Language selection

Search

Patent 2561669 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent Application: (11) CA 2561669
(54) English Title: METHODS FOR IDENTIFYING RISK OF OSTEOARTHRITIS AND TREATMENTS THEREOF
(54) French Title: PROCEDES D'IDENTIFICATION DE RISQUE D'OSTEOARTHRITE ET TRAITEMENTS CORRESPONDANTS
Status: Dead
Bibliographic Data
(51) International Patent Classification (IPC):
  • C12N 15/12 (2006.01)
  • A61K 31/7088 (2006.01)
  • A61K 48/00 (2006.01)
  • C07H 21/00 (2006.01)
  • C07K 14/47 (2006.01)
  • C12N 15/11 (2006.01)
  • C12Q 1/68 (2006.01)
  • C40B 40/06 (2006.01)
(72) Inventors :
  • MAH, STEVEN (United States of America)
  • BRAUN, ANDREAS (United States of America)
  • KAMMERER, STEFAN M. (United States of America)
  • NELSON, MATTHEW ROBERTS (United States of America)
  • RENELAND, RIKARD HENRY (United States of America)
  • LANGDOWN, MARIA L. (United States of America)
(73) Owners :
  • MAH, STEVEN (Not Available)
  • BRAUN, ANDREAS (Not Available)
  • KAMMERER, STEFAN M. (Not Available)
  • NELSON, MATTHEW ROBERTS (Not Available)
  • RENELAND, RIKARD HENRY (Not Available)
  • LANGDOWN, MARIA L. (Not Available)
(71) Applicants :
  • SEQUENOM, INC. (United States of America)
(74) Agent: SMART & BIGGAR
(74) Associate agent:
(45) Issued:
(86) PCT Filing Date: 2005-03-31
(87) Open to Public Inspection: 2005-10-20
Availability of licence: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): Yes
(86) PCT Filing Number: PCT/US2005/010913
(87) International Publication Number: WO2005/097421
(85) National Entry: 2006-09-27

(30) Application Priority Data:
Application No. Country/Territory Date
60/559,011 United States of America 2004-04-01
60/559,202 United States of America 2004-04-01
60/559,203 United States of America 2004-04-01
60/559,042 United States of America 2004-04-01
60/559,275 United States of America 2004-04-01
60/559,040 United States of America 2004-04-01
60/559,225 United States of America 2004-04-01

Abstracts

English Abstract




Provided herein are methods for identifying a risk of osteoarthritis in a
subject, reagents and kits for carrying out the methods, methods for
identifying candidate therapeutics for treating osteoarthritis, and
therapeutic and preventative methods applicable to osteoarthritis. These
embodiments are based upon an analysis of polymorphic variations in nucleotide
sequences within the human genome.


French Abstract

La présente invention a trait à des procédés d'identification d'un risque d'ostéoarthrite chez un sujet, à des réactifs et des trousses pour la mise en oeuvre des procédés, à des procédés d'identification d'agents thérapeutiques candidats pour le traitement d'ostéoarthrite, et à des procédés thérapeutiques et préventifs applicables à l'ostéoarthrite. Ces modes de réalisation sont basés sur une analyse des variations polymorphes dans des séquences nucléotidiques au sein du génome humain.

Claims

Note: Claims are shown in the official language in which they were submitted.



What is claimed is:

1. A method for identifying a subject at risk of osteoarthritis, which
comprises detecting the
presence or absence of one or more polymorphic variations associated with
osteoarthritis in a nucleic acid
sample from a subject, wherein the one or more polymorphic variations are
detected in a nucleotide
sequence in SEQ ID NO: 1-7 or referenced in Table A, or a substantially
identical sequence thereof, or a
fragment of the foregoing;
whereby the presence of the polymorphic variation is indicative of the subject
being at risk of
osteoarthritis.

2. The method of claim 1, which further comprises obtaining the nucleic acid
sample from the
subject.

3. The method of claim 1, wherein the one or more polymorphic variations are
detected within a
region spanning chromosome positions 31118000 to 31129000 of chromosome 16 in
human genomic
DNA.

4. The method of claim 1, wherein the one or more polymorphic variations are
detected at one
or more positions in SEQ ID NO: 1 selected from the group consisting of 247,
1535, 2386, 6440, 9133,
9143, 9471, 13150, 13717, 14466, 15769, 16870, 18545, 18749, 19123, 20736,
21038, 21046, 21050,
21056, 21706, 23170, 25028, 27871, 28070, 31717, 32019, 32318, 33080, 33101,
34236, 34285, 34818,
35168, 37981, 38113, 38117, 38481, 38615, 38944, 39288, 41385, 42136, 42185,
42353, 42434, 44580,
44675, 45739, 46439, 47457, 47735, 50319, 50708, 51185, 53002, 53064, 53637,
55274, 55825, 55986,
56684, 57653, 57659, 57692, 57775, 61313, 61431, 61699, 62906, 63619, 64664,
68452, 69665, 69681,
70091, 74637, 74760, 76523, 78559, 79549, 79882, 81339, 81681, 81696, 83517,
85431, 86332, 87358,
87725, 89052, 90020, 90231, 90284, 90447, 90601, 90724, 92559, 95176, 95195
and 96822.

5. The method of claim 1, wherein the one or more polymorphic variations are
detected at one
or more positions in SEQ ID NO: 1 selected from the group consisting of 13150,
21046, 23170, 25028,
44580, 62906, 64664 and 83517.

6. The method of claim 1, wherein the one or more polymorphic variations are
detected within a
region spanning chromosome positions 36914000 to 36931000 of chromosome 4 in
human genomic
DNA.

7. The method of claim 1, wherein the one or more polymorphic variations are
detected at one
or more positions in SEQ ID NO: 2 selected from the group consisting of 211,
7217, 7895, 13308, 14279,
17026, 18271, 20417, 21843, 22069, 22145, 22519, 22539, 23236, 23256, 23402,
23499, 23620, 23871,
24136, 25427, 25866, 26541, 26576, 26689, 26720, 27113, 27164, 27186, 28341,
29160, 29844, 30665,

338



30830, 31061, 31523, 32326, 32346, 32358, 34909, 34975, 35066, 35096, 35375,
36304, 36712, 36770,
37342, 37412, 37884, 38077, 38300, 38301, 41189, 44408, 44493, 44571, 44670,
45219, 45258, 47261,
48473, 48771, 55292, 56479, 56747, 60620, 60688, 61058, 61129, 61577, 61961,
63351, 63926, 65798,
66043, 66044, 66246, 66318, 66547, 71238, 71283, 71492, 72274, 73762, 74209,
75284, 77347, 77589,
78096, 78606, 78862, 79135, 79146, 79456, 79609, 80086, 80119, 80766, 81110,
81269, 81668, 82433,
82559, 83298, 83821, 84121, 84147, 84543, 84554, 84691, 84727, 85678, 86699,
86700, 86792, 86832,
87045, 87140, 87365, 88342, 88498, 88589, 95502, 96968, 97448, 97568 and
98724.

8. The method of claim 1, wherein the one or more polymorphic variations are
detected at one
or more positions in SEQ ID NO: 2 selected from the group consisting of 23236,
32358, 47261, 48771,
55292, 60688, 72274, 74209, 77589, 79135, 79456, 79609, 80119, 80766, 81110,
82433, 84121, 84147,
85678, 86699, 86832, 87140 and 88589.

9. The method of claim 1, wherein the one or more polymorphic variations are
detected within a
region spanning chromosome positions 170719500 to 170766500 of chromosome 6 in
human genomic
DNA.

10. The method of claim 1, wherein the one or more polymorphic variations are
detected at one
or more positions in SEQ ID NO: 3 selected from the group consisting of 229,
6310, 11840, 11870,
12064, 13392, 16354, 16559, 16935, 17616, 17737, 18321, 18453, 18811, 20020,
21662, 23197, 23446,
24339, 25504, 27174, 28008, 29294, 29759, 30832, 44512, 44850, 45884, 46345,
48589, 53371, 53911,
53990, 55152, 55667, 58952, 59315, 60029, 61477, 62988, 63090, 64021, 65685,
70220, 70323, 70959,
73436, 82945, 82958, 82961, 82964, 82965, 83006, 83025, 83034, 83074 ,83132,
83155, 83172, 83174,
83206, 83216, 83234, 83252, 83260, 83263, 83296, 83319, 83322, 83324, 83357,
83375, 83381, 83389,
83443, 83499, 83545, 83566, 83591, 83619, 83698, 83780, 83784, 83826, 83832,
83852, 86297, 86315,
86420, 86460, 86714, 86718, 86736, 86753, 86766, 88162, 88218, 88246, 88255,
88309, 88310, 88471,
88619, 88904, 89044, 90531, 90534, 90613 and 46252.

11. The method of claim 1, wherein the one or more polymorphic variations are
detected at one
or more positions in SEQ ID NO: 3 selected from the group consisting of 229,
6310, 16559, 18453,
25504, 27174, 30832, 44850, 45884, 48589, 61477, 82961 and 46252.

12. The method of claim 1, wherein the one or more polymorphic variations are
detected within a
region spanning chromosome positions 27963000 to 27983000 of chromosome 8 in
human genomic
DNA.

13. The method of claim 1, wherein the one or more polymorphic variations are
detected at one
or more positions in SEQ ID NO: 4 selected from the group consisting of 211,
473, 1536, 5639, 17186,
17335, 25029, 25111, 28811, 28863, 30809, 40985, 45147, 45282, 46168, 46328,
49077, 51925, 52141,

339



52168, 60852, 62468, 65572, 79089, 79541, 79790, 90843, 90978, 91052, 91131,
91132, 94439 and
94621.

14. The method of claim 1, wherein the one or more polymorphic variations are
detected at one
or more positions in SEQ ID NO: 4 selected from the group consisting of 40985,
46168, 51925 and
52168.

15. The method of claim 1, wherein the one or more polymorphic variations are
detected within a
region spanning chromosome positions 44962000 to 45013000 of chromosome 13 in
human genomic
DNA.

16. The method of claim 1, wherein the one or more polymorphic variations are
detected at one
or more positions in SEQ ID NO: 5 selected from the group consisting of 243,
10208, 15049, 15111,
15272, 15287, 15326, 15327, 17038, 19391, 21702, 22431, 22881, 27744, 32564,
32698, 33104, 33181,
33256, 33543, 35567, 40085, 40482, 45641, 46059, 48504, 48919, 49693, 49874,
50020, 50616, 50719,
55511, 65533, 70529, 75591, 77266, 80368, 82475, 92462, 92480, 95819 and
96275.

17. The method of claim 1, wherein the one or more polymorphic variations are
detected at one
or more positions in SEQ ID NO: 5 selected from the group consisting of 15111,
45641, 46059, 49693,
49874, 50020, 50719, 70529, 82475, 92462, 92480 and 96275.

18. The method of claim 1, wherein the one or more polymorphic variations are
detected within a
region spanning chromosome positions 76196500 to 76221500 of chromosome 14 in
human genomic
DNA.

19. The method of claim 1, wherein the one or more polymorphic variations are
detected at one
or more positions in SEQ ID NO: 6 selected from the group consisting of 218,
1440, 1442, 2611, 4317,
4724, 4788, 5202, 5780, 5974, 6644, 7430, 7938, 8095, 8183, 8312, 8352, 9348,
9378, 9617, 9727, 9834,
9899, 10211, 10377, 10695, 10729, 10730, 11433, 11951, 12697, 12982, 14419,
14501, 14983, 15280,
15475, 15888, 15976, 16307, 16442, 17255, 18948, 19435, 19753, 20021, 20022,
20503, 20590, 21804,
21919, 21990, 22412, 22536, 23432, 23468, 23772, 24325, 24773, 26274, 27440,
28561, 30071, 31764,
33008, 35310, 35460, 37112, 37285, 37747, 38057, 38859, 38860, 39525, 40216,
40281, 41453, 42091,
42513, 42935, 42985, 43003, 43281, 43716, 43866, 44234, 44596, 44871, 45005,
45282, 47178, 47816,
47887, 48134, 48135, 48276, 48400, 48798, 48803, 49146, 49969, 51059, 51064,
53285, 54560, 54748,
54785, 55102, 55644, 55705, 55841, 56623, 56825, 56827, 56892, 59150, 59958,
60231, 60524, 61871,
62226, 63230, 63468, 63787, 65732, 65989, 68832, 69904, 70365, 70886, 73088,
73103, 75934, 75966,
76273, 77943, 78466, 78861, 78872, 79836, 80908, 81509, 83576, 83662, 83782,
84282, 84444, 85129,
85151, 85296, 85809, 86387, 86494, 89786, 89894, 90122, 92067, 92187, 92312,
92824, 93733, 96553
and 96941.

340



20. The method of claim 1, wherein the one or more polymorphic variations are
detected at one
or more positions in SEQ ID NO: 6 selected from the group consisting of 4788,
8312, 9378, 9727, 9899,
10211, 27440, 40216, 40281, 42091, 43866, 48803, 51059, 55644, 56623, 73103,
78872, 79836, 85129,
92824 and 96941.

21. The method of claim 1, wherein the one or more polymorphic variations are
detected within a
region spanning chromosome positions 38830000 to 38844000 of chromosome 21 in
human genomic
DNA.

22. The method of claim 1, wherein the one or more polymorphic variations are
detected at one
or more positions in SEQ ID NO: 7 selected from the group consisting of 231,
882, 960, 1194, 1530,
1673, 2096, 2285, 5873, 7256, 7988, 8222, 8381, 8814, 8915, 9642, 9902, 10619,
10927, 11032, 14377,
15608, 15928, 16296, 17598, 19272, 20084, 20577, 28051, 29466, 29530, 29987,
30012, 30322, 32216,
32516, 32544, 32746, 33137, 33538, 33798, 33802, 33964, 34132, 34210, 34317,
34499, 34753, 34845,
35335, 36423, 36450, 36481, 38447, 38784, 39387, 39458, 39822, 40305, 40869,
40926, 41010, 41134,
41984, 42172, 42753, 43011, 43176, 43320, 43381, 44142, 44383, 44726, 45087,
45141, 45359, 45421,
45456, 45467, 45486, 45709, 45716, 47626, 49413, 49796, 49962, 50075, 50093,
50571, 50615, 50780,
50851, 51459, 53193, 53702, 53736, 53795, 54109, 54126, 54230, 54894, 55455,
55499, 56522, 56662,
56954, 57267, 58282, 58916, 59544, 59666, 59913, 66846, 67245, 67652, 67955,
67966, 68420, 70226,
70810, 72246, 73330, 73457, 74389, 74638, 74640, 75358, 75952, 76098, 77836,
78449, 78507, 80031,
81695, 82775, 82795, 84611, 84657, 84693, 85020, 85048, 85100, 85325, 85452,
85868, 85936, 85990,
86139, 86497, 87236, 87248, 87533, 87912, 88108, 88494, 89598, 90235, 91287,
91359, 92384, 92410,
92900, 94495, 94512, 97777 and 98333.

23. The method of claim 1, wherein the one or more polymorphic variations are
detected at one
or more positions in SEQ ID NO: 7 selected from the group consisting of 1673,
20577, 33137, 39822,
45716, 49962, 51459, 54894, 55455, 55499, 58282, 68420 and 80031.

24. The method of claim 1, wherein the one or more polymorphic variations are
detected at one
or more positions in Table A.

25. The method of claim 1, wherein the one or more polymorphic variations are
detected at one
or more positions in linkage disequilibrium with one or more positions in
claim 4, 7, 10, 13, 16, 19, 22 or
24.

26. The method of claim 1, wherein detecting the presence or absence of the
one or more
polymorphic variations comprises:

341




hybridizing an oligonucleotide to the nucleic acid sample, wherein the
oligonucleotide is
complementary to a nucleotide sequence in the nucleic acid and hybridizes to a
region adjacent to the
polymorphic variation;
extending the oligonucleotide in the presence of one or more nucleotides,
yielding extension
products; and
detecting the presence or absence of a polymorphic variation in the extension
products.
27. The method of claim l, wherein the subject is a human.
28. The method of claim 27, wherein the subject is a human female.
29. The method of claim 27, wherein the subject is a human male.
30. A method for identifying a polymorphic variation associated with
osteoarthritis proximal to
an incident polymorphic variation associated with osteoarthritis, which
comprises:
identifying a polymorphic variation proximal to the incident polymorphic
variation associated
with osteoarthritis, wherein the polymorphic variation is detected in a
nucleotide sequence selected from
the group consisting of
(a) a nucleotide sequence in SEQ )D NO: 1-7 or referenced in Table A;
(b) a nucleotide sequence which encodes a polypeptide encoded by a nucleotide
sequence in
SEQ ID NO: 1-7 or referenced in Table A;
(c) a nucleotide sequence which encodes a polypeptide that is 90% or more
identical to the
amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1-7 or
referenced in Table A;
(d) a fragment of a nucleotide sequence of (a), (b), or (c) comprising a
polymorphic
variation;
determining the presence or absence of an association of the proximal
polymorphic variant with
osteoarthritis.
31. The method of claim 30, wherein the incident polymorphic variation is at
one or more
positions in claim 4, 7, 10, 13, 16, 19 or 24.
32. The method of claim 30, wherein the proximal polymorphic variation is
within a region
between about 5 kb 5' of the incident polymorphic variation and about 5 kb 3'
of the incident
polymorphic variation.
33. The method of claim 30, which further comprises determining whether the
proximal
polymorphic variation is in linkage disequilibrium with the incident
polymorphic variation.
342



34. The method of claim 30, which further comprises identifying a second
polymorphic variation
proximal to the identified proximal polymorphic variation associated with
osteoarthritis and determining
if the second proximal polymorphic variation is associated with
osteoarthritis.
35. The method of claim 34, wherein the second proximal polymorphic variant is
within a region
between about 5 kb 5' of the incident polymorphic variation and about 5 kb 3'
of the proximal
polymorphic variation associated with osteoarthritis.
36. An isolated nucleic acid comprising a nucleotide sequence selected from
the group consisting
of:
(a) a nucleotide sequence in SEQ ID NO: 1-7 or referenced in Table A;
(b) a nucleotide sequence which encodes a polypeptide encoded by a nucleotide
sequence in
SEQ ID NO: 1-7 or referenced in Table A;
(c) a nucleotide sequence which encodes a polypeptide that is 90% or more
identical to the
amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1-7 or
referenced in Table A;
(d) a fragment of a nucleotide sequence of (a), (b), or (c) comprising a
polymorphic
variation; and
(e) a nucleotide sequence complementary to the nucleotide sequences of (a),
(b), (c), or (d);
wherein the nucleotide sequence comprises a polymorphic variation associated
with osteoarthritis
selected from the group consisting of in SEQ ID NO: 1 a guanine at position
13150, a thymine at position
21046, an adenine at position 23170, an adenine at position 25028, a guanine
at position 44580, a guanine
at position 62906, a cytosine at position 64664 and a cytosine at position
83517; in SEQ ID NO: 2 an
adenine at position 23236, a cytosine at position 32358, a guanine at position
47261, a guanine at position
48771, a cytosine at position 55292, an adenine at position 60688, a guanine
at position 72274, a guanine
at position 74209, a cytosine at position 77589, an adenine at position 79135,
a thymine at position
79456, an adenine at position 79609, an adenine at position 80119, a cytosine
at position 80766, an
adenine at position 81110, a cytosine at position 82433, a cytosine at
position 84121, a thymine at
position 84147, a cytosine at position 85678, a thymine at position 86699, an
adenine at position 86832, a
guanine at position 87140 and an adenine at position 88589; in SEQ ID NO: 3 a
thymine at position 229,
a guanine at position 6310, a thymine at position 16559, an adenine at
position 18453, an adenine at
position 25504, an adenine at position 27174, an adenine at position 30832, a
guanine at position 44850,
an adenine at position 45884, an adenine at position 48589, a cytosine at
position 61477, a cytosine at
position 82961 and a thymine at position 46252; in SEQ ID NO: 4 a cytosine at
position 40985, a guanine
at position 46168, a thymine at position 51925 and a cytosine at position
52168; in SEQ ID NO: 5 a
guanine at position 15111, a thymine at position 45641, an adenine at position
46059, a cytosine at
position 49693, an adenine at position 49874, an adenine at position 50020, a
guanine at position 50719,
an adenine at position 70529, an adenine at position 82475, a thymine at
position 92462, a thymine at
position 92480 and a cytosine at position 96275; in SEQ ID NO: 6 a guanine at
position 4788, a thymine
at position 8312, a deletion at position 9378, a cytosine at position 9727, a
guanine at position 9899, a
343


cytosine at position 10211, a guanine at position 27440, a guanine at position
40216, a cytosine at
position 40281, an adenine at position 42091, a guanine at position 43866, an
adenine at position 48803,
an adenine at position 51059, an adenine at position 55644, a cytosine at
position 56623, a cytosine at
position 73103, an adenine at position 78872, a guanine at position 79836, a
cytosine at position 85129, a
guanine at position 92824 and an adenine at position 96941; in SEQ ID NO: 7 a
guanine at position 1673,
a thymine at position 20577, a guanine at position 33137, a guanine at
position 39822, an adenine at
position 45716, a guanine at position 49962, an adenine at position 51459, a
cytosine at position 54894,
an adenine at position 55455, an adenine at position 55499, a guanine at
position 58282, an adenine at
position 68420 and a thymine at position 80031; and an allele associated with
osteoporosis in Table A for
positions rs552, rs12904, rs2282146, rs734784, rs1042164, rs749670, rs955592,
rs1143016, rs755248,
rs1055055, rs835409, rs927663, rs8162, rs831038, rs33079, rs1710880,
rs1078153, rs799570, rs1282730,
rs1518875, rs1568694, rs905042, rs1957723, rs794018, rs707723, rs893861,
rs1914903, rs2062232,
rs26609, rs1370987, rs1012414, rs435903, rs1248, rs703508, rs226465, rs241448,
rs763155, rs1040461,
rs462832, rs804194, rs1022646, rs756519, rs1042327, rs8770, rs1569112,
rs1563055, rs805623,
rs1019850, rs1599931, AA, rs912428, rs279941, rs1062230, rs1859911, rs1477261,
rs1191119,
rs657780, rs1393890, rs1478714, rs868213, rs690115, rs1465501, rs899173,
rs10477, rs926393,
rs465271, rs1888475, rs13847 and rs738658.

37. An oligonucleotide comprising a nucleotide sequence complementary to a
portion of the
nucleotide sequence of (a), (b), (c), or (d) in claim 36, wherein the 3' end
of the oligonucleotide is
adjacent to a polymorphic variation associated with osteoarthritis.

38. A microarray comprising an isolated nucleic acid of claim 36 linked to a
solid support.

39. An isolated polypeptide encoded by the isolated nucleic acid sequence of
claim 36.

40. A method for identifying a candidate therapeutic for treating
osteoarthritis, which comprises:
(a) introducing a test molecule to a system which comprises a nucleic acid
comprising a
nucleotide sequence selected from the group consisting of:
(i) a nucleotide sequence in SEQ ID NO: 1-7 or referenced in Table A;
(ii) a nucleotide sequence which encodes a polypeptide encoded by a nucleotide
sequence in SEQ ID NO: 1-7 or referenced in Table A;
(iii) a nucleotide sequence which encodes a polypeptide that is 90% or more
identical
to the amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1-7
or referenced in Table
A;
(iv) a fragment of a nucleotide sequence of (a), (b), or (c); or
introducing a test molecule to a system which comprises a protein encoded by a
nucleotide
sequence of (i), (ii), (iii), or (iv); and

344



(b) determining the presence or absence of an interaction between the test
molecule and the
nucleic acid or protein,
whereby the presence of an interaction between the test molecule and the
nucleic acid or protein
identifies the test molecule as a candidate therapeutic for treating
osteoarthritis.

41. The method of claim 40, wherein the system is an animal.

42. The method of claim 40, wherein the system is a cell.

43. The method of claim 40, wherein the nucleotide sequence comprises one or
more
polymorphic variations associated with osteoarthritis.

44. The method of claim 43, wherein the one or more polymorphic variations
associated with
osteoarthritis are at one or more positions in claim 4, 7, 10, 13, 16, 19 or
24.

45. A method for treating osteoarthritis in a subject, which comprises
contacting one or more
cells of a subject in need thereof with a nucleic acid, wherein the nucleic
acid comprises a nucleotide
sequence selected from the group consisting of:
(a) a nucleotide sequence in SEQ ID NO: 1-7 or referenced in Table A;
(b) a nucleotide sequence which encodes a polypeptide encoded by a nucleotide
sequence in
SEQ ID NO: 1-7 or referenced in Table A;
(c) a nucleotide sequence which encodes a polypeptide that is 90% or more
identical to the
amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1-7 or
referenced in Table A;
(d) a fragment of a nucleotide sequence of (a), (b), or (c); and
(e) a nucleotide sequence complementary to the nucleotide sequences of (a),
(b), (c), or (d);
whereby contacting the one or more cells of the subject with the nucleic acid
treats the
osteoarthritis in the subject.

46. The method of claim 45, wherein the nucleic acid is RNA or PNA.

47. The method of claim 46, wherein the nucleic acid is duplex RNA.

48. A method for treating osteoarthritis in a subject, which comprises
contacting one or more
cells of a subject in need thereof with a protein, wherein the protein is
encoded by a nucleotide sequence
which comprises a polynucleotide sequence selected from the group consisting
of:
(a) a nucleotide sequence in SEQ ID NO: 1-7 or referenced in Table A;
(b) a nucleotide sequence which encodes a polypeptide encoded by a nucleotide
sequence in
SEQ ID NO: 1-7 or referenced in Table A;



345


(c) a nucleotide sequence which encodes a polypeptide that is 90% or more
identical to the
amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1-7 or
referenced in Table A;
(d) a fragment of a nucleotide sequence of (a), (b), or (c);
whereby contacting the one or more cells of the subject with the protein
treats the osteoarthritis in
the subject.

49. A method for treating osteoarthritis in a subject, which comprises:
detecting the presence or absence of one or more polymorphic variations
associated with
osteoarthritis in a nucleic acid sample from a subject, wherein the one or
more polymorphic variation are
detected in a nucleotide sequence selected from the group consisting of:
(a) a nucleotide sequence in SEQ ID NO: 1-7 or referenced in Table A;
(b) a nucleotide sequence which encodes a polypeptide encoded by a nucleotide
sequence in
SEQ ID NO: 1-7 or referenced in Table A;
(c) a nucleotide sequence which encodes a polypeptide that is 90% or more
identical to the
amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1-7 or
referenced in Table A;
(d) a fragment of a nucleotide sequence of (a), (b), or (c) comprising a
polymorphic
variation; and
administering an osteoarthritis treatment to a subject in need thereof based
upon the presence or
absence of the one or more polymorphic variations in the nucleic acid sample.

50. The method of claim 49, wherein the one or more polymorphic variations are
detected at one
or more positions in claim 4, 7, 10, 13, 16, 19 or 24.

51. The method of claim 49, wherein the treatment is selected from the group
consisting of
administering a corticosteroid, a nonsteroidal anti-inflammatory drug (NSAID),
a cyclooxygenase-2
(COX-2) inhibitor, an antibody, a glucocorticoid, hyaluronic acid, chondrotin
sulfate, glucosamine or
acetaminophen; prescribing a heat/cold regimen or a joint protection regimen;
performing joint surgery;
prescribing a weight control regimen; and combinations of the foregoing.

