Language selection

Search

Patent 2426915 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent: (11) CA 2426915
(54) English Title: LOW-PRESSURE DISCHARGE LAMP WITH A DEVICE FOR SWITCHING IT OFF AT THE END OF ITS SERVICE LIFE
(54) French Title: LAMPE A DECHARGE A BASSE PRESSION AVEC DISPOSITIF POUR SA MISE HORS CIRCUIT A LA FIN DE SA DUREE DE VIE UTILE
Status: Deemed expired
Bibliographic Data
(51) International Patent Classification (IPC):
  • H01J 61/56 (2006.01)
  • F21V 23/04 (2006.01)
  • H01J 61/067 (2006.01)
  • H01J 61/70 (2006.01)
  • H05B 41/00 (2006.01)
(72) Inventors :
  • BLOHM, BERNHARD (Germany)
  • FUCHS, KIRSTEN (Germany)
  • HILSCHER, ACHIM (Germany)
  • HUSSLEIN, PETER (Germany)
  • HAMMER, GERALD (Germany)
  • MACIEJEWSKI, ANDREAS (Germany)
  • NOLL, THOMAS (Germany)
  • PANKRATZ, KLAUS (Germany)
  • WEINGARTNER, KLAUS (Germany)
(73) Owners :
  • PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE GLUEHLAMPEN MBH (Germany)
(71) Applicants :
  • PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE GLUEHLAMPEN MBH (Germany)
(74) Agent: SMART & BIGGAR LLP
(74) Associate agent:
(45) Issued: 2011-06-14
(22) Filed Date: 2003-04-25
(41) Open to Public Inspection: 2003-10-26
Examination requested: 2008-03-27
Availability of licence: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): No

(30) Application Priority Data:
Application No. Country/Territory Date
10218827.0 Germany 2002-04-26

Abstracts

English Abstract

The invention relates to a low-pressure discharge lamp, having a tubular discharge vessel made from glass, the free ends of which are closed off in a gas tight manner, two electrode systems (3) each having a filament (7), two supply conductors (5, 6) and a bead (8) of glass, the ends of the supply conductors (5, 6) being fused into the ends of the discharge vessel which have been closed off in a gas tight manner and, in order to be held in a region between the filament (7) and the discharge vessel fused seal (2), into the bead (8), and a device for switching off the lamp at the end of its service life, comprising a paste (9) which contains a metal hydride and is fitted to the bead (8). According to the invention, the bead (8) consists of a glass material which has a resistivity of greater 8 .OMEGA.cm at 350°C. Moreover, the paste (9) containing the metal hydride is applied to the bead (8) in the radiation shadow with respect to the thermal radiation which emanates from the filament (7) of the lamp in operation, and is not in electrical contact with the supply conductor wires (5, 6) on the bead (8).


French Abstract

Cette invention se rapporte à une lampe à décharge à basse pression, qui comporte les éléments qui suivent. Un récipient à décharge tubulaire constitué de verre, dont les trois extrémités sont bloquées de manière ferme par du gaz; deux systèmes d'électrodes (3) munis chacun d'un filament (7); deux conducteurs d'alimentation (5, 6); et une perle (8) de verre. Les extrémités des conducteurs d'alimentation (5, 6) sont fondues dans les extrémités du récipient à décharge. Lesdits conducteurs sont emprisonnés de manière ferme par du gaz et, afin d'être maintenus dans une région comprise entre le filament (7) et le joint d'étanchéité fondu du récipient à décharge (2), dans la perle (8); un dispositif de mise hors tension de la lampe à la fin de son cycle de vie, qui comprend une pâte (9) contenant un hybride métallique, et est assemblé à la perle (8). Conformément à l'invention, la perle (8) est constituée de verre dont la résistivité est supérieure à 8 ohms.cm, à 350 degrés C. En outre, la pâte (9) qui contient l'hybride métallique est appliquée à la perle (8) dans la zone d'ombrage de rayonnement par rapport à la thermorayonnance du filament (7) de la lampe en fonctionnement, et n'est pas en contact électrique avec les fils conducteurs d'alimentation (5, 6) sur la perle (8).

Claims

Note: Claims are shown in the official language in which they were submitted.




