti~el~, a~
~idula~ing ~gen~ owever, wh~n u~in6~ un~ ined
leac:hed pho phate rock, th~ c: orre~pondlng averaSae w~lght
lo~e~; wer . muc:h hi~her, a~ 18 . 7 and 13 . 4~ sp~ctl~
35 Thl~; comp~res3 to the 2~ 30~ ~ight lo~ xperienc:ed in
control a~nts wlth no phos~h2te a~ ion.


SV3S~lTU~c S~E,

SENT 13Y:DAVIES & COLLISON ; 3-lQ-~1; 17 1~ ELB~L~;E~l~ g~ 0~ ;~2~
W~ g76 2 ~ P~r/AU~UJ~3~

- 20 ~
These r~ult~ demonstrate t~t if the r~adlly a~ld
soluble ~patlte ~calclum pho~phate~ impurlt~ is removed,
~he calclu~ aluminium hydroxyphosphate minerals remalning
~u~t be actlva~ed by ~alcinatlon prior to ~cldulation -to
o~taln minimal water ~olubllity and maxlmum water
r2sl~tan~e in th~ cement. Cal~ina-tion converts the
~ystalli~e h~droxypho~phate to a more a~id ~oluble
am~phous ~t~te. Consider~bl~ less water resl$tance ls
impart~d ~o the ~e~qn~ by the calcl~m alumlnium
hy~roxyphosphate component lf un~al~ined; the reYults
d~monstrate ~ha~ h~drochloric a~id i~ leYs ef~ectt~e with
thQ un~alcined pho~ph~e ln thl~ inst~nce ~han is
sulph~i~ 8cid.

lS ~ho~e s~illad in ~he art will appreclate that the
lnventi~n deY~rlbe~ herein i~ susceptl~le to vari~tions
~nd mo~ificati~n~ other ~han ~ho~e specific~lly
des~rlbed. It i~ to be unde~stood ~hat the invel~tlon
in~ludeY all s~h ~ri~tlons and modlfi~ation~ which fall
withln the lta spirit ~nd ~cope. The lnven~lon also
incl~des ~11 o~ the step~, featur4s, oomposltions ~nd
oompounds r~ferred to or i~dl~ated ln ~his ~pec~ atlon,
~dividually or ~ollectlvely, and a~y and all
com~inations of any t~o or mo~e ~f said ~t~ps or
~eature~.




SUI~T~TUTc S~EE 1-

Representative Drawing

Sorry, the representative drawing for patent document number 2051414 was not found.

Administrative Status

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Administrative Status , Maintenance Fee  and Payment History  should be consulted.

Administrative Status

Title Date
Forecasted Issue Date Unavailable
(86) PCT Filing Date 1990-04-05
(87) PCT Publication Date 1990-10-06
(85) National Entry 1991-10-04
Dead Application 1995-10-05

Abandonment History

There is no abandonment history.

Payment History

Fee Type Anniversary Year Due Date Amount Paid Paid Date
Application Fee $0.00 1990-04-05
Maintenance Fee - Application - New Act 2 1992-04-06 $100.00 1991-10-04
Registration of a document - section 124 $0.00 1992-04-10
Maintenance Fee - Application - New Act 3 1993-04-05 $100.00 1993-04-02
Registration of a document - section 124 $0.00 1993-07-27
Maintenance Fee - Application - New Act 4 1994-04-05 $100.00 1994-04-05
Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
MERZ AUSTRALIA PTY. LTD.
Past Owners on Record
CSAVAS, JULIANNA
JEFFCOTT HOLDINGS LIMITED (IN LIQUIDATION)
MAIR, ALEXANDER D.
RALSTON, JOHN
SMART, ROGER ST.
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Drawings 1990-10-06 1 13
Claims 1990-10-06 2 96
Abstract 1990-10-06 1 22
Cover Page 1990-10-06 1 19
Description 1990-10-06 20 1,032
Fees 1994-04-05 1 42
Fees 1993-04-02 1 39
Fees 1991-10-04 1 51