52. A method for detecting or preventing osteoarthritis in a subject, which
comprises:
detecting the presence or absence of one or more polymorphic variations
associated with
osteoarthritis in a nucleic acid sample from a subject, wherein the
polymorphic variation is detected in a
nucleotide sequence selected from the group consisting of:
(a) a nucleotide sequence in SEQ ID NO: 1-7 or referenced in Table A;
(b) a nucleotide sequence which encodes a polypeptide encoded by a nucleotide
sequence in
SEQ ID NO: 1-7 or referenced in Table A;
(c) a nucleotide sequence which encodes a polypeptide that is 90% or more
identical to the
amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1-7 or
referenced in Table A;

346



(d) a fragment of a nucleotide sequence of (a), (b), or (c) comprising a
polymorphic
variation; and
administering an osteoarthritis prevention or detection procedure to a subject
in need thereof
based upon the presence or absence of the one or more polymorphic variations
in the nucleic acid sample.
53. The method of claim 52, wherein the one or more polymorphic variations are
detected at one
or more positions in claim 4, 7, 10, 13, 16, 19 or 24.
54. The method of claim 52, wherein the osteoarthritis prevention is selected
from the group
consisting of administering a corticosteroid, a nonsteroidal anti-inflammatory
drug (NSAID), a
cyclooxygenase-2 (COX-2) inhibitor, an antibody, a glucocorticoid, hyaluronic
acid, chondrotin sulfate,
glucosamine or acetaminophen; prescribing a heat/cold regimen or a joint
protection regimen; performing
joint surgery; prescribing a weight control regimen; and combinations of the
foregoing.
55. A method of targeting information for preventing or treating
osteoarthritis to a subject in
need thereof, which comprises:
detecting the presence or absence of one or more polymorphic variations
associated with
osteoarthritis in a nucleic acid sample from a subject, wherein the
polymorphic variation is detected in a
nucleotide sequence selected from the group consisting of:
(a) a nucleotide sequence in SEQ ID NO: 1-7 or referenced in Table A;
(b) a nucleotide sequence which encodes a polypeptide encoded by a nucleotide
sequence in
SEQ ID NO: 1-7 or referenced in Table A;
(c) a nucleotide sequence which encodes a polypeptide that is 90% or more
identical to the
amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1-7 or
referenced in Table A;
(d) a fragment of a nucleotide sequence of (a), (b), or (c) comprising a
polymorphic
variation; and
directing information for preventing or treating osteoarthritis to a subject
in need thereof based
upon the presence or absence of the one or more polymorphic variations in the
nucleic acid sample.
56. The method of claim 55, wherein the one or more polymorphic variations are
detected at one
or more positions in claim 4, 7, 10, 13, 16, 19 or 24.
57. A composition comprising a cell from a subject having osteoarthritis or at
risk of
osteoarthritis and an antibody that specifically binds to a protein,
polypeptide or peptide encoded by a
nucleotide sequence identical to or 90% or more identical to a nucleotide
sequence in SEQ m NO: 1-7 or
referenced in Table A.
347



58. The composition of claim 57, wherein the antibody specifically binds to an
epitope
comprising an amino acid encoded by rs734784, rs1042164, rs749670, rs955592,
rs241448 and
rs 1040461.
59. A composition comprising a cell from a subject having osteoarthritis or at
risk of
osteoarthritis and a RNA, DNA, PNA or ribozyme molecule comprising a
nucleotide sequence identical
to or 90% or more identical to a portion of a nucleotide sequence in SEQ ID
NO: 1-7 or referenced in
Table A.
60. The composition of claim 59, wherein the RNA molecule is a short
inhibitory RNA
molecule.
348

Description

Note: Descriptions are shown in the official language in which they were submitted.





DEMANDE OU BREVET VOLUMINEUX
LA PRESENTE PARTIE DE CETTE DEMANDE OU CE BREVET COMPREND
PLUS D'UN TOME.
CECI EST LE TOME 1 DE 3
CONTENANT LES PAGES 1 A 189
NOTE : Pour les tomes additionels, veuillez contacter 1e Bureau canadien des
brevets
JUMBO APPLICATIONS/PATENTS
THIS SECTION OF THE APPLICATION/PATENT CONTAINS MORE THAN ONE
VOLUME
THIS IS VOLUME 1 OF 3
CONTAINING PAGES 1 TO 189
NOTE: For additional volumes, please contact the Canadian Patent Office
NOM DU FICHIER / FILE NAME
NOTE POUR LE TOME / VOLUME NOTE:


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
METHODS FOR IDENTIFYING RISK OF OSTEOARTHRITIS AND
TREATMENTS THEREOF
Field of the Invention
[0001] The invention relates to genetic methods for identifying risk of
osteoarthritis and treatments
that specifically target such diseases.
Back rg ound
[0002] Osteoarthritis (OA) is a chronic disease usually affecting weight-
bearing synovial joints.
There are approximately 20 million Americans affected by OA and it is the
leading cause of disability in
the United States. In addition to extensive human suffering, OA also accounts
for nearly all knee
replacements and more than half of all hip replacements in the United States.
Despite its prevalence,
OA is poorly understood and there are few treatments available besides anti-
inflammatory drugs and
joint replacement.
[0003] Osteoarthritis (OA) is a disease caused by degeneration of articular
cartilage and subsequent
joint deformation. In addition to risk factors like body weight, joint injury
and age, there is a strong
hereditary component to OA, reflected by high heritability estimates from twin
studies. So far, few of
the genes responsible for this genetic component have been identified.
Summary
[0004] It has been discovered that certain polymorphic variations in human
genomic DNA are
associated with osteoarthritis. In particular, polymorphic variants in loci
containing KIAA0296, Chr~om
4, PSMBI, TBP, PDCD2, ELP3, LRCHl, SNWl and ERG regions and other regions in
Table A of
human genomic DNA have been associated with risk of osteoarthritis. Some of
the associated
polymorphic variants fall in an intergenic region on chromosome 4 that does
not include a known gene;
therefore, the region is referred to herein as the Chronz 4 region. Also, the
PSMBl, TBP and PDCD2
regions are located in a larger region referred to herein as the Chrom 6
region.
[0005] Thus, featured herein are methods for identifying a subject at risk of
osteoarthritis and/or a
risk of osteoarthritis in a subject, which comprise detecting the presence or
absence of one or more
polymorphic variations associated with osteoarthritis in or around the loci
described herein in a human
nucleic acid sample. In an embodiment, two or more polymorphic variations are
detected in two or
more regions of which one is the KIAA0296, Cht~om 4, Chrona 6, ELP3, LRCHl,
SNWl or ERG region
or other region in Table A. In certain embodiments, 3 or more, or 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19 or 20 or more polymorphic variants are detected.
[0006] Also featured are nucleic acids that include one or more polymorphic
variations associated
with occurrence of osteoarthritis, as well as polypeptides encoded by these
nucleic acids. In addition,
provided are methods for identifying candidate therapeutic molecules for
treating osteoarthritis, as well


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
as methods for treating osteoarthritis in a subject by identifying a subject
at risk of osteoarthritis and
treating the subject with a suitable prophylactic, treatment or therapeutic
molecule.
[0007] Also provided are compositions comprising a cell from a subject having
osteoarthritis or at
risk of osteoarthritis and/or a KIAA0296, Chrona 4, Chrom 6, ELP3, LRCHI, SNWI
or ERG nucleic acid
or other nucleic acid referenced in Table A, with a RNAi, siRNA, antisense DNA
or RNA, or ribozyme
nucleic acid designed from a KIAA0296, Chrona 4, Chr~ona 6, ELP3, LRCHI, SNWI
or ERG nucleotide
sequence or other nucleotide sequence referenced in Table A. In an embodiment,
the RNAi, siRNA,
antisense DNA or RNA, or ribozyme nucleic acid is designed from a KIAA0296,
Chrom 4, Ch~om 6,
ELP3, LRCHI, SNWI or ERG nucleotide sequence or other nucleotide sequence
referenced in Table A
that includes one or more polymorphic variations associated with
osteoarthritis, and in some instances,
specifically interacts with such a nucleotide sequence. Further, provided are
arrays of nucleic acids
bound to a solid surface, in which one or more nucleic acid molecules of the
array have a KIAA0296,
Ch~om 4, Cla~~om 6, ELP3, LRCHl, SNWI or ERG nucleotide sequence or other
nucleotide sequence
referenced in Table A, or a fragment or substantially identical nucleic acid
thereof, or a complementary
nucleic acid of the foregoing. Featured also are compositions comprising a
cell from a subject having
osteoarthritis or at risk of osteoarthritis and/or a KIAA0296, Chrorn 4, Chrom
6, ELP3, LRCHl, SNWI
or ERG polypeptide or other polypeptide referenced in Table A, with an
antibody that specifically binds
to the polypeptide. In an embodiment, the antibody specifically binds to an
epitope in the polypeptide
that includes a non-synonymous amino acid modification associated with
osteoarthritis (e.g., results in
an amino acid substitution in the encoded polypeptide associated with
osteoarthritis). In certain
embodiments, the antibody selectively binds to an epitope in the KIAA0296,
Chf°ona 4, Clarom 6, ELP3,
LRCHl, SNWI or ERG polypeptide, or other polypeptide referenced in Table A,
having an amino acid
associated with osteoarthritis. Thus, featured is an antibody that binds an
epitope having an amino acid
encoded by rs734784, rs1042164, rs749670, rs955592, rs241448 and/or rs1040461,
such as a valine or
isoleucine encoded by rs734784 (e.g., a valine at position 489 in a KCNSI
polypeptide), a valine or
alanine encoded by rs1042164 (e.g., a valine at position 133 in a IER2
polypeptide), a glutamate or
glycine encoded by rs749670 (e.g., a glutamate at position 327 in a KIAA0296
polypeptide), a threonine
or isoleucine encoded by rs955592 (e.g., a threonine at position 70 in a RBEDl
polypeptide), a
glutamine or termination encoded by rs241448 (e.g., a glutamine at position
687 in a TAP2 polypeptide)
or a glycine or serine encoded by rs1040461 (e.g., a glycine at position 207
in a RAB23 polypeptide) at
the corresponding position in the polypeptide.
Brief Description of the Drawinus
[0008] Figures lA-1G show proximal SNPs in a 100-kb window in KIAA0296, Chr~om
4, Chrofn 6,
ELP3, LRCHl, SNWI and ERG regions of genomic DNA, respectively, that were
compared between
pools of cases and controls. The x-axis corresponds to their chromosomal
position and the y-axis to the
test P-values (shown on the -logo scale). The continuous dark line presents
the results of a goodness-of
2


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
fit test for an excess of significance (compared to 0.05) in a 10 kb sliding
window assessed at 1 kb
increments.
Detailed Description
(0009] It has been discovered that polymorphic variants in a locus containing
a KIAA0296, Chrorn
4, Ch~om 6, ELP3, LRCHl, SNWI or ERG region are associated with occurrence of
osteoarthritis in
subjects. Thus, detecting genetic determinants associated with an increased
risk of osteoarthritis
occurrence can lead to early identification of a predisposition to
osteoarthritis and early prescription of
preventative measures. Also, associating a KIAA0296, Chrom 4, Chr om 6, ELP3,
LRCHI, SNWI or
ERG polymorphic variant and other variants referenced in Table A with
osteoarthritis has provided new
targets for screening molecules useful in treatments of osteoarthritis.
Osteoarthritis and Sample Selection
[0010] Osteoarthritis (OA), or degenerative joint disease, is one of the
oldest and most common
types of arthritis. It is characterized by the breakdown of the joint's
cartilage. Cartilage is the part of the
joint that cushions the ends of bones, and its breakdown causes bones to rub
against each other, causing
pain and loss of movement. Type II collagen is the main component of
cartilage, comprising 15-25% of
the wet weight, approximately half the dry weight, and representing 90-95% of
the total collagen
content in the tissue. It forms fibrils that endow cartilage with tensile
strength (Mayne, R. Arthritis
Rhuem. 32:241-246 (1989)).
[0011] Most commonly affecting middle-aged and older people, OA can range from
very mild to
very severe. It affects hands and weight-bearing joints such as knees, hips,
feet and the back. Knee OA
can be as disabling as any cardiovascular disease except stroke.
[0012] Osteoarthritis affects an estimated 20.7 million Americans, mostly
after age 45, with
women more commonly affected than men. Physicians make a diagnosis of OA based
on a physical
exam and history of symptoms. X-rays are used to confirm diagnosis. Most
people over 60 reflect the
disease on X-ray, and about one-third have actual symptoms.
[0013] There are many factors that can cause OA. Obesity may lead to
osteoarthritis of the knees.
In addition, people with joint injuries due to sports, work-related activity
or accidents may be at
increased risk of developing OA.
[0014] Genetics has a role in the development of OA too. Some people may be
born with defective
cartilage or with slight defects in the way that joints fit together. As a
person ages, these defects may
cause early cartilage breakdown in the joint or the inability to repair
damaged or deteriorated cartilage
in the joint.
[0015] Inclusion or exclusion of samples for an osteoarthritis pool may be
based upon the
following criteria: ethnicity (e.g., samples derived from an individual
characterized as Caucasian);
parental ethnicity (e.g., samples derived from an individual of British
paternal and maternal descent);
relevant phenotype information for the individual (e.g., case samples derived
from individuals


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
diagnosed with specific knee, hand or hip osteoarthritis (OA); case samples
recruited from an OA knee
replacement clinic). Control samples may be selected based on relevant
phenotype information for the
individual (e.g., derived from individuals free of OA at several sites (knee,
hand, hip etc)); and no
family history of OA and/or rheumatoid arthritis. Additional phenotype
information collected for both
cases and controls may include age of the individual, gender, family history
of OA, diagnosis with
osteoarthritis (joint location of OA (e.g., knee, hips, hands and spine), date
of primary diagnosis, age of
individual as of primary diagnosis), knee history (current symptoms, any major
knee injury,
menisectomy, knee replacement surgery, age of surgery), HRT history,
osteoporosis diagnosis.
[0016] Based in part upon selection criteria set forth above, individuals
having osteoarthritis can be
selected for genetic studies. Also, individuals having no history of
osteoarthritis often are selected for
genetic studies, as described hereafter.
Pol,~o~hic Variants Associated with Osteoarthritis
[0017] A genetic analysis provided herein linked osteoarthritis with
polymorphic variant nucleic
acid sequences in the human genome. As used herein, the term "polymorphic
site" refers to a region in
a nucleic acid at which two or more alternative nucleotide sequences are
observed in a significant
number of nucleic acid samples from a population of individuals. A polymorphic
site may be a
nucleotide sequence of two or more nucleotides, an inserted nucleotide or
nucleotide sequence, a
deleted nucleotide or nucleotide sequence, or a microsatellite, for example. A
polymorphic site that is
two or more nucleotides in length may be 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15 or more, 20 or more,
30 or more, 50 or more, 75 or more, 100 or more, 500 or more, or about 1000
nucleotides in length,
where all or some of the nucleotide sequences differ within the region. A
polymorphic site is often one
nucleotide in length, which is referred to herein as a "single nucleotide
polymorphism" or a "SNP."
[0018] Where there are two, three, or four alternative nucleotide sequences at
a polymorphic site,
each nucleotide sequence is referred to as a "polymorphic variant" or "nucleic
acid variant." Where two
polymorphic variants exist, for example, the polymorphic variant represented
in a minority of samples
from a population is sometimes referred to as a "minor allele" and the
polymorphic variant that is more
prevalently represented is sometimes referred to as a "major allele." Many
organisms possess a copy of
each chromosome (e.g., humans), and those individuals who possess two major
alleles or two minor
alleles are often referred to as being "homozygous" with respect to the
polymorphism, and those
individuals who possess one major allele and one minor allele are normally
referred to as being
"heterozygous" with respect to the polymorphism. Individuals who are
homozygous with respect to one
allele are sometimes predisposed to a different phenotype as compared to
individuals who are
heterozygous or homozygous with respect to another allele.
[0019] In genetic analysis that associate polymorphic variants with
osteoarthritis, samples from
individuals having osteoarthritis and individuals not having osteoarthritis
often are allelotyped and/or
genotyped. The term "allelotype" as used herein refers to a process for
determining the allele frequency
for a polymorphic variant in pooled DNA samples from cases and controls. By
pooling DNA from each
4


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
group, an allele frequency for each SNP in each group is calculated. These
allele frequencies are then
compared to one another. The term "genotyped" as used herein refers to a
process for determining a
genotype of one or more individuals, where a "genotype" is a representation of
one or more
polymorphic variants in a population.
[0020] A genotype or polymorphic variant may be expressed in terms of a
"haplotype," which as
used herein refers to two or more polymorphic variants occurring within
genomic DNA in a group of
individuals within a population. For example, two SNPs may exist within a gene
where each SNP
position includes a cytosine variation and an adenine variation. Certain
individuals in a population may
carry one allele (heterozygous) or two alleles (homozygous) having the gene
with a cytosine at each
SNP position. As the two cytosines corresponding to each SNP in the gene
travel together on one or
both alleles in these individuals, the individuals can be characterized as
having a cytosine/cytosine
haplotype with respect to the two SNPs in the gene.
[0021] As used herein, the term "phenotype" refers to a trait which can be
compared between
individuals, such as presence or absence of a condition, a visually observable
difference in appearance
between individuals, metabolic variations, physiological variations,
variations in the function of
biological molecules, and the like. An example of a phenotype is occurrence of
osteoarthritis.
[0022] Researchers sometimes report a polymorphic variant in a database
without determining
whether the variant is represented in a significant fraction of a population.
Because a subset of these
reported polymorphic variants are not represented in a statistically
significant portion of the population,
some of them are sequencing errors and/or not biologically relevant. Thus, it
is often not known
whether a reported polymorphic variant is statistically significant or
biologically relevant until the
presence of the variant is detected in a population of individuals and the
frequency of the variant is
determined. Methods for detecting a polymorphic variant in a population are
described herein,
specifically in Example 2. A polymorphic variant is statistically significant
and often biologically
relevant if it is represented in 5% or more of a population, sometimes 10% or
more, 15% or more, or
20% or more of a population, and often 25% or more, 30% or more, 35% or more,
40% or more, 45% or
more, or 50% or more of a population.
[0023] A polymorphic variant may be detected on either or both strands of a
double-stranded
nucleic acid. Also, a polymorphic variant may be located within an intron or
exon of a gene or within a
portion of a regulatory region such as a promoter, a 5' untranslated region
(UTR), a 3' UTR, and in
DNA (e.g., genomic DNA (gDNA) and complementary DNA (cDNA)), RNA (e.g., mRNA,
tRNA, and
rRNA), or a polypeptide. Polymorphic variations may or may not result in
detectable differences in
gene expression, polypeptide structure, or polypeptide function.
[0024] It was determined that polymorphic variations associated with an
increased risk of
osteoarthritis existed in SEQ ID NO: 1-7 or a nucleotide sequence referenced
in Table A. In certain
embodiments, polymorphic variants at positions rs552, rs12904, rs2282146,
rs734784, rs1042164,
rs749670, rs955592, rs1143016, rs755248, rs1055055, rs835409, rs927663,
rs8162, rs831038, rs33079,
rs1710880, rs1078153, rs799570, rs1282730, rs1518875, rs1568694, rs905042,
rs1957723, rs794018,


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
rs707723, rs893861, rs1914903, rs2062232, rs26609, rs1370987, rs1012414,
rs435903, rs1248,
rs703508, rs226465, rs241448, rs763155, rs1040461, rs462832, rs804194,
rs1022646, rs756519,
rs1042327, rs8770, rs1569112, rs1563055, rs805623, rs1019850, rs1599931, AA,
rs912428, rs279941,
rs1062230, rs1859911, rs1477261, rs1191119, rs657780, rs1393890, rs1478714,
rs868213, rs690115,
rs1465501, rs899173, rs10477, rs926393, rs465271, rs1888475, rs13847 and/or
rs738658 in the human
genome were associated with an increased risk of osteoarthritis, and in
specific embodiments, the
corresponding allele in the right-most column in Table A for each position is
associated with an
increased risk of osteoarthritis. In other embodiments polymorphic variants at
positions rs734784,
rs1042164, rs749670, rs955592, rs241448 and rs1040461 were associated with an
increased risk of
osteoarthritis, and in specific embodiments, a valine encoded by rs734784, a
valine encoded by
rs1042164, a glutamate encoded by rs749670, a threonine encoded by rs955592, a
glutamine encoded
by rs241448, and a glycine encoded by rs1040461 were associated with an
increased risk of
osteoarthritis.
[0025] Polymorphic variants in and around the KIAA0296 locus were tested for
association with
osteoarthritis. These include polymorphic variants at positions in SEQ ID NO:
1 selected from the
group consisting of 247, 1535, 2386, 6440, 9133, 9143, 9471, 13150, 13717,
14466, 15769, 16870,
18545, 18749, 19123, 20736, 21038, 21046, 21050, 21056, 21706, 23170, 25028,
27871, 28070, 31717,
32019, 32318, 33080, 33101, 34236, 34285, 34818, 35168, 37981, 38113, 38117,
38481, 38615, 38944,
39288, 41385, 42136, 42185, 42353, 42434, 44580, 44675, 45739, 46439, 47457,
47735, 50319, 50708,
51185, 53002, 53064, 53637, 55274, 55825, 55986, 56684, 57653, 57659, 57692,
57775, 61313, 61431,
61699, 62906, 63619, 64664, 68452, 69665, 69681, 70091, 74637, 74760, 76523,
78559, 79549, 79882,
81339, 81681, 81696, 83517, 85431, 86332, 87358, 87725, 89052, 90020, 90231,
90284, 90447, 90601,
90724, 92559, 95176, 95195 and 96822. Polymorphic variants at the following
positions in SEQ 117
NO: 1 in particular were associated with an increased risk of osteoarthritis:
13150, 21046, 23170,
25028, 44580, 62906, 64664 and 83517. In particular, the following polymorphic
variants in SEQ ID
NO: 1 were associated with risk of osteoarthritis: a guanine at position
13150, a thymine at position
21046, an adenine at position 23170, an adenine at position 25028, a guanine
at position 44580, a
guanine at position 62906, a cytosine at position 64664 and a cytosine at
position 83517. A
polymorphic variant in a KIAA0296 polypeptide encoded by rs749670 (e.g., a
glutamate at position 327
in the polypeptide) also was associated with increased risk of osteoarthritis.
[0026] Polymorphic variants in and around the clzrom 4 locus were tested for
association with
osteoarthritis. These include polymorphic variants at positions in SEQ ID NO:
2 selected from the
group consisting of 211, 7217, 7895, 13308, 14279, 17026, 18271, 20417, 21843,
22069, 22145, 22519,
22539, 23236, 23256, 23402, 23499, 23620, 23871, 24136, 25427, 25866, 26541,
26576, 26689, 26720,
27113, 27164, 27186, 28341, 29160, 29844, 30665, 30830, 31061, 31523, 32326,
32346, 32358, 34909,
34975, 35066, 35096, 35375, 36304, 36712, 36770, 37342, 37412, 37884, 38077,
38300, 38301, 41189,
44408, 44493, 44571, 44670, 45219, 45258, 47261, 48473, 48771, 55292, 56479,
56747, 60620, 60688,
61058, 61129, 61577, 61961, 63351, 63926, 65798, 66043, 66044, 66246, 66318,
66547, 71238, 71283,
6


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
71492, 72274, 73762, 74209, 75284, 77347, 77589, 78096, 78606, 78862, 79135,
79146, 79456, 79609,
80086, 80119, 80766, 81110, 81269, 81668, 82433, 82559, 83298, 83821, 84121,
84147, 84543, 84554,
84691, 84727, 85678, 86699, 86700, 86792, 86832, 87045, 87140, 87365, 88342,
88498, 88589, 95502,
96968, 97448, 97568 and 98724. Polymorphic variants at the following positions
in SEQ ID NO: 2 in
particular were associated with an increased risk of osteoarthritis: 23236,
32358, 47261, 48771, 55292,
60688, 72274, 74209, 77589, 79135, 79456, 79609, 80119, 80766, 81110, 82433,
84121, 84147, 85678,
86699, 86832, 87140 and 88589, where specific embodiments are directed to a
polymorphic variant at
position 32358, 47261, 74209 and/or 79456. In particular, the following
polymorphic variants in SEQ
ID NO: 2 were associated with risk of osteoarthritis: an adenine at position
23236, a cytosine at
position 32358, a guanine at position 47261, a guanine at position 48771, a
cytosine at position 55292,
an adenine at position 60688, a guanine at position 72274, a guanine at
position 74209, a cytosine at
position 77589, an adenine at position 79135, a thymine at position 79456, an
adenine at position
79609, an adenine at position 80119, a cytosine at position 80766, an adenine
at position 81110, a
cytosine at position 82433, a cytosine at position 84121, a thymine at
position 84147, a cytosine at
position 85678, a thymine at position 86699, an adenine at position 86832, a
guanine at position 87140
and an adenine at position 88589.
[0027] Polymorphic variants in and around the ch~om 6 region were tested for
association with
osteoarthritis. These include polymorphic variants at positions in SEQ ID NO:
3 selected from the
group consisting of 229, 6310, 11840, 11870, 12064, 13392, 16354, 16559,
16935, 17616, 17737,
18321, 18453, 18811, 20020, 21662, 23197, 23446, 24339, 25504, 27174, 28008,
29294, 29759, 30832,
44512, 44850, 45884, 46345, 48589, 53371, 53911, 53990, 55152, 55667, 58952,
59315, 60029, 61477,
62988, 63090, 64021, 65685, 70220, 70323, 70959, 73436, 82945, 82958, 82961,
82964, 82965, 83006,
83025, 83034, 83074 ,83132, 83155, 83172, 83174, 83206, 83216, 83234, 83252,
83260, 83263, 83296,
83319, 83322, 83324, 83357, 83375, 83381, 83389, 83443, 83499, 83545, 83566,
83591, 83619, 83698,
83780, 83784, 83826, 83832, 83852, 86297, 86315, 86420, 86460, 86714, 86718,
86736, 86753, 86766,
88162, 88218, 88246, 88255, 88309, 88310, 88471, 88619, 88904, 89044, 90531,
90534, 90613 and
46252. Polymorphic variants at the following positions in SEQ ID NO: 3 in
particular were associated
with an increased risle of osteoarthritis: 229, 6310, 16559, 18453, 25504,
27174, 30832, 44850, 45884,
48589, 61477, 82961 and 46252, with specific embodiments directed to variants
at positions 229,
16559, 44850 and/or 46252. In particular, the following polymorphic variants
in SEQ ID NO: 3 were
associated with risk of osteoarthritis: a thymine at position 229, a guanine
at position 6310, a thymine
at position 16559, an adenine at position 18453, an adenine at position 25504,
an adenine at position
27174, an adenine at position 30832, a guanine at position 44850, an adenine
at position 45884, an
adenine at position 48589, a cytosine at position 61477, a cytosine at
position 82961 and a thymine at
position 46252.
[0028] Polymorphic variants in and around the ELP3 region were tested for
association with
osteoarthritis. These include polymorphic variants at positions in SEQ ID NO:
4 selected from the
group consisting of 211, 473, 1536, 5639, 17186, 17335, 25029, 25111, 28811,
28863, 30809, 40985,
7


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
45147, 45282, 46168, 46328, 49077, 51925, 52141, 52168, 60852, 62468, 65572,
79089, 79541, 79790,
90843, 90978, 91052, 91131, 91132, 94439 and 94621. Polymorphic variants at
the following positions
in SEQ ID NO: 4 in particular were associated with an increased risk of
osteoarthritis: 40985, 46168,
51925 and 52168. In particular, the following polymorphic variants in SEQ ID
NO: 4 were associated
with risk of osteoarthritis: a cytosine at position 40985, a guanine at
position 46168, a thymine at
position 51925 and a cytosine at position 52168.
[0029] Polymorphic variants in and around the LRCHI region were tested for
association with
osteoarthritis. These include polymorphic variants at positions in SEQ ID NO:
5 selected from the
group consisting of 243, 10208, 15049, 15111, 15272, 15287, 15326, 15327,
17038, 19391, 21702,
22431, 22881, 27744, 32564, 32698, 33104, 33181, 33256, 33543, 35567, 40085,
40482, 45641, 46059,
48504, 48919, 49693, 49874, 50020, 50616, 50719, 55511, 65533, 70529, 75591,
77266, 80368, 82475,
92462, 92480, 95819 and 96275. Polymorphic variants at the following positions
in SEQ ID NO: 5 in
particular were associated with an increased risk of osteoarthritis: 15111,
45641, 46059, 49693, 49874,
50020, 50719, 70529, 82475, 92462, 92480 and 96275, with specific embodiments
directed to variants
at positions 82475 and/or 92462. In particular, the following polymorphie
variants in SEQ ID NO: 5
were associated with risk of osteoarthritis: a guanine at position 15111, a
thymine at position 45641, an
adenine at position 46059, a cytosine at position 49693, an adenine at
position 49874, an adenine at
position 50020, a guanine at position 50719, an adenine at position 70529, an
adenine at position 82475,
a thymine at position 92462, a thymine at position 92480 and a cytosine at
position 96275.
[0030] Polymorphic variants in and around the SNWI locus were tested for
association with
osteoarthritis. These include polymorphic variants at positions in SEQ ID NO:
6 selected from the
group consisting of 218, 1440, 1442, 2611, 4317, 4724, 4788, 5202, 5780, 5974,
6644, 7430, 7938,
8095, 8183, 8312, 8352, 9348, 9378, 9617, 9727, 9834, 9899, 10211, 10377,
10695, 10729, 10730,
11433, 11951, 12697, 12982, 14419, 14501, 14983, 15280, 15475, 15888, 15976,
16307, 16442, 17255,
18948, 19435, 19753, 20021, 20022, 20503, 20590, 21804, 21919, 21990, 22412,
22536, 23432, 23468,
23772, 24325, 24773, 26274, 27440, 28561, 30071, 31764, 33008, 35310, 35460,
37112, 37285, 37747,
38057, 38859, 38860, 39525, 40216, 40281, 41453, 42091, 42513, 42935, 42985,
43003, 43281, 43716,
43866, 44234, 44596, 44871, 45005, 45282, 47178, 47816, 47887, 48134, 48135,
48276, 48400, 48798,
48803, 49146, 49969, 51059, 51064, 53285, 54560, 54748, 54785, 55102, 55644,
55705, 55841, 56623,
56825, 56827, 56892, 59150, 59958, 60231, 60524, 61871, 62226, 63230, 63468,
63787, 65732, 65989,
68832, 69904, 70365, 70886, 73088, 73103, 75934, 75966, 76273, 77943, 78466,
78861, 78872, 79836,
80908, 81509, 83576, 83662, 83782, 84282, 84444, 85129, 85151, 85296, 85809,
86387, 86494, 89786,
89894, 90122, 92067, 92187, 92312, 92824, 93733, 96553 and 96941. Polymorphic
variants at the
following positions in SEQ ID NO: 6 in particular were associated with an
increased risk of
osteoarthritis: 4788, 8312, 9378, 9727, 9899, 10211, 27440, 40216, 40281,
42091, 43866, 48803,
51059, 55644, 56623, 73103, 78872, 79836, 85129, 92824 and 96941. In
particular, the following
polymorphic variants in SEQ ID NO: 6 were associated with risk of
osteoarthritis: a guanine at position
4788, a thymine at position 8312, a deletion at position 9378, a cytosine at
position 9727, a guanine at
8