-8-

CLAIMS

WHAT IS CLAIMED IS:


1. A low-pressure discharge lamp, having

- a tubular discharge vessel made from glass, the
free ends of which are closed off in a gas
tight manner,

- two electrode systems each having a filament,
two supply conductors and a bead consisting of
a glass material having a resistivity of
greater than 10 8 .OMEGA.cm at 350°C, the ends of the
supply conductors being fused into the ends of
the discharge which have been closed off
in a gas tight manner and, in order to be held
in a region between the filament and the
discharge vessel fused seal, into the bead,

- a device for switching off the lamp at the end
of its service life, comprising a paste which
contains a metal hydride, is applied to the
bead in the radiation shadow with respect to
the thermal radiation which emanates from the
filament of the lamp in operation and during
filament preheating and is not in electrical
contact with the supply conductor wires on the
bead.

2. The low-pressure discharge lamp as claimed in
claim 1, wherein the bead of a potassium
barium silicate glass.

3. The low-pressure discharge lamp as claimed in
claim 1, wherein the bead is substantially in the shape
of a cylinder or roll, the axis of which is oriented
transversely with respect to the axis of the discharge
vessel in this region, and the supply conductors are



-9-

fused in close to the two ends of the bead, and the paste containing the metal

hydride is applied to that part of the bead which is remote from the filament,
in the
radiation shadow with respect to the filament.

4. The low-pressure discharge lamp as claimed in claim 3, wherein the
bead has a circle diameter d in mm which satisfies the following empirical
formula:
d > 0.2026 x m + 1.7617 where m >=2

where m is the required quantity of the paste containing the metal hydride in
mg.
5. The low-pressure discharge lamp as claimed in claim 1, wherein the
bead is mushroom-shaped, the cap of the mushroom facing the filament and the
paste containing the metal hydride being applied underneath the cap in the
radiation shadow with respect to the filament.

6. The low-pressure discharge lamp as claimed in claim 1, wherein that
point of the bead which is closest to the gas tight closure of the discharge
vessel
is at a distance of at least 2 mm from the gas tight closure.

7. The low-pressure discharge lamp as claimed in claim 1, wherein the
metal of the metal hydride in the paste consists of a metal selected from the
group
consisting of titanium, zirconium and hafnium.

8. The low-pressure discharge lamp as claimed in claim 1, wherein the
metal of the metal hydride in the paste consists of a metal alloy selected
from the
group consisting of the titanium-zirconium, titanium-hafnium and zirconium-
hafnium alloys.


- 10 -


9. The low-pressure discharge lamp as claimed in
claim 7, wherein the paste contains titanium hydride
TiH2 as metal hydride.


10. The low-pressure discharge lamp as claimed in
claim 9, wherein the paste contains titanium hydride
TiH2 with a mean grain size of greater than 50 µm as
metal hydride.


11. The low-pressure discharge lamp as claimed in
claim 1, wherein the paste, in addition to the metal
hydride, also contains a rheological additive in a
quantitative proportion of less than or equal to 50% by
weight.

Description

Note: Descriptions are shown in the official language in which they were submitted.



CA 02426915 2003-07-22

_A/''[S Version PRE
Patent-Treuhand-Gesellschaft
fur elektrische Glihlampen mbH., Munich
Low-pressure discharge lamp with a device for switching
it off at the end of its service life

TECHNICAL FIELD

The invention relates to a 'Low-pressure discharge lamp,
1.0 having a tubular discharge vessel made from glass, the
free ends of which are closed catf in a gas tight
manner, two electrode systems each laving a filament,
two supply conductors and a bead a t qlass, the ends of
the supply conductors b(,'ng fused i.rnt o the ends of the
discharge vessel whi_coh have bee!, closed off in a gas
tight manner eoid, i_rr order tc:: be lieId iri a region
between the filament and the disch-arge vessel fused
seal., into the bead, and a day ice [o.r :,witching off the
lamp at. the encl. of its e r- v:i ce 1 f. e: comprising a paste
L0 which contains a metal ;yc;.:ide and is fitted to the
bead.