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
position 9899, a cytosine at position 10211, a guanine at position 27440, a
guanine at position 40216, a
cytosine at position 40281, an adenine at position 42091, a guanine at
position 43866, an adenine at
position 48803, an adenine at position 51059, an adenine at position 55644, a
cytosine at position
56623, a cytosine at position 73103, an adenine at position 78872, a guanine
at position 79836, a
cytosine at position 85129, a guanine at position 92824 and an adenine at
position 96941.
[0031] Polymorphic variants in and around the ERG region were tested for
association with
osteoarthritis. These include polymorphic variants at positions in SEQ ID NO:
7 selected from the
group consisting of 231, 882, 960, 1194, 1530, 1673, 2096, 2285, 5873, 7256,
7988, 8222, 8381, 8814,
8915, 9642, 9902, 10619, 10927, 11032, 14377, 15608, 15928, 16296, 17598,
19272, 20084, 20577,
28051, 29466, 29530, 29987, 30012, 30322, 32216, 32516, 32544, 32746, 33137,
33538, 33798, 33802,
33964, 34132, 34210, 34317, 34499, 34753, 34845, 35335, 36423, 36450, 36481,
38447, 38784, 39387,
39458, 39822, 40305, 40869, 40926, 41010, 41134, 41984, 42172, 42753, 43011,
43176, 43320, 43381,
44142, 44383, 44726, 45087, 45141, 45359, 45421, 45456, 45467, 45486, 45709,
45716, 47626, 49413,
49796, 49962, 50075, 50093, 50571, 50615, 50780, 50851, 51459, 53193, 53702,
53736, 53795, 54109,
54126, 54230, 54894, 55455, 55499, 56522, 56662, 56954, 57267, 58282, 58916,
59544, 59666, 59913,
66846, 67245, 67652, 67955, 67966, 68420, 70226, 70810, 72246, 73330, 73457,
74389, 74638, 74640,
75358, 75952, 76098, 77836, 78449, 78507, 80031, 81695, 82775, 82795, 84611,
84657, 84693, 85020,
85048, 85100, 85325, 85452, 85868, 85936, 85990, 86139, 86497, 87236, 87248,
87533, 87912, 88108,
88494, 89598, 90235, 91287, 91359, 92384, 92410, 92900, 94495, 94512, 97777
and 98333.
Polymorphic variants at the following positions in SEQ ID NO: 7 in particular
were associated with an
increased risk of osteoarthritis: 1673, 20577, 33137, 39822, 45716, 49962,
51459, 54894, 55455,
55499, 58282, 68420 and 80031, with specific embodiments directed to variants
at positions 33137,
55499 and/or 58282. In particular, the following polymorphic variants in SEQ
ID NO: 7 were
associated with risk of osteoarthritis: a guanine at position 1673, a thymine
at position 20577, a guanine
at position 33137, a guanine at position 39822, an adenine at position 45716,
a guanine at position
49962, an adenine at position 51459, a cytosine at position 54894, an adenine
at position 55455, an
adenine at position 55499, a guanine at position 58282, an adenine at position
68420 and a thymine at
position 80031.
[0032] Based in part upon analyses summarized in Figures lA-1G, regions with
significant
association have been identified in regions associated with osteoarthritis.
Any polymorphic variants
associated with osteoarthritis in a region of significant association can be
utilized for embodiments
described herein. For example, polymorphic variants in a region spanning
chromosome positions
31118000 to 31129000 (approximately 11,000 nucleotides in length) in a
KIAA0296 locus, a region
spanning chromosome positions 36914000 to 36931000 (approximately 17,000
nucleotides in length) in
a chrona 4 region, a region spanning chromosome positions 170719500 to
170766500 (approximately
47,000 nucleotides in length) in a ch~om 6 region, a region spanning
chromosome positions 27963000
to 27983000 (approximately 20,000 nucleotides in length) in an ELP3 locus, a
region spanning
chromosome positions 44962000 to 45013000 (approximately 51,000 nucleotides in
length) in a LRCHI
9


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
locus, a region spanning chromosome positions 76196500 to 76221500
(approximately 25,000
nucleotides in length) in a SNWI locus, and a region spanning chromosome
positions 38830000 to
38844000 (approximately 14,000 nucleotides in length) in an ERG locus have
significant association
(chromosome positions are within NCBI's Genome build 34).
Additional Polyphic Variants Associated with Osteoarthritis
[0033] Also provided is a method for identifying polymorphic variants proximal
to an incident,
founder polymorphic variant associated with osteoarthritis. Thus, featured
herein are methods for
identifying a polymorphic variation associated with osteoarthritis that is
proximal to an incident
polymorphic variation associated with osteoarthritis, which comprises
identifying a polymorphic variant
proximal to the incident polymorphic variant associated with osteoarthritis,
where the incident
polymorphic variant is in a KIAA0296, Ch~om 4, Clz~onz 6, ELP3, LRCHl, SNWI or
ERG nucleotide
sequence or other nucleotide sequence referenced in Table A. The nucleotide
sequence often comprises
a polynucleotide sequence selected from the group consisting of (a) a
polynucleotide sequence of SEQ
ID NO: 1-7 or referenced in Table A; (b) a polynucleotide sequence that
encodes a polypeptide having
an amino acid sequence encoded by a polynucleotide sequence of SEQ ID NO: 1-7
or referenced in
Table A; and (c) a polynucleotide sequence that encodes a polypeptide having
an amino acid sequence
that is 90% or more identical to an amino acid sequence encoded by a
nucleotide sequence of SEQ ID
NO: 1-7 or referenced in Table A or a polynucleotide sequence 90% or more
identical to the
polynucleotide sequence of SEQ ID NO: 1-7 or referenced in Table A. The
presence or absence of an
association of the proximal polymorphic variant with osteoarthritis then is
determined using a known
association method, such as a method described in the Examples hereafter. In
an embodiment, the
incident polymorphic variant is a polymorphic variant associated with
osteoarthritis described herein.
In another embodiment, the proximal polymorphic variant identified sometimes
is a publicly disclosed
polymorphic variant, which for example, sometimes is published in a publicly
available database. In
other embodiments, the polymorphic variant identified is not publicly
disclosed and is discovered using
a known method, including, but not limited to, sequencing a region surrounding
the incident
polymorphic variant in a group of nucleic samples. Thus, multiple polymorphic
variants proximal to an
incident polymorphic variant are associated with osteoarthritis using this
method.
[0034] The proximal polymorphic variant often is identified in a region
surrounding the incident
polymorphic variant. In certain embodiments, this surrounding region is about
50 kb flanking the first
polymorphic variant (e.g. about 50 kb 5' of the first polymorphic variant and
about 50 kb 3' of the first
polymorphic variant), and the region sometimes is composed of shorter flanking
sequences, such as
flanking sequences of about 40 kb, about 30 kb, about 25 kb, about 20 kb,
about 15 kb, about 10 kb,
about 7 kb, about 5 kb, or about 2 kb 5' and 3' of the incident polymorphic
variant. In other
embodiments, the region is composed of longer flanking sequences, such as
flanking sequences of about
55 kb, about 60 kb, about 65 kb, about 70 kb, about 75 kb, about 80 kb, about
85 kb, about 90 kb, about
95 kb, or about 100 kb 5' and 3' of the incident polymorphic variant.


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
[0035] In certain embodiments, polymorphic variants associated with
osteoarthritis are identified
iteratively. For example, a first proximal polymorphic variant is associated
with osteoarthritis using the
methods described above and then another polymorphic variant proximal to the
first proximal
polymorphic variant is identified (e.g., publicly disclosed or discovered) and
the presence or absence of
an association of one or more other polymorphic variants proximal to the first
proximal polymorphic
variant with osteoarthritis is determined.
[0036] The methods described herein are useful for identifying or discovering
additional
polymorphic variants that may be used to further characterize a gene, region
or loci associated with a
condition, a disease (e.g., osteoarthritis), or a disorder. For example,
allelotyping or genotyping data
from the additional polymorphic variants may be used to identify a functional
mutation or a region of
linkage disequilibrium. In certain embodiments, polymorphic variants
identified or discovered within a
region comprising the first polymorphic variant associated with osteoarthritis
are genotyped using the
genetic methods and sample selection techniques described herein, and it can
be determined whether
those polymorphic variants are in linkage disequilibrium with the first
polymorphic variant. The size of
the region in linkage disequilibrium with the first polymorphic variant also
can be assessed using these
genotyping methods. Thus, provided herein are methods for determining whether
a polymorphic variant
is in linkage disequilibrium with a first polymorphic variant associated with
osteoarthritis, and such
information can be used in prognosis/diagnosis methods described herein.
Isolated Nucleic Acids
[0037] Featured herein are isolated KIAA0296, Chrom 4, Cht~om 6, ELP3, LRCHl,
SNWI or ERG
nucleic acid variants depicted in SEQ 117 NO: 1-7 or referenced in Table A,
and substantially identical
nucleic acids thereof. A nucleic acid variant may be represented on one or
both strands in a double-
stranded nucleic acid or on one chromosomal complement (heterozygous) or both
chromosomal
complements (homozygous).
[0038] As used herein, the term "nucleic acid" includes DNA molecules (e.g., a
complementary
DNA (cDNA) and genomic DNA (gDNA)) and RNA molecules (e.g., mRNA, rRNA, siRNA
and
tRNA) and analogs of DNA or RNA, for example, by use of nucleotide analogs.
The nucleic acid
molecule can be single-stranded and it is often double-stranded. The term
"isolated or purified nucleic
acid" refers to nucleic acids that are separated from other nucleic acids
present in the natural source of
the nucleic acid. For example, with regard to genomic DNA, the term "isolated"
includes nucleic acids
which are separated from the chromosome with which the genomic DNA is
naturally associated. An
"isolated" nucleic acid is often free of sequences which naturally flank the
nucleic acid (i.e., sequences
located at the 5' and/or 3' ends of the nucleic acid) in the genomic DNA of
the organism from which the
nucleic acid is derived. For example, in various embodiments, the isolated
nucleic acid molecule can
contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of 5'
and/or 3' nucleotide sequences
which flank the nucleic acid molecule in genomic DNA of the cell from which
the nucleic acid is
derived. Moreover, an "isolated" nucleic acid molecule, such as a cDNA
molecule, can be substantially
11


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
free of other cellular material, or culture medium when produced by
recombinant techniques, or
substantially free of chemical precursors or other chemicals when chemically
synthesized. As used
herein, the term "gene" refers to a nucleotide sequence that encodes a
polypeptide.
[0039] Also included herein are nucleic acid fragments. These fragments often
have a nucleotide
sequence identical to a nucleotide sequence of SEQ ID NO: 1-7 or referenced in
Table A, a nucleotide
sequence substantially identical to a nucleotide sequence of SEQ ID NO: 1-7 or
referenced in Table A,
or a nucleotide sequence that is complementary to the foregoing. The nucleic
acid fragment may be
identical, substantially identical or homologous to a nucleotide sequence in
an exon or an intron in a
nucleotide sequence of SEQ ID NO: 1-7 or referenced in Table A, and may encode
a domain or part of a
domain of a polypeptide. Sometimes, the fragment will comprises one or more of
the polymorphic
variations described herein as being associated with osteoarthritis. The
nucleic acid fragment is often
50, 100, or 200 or fewer base pairs in length, and is sometimes about 300,
400, 500, 600, 700, 800, 900,
1000, 1100, 1200, 1300, 1400, 1500, 2000, 3000, 4000, 5000, 10000, 15000, or
20000 base pairs in length.
A nucleic acid fragment that is complementary to a nucleotide sequence
identical or substantially identical
to a nucleotide sequence in SEQ 117 NO: 1-7 or referenced in Table A and
hybridizes to such a nucleotide
sequence under stringent conditions is often referred to as a "probe." Nucleic
acid fragments often include
one or more polymorphic sites, or sometimes have an end that is adjacent to a
polymorphic site as described
hereafter.
[0040] An example of a nucleic acid fragment is an oligonucleotide. As used
herein, the term
"oligonucleotide" refers to a nucleic acid comprising about 8 to about 50
covalently linked nucleotides,
often comprising from about 8 to about 35 nucleotides, and more often from
about 10 to about 25
nucleotides. The backbone and nucleotides within an oligonucleotide may be the
same as those of
naturally occurring nucleic acids, or analogs or derivatives of naturally
occurring nucleic acids,
provided that oligonucleotides having such analogs or derivatives retain the
ability to hybridize
specifically to a nucleic acid comprising a targeted polymorphism.
Oligonucleotides described herein
may be used as hybridization probes or as components of prognostic or
diagnostic assays, for example,
as described herein.
[0041] Oligonucleotides are typically synthesized using standard methods and
equipment, such as
the ABITM3900 High Throughput DNA Synthesizer and the EXPEDITETM 8909 Nucleic
Acid
Synthesizer, both of which are available from Applied Biosystems (Foster City,
CA). Analogs and
derivatives are exemplified in U.S. Pat. Nos. 4,469,863; 5,536,821; 5,541,306;
5,637,683; 5,637,684;
5,700,922; 5,717,083; 5,719,262; 5,739,308; 5,773,601; 5,886,165; 5,929,226;
5,977,296; 6,140,482;
WO 00/56746; WO 01114398, and related publications. Methods for synthesizing
oligonucleotides
comprising such analogs or derivatives are disclosed, for example, in the
patent publications cited above
and in U.S. Pat. Nos. 5,614,622; 5,739,314; 5,955,599; 5,962,674; 6,117,992;
in WO 00/75372; and in
related publications.
[0042] Oligonucleotides may also be linked to a second moiety. The second
moiety may be an
additional nucleotide sequence such as a tail sequence (e.g., a polyadenosine
tail), an adapter sequence
12


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
(e.g., phage M13 universal tail sequence), and others. Alternatively, the
second moiety may be a non-
nucleotide moiety such as a moiety which facilitates linkage to a solid
support or a label to facilitate
detection of the oligonucleotide. Such labels include, without limitation, a
radioactive label, a
fluorescent label, a chemiluminescent label, a paramagnetic label, and the
like. The second moiety may
be attached to any position of the oligonucleotide, provided the
oligonucleotide can hybridize to the
nucleic acid comprising the polymorphism.
Uses for Nucleic Acid Sequence
[0043] Nucleic acid coding sequences may be used for diagnostic purposes for
detection and
control of polypeptide expression. Also, included herein are oligonucleotide
sequences such as
antisense RNA, small-interfering RNA (siRNA) and DNA molecules and ribozymes
that function to
inhibit translation of a polypeptide. Antisense techniques and RNA
interference techniques are known
in the art and are described herein.
[0044] Ribozymes are enzymatic RNA molecules capable of catalyzing the
specific cleavage of
RNA. The mechanism of ribozyme action involves sequence specific hybridization
of the ribozyme
molecule to complementary target RNA, followed by endonucleolytic cleavage.
For example,
hammerhead motif ribozyme molecules may be engineered that specifically and
efficiently catalyze
endonucleolytic cleavage of RNA sequences corresponding to or complementary to
KIAA0296, Chrom
4, ChronZ 6, ELP3, LRCHl, SNWI or ERG nucleotide sequences or other nucleotide
sequences
referenced in Table A. Specific ribozyme cleavage sites within any potential
RNA target are initially
identified by scanning the target molecule for ribozyme cleavage sites which
include the following
sequences, GUA, GUU and GUC. Once identified, short RNA sequences of between
fifteen (15) and
twenty (20) ribonucleotides corresponding to the region of the target gene
containing the cleavage site
may be evaluated for predicted structural features such as secondary structure
that may render the
oligonucleotide sequence unsuitable. The suitability of candidate targets may
also be evaluated by
testing their accessibility to hybridization with complementary
oligonucleotides, using ribonuclease
protection assays.
[0045] Antisense RNA and DNA molecules, siRNA and ribozymes may be prepared by
any
method known in the art for the synthesis of RNA molecules. These include
techniques for chemically
synthesizing oligodeoxyribonucleotides well known in the art such as solid
phase phosphoramidite
chemical synthesis. Alternatively, RNA molecules may be generated by in vitro
and ira vivo
transcription of DNA sequences encoding the antisense RNA molecule. Such DNA
sequences may be
incorporated into a wide variety of vectors which incorporate suitable RNA
polymerase promoters such
as the T7 or SP6 polymerase promoters. Alternatively, antisense cDNA
constructs that synthesize
antisense RNA constitutively or inducibly, depending on the promoter used, can
be introduced stably
into cell lines.
[0046] DNA encoding a polypeptide also may have a number of uses for the
diagnosis of diseases,
including osteoarthritis, resulting from aberrant expression of a target gene
described herein. For
13


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
example, the nucleic acid sequence may be used in hybridization assays of
biopsies or autopsies to
diagnose abnormalities of expression or function (e.g., Southern or Northern
blot analysis, in situ
hybridization assays).
[0047] In addition, the expression of a polypeptide during embryonic
development may also be
determined using nucleic acid encoding the polypeptide. As addressed, infra,
production of functionally
impaired polypeptide is the cause of various disease states, such as
osteoarthritis. In situ hybridizations
using polypeptide as a probe may be employed to predict problems related to
osteoarthritis. Further, as
indicated, infra, administration of human active polypeptide, recombinantly
produced as described
herein, may be used to treat disease states related to functionally impaired
polypeptide. Alternatively,
gene therapy approaches may be employed to remedy deficiencies of functional
polypeptide or to
replace or compete with dysfunctional polypeptide.
Expression Vectors Host Cells and Geneticall~gineered Cells
[0048] Provided herein are nucleic acid vectors, often expression vectors,
which contain a
KIAA0296, Chrom 4, Chrom 6, ELP3, LRCHl, SNWI or ERG nucleotide sequence or
other nucleotide
sequence referenced in Table A, or a substantially identical sequence thereof.
As used herein, the term
"vector" refers to a nucleic acid molecule capable of transporting another
nucleic acid to which it has
been linked and can include a plasmid, cosmid, or viral vector. The vector can
be capable of
autonomous replication or it can integrate into a host DNA. Viral vectors may
include replication
defective retroviruses, adenoviruses and adeno-associated viruses for example.
[0049] A vector can include a KIAA0296, Chrom 4, Chrom 6, ELP3, LRCHl, SNWl or
ERG
nucleotide sequence or other nucleotide sequence referenced in Table A in a
form suitable for
expression of an encoded target polypeptide or target nucleic acid in a host
cell. A "target polypeptide"
is a polypeptide encoded by a KIAA0296, Chrom 4, Clarom 6, ELP3, LRCHl, SNWI
or ERG nucleotide
sequence or other nucleotide sequence referenced in Table A, or a
substantially identical nucleotide
sequence thereof. The recombinant expression vector typically includes one or
more regulatory
sequences operatively linked to the nucleic acid sequence to be expressed. The
term "regulatory
sequence" includes promoters, enhancers and other expression control elements
(e.g., polyadenylation
signals). Regulatory sequences include those that direct constitutive
expression of a nucleotide
sequence, as well as tissue-specific regulatory and/or inducible sequences.
The design of the expression
vector can depend on such factors as the choice of the host cell to be
transformed, the level of
expression of polypeptide desired, and the like. Expression vectors can be
introduced into host cells to
produce target polypeptides, including fusion polypeptides.
[0050] Recombinant expression vectors can be designed for expression of target
polypeptides in
prokaryotic or eukaryotic cells. For example, target polypeptides can be
expressed in E, coli, insect
cells (e.g., using baculovirus expression vectors), yeast cells, or mammalian
cells. Suitable host cells
are discussed further in Goeddel, Gene Expression Technology.' Methods in
Er~zy»aology 185,
Academic Press, San Diego, CA (1990). Alternatively, the recombinant
expression vector can be
14


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
transcribed and translated in vitro, for example using T7 promoter regulatory
sequences and T7
polymerase.
[0051] Expression of polypeptides in prokaryotes is most often carried out in
E. coli with vectors
containing constitutive or inducible promoters directing the expression of
either fusion or non-fusion
polypeptides. Fusion vectors add a number of amino acids to a polypeptide
encoded therein, usually to
the amino terminus of the recombinant polypeptide. Such fusion vectors
typically serve three purposes:
1) to increase expression of recombinant polypeptide; 2) to increase the
solubility of the recombinant
polypeptide; and 3) to aid in the purification of the recombinant polypeptide
by acting as a ligand in
affinity purification. Often, a proteolytic cleavage site is introduced at the
junction of the fusion moiety
and the recombinant polypeptide to enable separation of the recombinant
polypeptide from the fusion
moiety subsequent to purification of the fusion polypeptide. Such enzymes, and
their cognate
recognition sequences, include Factor Xa, thrombin and enterokinase. Typical
fusion expression
vectors include pGEX (Pharmacia Biotech Inc; Smith & Johnson, Gene 67: 31-40
(1988)), pMAL (New
England Biolabs, Beverly, MA) and pRITS (Pharmacia, Piscataway, NJ) which fuse
glutathione S-
transferase (GST), maltose E binding polypeptide, or polypeptide A,
respectively, to the target
recombinant polypeptide.
[0052] Purified fusion polypeptides can be used in screening assays and to
generate antibodies
specific for target polypeptides. In a therapeutic embodiment, fusion
polypeptide expressed in a
retroviral expression vector is used to infect bone marrow cells that are
subsequently transplanted into
irradiated recipients. The pathology of the subject recipient is then examined
after sufficient time has
passed (e.g., six (6) weeks).
[0053] Expressing the polypeptide in host bacteria with an impaired capacity
to proteolytically
cleave the recombinant polypeptide is often used to maximize recombinant
polypeptide expression
(Gottesman, S., Gefze Expressioh Technology: Methods in EnzynZOlogy, Academic
Press, San Diego,
California 185: 119-128 (1990)). Another strategy is to alter the nucleotide
sequence of the nucleic
acid to be inserted into an expression vector so that the individual codons
for each amino acid are those
preferentially utilized in E. coli (Wada et al., Nucleic Acids Res. 20: 2111-
2118 (1992)). Such
alteration of nucleotide sequences can be carried out by standard DNA
synthesis techniques.
[0054] When used in mammalian cells, the expression vector's control functions
are often provided
by viral regulatory elements. For example, commonly used promoters are derived
from polyoma,
Adenovirus 2, cytomegalovirus and Simian Virus 40. Recombinant mammalian
expression vectors are
often capable of directing expression of the nucleic acid in a particular cell
type (e.g., tissue-specific
regulatory elements are used to express the nucleic acid). Non-limiting
examples of suitable tissue-
specific promoters include an albumin promoter (liver-specific; Pinkert et
al., Genes Dev. 1: 268-277
(1987)), lymphoid-specific promoters (Calame ~ Eaton, Adv. Immunol. 43: 235-
275 (1988)),
promoters of T cell receptors (Winoto & Baltimore, EMBO J. 8: 729-733 (1989))
promoters of
immunoglobulins (Banerji et al., Cell 33: 729-740 (1983); Queen & Baltimore,
Cell 33: 741-748
(1983)), neuron-specific promoters (e.g., the neurofilament promoter; Byrne &
Ruddle, Proc. Natl.


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
Acad. Sci. USA 86: 5473-5477 (1989)), pancreas-specific promoters (Edlund et
al., Science 230: 912-
916 (1985)), and mammary gland-specific promoters (e.g., milk whey promoter;
U.S. Patent No.
4,873,316 and European Application Publication No. 264,166). Developmentally-
regulated promoters
are sometimes utilized, for example, the murine hox promoters (I~essel &
Gruss, Science 249: 374-379
(1990)) and the oc-fetopolypeptide promoter (Campes & Tilghman, Genes Dev. 3:
537-546 (1989)).
[0055] A KIAA0296, Ch~om 4, Chrom 6, ELP3, LRCHl, SNWI or ERG nucleic acid or
other
nucleic acid referenced in Table A also may be cloned into an expression
vector in an antisense
orientation. Regulatory sequences (e.g., viral promoters andlor enhancers)
operatively linked to a
KIAA0296, Ch~om 4, Chrom 6, ELP3, LRCHl, SNWl or ERG nucleic acid or other
nucleic acid
referenced in Table A cloned in the antisense orientation can be chosen for
directing constitutive, tissue
specific or cell type specific expression of antisense RNA in a variety of
cell types. Antisense
expression vectors can be in the form of a recombinant plasmid, phagemid or
attenuated virus. For a
discussion of the regulation of gene expression using antisense genes see,
e.g., Weintraub et al.,
Antisense RNA as a molecular tool for genetic analysis, Reviews - Trends in
Genetics, Vol. 1(1) (1986).
[0056] Also provided herein are host cells that include a KIAA0296, Ch~om 4,
Chrona 6, ELP3,
LRCHl, SNWI or ERG nucleotide sequence or other nucleotide sequence referenced
in Table A within
a recombinant expression vector or a fragment of such a nucleotide sequence
which facilitate
homologous recombination into a specific site of the host cell genome. The
terms "host~cell" and
"recombinant host cell" are used interchangeably herein. Such terms refer not
only to the particular
subject cell but rather also to the progeny or potential progeny of such a
cell. Because certain
,:
modifications may occur in succeeding generations due to either mutation or
environmental influences,
such progeny may not, in fact, be identical to the parent cell, but are still
included within the scope of
the term as used herein. A host cell can be any prokaryotic or eukaryotic
cell. For example, a target
polypeptide can be expressed in bacterial cells such as E. coli, insect cells,
yeast or mammalian cells
(such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host
cells are known to those
skilled in the art.
[0057] Vectors can be introduced into host cells via conventional
transformation or transfection
techniques. As used herein, the terms "transformation" and "transfection" are
intended to refer to a
variety of art-recognized techniques for introducing foreign nucleic acid
(e.g., DNA) into a host cell,
including calcium phosphate or calcium chloride co-precipitation,
transductiouinfection, DEAE-
dextran-mediated transfection, lipofection, or electroporation.
[0058] A host cell provided herein can be used to produce (i. e., express) a
target polypeptide or a
substantially identical polypeptide thereof. Accordingly, further provided are
methods for producing a
target polypeptide using host cells described herein. In one embodiment, the
method includes culturing
host cells into which a recombinant expression vector encoding a target
polypeptide has been introduced
in a suitable medium such that a target polypeptide is produced. In another
embodiment, the method
further includes isolating a target polypeptide from the medium or the host
cell.
16


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
[0059] Also provided are cells or purified preparations of cells which include
a KIAA0296, Chrom
4, Chrona 6, ELP3, LRCHl, SNWI or ERG transgene, or other transgene in Table
A, or which otherwise
misexpress target polypeptide. Cell preparations can consist of human or non-
human cells, e.g., rodent
cells, e.g., mouse or rat cells, rabbit cells, or pig cells. In preferred
embodiments, the cell or cells
include a I~IIAA0296, Chrorn 4, Chrom 6, ELP3, LRCHl, SNWI or ERG transgene or
other transgene
referenced in Table A (e.g., a heterologous form of a KIAA0296, Chrom 4, Chrom
6, ELP3, LRCHl,
SNWI or ERG gene or other gene referenced in Table A, such as a human gene
expressed in non-human
cells). The transgene can be misexpressed, e.g., overexpressed or
underexpressed. In other preferred
embodiments, the cell or cells include a gene which misexpress an endogenous
target polypeptide (e.g.,
expression of a gene is disrupted, also known as a knockout). Such cells can
serve as a model for
studying disorders which are related to mutated or mis-expressed alleles or
for use in drug screening.
Also provided are human cells (e.g., a hematopoietic stem cells) transfected
with a KI~1A0296, Chrona 4,
Chrom 6, ELP3, LRCHl, SNWI or ERG nucleic acid or other nucleic acid
referenced in Table A.
[0060] Also provided are cells or a purified preparation thereof (e.g., human
cells) in which an
endogenous KIAA0296, Chronz 4, Chrom 6, ELP3, LRCHl, SNWI or ERG nucleic acid
or other nucleic
acid referenced in Table A is under the control of a regulatory sequence that
does not normally control
the expression of the endogenous gene. The expression characteristics of an
endogenous gene within a
cell (e.g., a cell line or microorganism) can be modified by inserting a
heterologous DNA regulatory
element into the genome of the cell such that the inserted regulatory element
is operably linked to the
corresponding endogenous gene. For example, an endogenous corresponding gene
(e.g., a gene which
is "transcriptionally silent," not normally expressed, or expressed only at
very low levels) may be
activated by inserting a regulatory element which is capable of promoting the
expression of a normally
expressed gene product in that cell. Techniques such as targeted homologous
recombinations, can be
used to insert the heterologous DNA as described in, e.g., Chappel, US
5,272,071; WO 91/06667,
published on May 16, 1991.
Transgenic Animals
[0061] Non-human transgenic animals that express a heterologous target
polypeptide (e.g.,
expressed from a KIAA0296, Chrorrr 4, Chrorn 6, ELP3, LRCHl, SNWI or ERG
nucleic acid or other
nucleic acid referenced in Table A, or substantially identical sequence
thereof) can be generated. Such
animals are useful for studying the function and/or activity of a target
polypeptide and for identifying
and/or evaluating modulators of the activity of KI~4A0296, ChronZ 4, Chrom 6,
ELP3, LRCHl, SNWI or
ERG nucleic acids, other nucleic acids referenced in Table A, and encoded
polypeptides. As used
herein, a "transgenic animal" is a non-human animal such as a mammal (e.g., a
non-human primate such
as chimpanzee, baboon, or macaque; an ungulate such as an equine, bovine, or
caprine; or a rodent such
as a rat, a mouse, or an Israeli sand rat), a bird (e.g., a chicken or a
turkey), an amphibian (e.g., a frog,
salamander, or newt), or an insect (e.g., Drosophila rraelarcogaster), in
which one or more of the cells of
the animal includes a transgene. A transgene is exogenous DNA or a
rearrangement (e.g., a deletion of
17


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
endogenous chromosomal DNA) that is often integrated into or occurs in the
genome of cells in a
transgenic animal. A transgene can direct expression of an encoded gene
product in one or more cell
types or tissues of the transgenic animal, and other transgenes can reduce
expression (e.g., a knockout).
Thus, a transgenic animal can be one in which an endogenous nucleic acid
homologous to a KIAA0296,
Chrorn 4, Chf~om 6, ELP3, LRCHl, SNWI or ERG nucleic acid or other nucleic
acid referenced in Table
A has been altered by homologous recombination between the endogenous gene and
an exogenous
DNA molecule introduced into a cell of the animal (e.g., an embryonic cell of
the animal) prior to
development of the animal.
[0062] Intronic sequences and polyadenylation signals can also be included in
the transgene to
increase expression efficiency of the transgene. One or more tissue-specific
regulatory sequences can
be operably linked to a KI~1A0296, Chf°ona 4, Chf°om 6, ELP3,
LRCHI, SNWl or ERG nucleotide
sequence or other nucleotide sequence referenced in Table A to direct
expression of an encoded
polypeptide to particular cells. A transgenic founder animal can be identified
based upon the presence
of a KIAA0296, Chrom 4, Clzf~ona 6, ELP3, LRCHl, SNWI or ERG nucleotide
sequence or other
nucleotide sequence referenced in Table A in its genome and/or expression of
encoded mRNA in tissues
or cells of the animals. A transgenic founder animal can then be used to breed
additional animals
carrying the transgene. Moreover, transgenic animals carrying a KIAA0296,
Chron2 4, Chrom 6, ELP3,
LRCHl, SNWI or ERG nucleotide sequence or other nucleotide sequence referenced
in Table A can
further be bred to other transgenic animals carrying other transgenes.
[0063] Target polypeptides can be expressed in transgenic animals or plants by
introducing, for
example, a KIAA0296, Chrom 4, Chrom 6, ELP3, LRCHl, SNWI or ERG nucleic acid
or other nucleic
acid referenced in Table A into the genome of an animal that encodes the
target polypeptide. In
preferred embodiments the nucleic acid is placed under the control of a tissue
specific promoter, e.g., a ,
milk or egg specific promoter, and recovered from the milk or eggs produced by
the animal. Also
included is a population of cells from a transgenic animal.
Tar-e~ t PolYpeptides
[0064] Also featured herein are isolated target polypeptides, which are
encoded by a KIAA0296,
Chf°om 4, Ch~om 6, ELP3, LRCHl, SNWI or ERG nucleotide sequence or a
nucleotide sequence
referenced in Table A (e.g., SEQ ID NO: 8-17 or a sequence referenced in Table
A), or a substantially
identical nucleotide sequence thereof. Examples of KIf1A0296, Chrom 4, Cht~om
6, ELP3, LRCHl,
SNWI or ERG polypeptides are set forth in SEQ ID NO: 18-27. The term
"polypeptide" as used herein
includes proteins and peptides. An "isolated" or "purified" polypeptide or
protein is substantially free
of cellular material or other contaminating proteins from the cell or tissue
source from which the protein
is derived, or substantially free from chemical precursors or other chemicals
when chemically
synthesized. In one embodiment, the language "substantially free" means
preparation of a target
polypeptide having less than about 30%, 20%, 10% and more preferably 5% (by
dry weight), of non-
target polypeptide (also referred to herein as a "contaminating protein"), or
of chemical precursors or
18


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
non-target chemicals. When the target polypeptide or a biologically active
portion thereof is
recombinantly produced, it is also preferably substantially free of culture
medium, specifically, where
culture medium represents less than about 20%, sometimes less than about 10%,
and often less than
about 5% of the volume of the polypeptide preparation. Isolated or purified
target polypeptide
preparations are sometimes 0.01 milligrams or more or 0.1 milligrams or more,
and often 1.0 milligrams
or more and 10 milligrams or more in dry weight.
[0065] Further included herein are target polypeptide fragments. The
polypeptide fragment may be
a domain or part of a domain of a target polypeptide. The polypeptide fragment
may have increased,
decreased or unexpected biological activity. The polypeptide fragment is often
50 or fewer, 100 or fewer,
or 200 or fewer amino acids in length, and is sometimes 300, 400, 500, 600,
700, or 900 or fewer amino
acids in length. Specific embodiments are directed to a PTPNI polypeptide
fragment (e.g., rs2282146 in
Table A), such as a catalytic domain starting at about amino acid 3 and ending
at about amino acid 279.
Other embodiments are directed to a KCNSl polypeptide fragment (e.g., rs734784
in Table A), such as a
voltage gated postassium ion channel domain (e.g., starting at about amino
acid 21 and ending at about
amino acid 509), a postassium channel tetramerization domain (e.g., starting
at about amino acid 52 and
ending at about amino acid 155) or an ion transport protein domain (e.g.,
starting at about amino acid 271
and ending at about amino acid 456), for example. Certain embodiments are
directed to PSMBI
polypeptide fragments (e.g., sequence accessed by NP_002784; rs756519 in Table
A), such as a
proteasome protease domain (e.g., starting at about amino acid 34 and ending
at about amino acid 226) or a
proteasome B domain (e.g., starting at about amino acid 41 and ending at about
amino acid 88). Certain
embodiments are directed to a ANXA6 polypeptide fragment (e.g., rs1012414 in
Table A), such as an
annexin domain starting at about amino acid 5 and ending at about amino acid
325, an annexin domain
startuig at about amino acid 179 and ending at about amino acid 507, or an
annexin domain starting at about .
amino acid 355 and ending at about amino acid 673 in isoform 1 or isoform 2
(e.g., an isoform 1 sequence
can be accessed using accession number NP_001146 and an isoform 2 sequence can
be accessed using
accession number NP 004024; isoform 2 lacks exon 21 and encodes a protein
isoform lacking the six
amino acids VAAEIL,). Amino acid sequences can be accessed using information
in Table A and in SEQ
117 NO: 18-27.
[0066] Substantially identical target polypeptides may depart from the amino
acid sequences of
target polypeptides in different manners. For example, conservative amino acid
modifications may be
introduced at one or more positions in the amino acid sequences of target
polypeptides. A "conservative
amino acid substitution" is one in which the amino acid is replaced by another
amino acid having a
similar structure and/or chemical function. Families of amino acid residues
having similar structures
and functions are well known. These families include amino acids with basic
side chains (e.g., lysine,
arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid),
uncharged polar side chains
(e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine),
nonpolar side chains (e.g.,
alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine,
tryptophan), beta-branched side
chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g.,
tyrosine, phenylalanine,
19


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
tryptophan, histidine). Also, essential and non-essential amino acids may be
replaced. A "non-
essential" amino acid is one that can be altered without abolishing or
substantially altering the biological
function of a target polypeptide, whereas altering an "essential" amino acid
abolishes or substantially
alters the biological function of a target polypeptide. Amino acids that are
conserved among target
polypeptides are typically essential amino acids. In certain embodiments, the
polypeptide includes one
or more non-synonymous polymorphic variants associated with osteoarthritis, as
described above (e.g.,
a valine encoded by rs734784, a valine encoded by rs1042164, a glutamate
encoded by rs749670, a
threonine encoded by rs955592, a glutamine encoded by rs241448, and a glycine
encoded by
rs 1040461 ).
[0067] Also, target polypeptides may exist as chimeric or fusion polypeptides.
As used herein, a
target "chimeric polypeptide" or target "fusion polypeptide" includes a target
polypeptide linked to a
non-target polypeptide. A "non-target polypeptide" refers to a polypeptide
having an amino acid
sequence corresponding to a polypeptide which is not substantially identical
to the target polypeptide,
which includes, for example, a polypeptide that is different from the target
polypeptide and derived
from the same or a different organism. The target polypeptide in the fusion
polypeptide can correspond
to an entire or nearly entire target polypeptide or a fragment thereof. The
non-target polypeptide can be
fused to the N-terminus or C-terminus of the target polypeptide.
[0068] Fusion polypeptides can include a moiety having high affinity for a
ligand. For example,
the fusion polypeptide can be a GST-target fusion polypeptide in which the
target sequences are fused
to the C-terminus of the GST sequences, or a polyhistidine-target fusion
polypeptide in which the target
polypeptide is fused at the N- or C-terminus to a string of histidine
residues. Such fusion polypeptides
can facilitate purification of recombinant target polypeptide. Expression
vectors are commercially
available that already encode a fusion moiety (e.g., a GST polypeptide), and a
nucleotide sequence in
SEQ ID NO: 1-7 or referenced in Table A, or a substantially identical
nucleotide sequence thereof, can
be cloned into an expression vector such that the fusion moiety is linked in-
frame to the target
polypeptide. Further, the fusion polypeptide can be a target polypeptide
containing a heterologous
signal sequence at its N-terminus. In certain host cells (e.g., mammalian host
cells), expression,
secretion, cellular internalization, and cellular localization of a target
polypeptide can be increased
through use of a heterologous signal sequence. Fusion polypeptides can also
include all or a part of a
serum polypeptide (e.g., an IgG constant region or human serum albumin).
[0069] Target polypeptides can be incorporated into pharmaceutical
compositions and
administered to a subject in vivo. Administration of these target polypeptides
can be used to affect the
bioavailability of a substrate of the target polypeptide and may effectively
increase target polypeptide
biological activity in a cell. Target fusion polypeptides may be useful
therapeutically for the treatment
of disorders caused by, for example, (i) aberrant modification or mutation of
a gene encoding a target
polypeptide; (ii) mis-regulation of the gene encoding the target polypeptide;
and (iii) aberrant post-
translational modification of a target polypeptide. Also, target p0lypeptides
can be used as immunogens
to produce anti-target antibodies in a subject, to purify target polypeptide
ligands or binding partners,


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
and in screening assays to identify molecules which inhibit or enhance the
interaction of a target
polypeptide with a substrate.
[0070] In addition, polypeptides can be chemically synthesized using
techniques known in the art
(See, e.g., Creighton, 1983 Proteins. New York, N.Y.: W. H. Freeman and
Company; and Hunkapiller
et al., (1984) Nature July 12 -18;310(5973):105-11). For example, a relative
short fragment can be
synthesized by use of a peptide synthesizer. Furthermore, if desired, non-
classical amino acids or
chemical amino acid analogs can be introduced as a substitution or addition
into the fragment sequence.
Non-classical amino acids include, but are not limited to, to the D-isomers of
the common amino acids,
2,4-diaminobutyric acid, a-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-
amino butyric acid, g-
Abu, e-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino
propionic acid, ornithine,
norleucine, norvaline, hydroxyproline, sarcosine, citrulline, homocitrulline,
cysteic acid, t-butylglycine,
t-butylalanine, phenylglycine, cyclohexylalanine, b-alanine, fluoroamino
acids, designer amino acids
such as b-methyl amino acids, Ca-methyl amino acids, Na-methyl amino acids,
and amino acid analogs
in general. Furthermore, the amino acid can be D (dextrorotary) or L
(levorotary).
[0071] Polypeptides and polypeptide fragments sometimes are differentially
modified during or
after translation, e.g., by glycosylation, acetylation, phosphorylation,
amidation, derivatization by
known protecting/blocking groups, proteolytic cleavage, linkage to an antibody
molecule or other
cellular ligand, etc. Any of numerous chemical modifications may be carried
out by known techniques,
including but not limited, to specific chemical cleavage by cyanogen bromide,
trypsin, chymotrypsin,
papain, V8 protease, NaBH4; acetylation, formylation, oxidation, reduction;
metabolic synthesis in the
presence of tunicamycin; and the like. Additional post-translational
modifications include, for example,
N-linked or O-linked carbohydrate chains, processing of N-terminal or C-
terminal ends), attachment of
chemical moieties to the amino acid backbone, chemical modifications of N-
linked or O-linked
carbohydrate chains, and addition or deletion of an N-terminal methionine
residue as a result of
prokaryotic host cell expression. The polypeptide fragments may also be
modified with a detectable
label, such as an enzymatic, fluorescent, isotopic or affinity label to allow
for detection and isolation of
the polypeptide.
[0072] Also provided are chemically modified derivatives of polypeptides that
can provide
additional advantages such as increased solubility, stability and circulating
time of the polypeptide, or
decreased immunogenicity (see e.g., U.S. Pat. No: 4,179,337. The chemical
moieties for derivitization
may be selected from water soluble polymers such as polyethylene glycol,
ethylene glycollpropylene
glycol copolymers, carboxymethylcellulose, dextran, polyvinyl alcohol and the
like. The polypeptides
may be modified at random positions within the molecule, or at predetermined
positions within the
molecule and may include one, two, three or more attached chemical moieties.
[0073] The polymer may be of any molecular weight, and may be branched or
unbranched. For
polyethylene glycol, the preferred molecular weight is between about 1 kDa and
about 100 kDa (the
term "about" indicating that in preparations of polyethylene glycol, some
molecules will weigh more,
some less, than the stated molecular weight) for ease in handling and
manufacturing. Other sizes may be
21


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
used, depending on the desired therapeutic profile (e.g., the duration of
sustained release desired, the
effects, if any on biological activity, the ease in handling, the degree or
lack of antigenicity and other
known effects of the polyethylene glycol to a therapeutic protein or analog).
[0074] The polymers should be attached to the polypeptide with consideration
of effects on
functional or antigenic domains of the polypeptide. There are a number of
attachment methods available
to those skilled in the art (e.g., EP 0 401 384 (coupling PEG to G-CSF) and
Malik et al. (1992) Exp
Hematol. September;20(8):1028-35 (pegylation of GM-CSF using tresyl
chloride)). For example,
polyethylene glycol may be covalently bound through amino acid residues via a
reactive group, such as
a free amino or carboxyl group. Reactive groups are those to which an
activated polyethylene glycol
molecule may be bound. The amino acid residues having a free amino group may
include lysine
residues and the N-terminal amino acid residues; those having a free carboxyl
group may include
aspartic acid residues, glutamic acid residues and the C-terminal amino acid
residue. Sulfhydryl groups
may also be used as a reactive group for attaching the polyethylene glycol
molecules. For therapeutic
purposes, the attaclnnent sometimes is at an amino group, such as attachment
at the N-terminus or
lysine group.
[0075] Proteins can be chemically modified at the N-terminus. Using
polyethylene glycol as an
illustration of such a composition, one may select from a variety of
polyethylene glycol molecules (by
molecular weight, branching, and the like), the proportion of polyethylene
glycol molecules to protein
(polypeptide) molecules in the reaction mix, the type of pegylation reaction
to be performed, and the
method of obtaining the selected N-terminally pegylated protein. The method of
obtaining the N-
terminally pegylated preparation (i.e., separating this moiety from other
monopegylated moieties if
necessary) may be by purification of the N-terminally pegylated material from
a population of pegylated
protein molecules. Selective proteins chemically modified at the N-terminus
may be accomplished by
reductive alkylation, which exploits differential reactivity of different
types of primary amino groups
(lysine versus the N-terminal) available for derivatization in a particular
protein. Under the appropriate
reaction conditions, substantially selective derivatization of the protein at
the N-terminus with a
carbonyl group containing polymer is achieved.
Substantially Identical Nucleic Acids and Polypeptides
[0076] Nucleotide sequences and polypeptide sequences that are substantially
identical to a
KIAA0296, Chrom 4, CI2f'o3rZ 6, ELP3, LRCHl, SNWI or ERG nucleotide sequence
or other nucleotide
sequence referenced in Table A and the target polypeptide sequences encoded by
those nucleotide
sequences, respectively, are included herein. The term "substantially
identical" as used herein refers to
two or more nucleic acids or polypeptides sharing one or more identical
nucleotide sequences or
polypeptide sequences, respectively. Included are nucleotide sequences or
polypeptide sequences that
are 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or
more, 85% or more,
90% or more, 95% or more (each often within a 1%, 2%, 3% or 4% variability)
identical to a
KIAA0296, Chrom 4, Chrom 6, ELP3, LRCHl, SNWI or ERG nucleotide sequence, or
other nucleotide
22


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
sequence referenced in Table A, or the encoded target polypeptide amino acid
sequences. One test for
determining whether two nucleic acids are substantially identical is to
determine the percent of identical
nucleotide sequences or polypeptide sequences shared between the nucleic acids
or polypeptides.
[0077] Calculations of sequence identity are often performed as follows.
Sequences are aligned for
optimal comparison purposes (e.g., gaps can be introduced in one or both of a
first and a second amino
acid or nucleic acid sequence for optimal alignment and non-homologous
sequences can be disregarded
for comparison purposes). The length of a reference sequence aligned for
comparison purposes is
sometimes 30% or more, 40% or more, 50% or more, often 60% or more, and more
often 70% or more,
80% or more, 90% or more, or 100% of the length of the reference sequence. The
nucleotides or amino
acids at corresponding nucleotide or polypeptide positions, respectively, are
then compared among the
two sequences. When a position in the first sequence is occupied by the same
nucleotide or amino acid
as the corresponding position in the second sequence, the nucleotides or amino
acids are deemed to be
identical at that position. The percent identity between the two sequences is
a function of the number of
identical positions shared by the sequences, taking into account the number of
gaps, and the length of
each gap, introduced for optimal alignment of the two sequences.
[0078] Comparison of sequences and determination of percent identity between
two sequences can
be accomplished using a mathematical algorithm. Percent identity between two
amino acid or
nucleotide sequences can be determined using the algorithm of Meyers & Miller,
CABIOS 4: 11-17
(1989), which has been incorporated into the ALIGN program (version 2.0),
using a PAM120 weight
residue table, a gap length penalty of 12 and a gap penalty of 4. Also,
percent identity between two
amino acid sequences can be determined using the Needleman ~ Wunsch, J. Mol.
Biol. 4~: 444-453
(1970) algorithm which has been incorporated into the GAP program in the GCG
software package
(available at the http address www.gcg.com), using either a Blossum 62 matrix
or a PAM250 matrix,
and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3,
4, 5, or 6. Percent identity
between two nucleotide sequences can be determined using the GAP program in
the GCG software
package (available at http address www.gcg.com), using a NWSgapdna.CMP matrix
and a gap weight
of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. A set of
parameters often used is a
Blossum 62 scoring matrix with a gap open penalty of 12, a gap extend penalty
of 4, and a frameshift
gap penalty of 5.
[0079] Another manner for determining if two nucleic acids are substantially
identical is to assess
whether a polynucleotide homologous to one nucleic acid will hybridize to the
other nucleic acid under
stringent conditions. As use herein, the term "stringent conditions" refers to
conditions for
hybridization and washing. Stringent conditions are known to those skilled in
the art and can be found
in Cu~f~ent Protocols in Moleeular Biology, John Wiley & Sons, N.Y. , 6.3.1-
6.3.6 (1989). Aqueous
and non-aqueous methods are described in that reference and either can be
used. An example of
stringent hybridization conditions is hybridization in 6X sodium
chloride/sodium citrate (SSC) at about
45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at
50°C. Another example of stringent
hybridization conditions are hybridization in 6X sodium chloridelsodium
citrate (SSC) at about 45°C,
23


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
followed by one or more washes in 0.2X SSC, 0.1% SDS at 55°C. A further
example of stringent
hybridization conditions is hybridization in 6X sodium chloride/sodium citrate
(SSC) at about 45°C,
followed by one or more washes in 0.2X SSC, 0.1% SDS at 60°C. Often,
stringent hybridization
conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at
about 45°C, followed by
one or more washes in 0.2X SSC, 0.1% SDS at 65°C. More often,
stringency conditions are 0.5M
sodium phosphate, 7% SDS at 65°C, followed by one or more washes at
0.2X SSC, 1% SDS at 65°C.
[0080] An example of a substantially identical nucleotide sequence to a
nucleotide sequence in
SEQ ID NO: 1-7 or referenced in Table A is one that has a different nucleotide
sequence but still
encodes the same polypeptide sequence encoded by the nucleotide sequence in
SEQ ID NO: 1-7 or
referenced in Table A. Another example is a nucleotide sequence that encodes a
polypeptide having a
polypeptide sequence that is more than 70% or more identical to, sometimes
more than 75% or more,
80% or more, or 85% or more identical to, and often more than 90% or more and
95% or more identical
to a polypeptide sequence encoded by a nucleotide sequence in SEQ ID NO: 1-7
or referenced in Table
A.
[0081] Nucleotide sequences in SEQ ID NO: 1-7 or referenced in Table A and
amino acid
sequences of encoded polypeptides can be used as "query sequences" to perform
a search against public
databases to identify other family members or related sequences, for example.
Such searches can be
performed using the NBLAST and XBLAST programs (version 2.0) of Altschul et
al., J. Mol. Biol.
215: 403-10 (1990). BLAST nucleotide searches can be performed with the NBLAST
program, score =
100, wordlength = 12 to obtain nucleotide sequences homologous to nucleotide
sequences in SEQ ID
NO: 1-7, SEQ ID NO: 8-17 or referenced in Table A. BLAST polypeptide searches
can be performed
with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid
sequences homologous to
polypeptides encoded by the nucleotide sequences of SEQ ID NO: 8-17 or
referenced in Table A. To
obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized
as described in
Altschul et al., Nucleic Acids Res. 25(17): 3389-3402 (1997). When utilizing
BLAST and Gapped
BLAST programs, default parameters of the respective programs (e.g., XBLAST
and NBLAST) can be
used (see the http address www.ncbi.nlm.nih.gov).
[0082] A nucleic acid that is substantially identical to a nucleotide sequence
in SEQ ID NO: 1-7 or
referenced in Table A may include polymorphic sites at positions equivalent to
those described herein
when the sequences are aligned. For example, using the alignment procedures
described herein, SNPs
in a sequence substantially identical to a sequence in SEQ ID NO: 1-7 or
referenced in Table A can be
identified at nucleotide positions that match (i.e., align) with nucleotides
at SNP positions in each
nucleotide sequence in SEQ ID NO: 1-7 or referenced in Table A. Also, where a
polymorphic variation
results in an insertion or deletion, insertion or deletion of a nucleotide
sequence from a reference
sequence can change the relative positions of other polymorphic sites in the
nucleotide sequence.
[0083] Substantially identical nucleotide and polypeptide sequences include
those that are naturally
occurring, such as allelic variants (same locus), splice variants, homologs
(different locus), and
24


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
orthologs (different organism) or can be non-naturally occurring. Non-
naturally occurring variants can
be generated by mutagenesis techniques, including those applied to
polynucleotides, cells, or organisms.
The variants can contain nucleotide substitutions, deletions, inversions and
insertions. Variation can
occur in either or both the coding and non-coding regions. The variations can
produce both
conservative and non-conservative amino acid substitutions (as compared in the
encoded product).
Orthologs, homologs, allelic variants, and splice variants can be identified
using methods known in the
art. These variants normally comprise a nucleotide sequence encoding a
polypeptide that is 50% or
more, about 55% or more, often about 70-75% or more or about 80-85% or more,
and sometimes about
90-95% or more identical to the amino acid sequences of target polypeptides or
a fragment thereof.
Such nucleic acid molecules can readily be identified as being able to
hybridize under stringent
conditions to a nucleotide sequence in SEQ ID NO: 1-7 or referenced in Table A
or a fragment of this
sequence. Nucleic acid molecules corresponding to orthologs, homologs, and
allelic variants of a
nucleotide sequence in SEQ ID NO: 1-7 or referenced in Table A can further be
identified by mapping
the sequence to the same chromosome or locus as the nucleotide sequence in SEQ
ID NO: 1-7 or
referenced in Table A.
[0084] Also, substantially identical nucleotide sequences may include codons
that are altered with
respect to the naturally occurring sequence for enhancing expression of a
target polypeptide in a
particular expression system. For example, the nucleic acid can be one in
which one or more codons are
altered, and often 10% or more or 20% or more of the codons are altered for
optimized expression in
bacteria (e.g., E. coli.), yeast (e.g., S. cervesiae), human (e.g., 293
cells), insect, or rodent (e.g., hamster)
cells.
Methods for Identif5ring Risk of Osteoarthritis
[0085] Methods for prognosing and diagnosing osteoarthritis are included
herein. These methods
include detecting the presence or absence of one or more polymorphic
variations in a nucleotide
sequence associated with osteoarthritis, such as variants in or around the
loci set forth herein, or a
substantially identical sequence thereof, in a sample from a subject, where
the presence of a
polymorphic variant described herein is indicative of a risk of
osteoarthritis. Determining a risk of
osteoarthritis sometimes refers to determining whether an individual is at an
increased risk of
osteoarthritis (e.g., intermediate risk or higher risk).
[0086] Thus, featured herein is a method for identifying a subject who is at
risk of osteoarthritis,
which comprises detecting an aberration associated with osteoarthritis in a
nucleic acid sample from the
subject. An embodiment is a method for detecting a risk of osteoarthritis in a
subject, which comprises
detecting the presence or absence of a polymorphic variation associated with
osteoarthritis at a
polymorphic site in a nucleotide sequence in a nucleic acid sample from a
subject, where the nucleotide
sequence comprises a polynucleotide sequence selected from the group
consisting of: (a) a nucleotide
sequence of SEQ D7 NO: 1-7 or referenced in Table A; (b) a nucleotide sequence
which encodes a
polypeptide consisting of an amino acid sequence encoded by a nucleotide
sequence of SEQ ID NO: 1-7