BACKGROUND ART

US Patent 5, 70 5, 887 hhas disc l o:>seci a low-pressure
discharge lamp of t.h:is type. At th,c-;e E=nd of the service
life of the low-piessu:ra discharge lamp, when the
filament breaks or..r t: he errr:it-t:er material has been
consumed, the lamp sw:i_t-1che s over to cold-cathode
operation, which leads t ~n ir' ease in the cathode
fall. voltage and therefore to considerable heating of
the metal parts in the lamp. The onn.iderable increase
in the temperature of the metal pants leads to the
metal hydride in the past which Is arranged in the
area of radiation from the f lament, and in contact with
the supply conductors on the ala =n bead breaking down.
The decomposition of the metal hydride, in particular
titanium hydride, leads to :"rydroger, being released and


CA 02426915 2010-09-15
66498-169

2 -

the discharge being extinguished on account of the
increasing operating voltage of the lamp.

Arranging the paste which contains metal hydride in the
region of the radiation from the filament and in
thermal contact with the supply conductors leads to
reliable release of the hydrogen and therefore to the
lamp being extinguished at the end of its service life.
However, it has been found that a design of this type
can lead to premature failure of the low-pressure
discharge lamp if it is operated at a ballast which
allows the filament heating current to rise during the
preheating phase until the lamp has ignited. In this
case, the rise in the filament radiation and the
heating of the supply conductors can lead to premature
decomposition of the metal hydride. Then, the hydrogen
released extinguishes the lamp before it reaches the
end of its service life as a result of emitter
consumption.
DISCLOSURE OF THE INVENTION

Therefore, it is an object of some embodiments of the
invention to provide
a lamp having a device for switching off the low-
pressure discharge lamp at the end of its service life,
in which premature failures resulting from high
filament heating currents in the ballast are prevented.
This object is achieved by a low-pressure discharge
lamp, having a tubular discharge vessel made from
glass, the free ends of which are closed off in a gas
tight manner,two electrode systems each having a
filament, two supply conductors and a bead consisting
of a glass material having a resistivity of greater
than 108 S)cm at 350 C, the ends of the supply
conductors being fused into the ends of the discharge
vessel which have been closed off in a gas tight manner
and, in order to be held in a region between the
filament and the discharge vessel fused seal, into the


CA 02426915 2010-09-15
66498-169

3 -

bead, a device for switching off the lamp at the end of
its service life, comprising a paste which contains a
metal hydride, is applied to the bead in the radiation
shadow with respect to the thermal radiation which
emanates from the filament of the lamp in operation and
during filament preheating and is not in electrical
contact with the supply conductor wires on the bead.


The use of a material which has a resistivity of
greater than 108 Qcm at 350 C for the bead makes it
possible to ensure that the material of the bead does
not become conductive at up to the decomposition
temperature of the metal hydride. Heating of the metal
hydride caused by direct heat conduction is
substantially suppressed.

Furthermore, according to some embodiments of the invention the
paste containing the metal hydride is applied to the bead in
the radiation shadow with respect to the thermal
radiation which emanates from the filament of the lamp
in operation. This makes it possible to prevent the
paste and therefore the metal hydride from being heated
up by the direct action of heat from the filament.
Moreover, the paste is applied to the bead in such a
way that it is not in electrical contact with the
supply conductor wires. This substantially suppresses
heat conduction from the supply conductor to the paste.
Therefore, the bead advantageously consists of a
potassium barium silicate glass which has a resistivity
of greater than or equal to 1010 S)cm at 350 C. In this
way, the bead is optimally prevented from becoming
electrically conductive all the way up to the
temperature at which hydrogen is released, namely
400 C.


CA 02426915 2003-07-22

Furthermore, the glass bead i. c:dvantageous.ly not
spherical, but rather iii the ship c~f a cylinder or a
roll, the axis of which ~..r.:ansversei.y with
respect to the axis of th d harge vessel in this
region, the supply conductors bei_n.ca fused in close to
the two ends of they cyl:i.nth:ical bead and the paste
containing the metal hydride acing applied to that part
of the bead which is remotes from the filament, in the
radiation shadow with respect to the filament. A
mushroom shape with the cap of the. mushroom facing the
filament and the paste c: st:. xir i r ca ''he metal ''hydride
being located below t:he .,, r ?:he: radiation shadow
with respect to the f .:k.:amer: t , is , lso advantageous.
This optimally suppresses heat...i n:q of the paste and
1.5 therefore the metal hydride by the radiant heat.