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
or referenced in Table A; (c) a nucleotide sequence which encodes a
polypeptide that is 90% or more
identical to an amino acid sequence encoded by a nucleotide sequence of SEQ ID
NO: 1-7 or referenced
in Table A, or a nucleotide sequence about 90% or more identical to a
nucleotide sequence of SEQ ID
NO: 1-7 or referenced in Table A; and (d) a fragment of a nucleotide sequence
of (a), (b), or (c)
comprising the polymorphic site; whereby the presence of the polymorphic
variation is indicative of a
predisposition to osteoarthritis in the subject. In certain embodiments,
polymorphic variants at the
positions described herein are detected for determining a risk of
osteoarthritis, and polymorphic variants
at positions in linkage disequilibrium with these positions are detected for
determining a risk of
osteoarthritis. As used herein, the terms "SEQ ID NO: 1-7" and other
nucleotide sequences "referenced
in Table A" refers to individual sequences in SEQ ID NO: l, 2, 3, 4, 5, 6 or
7, or any individual
sequence referenced in Table A, each sequence being separately applicable to
embodiments described
herein.
[0087] Risk of osteoarthritis sometimes is expressed as a probability, such as
an odds ratio,
percentage, or risk factor. Risk often is based upon the presence or absence
of one or more polymorphic
variants described herein, and also may be based in part upon phenotypic
traits of the individual being
tested. Methods for calculating risk based upon patient data are well known
(see, e.g., Agresti,
Categorical Data Analysis, 2nd Ed. 2002. Wiley). Allelotyping and genotyping
analyses may be
carried out in populations other than those exemplified herein to enhance the
predictive power of the
prognostic method. These further analyses are executed in view of the
exemplified procedures
described herein, and may be based upon the same polymorphic variations or
additional polymorphic
variations.
[0088] In certain embodiments, determining the presence of a combination of
two or more
polymorphic variants associated with osteoarthritis in one or more genetic
loci (e.g., one or more genes)
of the sample is determined to identify, quantify and/or estimate, risk of
osteoarthritis. The risk often is
the probability of having or developing osteoarthritis. The risk sometimes is
expressed as a relative risk
with respect to a population average risk of osteoarthritis, and sometimes is
expressed as a relative risk
with respect to the lowest risk group. Such relative risk assessments often
are based upon penetrance
values determined by statistical methods, and are particularly useful to
clinicians and insurance
companies for assessing risk of osteoarthritis (e.g., a clinician can target
appropriate detection,
prevention and therapeutic regimens to a patient after determining the
patient's risk of osteoarthritis, and
an insurance company can fme tune actuarial tables based upon population
genotype assessments of
osteoarthritis risk). Risk of osteoarthritis sometimes is expressed as an odds
ratio, which is the odds of a
particular person having a genotype has or will develop osteoarthritis with
respect to another genotype
group (e.g., the most disease protective genotype or population average). In
related embodiments, the
determination is utilized to identify a subject at risk of osteoarthritis. In
an embodiment, two or more
polymorphic variations are detected in two or more regions in human genomic
DNA associated with
increased risk of osteoarthritis, such as a locus containing a KIAA0296,
Chr~om 4, Chrom 6, ELP3,
LRCHl, SNWI or ERG or other locus referenced in Table A, for example. In
certain embodiments, 3 or
26


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
more, or 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30,
35, 40, 45, 50, 55, 60, 65, 70,
80, 90, 100 or more polymorphic variants are detected in the sample. In
specific embodiments,
polymorphic variants are detected in a KIAA0296, Chrom 4, Chrom 6, ELP3,
LRCHl, SNWI or ERG
region or other region referenced in Table A, for example. In another
embodiment, polymorphic
variants are detected at two or three positions in a nucleotide sequence of
SEQ ID NO: 1-7 or referenced
in Table A. In certain embodiments, polymorphic variants are detected at other
genetic loci (e.g., the
polymorphic variants can be detected in a KIAA0296, Chrom 4, Chrom 6, ELP3,
LRCHI, SlVWl or ERG
nucleotide sequence or other nucleotide sequence referenced in Table A in
addition to other loci or only
in other loci), where the other loci include but are not limited to those
described in patent applications
60/559,011; 60/559,202; 60/559,203; 60/559,042; 60/559,275; 60/559,040 and
60/559,225, each of
which is entitled "Methods for Identifying Risk of Osteoarthritis and
Treatments Thereof," each of
which was filed on 1 April 2004 and each of which is incorporated herein by
reference in its entirety in
jurisdictions allowing incorporation by reference.
[0089] Results from prognostic tests may be combined with other test results
to diagnose
osteoarthritis. For example, prognostic results may be gathered, a patient
sample may be ordered based
on a determined predisposition to osteoarthritis, the patient sample is
analyzed, and the results of the
analysis may be utilized to diagnose osteoarthritis. Also osteoaxthritis
diagnostic method can be
developed from studies used to generate prognostic methods in which
populations are stratified into
subpopulations having different progressions of osteoarthritis. In another
embodiment, prognostic
results may be gathered, a patient's risk factors for developing
osteoarthritis (e.g., age, weight,
occupational history, race, diet) analyzed, and a patient sample may be
ordered based on a determined
predisposition to osteoarthritis.
[0090] The nucleic acid sample typically is isolated from a biological sample
obtained from a
subject. For example, nucleic acid can be isolated from blood, saliva, sputum,
urine, cell scrapings, and
biopsy tissue. The nucleic acid sample can be isolated from a biological
sample using standard
techniques, such as the technique described in Example 2. As used herein, the
term "subject" refers
primarily to humans but also refers to other mammals such as dogs, cats, and
ungulates (e.g., cattle,
sheep, and swine). Subjects also include avians (e.g., chickens and turkeys),
reptiles, and fish (e.g.,
salmon), as embodiments described herein can be adapted to nucleic acid
samples isolated from any of
these organisms. The nucleic acid sample may be isolated from the subject and
then directly utilized in
a method for determining the presence of a polymorphic variant, or
alternatively, the sample may be
isolated and then stored (e.g., frozen) for a period of time before being
subjected to analysis.
[0091] The presence or absence of a polymorphic variant is determined using
one or both
chromosomal complements represented in the nucleic acid sample. Determining
the presence or
absence of a polymorphic variant in both chromosomal complements represented
in a nucleic acid
sample from a subject having a copy of each chromosome is useful for
determining the zygosity of an
individual for the polymorphic variant (i.e., whether the individual is
homozygous or heterozygous for
the polymorphic variant). Any oligonucleotide-based diagnostic may be utilized
to determine whether a
27


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
sample includes the presence or absence of a polymorphic variant in a sample.
For example, primer
extension methods, ligase sequence determination methods (e.g., U.S. Pat. Nos.
5,679,524 and
5,952,174, and WO 01/27326), mismatch sequence determination methods (e.g.,
U.S. Pat. Nos.
5,851,770; 5,958,692; 6,110,684; and 6,183,958), microarray sequence
determination methods,
restriction fragment length polymorphism (RFLP), single strand conformation
polymorphism detection
(SSCP) (e.g., U.S. Pat. Nos. 5,891,625 and 6,013,499), PCR-based assays (e.g.,
TAQMAN~ PCR
System (Applied Biosystems)), and nucleotide sequencing methods may be used.
[0092] Oligonucleotide extension methods typically involve providing a pair of
oligonucleotide
primers in a polymerase chain reaction (PCR) or in other nucleic acid
amplification methods for the
purpose of amplifying a region from the nucleic acid sample that comprises the
polymorphic variation.
One oligonucleotide primer is complementary to a region 3' of the polymorphism
and the other is
complementary to a region 5' of the polymorphism. A PCR primer pair may be
used in methods
disclosed in U.S. Pat. Nos. 4,683,195; 4,683,202, 4,965,188; 5,656,493;
5,998,143; 6,140,054; WO
01127327; and WO 01/27329 for example. PCR primer pairs may also be used in
any commercially
available machines that perform PCR, such as any of the GENEAMP~ Systems
available from Applied
Biosystems. Also, those of ordinary skill in the art will be able to design
oligonucleotide primers based
upon a KIAA0296, Chrom 4, Chr~om 6, ELP3, LRCHl, SNWI or ERG nucleotide
sequence or other
nucleotide sequence referenced in Table A using knowledge available in the
art.
[0093] Also provided is an extension oligonucleotide that hybridizes to the
amplified fragment
adjacent to the polymorphic variation. As used herein, the term "adjacent"
refers to the 3' end of the
extension oligonucleotide being often 1 nucleotide from the 5' end of the
polymorphic site, and
sometimes 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from the 5' end of the
polymorphic site, in the nucleic
acid when the extension oligonucleotide is hybridized to the nucleic acid. The
extension
oligonucleotide then is extended by one or more nucleotides, and the number
and/or type of nucleotides
that are added to the extension oligonucleotide determine whether the
polymorphic variant is present.
Oligonucleotide extension methods are disclosed, for example, in U.S. Pat.
Nos. 4,656,127; 4,851,331;
5,679,524; 5,834,189; 5,876,934; 5,908,755; 5,912,118; 5,976,802; 5,981,186;
6,004,744; 6,013,431;
6,017,702; 6,046,005; 6,087,095; 6,210,891; and WO 01/20039. Oligonucleotide
extension methods
using mass spectrometry are described, for example, in U.S. Pat. Nos.
5,547,835; 5,605,798; 5,691,141;
5,849,542; 5,869,242; 5,928,906; 6,043,031; and 6,194,144, and a method often
utilized is described
herein in Example 2.
[0094] A microarray can be utilized for determining whether a polymorphic
variant is present or
absent in a nucleic acid sample. A microarray may include any oligonucleotides
described herein, and
methods for making and using oligonucleotide microarrays suitable for
diagnostic use are disclosed in
U.S. Pat. Nos. 5,492,806; 5,525,464; 5,589,330; 5,695,940; 5,849,483;
6,018,041; 6,045,996;
6,136,541; 6,142,681; 6,156,501; 6,197,506; 6,223,127; 6,225,625; 6,229,911;
6,239,273; WO
00/52625; WO 01/25485; and WO 01/29259. The microarray typically comprises a
solid support and
the oligonucleotides may be linked to this solid support by covalent bonds or
by non-covalent
28


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
interactions. The oligonucleotides may also be linked to the solid support
directly or by a spacer
molecule. A microarray may comprise one or more oligonucleotides complementary
to a polymorphic
site set forth herein.
[0095] A kit also may be utilized for determining whether a polymorphic
variant is present or
absent in a nucleic acid sample. A kit often comprises one or more pairs of
oligonucleotide primers
useful for amplifying a fragment of a nucleotide sequence of SEQ ID NO: 1-7 or
referenced in Table A
or a substantially identical sequence thereof, where the fragment includes a
polymorphic site. The kit
sometimes comprises a polymerizing agent, for example, a thermostable nucleic
acid polymerase such
as one disclosed in U.S. Pat. Nos. 4,889,818 or 6,077,664. Also, the kit often
comprises an elongation
oligonucleotide that hybridizes to a KIAA0296, Chrom 4, Chr~om 6, ELP3, LRCHI,
SlVYT~l or ERG
nucleotide sequence or other nucleotide sequence referenced in Table A in a
nucleic acid sample
adjacent to the polymorphic site. Where the kit includes an elongation
oligonucleotide, it also often
comprises chain elongating nucleotides, such as dATP, dTTP, dGTP, dCTP, and
dITP, including
analogs of dATP, dTTP, dGTP, dCTP and dITP, provided that such analogs are
substrates for a
thermostable nucleic acid polymerase and can be incorporated into a nucleic
acid chain elongated from
the extension oligonucleotide. Along with chain elongating nucleotides would
be one or more chain
terminating nucleotides such as ddATP, ddTTP, ddGTP, ddCTP, and the like. In
an embodiment, the
kit comprises one or more oligonucleotide primer pairs, a polymerizing agent,
chain elongating
nucleotides, at least one elongation oligonucleotide, and one or more chain
terminating nucleotides.
Fits optionally include buffers, vials, microtiter plates, and instructions
for use.
[0096] An individual identified as being at risk of osteoarthritis may be
heterozygous or
homozygous with respect to the allele associated with a higher risk of
osteoarthritis. A subject
homozygous for an allele associated with an increased risk of osteoarthritis
is at a comparatively high
risk of osteoarthritis, a subject heterozygous for an allele associated with
an increased risk of
osteoarthritis is at a comparatively intermediate risk of osteoarthritis, and
a subject homozygous for an
allele associated with a decreased risk of osteoarthritis is at a
comparatively low risk of osteoarthritis. A
genotype may be assessed for a complementary strand, such that the
complementary nucleotide at a
particular position is detected.
[0097] Also featured are methods for determining risk of osteoarthritis and/or
identifying a subject
at risk of osteoarthritis by contacting a polypeptide or protein encoded by a
KIAA0296, Chf~om 4, Chrorra
6, ELP3, LRCHl, SNWI or ERG nucleotide sequence or other nucleotide sequence
referenced in Table
A from a subject with an antibody that specifically binds to an epitope
associated with increased risk of
osteoarthritis in the polypeptide.
Applications of Prognostic and Diagnostic Results to Pharmaco~;enomic Methods
[0098] Pharmacogenomics is a discipline that involves tailoring a treatment
for a subject according
to the subject's genotype as a particular treatment regimen may exert a
differential effect depending
upon the subject's genotype. For example, based upon the outcome of a
prognostic test described
29


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
herein, a clinician or physician may target pertinent information and
preventative or therapeutic
treatments to a subject who would be benefited by the information or treatment
and avoid directing such
information and treatments to a subject who would not be benefited (e.g., the
treatment has no
therapeutic effect and/or the subject experiences adverse side effects).
[0099] The following is an example of a pharmacogenomic embodiment. A
particular treatment
regimen can exert a differential effect depending upon the subject's genotype.
Where a candidate
therapeutic exhibits a significant interaction with a major allele and a
comparatively weak interaction
with a minor allele (e.g., an order of magnitude or greater difference in the
interaction), such a
therapeutic typically would not be administered to a subject genotyped as
being homozygous for the
minor allele, and sometimes not administered to a subject genotyped as being
heterozygous for the
minor allele. In another example, where a candidate therapeutic is not
significantly toxic when
administered to subjects who are homozygous for a major allele but is
comparatively toxic when
administered to subjects heterozygous or homozygous for a minor allele, the
candidate therapeutic is not
typically administered to subjects who are genotyped as being heterozygous or
homozygous with
respect to the minor allele.
(0100] The methods described herein are applicable to pharmacogenomic methods
for preventing,
alleviating or treating osteoarthritis. For example, a nucleic acid sample
from an individual may be
subjected to a prognostic test described herein. Where one or more polymorphic
variations associated
with increased risk of osteoarthritis are identified in a subject, information
for preventing or treating
osteoarthritis and/or one or more osteoarthritis treatment regimens then may
be prescribed to that
subj ect.
[0101] In certain embodiments, a treatment or preventative regimen is
specifically prescribed
and/or administered to individuals who will most benefit from it based upon
their risk of developing
osteoarthritis assessed by the methods described herein. Thus, provided are
methods for identifying a
subject predisposed to osteoarthritis and then prescribing a therapeutic or
preventative regimen to
individuals identified as having a predisposition. Thus, certain embodiments
are directed to a method
for reducing osteoarthritis in a subject, which comprises: detecting the
presence or absence of a
polymorphic variant associated with osteoarthritis in a nucleotide sequence in
a nucleic acid sample
from a subject, where the nucleotide sequence comprises a polynucleotide
sequence selected from the
group consisting of (a) a nucleotide sequence of SEQ ID NO: 1-7 or referenced
in Table A; (b) a
nucleotide sequence which encodes a polypeptide consisting of an amino acid
sequence encoded by a
nucleotide sequence of SEQ ID NO: 1-7 or referenced in Table A; (c) a
nucleotide sequence which
encodes a polypeptide that is 90% or more identical to an amino acid sequence
encoded by a nucleotide
sequence of SEQ ID NO: 1-7 or referenced in Table A, or a nucleotide sequence
about 90% or more
identical to a nucleotide sequence of SEQ 117 NO: 1-7 or referenced in Table
A; and (d) a fragment of a
polynucleotide sequence of (a), (b), or (c); and prescribing or administering
a treatment regimen to a
subject from whom the sample originated where the presence of a polymorphic
variation associated


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
with osteoarthritis is detected in the nucleotide sequence. In these methods,
predisposition results may
be utilized in combination with other test results to diagnose osteoarthritis.
[0102] Certain preventative treatments often are prescribed to subjects having
a predisposition to
osteoarthritis and where the subject is diagnosed with osteoarthritis or is
diagnosed as having symptoms
indicative of an early stage of osteoarthritis. The treatment sometimes is
preventative (e.g., is
prescribed or administered to reduce the probability that osteoarthritis
arises or progresses), sometimes
is therapeutic, and sometimes delays, alleviates or halts the progression of
osteoarthritis. Any known
preventative or therapeutic treatment for alleviating or preventing the
occurrence of osteoarthritis is
prescribed and/or administered. For example, the treatment often is directed
to decreasing pain and
improving joint movement. Examples of OA treatments include exercises to keep
joints flexible and
improve muscle strength. Different medications to control pain, including
corticosteroids and
nonsteroidal anti-inflammatory drugs (NSAIDs, e.g., Voltaren); cyclooxygenase-
2 (COX-2) inhibitors
(e.g., Celebrex, Vioxx, Mobic, and Bextra); monoclonal antibodies (e.g.,
Remicade); tumor necrosis
factor inhibitors (e.g., Enbrel); or injections of glucocorticoids, hyaluronic
acid or chondrotin sulfate
into joints that are inflamed and not responsive to NSAIDS. Orally
administered chondroitin sulfate
also may be used as a therapeutic, as it may increase hyaluronic acid levels
and viscosity of synovial
fluid, and decrease collagenase levels in synovial fluid. Also, glucosamine
can serve as an OA
therapeutic as delivering it into joints may inhibit enzymes involved in
cartilage degradation and
enhance the production of hyaluronic acid. For mild pain without inflammation,
acetaminophen may be
used. Other treatments include: heat/cold therapy for temporary pain relief;
joint protection to prevent
strain or stress on painful joints; surgery to relieve chronic pain in damaged
joints; and weight control to
prevent extra stress on weight-bearing joints.
[0103] As therapeutic approaches for treating osteoarthritis continue to
evolve and improve, the
goal of treatments for osteoarthritis related disorders is to intervene even
before clinical signs first
manifest. Thus, genetic markers associated with susceptibility to
osteoarthritis prove useful for early
diagnosis, prevention and treatment of osteoarthritis.
[0104] As osteoarthritis preventative and treatment information can be
specifically targeted to
subjects in need thereof (e.g., those at risk of developing osteoarthritis or
those in an early stage of
osteoarthritis), provided herein is a method for preventing or reducing the
risk of developing
osteoarthritis in a subject, which comprises: (a) detecting the presence or
absence of a polymorphic
variation associated with osteoarthritis at a polymorphic site in a nucleotide
sequence in a nucleic acid
sample from a subject; (b) identifying a subject with a predisposition to
osteoarthritis, whereby the
presence of the polymorphic variation is indicative of a predisposition to
osteoarthritis in the subject;
and (c) if such a predisposition is identified, providing the subject with
information about methods or
products to prevent or reduce osteoarthritis or to delay the onset of
osteoarthritis. Also provided is a
method of targeting information or advertising to a subpopulation of a human
population based on the
subpopulation being genetically predisposed to a disease or condition, which
comprises: (a) detecting
the presence or absence of a polymorphic variation associated with
osteoarthritis at a polymorphic site
31


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
in a nucleotide sequence in a nucleic acid sample from a subject; (b)
identifying the subpopulation of
subjects in which the polymorphic variation is associated with osteoarthritis;
and (c) providing
information only to the subpopulation of subjects about a particular product
which may be obtained and
consumed or applied by the subject to help prevent or delay onset of the
disease or condition.
[0105] Pharmacogenomics methods also may be used to analyze and predict a
response to
osteoarthritis treatment or a drug. For example, if pharmacogenomics analysis
indicates a likelihood
that an individual will respond positively to osteoarthritis treatment with a
particular drug, the drug may
be administered to the individual. Conversely, if the analysis indicates that
an individual is likely to
respond negatively to treatment with a particular drug, an alternative course
of treatment may be
prescribed. A negative response may be defined as either the absence of an
efficacious response or the
presence of toxic side effects. The response to a therapeutic treatment can be
predicted in a background
study in which subjects in any of the following populations are genotyped: a
population that responds
favorably to a treatment regimen, a population that does not respond
significantly to a treatment
regimen, and a population that responds adversely to a treatment regimen
(e.g., exhibits one or more
side effects). These populations are provided as examples and other
populations and subpopulations
may be analyzed. Based upon the results of these analyses, a subject is
genotyped to predict whether he
or she will respond favorably to a treatment regimen, not respond
significantly to a treatment regimen,
or respond adversely to a treatment regimen.
[0106] The tests described herein also are applicable to clinical drug trials.
One or more
polymorphic variants indicative of response to an agent for treating
osteoarthritis or to side effects to an
agent for treating osteoarthritis may be identified using the methods
described herein. Thereafter,
potential participants in clinical trials of such an agent may be screened to
identify those individuals
most likely to respond favorably to the drug and exclude those likely to
experience side effects. In that
way, the effectiveness of drug treatment may be measured in individuals who
respond positively to the
drug, without lowering the measurement as a result of the inclusion of
individuals who are unlikely to
respond positively in the study and without risking undesirable safety
problems.
[0107] Thus, another embodiment is a method of selecting an individual for
inclusion in a clinical
trial of a treatment or drug comprising the steps of: (a) obtaining a nucleic
acid sample from an
individual; (b) determining the identity of a polymorphic variation which is
associated with a positive
response to the treatment or the drug, or at least one polymorphic variation
which is associated with a
negative response to the treatment or the drug in the nucleic acid sample, and
(c) including the
individual in the clinical trial if the nucleic acid sample contains said
polymorphic variation associated
with a positive response to the treatment or the drug or if the nucleic acid
sample lacks said
polymorphic variation associated with a negative response to the treatment or
the drug. In addition, the
methods described herein for selecting an individual for inclusion in a
clinical trial of a treatment or
drug encompass methods with any further limitation described in this
disclosure, or those following,
specified alone or in any combination. The polymorphic variation may be in a
sequence selected
individually or in any combination from the group consisting of (i) a
nucleotide sequence of SEQ )D
32


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
NO: 1[-7ror referenced in Table A; (ii) a nucleotide sequence which encodes a
polypeptide consisting of
an amino acid sequence encoded by a nucleotide sequence of SEQ B7 NO: 1-7 or
referenced in Table A;
(iii) a nucleotide sequence which encodes a polypeptide that is 90% or more
identical to an amino acid
sequence encoded by a nucleotide sequence of SEQ >D NO: 1-7 or referenced in
Table A, or a
nucleotide sequence about 90% or more identical to a nucleotide sequence of
SEQ ID NO: 1-7 or
referenced in Table A; and (iv) a fragment of a polynucleotide sequence of
(i), (ii), or (iii) comprising
the polymorphic site. The including step (c) optionally comprises
administering the drug or the
treatment to the individual if the nucleic acid sample contains the
polymorphic variation associated with
a positive response to the treatment or the drug and the nucleic acid sample
lacks said biallelic marker
associated with a negative response to the treatment or the drug.
[0108] Also provided herein is a method of partnering between a
diagnostic/prognostic testing
provider and a provider of a consumable product, which comprises: (a) the
diagnostic/prognostic
testing provider detects the presence or absence of a polymorphic variation
associated with osteoarthritis
at a polymorphic site in a nucleotide sequence in a nucleic acid sample from a
subject; (b) the
diagnostic/prognostic testing provider identifies the subpopulation of
subjects in which the polymorphic
variation is associated with osteoarthritis; (c) the diagnostic/prognostic
testing provider forwards
information to the subpopulation of subjects about a particular product which
may be obtained and
consumed or applied by the subject to help prevent or delay onset of the
disease or condition; and (d)
the provider of a consumable product forwards to the diagnostic test provider
a fee every time the
diagnostic/prognostic test provider forwards information to the subject as set
forth in step (c) above.
Compositions Comprising Osteoarthritis-Directed Molecules
[0109] Featured herein is a composition comprising a cell from a subject
having osteoarthritis or at
risk of osteoarthritis and one or more molecules specifically directed and
targeted to a nucleic acid
comprising a KIAA0296, Ch~om 4, Chrom 6, ELP3, LRCHl, SNWI or ERG nucleotide
sequence, other
nucleotide sequence referenced in Table A, or an encoded amino acid sequence.
Such directed
molecules include, but are not limited to, a compound that binds to a
KIAA0296, Chrom 4, Chrom 6,
ELP3, LRCHl, SNWI or ERG nucleotide sequence, or other nucleotide sequence
referenced in Table A,
or encoded amino acid sequence; a RNAi or siRNA molecule having a strand
complementary or
substantially complementary to a KIAA0296, Chrom 4, Chrom 6, ELP3, LRCHl, SNWI
or ERG
nucleotide sequence or other nucleotide sequence referenced in Table A (e.g.,
hybridizes to a
KIAA0296, Chrona 4, Chr°om 6, ELP3, LRCHI, SNWl or ERG nucleotide
sequence or other nucleotide
sequence referenced in Table A under conditions of high stringency); an
antisense nucleic acid
complementary or substantially complementary to an RNA encoded by a KIAA0296,
Cht~om 4, Chr~ona
6, ELP3, LRCHl, SNWl or ERG nucleotide sequence or other nucleotide sequence
referenced in Table
A (e.g., hybridizes to a KIAA0296, Ch~om 4, Chrom 6, ELP3, LRCHI, SNWI or ERG
nucleotide
sequence or other nucleotide sequence referenced in Table A under conditions
of high stringency); a
ribozyme that hybridizes to a KIAA0296, ClZrom 4, Clar~om 6, ELP3, LRCHl, SNWI
or ERG nucleotide
33


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
sequence or other nucleotide sequence referenced in Table A (e.g., hybridizes
to a KIAA0296, Ch~om 4,
Chrom 6, ELP3, LRCHl, SNWI or ERG nucleotide sequence or other nucleotide
sequence referenced
in Table A under conditions of high stringency); a nucleic acid aptamer that
specifically binds a
polypeptide encoded by a KIAA0296, Ch~om 4, Chrom 6, ELP3, LRCHl, SNWl or ERG
nucleotide
sequence or other nucleotide sequence referenced in Table A; and an antibody
that specifically binds to
a polypeptide encoded by a KIAA0296, Ch~om 4, ChronZ 6, ELP3, LRCHl, SNWI or
ERG nucleotide
sequence or other nucleotide sequence referenced in Table A or binds to a
nucleic acid having such a
nucleotide sequence. In an embodiment, the antibody selectively binds to an
epitope comprising an
amino acid encoded by rs734784, rs1042164, rs749670, rs955592, rs241448 and
rs1040461. In specific
embodiments, the osteoarthritis directed molecule interacts with a nucleic
acid or polypeptide variant
associated with osteoarthritis, such as variants referenced herein. In other
embodiments, the
osteoarthritis directed molecule interacts with a polypeptide involved in a
signal pathway of a
polypeptide encoded by a KIAA0296, Ch~om 4, Chrof~a 6, ELP3, LRCHI, SNWI or
ERG nucleotide
sequence or other nucleotide sequence referenced in Table A, or a nucleic acid
comprising such a
nucleotide sequence.
[0110] Compositions sometimes include an adjuvant known to stimulate an immune
response, and
in certain embodiments, an adjuvant that stimulates a T-cell lymphocyte
response. Adjuvants are
known, including but not limited to an aluminum adjuvant (e.g., aluminum
hydroxide); a cytokine
adjuvant or adjuvant that stimulates a cytokine response (e.g., interleukin
(IL)-12 and/or gamma-
interferon cytokines); a Freund-type mineral oil adjuvant emulsion (e.g.,
Freund's complete or
incomplete adjuvant); a synthetic lipoid compound; a copolymer adjuvant (e.g.,
TitreMax); a saponin;
Quil A; a liposome; an oil-in-water emulsion (e.g., an emulsion stabilized by
Tween 80 and pluronic
polyoxyethlene/polyoxypropylene block copolymer (Syntex Adjuvant Formulation);
TitreMax;
detoxified endotoxin (MPL) and mycobacterial cell wall components (T1~W, CWS)
in 2% squalene
(Ribi Adjuvant System)); a muramyl dipeptide; an immune-stimulating complex
(ISCOM, e.g., an Ag-
modified saponin/cholesterol micelle that forms stable cage-like structure);
an aqueous phase adjuvant
that does not have a depot effect (e.g., Gerbu adjuvant); a carbohydrate
polymer (e.g., AdjuPrime); L-
tyrosine; a manide-oleate compound (e.g., Montanide); an ethylene-vinyl
acetate copolymer (e.g., Elvax
40W1,2); or lipid A, for example. Such compositions are useful for generating
an immune response
against osteoarthritis directed molecule (e.g., an HLA-binding subsequence
within a polypeptide
encoded by a KIAA0296, Ch~orn 4, Clarom 6, ELP3, LRCHI, SNWI or ERG nucleotide
sequence). In
such methods, a peptide having an amino acid subsequence of a polypeptide
encoded by a KIAA0296,
Chrom 4, Chf~om 6, ELP3, LRCHI, SNWI or ERG nucleotide sequence is delivered
to a subject, where
the subsequence binds to an HLA molecule and induces a CTL lymphocyte
response. The peptide
sometimes is delivered to the subject as an isolated peptide or as a minigene
in a plasmid that encodes
the peptide. Methods for identifying HLA-binding subsequences in such
polypeptides are known (see
e.g., publication W002/20616 and PCT application US98/01373 for methods of
identifying such
sequences).
34


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
[0111] The cell may be in a group of cells cultured in vitro or in a tissue
maintained in vitt°o or
present in an animal in vivo (e.g., a rat, mouse, ape or human). In certain
embodiments, a composition
comprises a component from a cell such as a nucleic acid molecule (e.g.,
genomic DNA), a protein
mixture or isolated protein, for example. The aforementioned compositions have
utility in diagnostic,
prognostic and pharmacogenomic methods described previously and in
therapeutics described hereafter.
Certain osteoarthritis directed molecules are described in greater detail
below.
Compounds
[0112] Compounds can be obtained using any of the numerous approaches in
combinatorial library
methods known in the art, including: biological libraries; peptoid libraries
(libraries of molecules having
the functionalities of peptides, but with a novel, non-peptide backbone which
are resistant to enzymatic
degradation but which nevertheless remain bioactive (see, e.g., Zuckermann et
al., J. Med. Chem.37:
2678-85 (1994)); spatially addressable parallel solid phase or solution phase
libraries; synthetic library
methods requiring deconvolution; "one-bead one-compound" library methods; and
synthetic library
methods using affinity chromatography selection. Biological library and
peptoid library approaches are
typically limited to peptide libraries, while the other approaches are
applicable to peptide, non-peptide
oligomer or small molecule libraries of compounds (Lam, Anticancer Drug Des.
12: 145, (1997)).
Examples of methods for synthesizing molecular libraries are described, for
example, in DeWitt et al.,
Proc. Natl. Acad. Sci. U.S.A. 90: 6909 (1993); Erb et al., Proc. Natl. Acad.
Sci. USA 91: 11422 (1994);
Zuckermann et al., J. Med. Chem. 37: 2678 (1994); Cho et al., Science 261:
1303 (1993); Carrell et al.,
Angew. Chem. Int. Ed. Engl. 33: 2059 (1994); Carell et al., Angew. Chem. Int.
Ed. Engl. 33: 2061
(1994); and in Gallop et al., J. Med. Chem. 37: 1233 (1994).
[0113] Libraries of compounds may be presented in solution (e.g., Houghten,
Biotechniques 13:
412-421 (1992)), or on beads (Lam, Nature 354: 82-84 (1991)), chips (Fodor,
Nature 364: 555-556
(1993)), bacteria or spores (Ladner, United States Patent No. 5,223,409),
plasmids (Cull et al., Proc.
Natl. Acad. Sci. USA 89: 1865-1869 (1992)) or on phage (Scott and Smith,
Science 249: 386-390
(1990); Devlin, Science 249: 404-406 (1990); Cwirla et al., Proc. Natl. Acad.
Sci. 87: 6378-6382
(1990); Felici, J. Mol. Biol. 222: 301-310 (1991); Ladner supra.).
[0114] A compound sometimes alters expression and sometimes alters activity of
a polypeptide
target and may be a small molecule. Small molecules include, but are not
limited to, peptides,
peptidomimetics (e.g., peptoids), amino acids, amino acid analogs,
polynucleotides, polynucleotide
analogs, nucleotides, nucleotide analogs, organic or inorganic compounds
(i.e., including heteroorganic
and organometallic compounds) having a molecular weight less than about 10,000
grams per mole,
organic or inorganic compounds having a molecular weight less than about 5,000
grams per mole,
organic or inorganic compounds having a molecular weight less than about 1,000
grams per mole,
organic or inorganic compounds having a molecular weight less than about 500
grams per mole, and
salts, esters, and other pharmaceutically acceptable forms of such compounds.


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
Antisense Nucleic Acid Molecules, Riboz~nes. RNAi, siRNA and Modified Nucleic
Acid
Molecules
[0115] An "antisense" nucleic acid refers to a nucleotide sequence
complementary to a "sense"
nucleic acid encoding a polypeptide, e.g., complementary to the coding strand
of a double-stranded
cDNA molecule or complementary to an mRNA sequence. The antisense nucleic acid
can be
complementary to an entire coding strand, or to a portion thereof or a
substantially identical sequence
thereof. In another embodiment, the antisense nucleic acid molecule is
antisense to a "noncoding
region" of the coding strand of a nucleotide sequence (e.g., 5' and 3'
untranslated regions in SEQ ID
NO: 1-7 or a nucleotide sequence referenced in Table A).
[0116] An antisense nucleic acid can be designed such that it is complementary
to the entire coding
region of an mRNA encoded by a nucleotide sequence (e.g., SEQ ID NO: 1-7, SEQ
ID NO: 8-17 or a
nucleotide sequence referenced in Table A), and often the antisense nucleic
acid is an oligonucleotide
antisense to only a portion of a coding or noncoding region of the mRNA. For
example, the antisense
oligonucleotide can be complementary to the region surrounding the translation
start site of the mRNA,
e.g., between the -10 and +10 regions of the target gene nucleotide sequence
of interest. An antisense
oligonucleotide can be, for example, about 7, 10, 15, 20, 25, 30, 35, 40, 45,
50, 55, 60, 65, 70, 75, 80, or
more nucleotides in length. The antisense nucleic acids, which include the
ribozymes described
hereafter, can be designed to target a KIAA0296, Ch~om 4, Chr~om 6, ELP3,
LRCHl, SNWI or ERG
nucleotide sequence, often a variant associated with osteoarthritis, or a
substantially identical sequence
thereof. Among the variants, minor alleles and major alleles can be targeted,
and those associated with
a higher risk of osteoarthritis are often designed, tested, and administered
to subjects.
[0117] An antisense nucleic acid can be constructed using chemical synthesis
and enzymatic
ligation reactions using standard procedures. For example, an antisense
nucleic acid (e.g., an antisense
oligonucleotide) can be chemically synthesized using naturally occurring
nucleotides or variously
modified nucleotides designed to increase the biological stability of the
molecules or to increase the
physical stability of the duplex formed between the antisense and sense
nucleic acids, e.g.,
phosphorothioate derivatives and acridine substituted nucleotides can be used.
Antisense nucleic acid
also can be produced biologically using an expression vector into which a
nucleic acid has been
subcloned in an antisense orientation (i.e., RNA transcribed from the inserted
nucleic acid will be of an
antisense orientation to a target nucleic acid of interest, described further
in the following subsection).
[0118] When utilized as therapeutics, antisense nucleic acids typically are
administered to a subject
(e.g., by direct injection at a tissue site) or generated in situ such that
they hybridize with or bind to
cellular mRNA and/or genomic DNA encoding a polypeptide and thereby inhibit
expression of the
polypeptide, for example, by inhibiting transcription and/or translation.
Alternatively, antisense nucleic
acid molecules can be modified to target selected cells and then are
administered systemically. For
systemic administration, antisense molecules can be modified such that they
specifically bind to
receptors or antigens expressed on a selected cell surface, for example, by
linking antisense nucleic acid
molecules to peptides or antibodies which bind to cell surface receptors or
antigens. Antisense nucleic
36


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
acid molecules can also be delivered to cells using the vectors described
herein. Sufficient intracellular
concentrations of antisense molecules are achieved by incorporating a strong
promoter, such as a pol II
or pol III promoter, in the vector construct.
[0119] Antisense nucleic acid molecules sometimes are alpha-anomeric nucleic
acid molecules.
An alpha-anomeric nucleic acid molecule forms specific double-stranded hybrids
with complementary
RNA in which, contrary to the usual beta-units, the strands run parallel to
each other (Gaultier et al.,
Nucleic Acids. Res. 15: 6625-6641 (1987)). Antisense nucleic acid molecules
can also comprise a 2'-0-
methylribonucleotide (moue et al., Nucleic Acids Res. 15: 6131-6148 (1987)) or
a chimeric RNA-DNA
analogue (moue et al., FEBS Lett. 215: 327-330 (1987)). Antisense nucleic
acids sometimes are
composed of DNA or PNA or any other nucleic acid derivatives described
previously.
[0120] In another embodiment, an antisense nucleic acid is a ribozyme. A
ribozyme having
specificity for a KIAA0296, Ch~om 4, Ch~om 6, ELP3, LRCHI, SNWI or ERG
nucleotide sequence or
other nucleotide sequence referenced in Table A can include one or more
sequences complementary to
such a nucleotide sequence, and a sequence having a known catalytic region
responsible for mRNA
cleavage (see e.g., U.S. Pat. No. 5,093,246 or Haselhoff and Gerlach, Nature
334: 585-591 (1988)). For
example, a derivative of a Tetrahymena L-19 IVS RNA is sometimes utilized in
which the nucleotide
sequence of the active site is complementary to the nucleotide sequence to be
cleaved in a mRNA (see
e.g., Cech et al. U.S. Patent No. 4,987,071; and Cech et al. U.S. Patent No.
5,116,742). Also, target
mRNA sequences can be used to select a catalytic RNA having a specific
ribonuclease activity from a
pool of RNA molecules (see e.g., Bartel & Szostak, Science 261: 1411-1418
(1993)).
[0121] Osteoarthritis directed molecules include in certain embodiments
nucleic acids that can
form triple helix structures with a KIAA0296, Ch~om 4, Chrom 6, ELP3, LRCHI,
SNWI or ERG
nucleotide sequence or other nucleotide sequence referenced in Table A, or a
substantially identical
sequence thereof, especially one that includes a regulatory region that
controls expression of a
polypeptide. Gene expression can be inhibited by targeting nucleotide
sequences complementary to the
regulatory region of a nucleotide sequence referenced herein or a
substantially identical sequence (e.g.,
promoter and/or enhancers) to form triple helical structures that prevent
transcription of a gene in target
cells (see e.g., Helene, Anticancer Drug Des. 6(6): 569-84 (1991); Helene et
al., Ann. N.Y. Acad. Sci.
660: 27-36 (1992); and Maher, Bioassays 14(12): 807-15 (1992). Potential
sequences that can be
targeted for triple helix formation can be increased by creating a so-called
"switchback" nucleic acid
molecule. Switchback molecules are synthesized in an alternating 5'-3', 3'-S'
manner, such that they
base pair with first one strand of a duplex and then the other, eliminating
the necessity for a sizeable
stretch of either purines or pyrimidines to be present on one strand of a
duplex.
[0122] Osteoarthritis directed molecules include RNAi and siRNA nucleic acids.
Gene expression
may be inhibited by the introduction of double-stranded RNA (dsRNA), which
induces potent and
specific gene silencing, a phenomenon called RNA interference or RNAi. See,
e.g., Fire et al., US
Patent Number 6,506,559; Tuschl et al. PCT International Publication No. WO
01/75164; Kay et al.
PCT International Publication No. WO 03/010180A1; or Bosher JM, Labouesse, Nat
Cell Biol 2000
37


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
Feb;2(2):E31-6. This process has been improved by decreasing the size of the
double-stranded RNA to
20-24 base pairs (to create small-interfering RNAs or siRNAs) that "switched
off' genes in mammalian
cells without initiating an acute phase response, i.e., a host defense
mechanism that often results in cell
death (see, e.g., Caplen et al. Proc Natl Acad Sci U S A. 2001 Aug
14;98(17):9742-7 and Elbashir et al.
Methods 2002 Feb;26(2):199-213). There is increasing evidence of post-
transcriptional gene silencing
by RNA interference (RNAi) for inhibiting targeted expression in mammalian
cells at the mRNA level,
in human cells. There is additional evidence of effective methods for
inhibiting the proliferation and
migration of tumor cells in human patients, and for inhibiting metastatic
cancer development (see, e.g.,
U. S. Patent Application No. US2001000993183; Caplen et al. Proc Natl Acad Sci
U S A; and
Abderrahmani et al. Mol Cell Biol 2001 Nov21(21):7256-67).
[0123] An "siRNA" or "RNAi" refers to a nucleic acid that forms a double
stranded RNA and has
the ability to reduce or inhibit expression of a gene or target gene when the
siRNA is delivered to or
expressed in the same cell as the gene or target gene. "siRNA" refers to short
double-stranded RNA
formed by the complementary strands. Complementary portions of the siRNA that
hybridize to form
the double stranded molecule often have substantial or complete identity to
the target molecule
sequence. In one embodiment, an siRNA refers to a nucleic acid that has
substantial or complete
identity to a target gene and forms a double stranded siRNA.
[0124] When designing the siRNA molecules, the targeted region often is
selected from a given
DNA sequence beginning 50 to 100 nucleotides downstream of the start codon.
See, e.g., Elbashir et
al,. Methods 26:199-213 (2002). Initially, 5' or 3' UTrs and regions nearby
the start codon were
avoided assuming that UTR-binding proteins and/or translation initiation
complexes may interfere with
binding of the siRNP or RISC endonuclease complex. Sometimes regions of the
target 23 nucleotides
in length conforming to the sequence motif AA(N19)TT (N, an nucleotide), and
regions with
approximately 30% to 70% G/C-content (often about 50% G/C-content) often are
selected. If no
suitable sequences are found, the search often is extended using the
motifNA(N21). The sequence of
the sense siRNA sometimes corresponds to (N19) TT or N21 (position 3 to 23 of
the 23-nt motif),
respectively. In the latter case, the 3' end of the sense siRNA often is
converted to TT. The rationale
for this sequence conversion is to generate a symmetric duplex with respect to
the sequence composition
of the sense and antisense 3' overhangs. The antisense siRNA is synthesized as
the complement to
position 1 to 21 of the 23-nt motif. Because position 1 of the 23-nt motif is
not recognized sequence-
specifically by the antisense siRNA, the 3'-most nucleotide residue of the
antisense siRNA can be
chosen deliberately. However, the penultimate nucleotide of the antisense
siRNA (complementary to
position 2 of the 23-nt motif) often is complementary to the targeted
sequence. For simplifying
chemical synthesis, TT often is utilized. siRNAs corresponding to the target
motifNAR(N17)YNN,
where R is purine (A,G) and Y is pyrimidine (C,U), often are selected.
Respective 21 nucleotide sense
and antisense siRNAs often begin with a purine nucleotide and can also be
expressed from pol III
expression vectors without a change in targeting site. Expression of RNAs from
pol III promoters often
is efficient when the first transcribed nucleotide is a purine.
38


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
[0125] The sequence of the siRNA can correspond to the full length target
gene, or a subsequence
thereof. Often, the siRNA is about 15 to about 50 nucleotides in length (e.g.,
each complementary
sequence of the double stranded siRNA is 15-50 nucleotides in length, and the
double stranded siRNA
is about 15-50 base pairs in length, sometimes about 20-30 nucleotides in
length or about 20-25
nucleotides in length, e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30
nucleotides in length. The siRNA
sometimes is about 21 nucleotides in length. Methods of using siRNA are well
known in the art, and
specific siRNA molecules may be purchased from a number of companies including
Dharmacon
Research, Inc.
[0126] Antisense, ribozyme, RNAi and siRNA nucleic acids can be altered to
form modified
nucleic acid molecules. The nucleic acids can be altered at base moieties,
sugar moieties or phosphate
backbone moieties to improve stability, hybridization, or solubility of the
molecule. For example, the
deoxyribose phosphate backbone of nucleic acid molecules can be modified to
generate peptide nucleic
acids (see Hyrup et al., Bioorganic & Medicinal Chemistry 4 (1): 5-23 (1996)).
As used herein, the
terms "peptide nucleic acid" or "PNA" refers to a nucleic acid mimic such as a
DNA mimic, in which
the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and
only the four natural
nucleobases are retained. The neutral backbone of a PNA can allow for specific
hybridization to DNA
and RNA under conditions of low ionic strength. Synthesis of PNA oligomers can
be performed using
standard solid phase peptide synthesis protocols as described, for example, in
Hyrup et al., (1996) supra
and Perry-O'Keefe et al., Proc. Natl. Acad. Sci. 93: 14670-675 (1996).
[0127] PNA nucleic acids can be used in prognostic, diagnostic, and
therapeutic applications. For
example, PNAs can be used as antisense or antigene agents for sequence-
specific modulation of gene
expression by, for example, inducing transcription or translation arrest or
inhibiting replication. PNA
nucleic acid molecules can also be used in the analysis of single base pair
mutations in a gene, (e.g., by
PNA-directed PCR clamping); as "artificial restriction enzymes" when used in
combination with other
enzymes, (e.g., S1 nucleases (Hyrup (1996) supra)); or as probes or primers
for DNA sequencing or
hybridization (Hyrup et al., (1996) supra; Perry-O'Keefe supra).
[0128] In other embodiments, oligonucleotides may include other appended
groups such as
peptides (e.g., for targeting host cell receptors in vivo), or agents
facilitating transport across cell
membranes (see e.g., Letsinger et al., Proc. Natl. Acad. Sci. USA 86: 6553-
6556 (1989); Lemaitre et al.,
Proc. Natl. Acad. Sci. USA 84: 648-652 (1987); PCT Publication No. W088/09810)
or the blood-brain
barrier (see, e.g., PCT Publication No. W089/10134). In addition,
oligonucleotides can be modified
with hybridization-triggered cleavage agents (See, e.g., Krol et al., Bio-
Techniques 6: 958-976 (1988))
or intercalating agents. (See, e.g., Zon, Pharm. Res. 5: 539-549 (1988) ).
To.this end, the
oligonucleotide may be conjugated to another molecule, (e.g., a peptide,
hybridization triggered cross-
linking agent, transport agent, or hybridization-triggered cleavage agent).
[0129] Also included herein are molecular beacon oligonucleotide primer and
probe molecules
having one or more regions complementary to a KIAA0296, Clarom 4, Chrorra 6,
ELP3, LRCHl, SNWI
or ERG nucleotide sequence or other nucleotide sequence referenced in Table A,
or a substantially
39


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
identical sequence thereof, two complementary regions one having a fluorophore
and one a quencher
such that the molecular beacon is useful for quantifying the presence of the
nucleic acid in a sample.
Molecular beacon nucleic acids are described, for example, in Lizardi et al.,
U.S. Patent No. 5,854,033;
Nazarenko et al., U.S. Patent No. 5,866,336, and Livak et al., U.S. Patent
5,876,930.
Antibodies
[0130] The term "antibody" as used herein refers to an immunoglobulin molecule
or
immunologically active portion thereof, i.e., an antigen-binding portion.
Examples of immunologically
active portions of immunoglobulin molecules include Flab) and F(ab')z
fragments which can be
generated by treating the antibody with an enzyme such as pepsin. An antibody
sometimes is a
polyclonal, monoclonal, recombinant (e.g., a chimeric or humanized), fully
human, non-human (e.g.,
murine), or a single chain antibody. An antibody may have effector function
and can fix complement,
and is sometimes coupled to a toxin or imaging agent.
[0131] A full-length polypeptide or antigenic peptide fragment encoded by a
nucleotide sequence
referenced herein can be used as an immunogen or can be used to identify
antibodies made with other
immunogens, e.g., cells, membrane preparations, and the like. An antigenic
peptide often includes at
least 8 amino acid residues of the amino acid sequences encoded by a
nucleotide sequence referenced
herein, or substantially identical sequence thereof, and encompasses an
epitope. Antigenic peptides
sometimes include 10 or more amino acids, 15 or more amino acids, 20 or more
amino acids, or 30 or
more amino acids. Hydrophilic and hydrophobic fragments of polypeptides
sometimes are used as
immunogens.
[0132] Epitopes encompassed by the antigenic peptide are regions located on
the surface of the
polypeptide (e.g., hydrophilic regions) as well as regions with high
antigenicity. For example, an Emini
surface probability analysis of the human polypeptide sequence can be used to
indicate the regions that
have a particularly high probability of being localized to the surface of the
polypeptide and are thus
likely to constitute surface residues useful for targeting antibody
production. The antibody may bind an
epitope on any domain or region on polypeptides described herein.
[0133] Also, chimeric, humanized, and completely human antibodies are useful
for applications
which include repeated administration to subjects. Chimeric and humanized
monoclonal antibodies,
comprising both human and non-human portions, can be made using standard
recombinant DNA
techniques. Such chimeric and humanized monoclonal antibodies can be produced
by recombinant
DNA techniques known in the art, for example using methods described in
Robinson et al International
Application No. PCT/LJS86/02269; Akira, et al European Patent Application
184,187; Taniguchi, M.,
European Patent Application 171,496; Morrison et al European Patent
Application 173,494; Neuberger
et al PCT International Publication No. WO 86/01533; Cabilly et al U.S. Patent
No. 4,816,567; Cabilly
et al European Patent Application 125,023; Better et al., Science 240: 1041-
1043 (1988); Liu et al.,
Proc. Natl. Acad. Sci. USA 84: 3439-3443 (1987); Liu et al., J. Immunol. 139:
3521-3526 (1987); Sun
et al., Proc. Natl. Acad. Sci. USA 84: 214-218 (1987); Nishimura et al., Canc.
Res. 47: 999-1005


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
(1987); Wood et al., Nature 314: 446-449 (1985); and Shaw et al., J. Natl.
Cancer Inst. 80: 1553-1559
(1988); Morrison, S. L., Science 229: 1202-1207 (1985); Oi et al.,
BioTechniques 4: 214 (1986);
Winter U.S. Patent 5,225,539; Jones et al., Nature 321: 552-525 (1986);
Verhoeyan et al., Science 239:
1534; and Beidler et al., J. Immunol. 141: 4053-4060 (1988).
[0134] Completely human antibodies are particularly desirable for therapeutic
treatment of human
patients. Such antibodies can be produced using transgenic mice that are
incapable of expressing
endogenous immunoglobulin heavy and light chains genes, but which can express
human heavy and
light chain genes. See, for example, Lonberg and Huszar, Int. Rev. Immunol.
13: 65-93 (1995); and
U.S. Patent Nos. 5,625,126; 5,633,425; 5,569,825; 5,661,016; and 5,545,806. In
addition, companies
such as Abgenix, Inc. (Fremont, CA) and Medarex, Inc. (Princeton, NJ), can be
engaged to provide
human antibodies directed against a selected antigen using technology similar
to that described above.
Completely human antibodies that recognize a selected epitope also can be
generated using a technique
referred to as "guided selection." In this approach a selected non-human
monoclonal antibody (e.g., a
murine antibody) is used to guide the selection of a completely human antibody
recognizing the same
epitope. This technology is described for example by Jespers et al.,
Bio/Technology 12: 899-903
( 1994).
[0135] An antibody can be a single chain antibody. A single chain antibody
(scFV) can be
engineered (see, e.g., Colcher et al., Ann. N Y Acad. Sci. 880: 263-80 (1999);
and Reiter, Clin. Cancer
Res. 2: 245-52 (1996)). Single chain antibodies can be dimerized or
multimerized to generate
multivalent antibodies having specificities for different epitopes of the same
target polypeptide.
[0136] Antibodies also may be selected or modified so that they exhibit
reduced or no ability to
bind an Fc receptor. For example, an antibody may be an isotype or subtype,
fragment or other mutant,
which does not support binding to an Fc receptor (e.g., it has a mutagenized
or deleted Fc receptor
binding region).
[0137] Also, an antibody (or fragment thereof) may be conjugated to a
therapeutic moiety such as a
cytotoxin, a therapeutic agent or a radioactive metal ion. A cytotoxin or
cytotoxic agent includes any
agent that is detrimental to cells. Examples include taxol, cytochalasin B,
gramicidin D, ethidium
bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine,
colchicin, doxorubicin,
daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin,
actinomycin D, 1
dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine,
propranolol, and puromycin and
analogs or homologs thereof. Therapeutic agents include, but are not limited
to, antimetabolites (e.g.,
methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil
decarbazine), alkylating
agents (e.g., mechlorethamine, thiotepa chlorambucil, melphalan, carmustine
(BCNU) and lomustine
(CCNU), cyclophosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin
C, and cis-
dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g.,
daunorubicin (formerly
daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly
actinomycin), bleomycin,
mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g.,
vincristine and vinblastine).
41


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
[0138] Antibody conjugates can be used for modifying a given biological
response. For example,
the drug moiety may be a protein or polypeptide possessing a desired
biological activity. Such proteins
may include, for example, a toxin such as abrin, ricin A, pseudomonas
exotoxin, or diphtheria toxin; a
polypeptide such as tumor necrosis factor, gamma-interferon, alpha-interferon,
nerve growth factor,
platelet derived growth factor, tissue plasminogen activator; or, biological
response modifiers such as,
for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL-2"),
interleukin-6 ("IL-6"),
granulocyte macrophage colony stimulating factor ("GM-CSF"), granulocyte
colony stimulating factor
("G-CSF"), or other growth factors. Also, an antibody can be conjugated to a
second antibody to form
an antibody heteroconjugate as described by Segal in U.S. Patent No.
4,676,980, for example.
[0139] An antibody (e.g., monoclonal antibody) can be used to isolate target
polypeptides by
standard techniques, such as affinity chromatography or immunoprecipitation.
Moreover, an antibody
can be used to detect a target polypeptide (e.g., in a cellular lysate or cell
supernatant) in order to
evaluate the abundance and pattern of expression of the polypeptide.
Antibodies can be used
diagnostically to monitor polypeptide levels in tissue as part of a clinical
testing procedure, e.g., to
determine the efficacy of a given treatment regimen. Detection can be
facilitated by coupling (i.e.,
physically linking) the antibody to a detectable substance (i.e., antibody
labeling). Examples of
detectable substances include various enzymes, prosthetic groups, fluorescent
materials, luminescent
materials, bioluminescent materials, and radioactive materials. Examples of
suitable enzymes include
horseradish peroxidase, allealine phosphatase, (3-galactosidase, or
acetylcholinesterase; examples of
suitable prosthetic group complexes include streptavidin/biotin and
avidin/biotin; examples of suitable
fluorescent materials include umbelliferone, fluorescein, fluorescein
isothiocyanate, rhodamine,
dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an
example of a luminescent
material includes luminol; examples of bioluminescent materials include
luciferase, luciferin, and
aequorin, and examples of suitable radioactive material include lzsh i3ih 3sS
or 3H. Also, an antibody
can be utilized as a test molecule for determining whether it can treat
osteoarthritis, and as a therapeutic
for administration to a subject for treating osteoarthritis.
[0140] An antibody can be made by immunizing with a purified antigen, or a
fragment thereof,
e.g., a fragment described herein, a membrane associated antigen, tissues,
e.g., crude tissue preparations,
whole cells, preferably living cells, lysed cells, or cell fractions.
[0141] Included herein are antibodies which bind only a native polypeptide,
only denatured or
otherwise non-native polypeptide, or which bind both, as well as those having
linear or conformational
epitopes. Conformational epitopes sometimes can be identified by selecting
antibodies that bind to
native but not denatured polypeptide. Also featured are antibodies that
specifically bind to a
polypeptide variant associated with osteoarthritis.
Methods for Identi , ink Candidate Therapeutics for Treating Osteoarthritis
[0142] Current therapies for the treatment of osteoarthritis have limited
efficacy, limited
tolerability and significant mechanism-based side effects, and few of the
available therapies adequately
42


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
address underlying defects. Current therapeutic approaches were largely
developed in the absence of
defined molecular targets or even a solid understanding of disease
pathogenesis. Therefore, provided
are methods of identifying candidate therapeutics that target biochemical
pathways related to the
development of osteoarthritis.
[0143] Thus, featured herein are methods for identifying a candidate
therapeutic for treating
osteoarthritis. The methods comprise contacting a test molecule with a target
molecule in a system. A
"target molecule" as used herein refers to a KIAA0296, Cla~om 4, Chrom 6,
ELP3, LRCHI, SNWI or
ERG nucleic acid or other nucleotide sequence referenced in Table A, a
substantially identical nucleic
acid thereof, or a fragment thereof, and an encoded polypeptide of the
foregoing. The methods also
comprise determining the presence or absence of an interaction between the
test molecule and the target
molecule, where the presence of an interaction between the test molecule and
the nucleic acid or
polypeptide identifies the test molecule as a candidate osteoarthritis
therapeutic. The interaction
between the test molecule and the target molecule may be quantified.
[0144] Test molecules and candidate therapeutics include, but are not limited
to, compounds,
antisense nucleic acids, siRNA molecules, ribozymes, polypeptides or proteins
encoded by a KIAA0296,
Chrom 4, Chrom 6, ELP3, LRCHl, SNWI or ERG nucleotide sequence or other
nucleotide sequence
referenced in Table A , or a substantially identical sequence or fragment
thereof, and
immunotherapeutics (e.g., antibodies and HLA-presented polypeptide fragments).
A test molecule or
candidate therapeutic may act as a modulator of target molecule concentration
or target molecule
function in a system. A "modulator" may agonize (i.e., up-regulates) or
antagonize (i.e., down-
regulates) a target molecule concentration partially or completely in a system
by affecting such cellular
functions as DNA replication and/or DNA processing (e.g., DNA methylation or
DNA repair), RNA
transcription and/or RNA processing (e.g., removal of intronic sequences
and/or translocation of spliced
mRNA from the nucleus), polypeptide production (e.g., translation of the
polypeptide from mRNA),
and/or polypeptide post-translational modification (e.g., glycosylation,
phosphorylation, and proteolysis
of pro-polypeptides). A modulator may also agonize or antagonize a biological
function of a target
molecule partially or completely, where the function may include adopting a
certain structural
conformation, interacting with one or more binding partners, ligand binding,
catalysis (e.g.,
phosphorylation, dephosphorylation, hydrolysis, methylation, and
isomerization), and an effect upon a
cellular event (e.g., effecting progression of osteoarthritis).
[0145] As used herein, the term "system" refers to a cell free in vitro
environment and a cell-based
environment such as a collection of cells, a tissue, an organ, or an organism.
A system is "contacted"
with a test molecule in a variety of manners, including adding molecules in
solution and allowing them
to interact with one another by diffusion, cell injection, and any
administration routes in an animal. As
used herein, the term "interaction" refers to an effect of a test molecule on
test molecule, where the
effect sometimes is binding between the test molecule and the target molecule,
and sometimes is an
observable change in cells, tissue, or organism.
43