Tests carried out with different. shapes and sizes of
bead have demonstrated. that in tale case of a bead in
the shape of a cylinder or rn':ll, the circle should
advantageously have a di,arneter d rt no which satisfies
the following empi..ric:;<r1.. :rorrni.aa.a:

d > 0.2026 x m + 1.7617 where m -2 mg

where m is the quantity of paste containing the metal
hydride in mg. Otherwise, the required quantity of
paste cannot reliably be arranged in the shadow with
respect to the filament and without contact wit-.h the
supply conduct.o.r .
In addition, that point:: o>f the bea,A which is closest to
the gas tight closure of the discharge vessel is at a
distance of at least 2mm from this closure. it this
condition is riot complied wi.t , closing of the
discharge vessel during lamp production, with the
considerable heat which 1s produced, lead to glass
sealing to the bead and therefore 1 a the hydrogen being
released from the metal laydx ide tcjrntpound


CA 02426915 2010-09-15
66498-169

-5-
The metal hydride in the paste advantageously contains a metal selected from
the
group consisting of titanium, zirconium and/or hafnium or a metal alloy
selected
from the group consisting of titanium-zirconium, titanium-hafnium and/or
zirconium-hafnium alloys as metal for the metal hydride.

A particularly suitable paste material for the metal hydride is a rheological
additive
in a proportion of less than or equal to 50% by weight.

Optimum results can be achieved with a paste which contains titanium hydride
TiH2 as metal hydride. Tests have shown that the release of hydrogen increases
as the ratio of surface area to volume in the titanium hydride grains
increases, and
consequently the smaller the grain size of the titanium hydride the more
hydrogen
is released. It was possible to achieve optimum prevention of the lamp being
switched off as a result of hydrogen being released prematurely during the
preheating phase by using a paste containing titanium hydride tiH2 which has a
mean grain size of greater than 50 pm.

In one broad aspect of the invention, there is provided a low-pressure
discharge
lamp, having a tubular discharge vessel made from glass, the free ends of
which
are closed off in a gas tight manner, two electrode systems each having a
filament, two supply conductors and a bead consisting of a glass material
having a
resistivity of greater than 108 S2cm at 350 C, the ends of the supply
conductors
being fused into the ends of the discharge vessel which have been closed off
in a
gas tight manner and, in order to be held in a region between the filament and
the
discharge vessel fused seal, into the bead, a device for switching off the
lamp at
the end of its service life, comprising a paste which contains a metal
hydride, is
applied to the bead in the radiation shadow with respect to the thermal
radiation
which emanates from the filament of the lamp in operation and during filament
preheating and is not in electrical contact with the supply conductor wires on
the
bead.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is to be explained in more detail below with reference to a
plurality
of exemplary embodiments. In the drawings:


CA 02426915 2010-09-15
66498-169

- 5a -

Figure 1 shows an end of an exemplary embodiment according to the invention of
a low-pressure discharge lamp with a bead in the shape of a cylinder or roll;
Figure 2 shows an end of a second exemplary embodiment according to the
invention of a low-pressure discharge lamp with a mushroom-shaped bead


CA 02426915 2003-07-22

BEST MODE FOR CARRYING OUT THE INVENTION

Figure 1 shows an end of a first embodiment of a
compact low-pressure discharge lamp having a discharge
vessel which has been bent. a number of times. The ends
of the discharge vessel are closed by pinches, the two
supply conductors 5, of an el e :t:rode system being
fused into the end 1 of the discharc e vessel which is
shown here and has been closed of in a gas tight
manner by a pinch 2. The electrode system also
comprises a filament 7 and a glass bead 8, which is
located approximately in the cer ter between the
filament 7 and the pinch 2 and ?.eta which the two
supply conductors 5, 6 are fused. The glass bead 8
consists of a potassium barium silicate glass and is
substantially in the shape of a cylinder or roll with
rounded ends, the axis of the cylinder or roll running
transversely with respect to the axis of the discharge
vessel in this region. The bead 8 has e length of 7 nun
and a diameter of 6 no. The two supp_y conductors 5, 6
are fused in close to L he two ends of the bead 8. A
paste 9 comprising a titanium hydride and a rheological
additive has been applied to that side of the lateral
surface which is remote from the filament 7, the
location comprising the paste beino located in the
shadow with respect to ..he radiation from the filament
Figure 2 shows a second exemplary embodiment of a
discharge vessel end 1.0 Of a compact low--pressure
discharge lamp with a similar structure in terms of the
electrode system. The end of the discharge vessel 10
with the pinch 11 has in this case been rotated through
90 about its axis. The electrode system 12 with a
filament 13 and supply ccnduct:or3 14 (only one supply
conductor is visible in this view) differs from the
system shown in Figure 1. through t he fact that in this
case the bead 1.5 of a potassium barium silicate glass
is in the shape of a mushroom with a cap 16 and a stem