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
[0146] There are many standard methods for detecting the presence or absence
of interaction
between a test molecule and a target molecule. For example, titrametric,
acidimetric, radiometric,
NMR, monolayer, polarographic, spectrophotometric, fluorescent, and ESR assays
probative of a target
molecule interaction may be utilized. Any modulator can be tested in such
methods and modulators for
certain targets described in Table A are known. For example, modulators of
protein tyrosine
phosphatases (e.g., PTPNI includes a protein phosphatase domain) are described
in WO-03072537,
WO-03020688, WO-00218321, WO-00218323, WO-03055883, WO-03041729, WO-00226707,
WO-
00226743 and WO-03037328; modulators of potassium channels (e.g., KCNSI
includes a potassium
channel domain) are described in WO-09962891, WO-09716437, WO-09521813, WO-
09521823, WO-
09521824, WO-09521825 and WO-03088908; modulators of annexin (e.g., AN~YA6
includes an annexin
domain) are described in WO-2004018670, WO-02067857, WO-2004013303 and WO-
00147510;
proteasome modulators (e.g., PSMBI includes a proteasome domain) are described
in WO-2004014882
and Roesel et al. Proceedings of the American Association of Cancer Research
2003, 44:1 st Ed (Abs
1769), and bortezomib (Velcade, MLN-341, LDP-341 and PS-341), a ubiquitin
proteosome inhibitor, is
used for the treatment of multiple myeloma; and modulators of protein kinases
(e.g., FYN is a protein
kinase) are described in WO-03081210, WO-02080926, WO-02076986, WO-03077921,
W003026666,
W003026665 and W003026664.
[0147] Test molecule/target molecule interactions can be detected and/or
quantified using assays
known in the art. For example, an interaction can be determined by labeling
the test molecule and/or
the target molecule, where the label is covalently or non-covalently attached
to the test molecule or
target molecule. The label is sometimes a radioactive molecule such as
lzslysih ssS or 3H, which can be
detected by direct counting of radioemission or by scintillation counting.
Also, enzymatic labels such as
horseradish peroxidase, alkaline phosphatase, or luciferase may be utilized
where the enzymatic label
can be detected by determining conversion of an appropriate substrate to
product. In addition, presence
or absence of an interaction can be determined without labeling. For example,
a microphysiometer
(e.g., Cytosensor) is an analytical instrument that measures the rate at which
a cell acidifies its
environment using a light-addressable potentiometric sensor (LAPS). Changes in
this acidification rate
can be used as an indication of an interaction between a test molecule and
target molecule (McConnell,
H. M. et al., Science 257: 1906-1912 (1992)).
[0148] In cell-based systems, cells typically include a KIAA0296, Chrona 4,
Chrom 6, ELP3,
LRCHl, SNWI or ERG nucleic acid or other nucleotide sequence referenced in
Table A, an encoded
polypeptide, or substantially identical nucleic acid or polypeptide thereof,
and are often of mammalian
origin, although the cell can be of any origin. Whole cells, cell homogenates,
and cell fractions (e.g.,
cell membrane fractions) can be subjected to analysis. Where interactions
between a test molecule with
a target polypeptide are monitored, soluble and/or membrane bound forms of the
polypeptide may be
utilized. Where membrane-bound forms of the polypeptide are used, it may be
desirable to utilize a
solubilizing agent. Examples of such solubilizing agents include non-ionic
detergents such as n-
octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-
methylglucamide, decanoyl-N-
44


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
methylglucamide, Triton~ X-100, Triton~ X-114, Thesit~,
Isotridecypoly(ethylene glycol ether)n, 3-
[(3-cholamidopropyl)dimethylamminio]-1-propane sulfonate (CHAPS), 3-[(3-
cholamidopropyl)dimethylamminio]-2-hydroxy-1-propane sulfonate (CHAPSO), or N-
dodecyl-N,N-
dimethyl-3-ammonio-1-propane sulfonate.
[0149] An interaction between a test molecule and target molecule also can be
detected by
monitoring fluorescence energy transfer (FET) (see, e.g., Lakowicz et al.,
U.S. Patent No. 5,631,169;
Stavrianopoulos et al. U.S. Patent No. 4,868,103). A fluorophore label on a
first, "donor" molecule is
selected such that its emitted fluorescent energy will be absorbed by a
fluorescent label on a second,
"acceptor" molecule, which in turn is able to fluoresce due to the absorbed
energy. Alternately, the
"donor" polypeptide molecule may simply utilize the natural fluorescent energy
of tryptophan residues.
Labels are chosen that emit different wavelengths of light, such that the
"acceptor" molecule label may
be differentiated from that of the "donor". Since the efficiency of energy
transfer between the labels is
related to the distance separating the molecules, the spatial relationship
between the molecules can be
assessed. In a situation in which binding occurs between the molecules, the
fluorescent emission of the
"acceptor" molecule label in the assay should be maximal. An FET binding event
can be conveniently
measured through standard fluorometric detection means well known in the art
(e.g., using a
fluorimeter).
[0150] In another embodiment, determining the presence or absence of an
interaction between a
test molecule and a target molecule can be effected by monitoring surface
plasmon resonance (see, e.g.,
Sjolander & Urbaniczk, Afzal. Chem. 63: 2338-2345 (1991) and Szabo et al.,
Cur. Opin. Struct. Biol. S:
699-705 (1995)). "Surface plasmon resonance" or "biomolecular interaction
analysis (BIA)" can be
utilized to detect biospecific interactions in real time, without labeling any
of the interactants (e.g.,
BIAcore). Changes in the mass at the binding surface (indicative of a binding
event) result in
alterations of the refractive index of light near the surface (the optical
phenomenon of surface plasmon
resonance (SPR)), resulting in a detectable signal which can be used as an
indication of real-time
reactions between biological molecules.
[0151] In another embodiment, the target molecule or test molecules are
anchored to a solid phase,
facilitating the detection of target molecule/test molecule complexes and
separation of the complexes
from free, uncomplexed molecules. The target molecule or test molecule is
immobilized to the solid
support. In an embodiment, the target molecule is anchored to a solid surface,
and the test molecule,
which is not anchored, can be labeled, either directly or indirectly, with
detectable labels discussed
herein.
[0152] It may be desirable to immobilize a target molecule, an anti-target
molecule antibody,
and/or test molecules to facilitate separation of target molecule/test
molecule complexes from
uncomplexed forms, as well as to accommodate automation of the assay. The
attachment between a test
molecule and/or target molecule and the solid support may be covalent or non-
covalent (see, e.g., U.S.
Patent No. 6,022,688 for non-covalent attachments). The solid support may be
one or more surfaces of


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
the system, such as one or more surfaces in each well of a microtiter plate, a
surface of a silicon wafer, a
surface of a bead (see, e.g., Lam, Nature 354: 82-84 (1991)) that is
optionally linked to another solid
support, or a channel in a microfluidic device, for example. Types of solid
supports, linker molecules
for covalent and non-covalent attaclunents to solid supports, and methods for
immobilizing nucleic
acids and other molecules to solid supports are well known (see, e.g., U.S.
Patent Nos. 6,261,776;
5,900,481; 6,133,436; and 6,022,688; and WIPO publication WO 01/18234).
[0153] In an embodiment, target molecule may be immobilized to surfaces via
biotin and
streptavidin. For example, biotinylated target polypeptide can be prepared
from biotin-NHS (N-
hydroxy-succinimide) using techniques known in the art (e.g., biotinylation
kit, Pierce Chemicals,
Rockford, IL), and immobilized in the wells of streptavidin-coated 96 well
plates (Pierce Chemical). In
another embodiment, a target polypeptide can be prepared as a fusion
polypeptide. For example,
glutathione-S-transferase/target polypeptide fusion can be adsorbed onto
glutathione sepharose beads
(Sigma Chemical, St. Louis, MO) or glutathione derivitized microtiter plates,
which are then combined
with a test molecule under conditions conducive to complex formation (e.g., at
physiological conditions
for salt and pH). Following incubation, the beads or microtiter plate wells
are washed to remove any
unbound components, or the matrix is immobilized in the case of beads, and
complex formation is
determined directly or indirectly as described above. Alternatively, the
complexes can be dissociated
from the matrix, and the level of target molecule binding or activity is
determined using standard
techniques.
[0154] In an embodiment, the non-immobilized component is added to the coated
surface
containing the anchored component. After the reaction is complete, unreacted
components are removed
(e.g., by washing) under conditions such that a significant percentage of
complexes formed will remain
immobilized to the solid surface. The detection of complexes anchored on the
solid surface can be
accomplished in a number of manners. Where the previously non-immobilized
component is pre-
labeled, the detection of label immobilized on the surface indicates that
complexes were formed. Where
the previously non-immobilized component is not pre-labeled, an indirect label
can be used to detect
complexes anchored on the surface, e.g., by adding a labeled antibody specific
for the immobilized
component, where the antibody, in turn, can be directly labeled or indirectly
labeled with, e.g., a labeled
anti-Ig antibody.
[0155] In another embodiment, an assay is performed utilizing antibodies that
specifically bind
target molecule or test molecule but do not interfere with binding of the
target molecule to the test
molecule. Such antibodies can be derivitized to a solid support, and unbound
target molecule may be
immobilized by antibody conjugation. Methods for detecting such complexes, in
addition to those
described above for the GST-immobilized complexes, include immunodetection of
complexes using
antibodies reactive with the target molecule, as well as enzyme-linked assays
which rely on detecting an
enzymatic activity associated with the target molecule.
[0156] Cell free assays also can be conducted in a liquid phase. In such an
assay, reaction products
are separated from unreacted components, by any of a number of standard
techniques, including but not
46


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
limited to: differential centrifugation (see, e.g., Rivas, G., and Minton,
Trends Biochem Sci Aug;18(8):
284-7 (1993)); chromatography (gel filtration chromatography, ion-exchange
chromatography);
electrophoresis (see, e.g., Ausubel et al., eds. Current Protocols in
Molecular Biology , J. Wiley: New
York (1999)); and immunoprecipitation (see, e.g., Ausubel et al., eds.,
supra). Media and
chromatographic techniques are known to one skilled in the art (see, e.g.,
Heegaard, JMoI. Recognit.
Winter; 1l (I-6): 141-8 (1998); Hage & Tweed, J. Chromatogr. B Biomed. Sci.
Appl. Oct 10; 699 (1-2):
499-525 (1997)). Further, fluorescence energy transfer may also be
conveniently utilized, as described
herein, to detect binding without further purification of the complex from
solution.
[0157] In another embodiment, modulators of target molecule expression are
identified. For
example, a cell or cell free mixture is contacted with a candidate compound
and the expression of target
mRNA or target polypeptide is evaluated relative to the level of expression of
target mRNA or target
polypeptide in the absence of the candidate compound. When expression of
target mRNA or target
polypeptide is greater in the presence of the candidate compound than in its
absence, the candidate
compound is identified as an agonist of target mRNA or target polypeptide
expression. Alternatively,
when expression of target mRNA or target polypeptide is less (e.g., less with
statistical significance) in
the presence of the candidate compound than in its absence, the candidate
compound is identified as an
antagonist or inhibitor of target mRNA or target polypeptide expression. The
level of target mRNA or
target polypeptide expression can be determined by methods described herein.
[0158] In another embodiment, binding partners that interact with a target
molecule are detected.
The target molecules can interact with one or more cellular or extracellular
macromolecules, such as
polypeptides in vivo, and these interacting molecules are referred to herein
as "binding partners."
Binding partners can agonize or antagonize target molecule biological
activity. Also, test molecules
that agonize or antagonize interactions between target molecules and binding
partners can be ,useful as
therapeutic molecules as they can up-regulate or down-regulated target
molecule activity in vivo and
thereby treat osteoarthritis.
[0159] Binding partners of target molecules can be identified by methods known
in the art. For
example, binding partners may be identified by lysing cells and analyzing cell
lysates by electrophoretic
techniques. Alternatively, a two-hybrid assay or three-hybrid assay can be
utilized (see, e.g., U.S.
Patent No. 5,283,317; Zervos et al., Cell 72:223-232 (1993); Madura et al., J.
Biol. Chem. 268: 12046-
12054 (1993); Bartel et al., BiotechrZiques 14: 920-924 (1993); Iwabuchi et
al., Oncogerae 8: 1693-1696
(1993); and Brent W094/10300). A two-hybrid system is based on the modular
nature of most
transcription factors, which consist of separable DNA-binding and activation
domains. The assay often
utilizes two different DNA constructs. In one construct, a KIAA0296, Chrom 4,
Chrom 6, ELP3,
LRCHI, SNWI or ERG nucleic acid or other nucleic acid referenced in Table A
(sometimes referred to
as the "bait") is fused to a gene encoding the DNA binding domain of a known
transcription factor (e.g.,
GAL-4). In another construct, a DNA sequence from a library of DNA sequences
that encodes a
potential binding partner (sometimes referred to as the "prey") is fused to a
gene that encodes an
activation domain of the known transcription factor. Sometimes, a KIAA0296,
Chrom 4, Chrona 6,
47


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
ELP3, LRCHl, SNWI or ERG nucleic acid or other nucleic acid referenced in
Table A can be fused to
the activation domain. If the "bait" and the "prey" molecules interact in
vivo, the DNA-binding and
activation domains of the transcription factor are brought into close
proximity. This proximity allows
transcription of a reporter gene (e.g., LacZ) which is operably linked to a
transcriptional regulatory site
responsive to the transcription factor. Expression of the reporter gene can be
detected and cell colonies
containing the functional transcription factor can be isolated and used to
identify the potential binding
partner.
[0160] In an embodiment for identifying test molecules that antagonize or
agonize complex
formation between target molecules and binding partners, a reaction mixture
containing the target
molecule and the binding partner is prepared, under conditions and for a time
sufficient to allow
complex formation. The reaction mixture often is provided in the presence or
absence of the test
molecule. The test molecule can be included initially in the reaction mixture,
or can be added at a time
subsequent to the addition of the target molecule and its binding partner.
Control reaction mixtures are
incubated without the test molecule or with a placebo. Formation of any
complexes between the target
molecule and the binding partner then is detected. Decreased formation of a
complex in the reaction
mixture containing test molecule as compared to in a control reaction mixture
indicates that the
molecule antagonizes target molecule/binding partner complex formation.
Alternatively, increased
formation of a complex in the reaction mixture containing test molecule as
compared to in a control
reaction mixture indicates that the molecule agonizes target molecule/binding
partner complex
formation. In another embodiment, complex formation of target molecule/binding
partner can be
compared to complex formation of mutant target molecule/binding partner (e.g.,
amino acid
modifications in a target polypeptide). Such a comparison can be important in
those cases where it is
desirable to identify test molecules that modulate interactions of mutant but
not non-mutated.target gene
products.
[0161] The assays can be conducted in a heterogeneous or homogeneous format.
In heterogeneous
assays, target molecule and/or the binding partner are immobilized to a solid
phase, and complexes are
detected on the solid phase at the end of the reaction. In homogeneous assays,
the entire reaction is
carried out in a liquid phase. In either approach, the order of addition of
reactants can be varied to
obtain different information about the molecules being tested. For example,
test compounds that
agonize target molecule/binding partner interactions can be identified by
conducting the reaction in the
presence of the test molecule in a competition format. Alternatively, test
molecules that agonize
preformed complexes, e.g., molecules with higher binding constants that
displace one of the
components from the complex, can be tested by adding the test compound to the
reaction mixture after
complexes have been formed.
(0162] In a heterogeneous assay embodiment, the target molecule or the binding
partner is
anchored onto a solid surface (e.g., a microtiter plate), while the non-
anchored species is labeled, either
directly or indirectly. The anchored molecule can be immobilized by non-
covalent or covalent
attachments. Alternatively, an immobilized antibody specific for the molecule
to be anchored can be
4~


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
used to anchor the molecule to the solid surface. The partner of the
immobilized species is exposed to
the coated surface with or without the test molecule. After the reaction is
complete, unreacted
components are removed (e.g., by washing) such that a significant portion of
any complexes formed
will remain immobilized on the solid surface. Where the non-immobilized
species is pre-labeled, the
detection of label immobilized on the surface is indicative of complex. Where
the non-immobilized
species is not pre-labeled, an indirect label can be used to detect complexes
anchored to the surface;
e.g., by using a labeled antibody specific for the initially non-immobilized
species. Depending upon the
order of addition of reaction components, test compounds that inhibit complex
formation or that disrupt
preformed complexes can be detected.
[0163] In another embodiment, the reaction can be conducted in a liquid phase
in the presence or
absence of test molecule, where the reaction products are separated from
unreacted components, and the
complexes are detected (e.g., using an immobilized antibody specific for one
of the binding components
to anchor any complexes formed in solution, and a labeled antibody specific
for the other partner to
detect anchored complexes). Again, depending upon the order of addition of
reactants to the liquid
phase, test compounds that inhibit complex or that disrupt preformed complexes
can be identified.
[0164] In an alternate embodiment, a homogeneous assay can be utilized. For
example, a
preformed complex of the target gene product and the interactive cellular or
extracellular binding
partner product is prepared. One or both of the target molecule or binding
partner is labeled, and the
signal generated by the labels) is quenched upon complex formation (e.g., U.S.
Patent No. 4,109,496
that utilizes this approach for immunoassays). Addition of a test molecule
that competes with and
displaces one of the species from the preformed complex will result in the
generation of a signal above
background. In this way, test substances that disrupt target molecule/binding
partner complexes can be
identified.
[0165] Candidate therapeutics for treating osteoarthritis are identified from
a group of test
molecules that interact with a target molecule. Test molecules are normally
ranked according to the
degree with which they modulate (e.g., agonize or antagonize) a function
associated with the target
molecule (e.g., DNA replication and/or processing, RNA transcription and/or
processing, polypeptide
production and/or processing, and/or biological function/activity), and then
top ranleing modulators are
selected. Also, pharmacogenomic information described herein can determine the
rank of a modulator.
The top 10% of ranked test molecules often are selected for further testing as
candidate therapeutics,
and sometimes the top 1 S%, 20%, or 25% of ranked test molecules are selected
for further testing as
candidate therapeutics. Candidate therapeutics typically are formulated for
administration to a subject.
Therapeutic Formulations
[0166] Formulations and pharmaceutical compositions typically include in
combination with a
pharmaceutically acceptable carrier one or more target molecule modulators.
The modulator often is a
test molecule identified as having an interaction with a target molecule by a
screening method described
above. The modulator may be a compound, an antisense nucleic acid, a ribozyme,
an antibody, or a
49


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
binding partner. Also, formulations may comprise a target polypeptide or
fragment thereof in
combination with a pharmaceutically acceptable carrier.
[0167] As used herein, the term "pharmaceutically acceptable carrier" includes
solvents,
dispersion media, coatings, antibacterial and antifungal agents, isotonic and
absorption delaying agents,
and the like, compatible with pharmaceutical administration. Supplementary
active compounds can also
be incorporated into the compositions. Pharmaceutical compositions can be
included in a container,
pack, or dispenser together with instructions for administration.
[0168] A pharmaceutical composition typically is formulated to be compatible
with its intended
route of administration. Examples of routes of administration include
parenteral, e.g., intravenous,
intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical),
transmucosal, and rectal
administration. Solutions or suspensions used for parenteral, intradermal, or
subcutaneous application
can include the following components: a sterile diluent such as water for
injection, saline solution, fixed
oils, polyethylene glycols, glycerin, propylene glycol or other synthetic
solvents; antibacterial agents
such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid
or sodium bisulfate;
chelating agents such as ethylenediaminetetraacetic acid; buffers such as
acetates, citrates or phosphates
and agents for the adjustment of tonicity such as sodium chloride or dextrose.
pH can be adjusted with
acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral
preparation can be
enclosed in ampoules, disposable syringes or multiple dose vials made of glass
or plastic.
[0169] Oral compositions generally include an inert diluent or an edible
carrier. For the purpose of
oral therapeutic administration, the active compound can be incorporated with
excipients and used in the
form of tablets, troches, or capsules, e.g., gelatin capsules. Oral
compositions can also be prepared
using a fluid carrier for use as a mouthwash. Pharmaceutically compatible
binding agents, and/or
adjuvant materials can be included as part of the composition. The tablets,
pills, capsules, troches and
the like can contain any of the following ingredients, or compounds of a
similar nature: a binder such as
microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as
starch or lactose, a
disintegrating agent such as alginic acid, Primogel, or corn starch; a
lubricant such as magnesium
stearate or Sterotes; a glidant such as colloidal silicon dioxide; a
sweetening agent such as sucrose or
saccharin; or a flavoring agent such as peppermint, methyl salicylate, or
orange flavoring.
/[0170] Pharmaceutical compositions suitable for injectable use include
sterile aqueous solutions
(where water soluble) or dispersions and sterile powders for the
extemporaneous preparation of sterile
injectable solutions or dispersion. For intravenous administration, suitable
carriers include
physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany,
NJ) or phosphate
buffered saline (PBS). In all cases, the composition must be sterile and
should be fluid to the extent that
easy syringability exists. It should be stable under the conditions of
manufacture and storage and must
be preserved against the contaminating action of microorganisms such as
bacteria and fungi. The
carrier can be a solvent or dispersion medium containing, for example, water,
ethanol, polyol (for
example, glycerol, propylene glycol, and liquid polyethylene glycol, and the
like), and suitable mixtures
thereof. The proper fluidity can be maintained, for example, by the use of a
coating such as lecithin, by


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
the maintenance of the required particle size in the case of dispersion and by
the use of surfactants.
Prevention of the action of microorganisms can be achieved by various
antibacterial and antifungal
agents, for example, parabens, chlorobutanol, phenol, ascorbic acid,
thimerosal, and the like. In many
cases, it will be preferable to include isotonic agents, for example, sugars,
polyalcohols such as
mannitol, sorbitol, sodium chloride in the composition. Prolonged absorption
of the injectable
compositions can be brought about by including in the composition an agent
which delays absorption,
for example, aluminum monostearate and gelatin.
[0171] Sterile injectable solutions can be prepared by incorporating the
active compound in the
required amount in an appropriate solvent with one or a combination of
ingredients enumerated above,
as required, followed by filtered sterilization. Generally, dispersions are
prepared by incorporating the
active compound into a sterile vehicle which contains a basic dispersion
medium and the required other
ingredients from those enumerated above. In the case of sterile powders for
the preparation of sterile
injectable solutions, the preferred methods of preparation are vacuum drying
and freeze-drying which
yields a powder of the active ingredient plus any additional desired
ingredient from a previously sterile-
filtered solution thereof.
[0172] For administration by inhalation, the compounds are delivered in the
form of an aerosol
spray from pressured container or dispenser which contains a suitable
propellant, e.g., a gas such as
carbon dioxide, or a nebulizer.
[0173] Systemic administration can also be by transmucosal or transdermal
means. For
transmucosal or transdermal administration, penetrants appropriate to the
barrier to be permeated are
used in the formulation. Such penetrants are generally known in the art, and
include, for example, for
transmucosal administration, detergents, bile salts, and fusidic acid
derivatives. Transmucosal
administration can be accomplished through the use of nasal sprays or
suppositories. For transdermal
administration, the active compounds are formulated into ointments, salves,
gels, or creams as generally
known in the art. Molecules can also be prepared in the form of suppositories
(e.g., with conventional
suppository bases such as cocoa butter and other glycerides) or retention
enemas for rectal delivery.
[0174] In one embodiment, active molecules are prepared with carriers that
will protect the
compound against rapid elimination from the body, such as a controlled release
formulation, including
implants and microencapsulated delivery systems. Biodegradable, biocompatible
polymers can be used,
such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen,
polyorthoesters, and
polylactic acid. Methods for preparation of such formulations will be apparent
to those skilled in the
art. Materials can also be obtained commercially from Alza Corporation and
Nova Pharmaceuticals,
Inc. Liposomal suspensions (including liposomes targeted to infected cells
with monoclonal antibodies
to viral antigens) can also be used as pharmaceutically acceptable carriers.
These can be prepared
according to methods known to those skilled in the art, for example, as
described in U.S. Patent
No. 4, 522, 811.
[0175] It is advantageous to formulate oral or parenteral compositions in
dosage unit form for ease
of administration and uniformity of dosage. Dosage unit form as used herein
refers to physically
51


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
discrete units suited as unitary dosages for the subject to be treated; each
unit containing a
predetermined quantity of active compound calculated to produce the desired
therapeutic effect in
association with the required pharmaceutical carrier.
[0176] Toxicity and therapeutic efficacy of such compounds can be determined
by standard
pharmaceutical procedures in cell cultures or experimental animals, e.g., for
determining the LDso (the
dose lethal to 50% of the population) and the EDso (the dose therapeutically
effective in 50% of the
population). The dose ratio between toxic and therapeutic effects is the
therapeutic index and it can be
expressed as the ratio LDso/EDso. Molecules which exhibit high therapeutic
indices are preferred.
While molecules that exhibit toxic side effects may be used, care should be
taken to design a delivery
system that targets such compounds to the site of affected tissue in order to
minimize potential damage
to uninfected cells and, thereby, reduce side effects.
[0177] The data obtained from the cell culture assays and animal studies can
be used in
formulating a range of dosage for use in humans. The dosage of such molecules
lies preferably within a
range of circulating concentrations that include the EDSO with little or no
toxicity. The dosage may vary
within this range depending upon the dosage form employed and the route of
administration utilized.
For any molecules used in the methods described herein, the therapeutically
effective dose can be
estimated initially from cell culture assays. A dose may be formulated in
animal models to achieve a
circulating plasma concentration range that includes the ICSO (i.e., the
concentration of the test
compound which achieves a half maximal inhibition of symptoms) as determined
in cell culture. Such
information can be used to more accurately determine useful doses in humans.
Levels in plasma may be
measured, for example, by high performance liquid chromatography.
[0178] As defined herein, a therapeutically effective amount of protein or
polypeptide (i.e., an
effective dosage) ranges from about 0.001 to 30 mg/kg body weight, sometimes
about 0.01 to 25 mg/kg
body weight, often about 0.1 to 20 mg/kg body weight, and more often about 1
to 10 mg/kg, 2 to 9
mg/kg, 3 to 8 mg/kg, 4 to 7 mg/kg, or 5 to 6 mg/kg body weight. The protein or
polypeptide can be
administered one time per week for between about 1 to 10 weeks, sometimes
between 2 to 8 weeks,
often between about 3 to 7 weeks, and more often for about 4, 5, or 6 weeks.
The skilled artisan will
appreciate that certain factors may influence the dosage and timing required
to effectively treat a
subject, including but not limited to the severity of the disease or disorder,
previous treatments, the
general health and/or age of the subject, and other diseases present.
Moreover, treatment of a subject
with a therapeutically effective amount of a protein, polypeptide, or antibody
can include a single
treatment or, preferably, can include a series of treatments.
[0179] With regard to polypeptide formulations, featured herein is a method
for treating
osteoarthritis in a subject, which comprises contacting one or more cells in
the subject with a first
polypeptide, where the subject comprises a second polypeptide having one or
more polymorphic
variations associated with cancer, and where the first polypeptide comprises
fewer polymorphic
variations associated with cancer than the second polypeptide. The first and
second polypeptides are
encoded by a nucleic acid which comprises a nucleotide sequence in SEQ ID NO:
1-7 or referenced in
52