CA 02426915 2003-07-22

17, the cap 16 facing the 1 .ictr:~r~t: 13. Consequently,
the paste 18 cont.a.i. ni rig the t,L't:sn am hycride, which has
been applied to both sides J:f t.e stEm 17 below the cap
16, is in the shadow with respect. to the radiation from
the filament. 1.3.

Representative Drawing
A single figure which represents the drawing illustrating the invention.
Administrative Status

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Administrative Status , Maintenance Fee  and Payment History  should be consulted.

Administrative Status

Title Date
Forecasted Issue Date 2011-06-14
(22) Filed 2003-04-25
(41) Open to Public Inspection 2003-10-26
Examination Requested 2008-03-27
(45) Issued 2011-06-14
Deemed Expired 2015-04-27

Abandonment History

There is no abandonment history.

Payment History

Fee Type Anniversary Year Due Date Amount Paid Paid Date
Registration of a document - section 124 $100.00 2003-04-25
Registration of a document - section 124 $100.00 2003-04-25
Application Fee $300.00 2003-04-25
Maintenance Fee - Application - New Act 2 2005-04-25 $100.00 2005-03-31
Maintenance Fee - Application - New Act 3 2006-04-25 $100.00 2006-04-03
Maintenance Fee - Application - New Act 4 2007-04-25 $100.00 2007-03-14
Maintenance Fee - Application - New Act 5 2008-04-25 $200.00 2008-03-12
Request for Examination $800.00 2008-03-27
Maintenance Fee - Application - New Act 6 2009-04-27 $200.00 2009-03-04
Maintenance Fee - Application - New Act 7 2010-04-26 $200.00 2010-03-10
Maintenance Fee - Application - New Act 8 2011-04-25 $200.00 2011-03-09
Final Fee $300.00 2011-03-31
Maintenance Fee - Patent - New Act 9 2012-04-25 $200.00 2012-03-07
Maintenance Fee - Patent - New Act 10 2013-04-25 $250.00 2013-04-15
Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE GLUEHLAMPEN MBH
Past Owners on Record
BLOHM, BERNHARD
FUCHS, KIRSTEN
HAMMER, GERALD
HILSCHER, ACHIM
HUSSLEIN, PETER
MACIEJEWSKI, ANDREAS
NOLL, THOMAS
PANKRATZ, KLAUS
WEINGARTNER, KLAUS
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Abstract 2003-04-25 1 35
Description 2003-04-25 7 294
Claims 2003-04-25 3 99
Drawings 2003-04-25 1 10
Representative Drawing 2003-07-24 1 5
Cover Page 2003-09-30 2 50
Drawings 2003-07-22 1 17
Abstract 2003-07-22 1 38
Description 2003-07-22 7 331
Claims 2003-07-22 3 108
Drawings 2003-07-22 1 17
Description 2010-09-15 8 311
Claims 2010-09-15 3 95
Cover Page 2011-05-13 2 55
Representative Drawing 2011-05-13 1 9
Correspondence 2003-05-28 1 20
Assignment 2003-04-25 5 188
Prosecution-Amendment 2003-07-22 2 63
Correspondence 2003-07-22 12 522
Prosecution-Amendment 2008-03-27 1 44
Prosecution-Amendment 2010-06-16 2 36
Prosecution-Amendment 2010-09-15 7 242
Correspondence 2011-03-31 2 61