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
Table A; a nucleotide sequence which encodes a polypeptide consisting of an
amino acid sequence
encoded by a nucleotide sequence referenced in SEQ ID NO: 1-7 or referenced in
Table A; a nucleotide
sequence which encodes a polypeptide that is 90% or more identical to an amino
acid sequence encoded
by a nucleotide sequence of SEQ ID NO: 1-7 or referenced in Table A and a
nucleotide sequence 90%
or more identical to a nucleotide sequence in SEQ ID NO: 1-7 or referenced in
Table A. The subject
often is a human.
[0180] For antibodies, a dosage of 0.1 mg/kg of body weight (generally 10
mg/kg to 20 mg/kg) is
often utilized. If the antibody is to act in the brain, a dosage of 50 mg/kg
to 100 mg/kg is often
appropriate. Generally, partially human antibodies and fully human antibodies
have a longer half life
within the human body than other antibodies. Accordingly, lower dosages and
less frequent
administration is often possible. Modifications such as lipidation can be used
to stabilize antibodies and
to enhance uptake and tissue penetration (e.g., into the brain). A method for
lipidation of antibodies is
described by Cruikshank et al., J. Acquired Immune Deficiency Syndromes and
Human Retrovirology
14:193 (1997).
[0181] Antibody conjugates can be used for modifying a given biological
response, the drug
moiety is not to be construed as limited to classical chemical therapeutic
agents. For example, the drug
moiety may be a protein or polypeptide possessing a desired biological
activity. Such proteins may
include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or
diphtheria toxin; a
polypeptide such as tumor necrosis factor, alpha-interferon, beta-interferon,
nerve growth factor, platelet
derived growth factor, tissue plasminogen activator; or, biological response
modifiers such as, for
example, lymphokines, interleukin-1 ("IL,-1"), interleukin-2 ("IL-2"),
interleukin-6 ("IL-6"),
granulocyte macrophage colony stimulating factor ("GM-CSF"), granulocyte
colony stimulating factor
("G-CSF"), or other growth factors. Alternatively, an antibody can be
conjugated to a second antibody
to form an antibody heteroconjugate as described by Segal in U.S. Patent No.
4,676,980.
[0182] For compounds, exemplary doses include milligram or microgram amounts
of the
compound per kilogram of subject or sample weight, for example, about 1
microgram per kilogram to
about 500 milligrams per kilogram, about 100 micrograms per kilogram to about
5 milligrams per
kilogram, or about 1 microgram per kilogram to about 50 micrograms per
kilogram. It is understood
that appropriate doses of a small molecule depend upon the potency of the
small molecule with respect
to the expression or activity to be modulated. When one or more of these small
molecules is to be
administered to an animal (e.g., a human) in order to modulate expression or
activity of a polypeptide or
nucleic acid described herein, a physician, veterinarian, or researcher may,
for example, prescribe a
relatively low dose at first, subsequently increasing the dose until an
appropriate response is obtained.
In addition, it is understood that the specific dose level for any particular
animal subject will depend
upon a variety of factors including the activity of the specific compound
employed, the age, body
weight, general health, gender, and diet of the subject, the time of
administration, the route of
administration, the rate of excretion, any drug combination, and the degree of
expression or activity to
be modulated.
53


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
[0183] With regard to nucleic acid formulations, gene therapy vectors can be
delivered to a subject
by, for example, intravenous injection, local administration (see, e.g., U.S.
Patent 5,328,470) or by
stereotactic injection (see e.g., Chen et al., (1994) Proc. Natl. Acad. Sei.
USA 91:3054-3057).
Pharmaceutical preparations of gene therapy vectors can include a gene therapy
vector in an acceptable
diluent, or can comprise a slow release matrix in which the gene delivery
vehicle is imbedded.
Alternatively, where the complete gene delivery vector can be produced intact
from recombinant cells
(e.g., retroviral vectors) the pharmaceutical preparation can include one or
more cells which produce the
gene delivery system. Examples of gene delivery vectors are described herein.
Therapeutic Methods
[0184] A therapeutic formulation described above can be administered to a
subject in need of a
therapeutic for inducing a desired biological response. Therapeutic
formulations can be administered by
any of the paths described herein. With regard to both prophylactic and
therapeutic methods of
treatment, such treatments may be specifically tailored or modified, based on
knowledge obtained from
pharmacogenomic analyses described herein.
[0185] As used herein, the term "treatment" is defined as the application or
administration of a
therapeutic formulation to a subject, or application or administration of a
therapeutic agent to an isolated
tissue or cell line from a subject with the purpose to cure, heal, alleviate,
relieve, alter, remedy,
ameliorate, improve or affect osteoarthritis, symptoms of osteoarthritis or a
predisposition towards
osteoarthritis. A therapeutic formulation includes, but is not limited to,
small molecules, peptides,
antibodies, ribozymes and antisense oligonucleotides. Administration of a
therapeutic formulation can
occur prior to the manifestation of symptoms characteristic of osteoarthritis,
such that osteoarthritis is
prevented or delayed in its progression. The appropriate therapeutic
composition can be determined
based on screening assays described herein.
[0186] As discussed, successful treatment of osteoarthritis can be brought
about by techniques that
serve to agonize target molecule expression or function, or alternatively,
antagonize target molecule
expression or function. These techniques include administration of modulators
that include, but are not
limited to, small organic or inorganic molecules; antibodies (including, for
example, polyclonal,
monoclonal, humanized, anti-idiotypic, chimeric or single chain antibodies,
and Fab, F(ab')Z and Fab
expression library fragments, scFV molecules, and epitope-binding fragments
thereof); and peptides,
phosphopeptides, or polypeptides.
[0187] Further, antisense and ribozyme molecules that inhibit expression of
the target gene can
also be used to reduce the level of target gene expression, thus effectively
reducing the level of target
gene activity. Still further, triple helix molecules can be utilized in
reducing the level of target gene
activity. Antisense, ribozyme and triple helix molecules are discussed above.
It is possible that the use
of antisense, ribozyme, and/or triple helix molecules to reduce or inhibit
mutant gene expression can
also reduce or inhibit the transcription (triple helix) and/or translation
(antisense, ribozyme) of mRNA
produced by normal target gene alleles, such that the concentration of normal
target gene product
54


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
present can be lower than is necessary for a normal phenotype. In such cases,
nucleic acid molecules
that encode and express target gene polypeptides exhibiting normal target gene
activity can be
introduced into cells via gene therapy method. Alternatively, in instances in
that the target gene
encodes an extracellular polypeptide, it can be preferable to co-administer
normal target gene
polypeptide into the cell or tissue in order to maintain the requisite level
of cellular or tissue target gene
activity.
[0188] Another method by which nucleic acid molecules may be utilized in
treating or preventing
osteoarthritis is use of aptamer molecules specific for target molecules.
Aptamers are nucleic acid
molecules having a tertiary structure which permits them to specifically bind
to ligands (see, e.g.,
Osborne, et al., Curr. Opin. Chem. Biol. l (1): 5-9 (1997); and Patel, D. J.,
Curr. Opira. Claem. Biol.
Jun; I (1): 32-46 (1997)).
[0189] Yet another method of utilizing nucleic acid molecules for
osteoarthritis treatment is gene
therapy, which can also be referred to as allele therapy. Provided herein is a
gene therapy method for
treating osteoarthritis in a subject, which comprises contacting one or more
cells in the subject or from
the subject with a nucleic acid having a first nucleotide sequence (e.g., the
first nucleotide sequence is
identical to or substantially identical to a nucleotide sequence of SEQ ID NO:
1-7 or other nucleotide
sequence referenced in Table A). Genomic DNA in the subject comprises a second
nucleotide sequence
having one or more polymorphic variations associated with osteoarthritis
(e.g., the second nucleotide
sequence is identical to or substantially identical to a nucleotide sequence
of SEQ ID NO: 1-7 or other
nucleotide sequence referenced in Table A). The first and second nucleotide
sequences typically are
substantially identical to one another, and the first nucleotide sequence
comprises fewer polymorphic
variations associated with osteoarthritis than the second nucleotide sequence.
The first nucleotide
sequence may comprise a gene sequence that encodes a full-length polypeptide
or a fragment thereof.
The subject is often a human. Allele therapy methods often are utilized in
conjunction with a method of
first determining whether a subject has genomic DNA that includes polymorphic
variants associated
with osteoarthritis.
[0190] In another allele therapy embodiment, provided herein is a method which
comprises
contacting one or more cells in the subject or from the subject with a
polypeptide encoded by a nucleic
acid having a first nucleotide sequence (e.g., the first nucleotide sequence
is identical to or substantially
identical to the nucleotide sequence of SEQ ID NO: 1-7 or other nucleotide
sequence referenced in
Table A). Genomic DNA in the subject comprises a second nucleotide sequence
having one or more
polymorphic variations associated with osteoarthritis (e.g., the second
nucleotide sequence is identical
to or substantially identical to a nucleotide sequence of SEQ ID NO: 1-7 or
other nucleotide sequence
referenced in Table A). The first and second nucleotide sequences typically
are substantially identical
to one another, and the first nucleotide sequence comprises fewer polymorphic
variations associated
with osteoarthritis than the second nucleotide sequence. The first nucleotide
sequence may comprise a
gene sequence that encodes a full-length polypeptide or a fragment thereof.
The subject is often a
human.


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
[0191] For antibody-based therapies, antibodies can be generated that are both
specific for target
molecules and that reduce target molecule activity. Such antibodies may be
administered in instances
where antagonizing a target molecule function is appropriate for the treatment
of osteoarthritis.
[0192] In circumstances where stimulating antibody production in an animal or
a human subject by
injection with a target molecule is harmful to the subject, it is possible to
generate an immune response
against the target molecule by use of anti-idiotypic antibodies (see, e.g.,
Herlyn, Anfa. Med.; 31 (1): 66-78
(1999); and Bhattacharya-Chatterjee & Foon, Cancer Treat. Res.; 94: 51-68
(1998)). Introducing an
anti-idiotypic antibody to a mammal or human subject often stimulates
production of anti-anti-idiotypic
antibodies, which typically are specific to the target molecule. Vaccines
directed to osteoarthritis also
may be generated in this fashion.
[0193] In instances where the target molecule is intracellular and whole
antibodies are used,
internalizing antibodies may be preferred. Lipofectin or liposomes can be used
to deliver the antibody
or a fragment of the Fab region that binds to the target antigen into cells.
Where fragments of the
antibody are used, the smallest inhibitory fragment that binds to the target
antigen is preferred. For
example, peptides having an amino acid sequence corresponding to the Fv region
of the antibody can be
used. Alternatively, single chain neutralizing antibodies that bind to
intracellular target antigens can
also be administered. Such single chain antibodies can be administered, for
example, by expressing
nucleotide sequences encoding single-chain antibodies within the target cell
population (see, e.g.,
Marasco et al., Proc. Natl. Acad. Sci. USA 90: 7889-7893 (1993)).
[0194] Modulators can be administered to a patient at therapeutically
effective doses to treat
osteoarthritis. A therapeutically effective dose refers to an amount of the
modulator sufficient to result
in amelioration of symptoms of osteoarthritis. Toxicity and therapeutic
efficacy of modulators can be
determined by standard pharmaceutical procedures in cell cultures or
experimental animals, e.g., for
determining the LDSO (the dose lethal to 50% of the population) and the EDso
(the dose therapeutically
effective in 50% of the population). The dose ratio between toxic and
therapeutic effects is the
therapeutic index and it can be expressed as the ratio LDSO/EDso. Modulators
that exhibit large
therapeutic indices are preferred. While modulators that exhibit toxic side
effects can be used, care
should be taken to design a delivery system that targets such molecules to the
site of affected tissue in
order to minimize potential damage to uninfected cells, thereby reducing side
effects.
[0195] Data obtained from cell culture assays and animal studies can be used
in formulating a
range of dosages for use in humans. The dosage of such compounds lies
preferably within a range of
circulating concentrations that include the EDSO with little or no toxicity.
The dosage can vary within
this range depending upon the dosage form employed and the route of
administration utilized. For any
compound used in the methods described herein, the therapeutically effective
dose can be estimated
initially from cell culture assays. A dose can be formulated in animal models
to achieve a circulating
plasma concentration range that includes the ICSO (i. e., the concentration of
the test compound that
achieves a half maximal inhibition of symptoms) as determined in cell culture.
Such information can be
56


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
used to more accurately determine useful doses in humans. Levels in plasma can
be measured, for
example, by high performance liquid chromatography.
[0196] Another example of effective dose determination for an individual is
the ability to directly
assay levels of "free" and "bound" compound in the serum of the test subject.
Such assays may utilize
antibody mimics and/or "biosensors" that have been created through molecular
imprinting techniques.
Molecules that modulate target molecule activity are used as a template, or
"imprinting molecule", to
spatially organize polymerizable monomers prior to their polymerization with
catalytic reagents. The
subsequent removal of the imprinted molecule leaves a polymer matrix which
contains a repeated
"negative image" of the compound and is able to selectively rebind the
molecule under biological assay
conditions. A detailed review of this technique can be seen in Ansell et al.,
Cu~~ent Opinion in
Biotechnology 7: 89-94 (1996) and in Shea, Trends in Polymer Science 2: 166-
173 (1994). Such
"imprinted" affinity matrixes are amenable to ligand-binding assays, whereby
the immobilized
monoclonal antibody component is replaced by an appropriately imprinted
matrix. An example of the
use of such matrixes in this way can be seen in Vlatakis, et al., Nature 361:
645-647 (1993). Through
the use of isotope-labeling, the "free" concentration of compound which
modulates target molecule
expression or activity readily can be monitored and used in calculations of
ICSO. Such "imprinted"
affinity matrixes can also be designed to include fluorescent groups whose
photon-emitting properties
measurably change upon local and selective binding of target compound. These
changes readily can be
assayed in real time using appropriate fiberoptic devices, in turn allowing
the dose in a test subject to be
quickly optimized based on its individual ICSO. An example of such a
"biosensor" is discussed in Kriz
et al., Analytical Chemistry 67.' 2142-2144 (1995).
[0197] The examples set forth below illustrate but not limit the invention.
Examples
[0198] In the following studies a group of subjects was selected according to
specific parameters
pertaining to osteoarthritis. Nucleic acid samples obtained from individuals
in the study group were
subjected to genetic analyses that identified associations between
osteoarthritis and certain polymorphic
variants in human genomic DNA. The polymorphisms were genotyped again in two
replication cohorts
consisting of individuals selected for OA. In addition, SNPs proximal to the
incident polymorphism in
the KIAA0296 region, the Cla~~om 4 region, the Ch~om 6 region, the ELP3
region, the LRCHI region, the
SNWI region and in the ERG region were identified and allelotyped in OA case
and control pools.
Methods are described for producing target polypeptides encoded by the nucleic
acids of Table A in
vitf~o or in vivo, which can be utilized in methods that screen test molecules
for those that interact with
target polypeptides. Test molecules identified as being interactors with
target polypeptides can be
screened further as osteoarthritis therapeutics.
57


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
Example 1
Samples and Poolin S~ trategies
Sample Selection
[0199] Blood samples were collected from individuals diagnosed with knee
osteoarthritis, which
were referred to as case samples. Also, blood samples were collected from
individuals not diagnosed
with knee osteoarthritis as gender and age-matched controls. A database was
created that listed all
phenotypic trait information gathered from individuals for each case and
control sample. Genomic
DNA was extracted from each of the blood samples for genetic analyses.
DNA Extraction from Blood Samples
[0200] Six to ten milliliters of whole blood was transferred to a 50 ml tube
containing 27 ml of red
cell lysis solution (RCL). The tube was inverted until the contents were
mixed. Each tube was
incubated for 10 minutes at room temperature and inverted once during the
incubation. The tubes were
then centrifuged for 20 minutes at 3000 x g and the supernatant was carefully
poured off. 100-200 w1 of
residual liquid was left in the tube and was pipetted repeatedly to resuspend
the pellet in the residual
supernatant. White cell lysis solution (WCL) was added to the tube and
pipetted repeatedly until
completely mixed. While no incubation was normally required, the solution was
incubated at 37°C or
room temperature if cell clumps were visible after mixing until the solution
was homogeneous. 2 ml of
protein precipitation was added to the cell lysate. The mixtures were vortexed
vigorously at high speed
for 20 sec to mix the protein precipitation solution uniformly with the cell
lysate, and then centrifuged
for 10 minutes at 3000 x g. The supernatant containing the DNA was then poured
into a clean 15 ml
tube, which contained 7 ml of 100% isopropanol. The samples were mixed by
inverting the tubes gently
until white threads of DNA were visible. Samples were centrifuged for 3
minutes at 2000 x g and the
DNA was visible as a small white pellet. The supernatant was decanted and 5 ml
of 70% ethanol was
added to each tube. Each tube was inverted several times to wash the DNA
pellet, and then centrifuged
for 1 minute at 2000 x g. The ethanol was decanted and each tube was drained
on clean absorbent
paper. The DNA was dried in the tube by inversion for 10 minutes, and then
1000 ~,1 of 1X TE was
added. The size of each sample was estimated, and less TE buffer was added
during the following DNA
hydration step if the sample was smaller. The DNA was allowed to rehydrate
overnight at room
temperature, and DNA samples were stored at 2-8°C.
[0201] DNA was quantified by placing samples on a hematology mixer for at
least 1 hour. DNA
was serially diluted (typically 1:80, 1:160, 1:320, and 1:640 dilutions) so
that it would be within the
measurable range of standards. 125 p,1 of diluted DNA was transferred to a
clear U-bottom microtitre
plate, and 125 ~,1 of 1X TE buffer was transferred into each well using a
multichannel pipette. The
DNA and 1X TE were mixed by repeated pipetting at least 15 times, and then the
plates were sealed. 50
p1 of diluted DNA was added to wells AS-H12 of a black flat bottom microtitre
plate. Standards were
58


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
inverted six times to mix them, and then 50 ~,1 of 1X TE buffer was pipetted
into well A1, 1000 ng/ml
of standard was pipetted into well A2, 500 ng/ml of standard was pipetted into
well A3, and 250 ng/ml
of standard was pipetted into well A4. PicoGreen (Molecular Probes, Eugene,
Oregon) was thawed and
freshly diluted 1:200 according to the number of plates that were being
measured. PicoGreen was
vortexed and then 501 was pipetted into all wells of the black plate with the
diluted DNA. DNA and
PicoGreen were mixed by pipetting repeatedly at least 10 times with the
multichannel pipette. The plate
was placed into a Fluoroskan Ascent Machine (microplate fluorometer produced
by Labsystems) and
the samples were allowed to incubate for 3 minutes before the machine was run
using filter pairs 485
nm excitation and 538 nm emission wavelengths. Samples having measured DNA
concentrations of
greater than 450 ng/~,1 were re-measured for conformation. Samples having
measured DNA
concentrations of 20 ng/~,1 or less were re-measured for confirmation.
Poolin S~trate-dies - Discovery Cohort
[0202] Samples were derived from the Nottingham knee OA family study (UK)
where index cases
were identified through a knee replacement registry. Siblings were approached
and assessed with knee
x-rays and assigned status as affected or unaffected. In all 1,157 individuals
were available. In order to
create same-sex pools of appropriate sizes, 335 unrelated female individuals
with OA from the
Nottingham OA sample were selected for the case pool. The control pool was
made up of unrelated
female individuals from the St. Thomas twin study (England) with normal knee x-
rays and without
other indications of OA, regardless of anatomical location, as well as lacking
family history of OA. The
St. Thomas twin study consists of Caucasian, female participants from the St.
Thomas' Hospital,
London, adult-twin registry, which is a voluntary registry of >4,000 twin
pairs ranging from 18 to
76 years of age. The female case samples and female control samples are
described further in Table 1
below.
[0203] A select set of samples from each group were utilized to generate
pools, and one pool was
created for each group. Each individual sample in a pool was represented by an
equal amount of
genomic DNA. For example, where 25 ng of genomic DNA was utilized in each PCR
reaction and
there were 200 individuals in each pool, each individual would provide 125 pg
of genomic DNA.
Inclusion or exclusion of samples for a pool was based upon the following
criteria: the sample was
derived from an individual characterized as Caucasian; the sample was derived
from an individual of
British paternal and maternal descent; case samples were derived from
individuals diagnosed with
specific knee osteoarthritis (OA) and were recruited from an OA knee
replacement clinic. Control
samples were derived from individuals free of OA, family history of OA, and
rheumatoid arthritis.
Also, sufficient genomic DNA was extracted from each blood sample for all
allelotyping and
genotyping reactions performed during the study. Phenotype information from
each individual was
collected and included age of the individual, gender, family history of OA,
general medical information
(e.g., height, weight, thyroid disease, diabetes, psoriasis, hysterectomy),
joint history (previous and
current symptoms, joint-related operations, age at onset of symptoms, date of
primary diagnosis, age of
59


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
individual as of primary diagnosis and order of involvement), and knee-related
findings (crepitus,
restricted passive movement, bony swelling/deformity). Additional knee
information included knee
history, current symptoms, any major knee injury, menisectomy, knee
replacement surgery, age of
surgery, and treatment history (including hormone replace therapy (HRT)).
Samples that met these
criteria were added to appropriate pools based on disease status.
[0204] The selection process yielded the pools set forth in Table 1, which
were used in the studies
that follow:
TABLE 1
Female case Female control


Pool size 335 335


umber)


Pool Criteria
ntr case
l


(ex: case/control)co
o


Mean Age 5'7,21 69.95


(ex: years)


Example 2
Association of Polymorphic Variants with Osteoarthritis
[0205] A whole-genome screen was performed to identify particular SNPs
associated with
occurrence of osteoarthritis. As described in Example 1, two sets of samples
were utilized, which
included samples from female individuals having knee osteoarthritis
(osteoarthritis cases), and samples
from female individuals not having knee osteoarthritis (female controls). The
initial screen of each pool
was performed in an allelotyping study, in which certain samples in each group
were pooled. By
pooling DNA from each group, an allele frequency for each SNP in each group
was calculated. These
allele frequencies were then compared to one another. Particular SNPs were
considered as being
associated with osteoarthritis when allele frequency differences calculated
between case and control
pools were statistically significant. SNP disease association results obtained
from the allelotyping study
were then validated by genotyping each associated SNP across all samples from
each pool. The results
of the genotyping then were analyzed, allele frequencies for each group were
calculated from the
individual genotyping results, and a p-value was calculated to determine
whether the case and control
groups had statistically significant differences in allele frequencies for a
particular SNP. When the
genotyping results agreed with the original allelotyping results, the SNP
disease association was
considered validated at the genetic level.
SNP Panel Used for Genetic Anal'tses
[0206] A whole-genome SNP screen began with an initial screen of approximately
25,000 SNPs
over each set of disease and control samples using a pooling approach. The
pools studied in the screen
are described in Example 1. The SNPs analyzed in this study were part of a set
of 25,488 SNPs


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
confirmed as being statistically polymorphic as each is characterized as
having a minor allele frequency
of greater than 10%. The SNPs in the set reside in genes or in close proximity
to genes, and many
reside in gene exons. Specifically, SNPs in the set are located in exons,
introns, and within 5,000 base-
pairs upstream of a transcription start site of a gene. In addition, SNPs were
selected according to the
following criteria: they are located in ESTs; they are located in Locuslink or
Ensembl genes; and they
are located in Genomatix promoter predictions. SNPs in the set were also
selected on the basis of even
spacing across the genome, as depicted in Table 2.
[0207] A case-control study design using a whole genome association strategy
involving
approximately 28,000 single nucleotide polymorphisms (SNPs) was employed.
Approximately 25,000
SNPs were evenly spaced in gene-based regions of the human genome with a
median inter-marker
distance of about 40,000 base pairs. Additionally, approximately 3,000 SNPs
causing amino acid
substitutions in genes described in the literature as candidates for various
diseases were used. The case-
control study samples were of female Caucasian origin (British paternal and
maternal descent) 670
individuals were equally distributed in two groups: female controls and female
cases. The whole
genome association approach was first conducted on 2 DNA pools representing
the 2 groups.
Significant markers were confirmed by individual genotyping.
TABLE 2
General Statistics Spacing Statistics
Total # of SNPs 25,488 Median 37,058 by


# of Exonic SNPs>4,335 (17%) Minimum* 1,000 by


# SNPs with refSNP20,776 (81%) Maximum* 3,000,000
ID by


Gene Coverage >10,000 Mean 122,412
by


Chromosome CoverageAll Std Deviation 373,325
by


*Excludes outliers


Alleloty~ing and Genoty~ing Results
[0208] The genetic studies summarized above and described in more detail below
identified allelic
variants associated with osteoarthritis, which are summarized in Table A.
Assay for Verifying, Alleloty~ing, and Genotypin~ SNPs
[0209] A MassARRAYTM system (Sequenom, Inc.) was utilized to perform SNP
genotyping in a
high-throughput fashion. This genotyping platform was complemented by a
homogeneous, single-tube
assay method (hMETM or homogeneous MassEXTENDTM (Sequenom, Inc.)) in which two
genotyping
primers anneal to and amplify a genomic target surrounding a polymorphic site
of interest. A third
primer (the MassEXTENDTM primer), which is complementary to the amplified
target up to but not
including the polymorphism, was then enzymatically extended one or a few bases
through the
polymorphic site and then terminated.
61


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
[0210] For each polymorphism, SpectroDESIGNERTM software (Sequenom, Inc.) was
used to
generate a set of PCR primers and a MassEXTENDTM primer which where used to
genotype the
polymorphism. Other primer design software could be used or one of ordinary
skill in the art could
manually design primers based on his or her knowledge of the relevant factors
and considerations in
designing such primers. Table 3 shows PCR primers and Table 4 shows extension
primers used for
analyzing polymorphisms. The initial PCR amplification reaction was performed
in a 5 ~,l total volume
containing 1X PCR buffer with 1.5 mM MgCl2 (Qiagen), 200 p,M each of dATP,
dGTP, dCTP, dTTP
(Gibco-BRL), 2.5 ng of genomic DNA, 0.1 units of HotStar DNA polymerase
(Qiagen), and 200 nM
each of forward and reverse PCR primers specific for the polymorphic region of
interest.
TABLE 3: PCR Primers
SNP


Forward PCR primer Reverse PCR primer
Reference


rs552 ACGTTGGATGGACTGAGGTAGATGATGCACGTTGGATGGCTTTCTTTCCCTTGGTTTC


rs12904 ACGTTGGATGGAACCACTCCCACCACAGACGTTGGATGGGTGGGGATGGCACTGTC


rs2282146ACGTTGGATGTCCCACGAGGACCTGGAGACGTTGGATGTTCGTTTGGGTGGCCGGG


rs734784ACGTTGGATGTCGGGATGTCTCCAGAGATGACGTTGGATGGCAACCACCAAGAGTTTGAG


rs1042164ACGTTGGATGTTTCTTCCAGACGGGCTTTCACGTTGGATGCAAAGTCAGCCGCAAACGAC


rs749670ACGTTGGATGTCTCATCTGTGTGCCCATTGACGTTGGATGATGAGGGTGAAAGGCAGGAG


rs955592ACGTTGGATGTTCCCATTCTTCTTGGGCTCACGTTGGATGTCTCAGAGGGTCTCCTTTTC


rs1143016ACGTTGGATGTTGTCCAGCAGGTAGGGCAGACGTTGGATGACCCATCGCGGATACATGTG


rs755248ACGTTGGATGGGTCTCTGCTGAGGAAGTGGACGTTGGATGACACTCACTACGGGGCCAG


rs1055055ACGTTGGATGTTGTGCTTGCTGAGGAATCCACGTTGGATGGTTGCAGAGAGCGTCTATAC


rs835409ACGTTGGATGTCCTGTTGGCTTTTGCAGACACGTTGGATGACTGCTCATGGTGGTTGAAC


rs927663ACGTTGGATGTTTGACTGGTTGCCCCAAACACGTTGGATGAAGAATCTTCAGTGCCAGCC


rs8162 ACGTTGGATGCTTCATCCAGAACCTCCAGGACGTTGGATGTGCATATGGCTTGTCAGAGC


rs831038ACGTTGGATGTGAAAGAGCTGCCTTCTTTCACGTTGGATGAAATGACACTCACGGTAAGC


rs33079 ACGTTGGATGTTATTTCATTGGCCAAGCCCACGTTGGATGGTGTTCACTTGTTCATGCAC


rs1710880ACGTTGGATGCGAAGGCAGAGAATAAACTGACGTTGGATGAACTCTGTGGTTTAAGAAAG


rs1078153ACGTTGGATGTCCTGCGTGTAACTGAGAGGACGTTGGATGAACATACACACAGTGCGAGC


rs799570ACGTTGGATGATGCATATGGGCAGGTTGCCACGTTGGATGCCAGGAAAGCATCCTCAGAC


rs1282730ACGTTGGATGTCCTTTGACTTACTGTGCTGACGTTGGATGAGAAAAGAGGTTGTGTACAG


rs1518875ACGTTGGATGAGAATGCGTTCAATGCCTGCACGTTGGATGAGCGAAAAGCTCTGCCATTG


rs1568694ACGTTGGATGGTTCATTCAGTTATGGACGGACGTTGGATGTGATAGGAGGGAGCCATCTC


rs905042ACGTTGGATGTAACAATGGTAAGGGCCAAGACGTTGGATGGGTCCATAATGGTCATTGTG


rs1957723ACGTTGGATGTACTCACTTGTGTACTGCTCACGTTGGATGGCTGCAGCGTCACATTAATC


rs794018ACGTTGGATGGGATGATGATGAAATGACTGACGTTGGATGGCTCTAGTTAGATGAGTCTC


rs707723ACGTTGGATGTGTGGCTGAAGTTTGCTCTGACGTTGGATGCACACACAAACCTTGAAGAG


rs893861ACGTTGGATGGAGGCATGTACACAAAACTGACGTTGGATGGCTCACGACTGTAATAGTTG


rs1914903ACGTTGGATGTGCGTCAAGT1'GAAGTCCTCACGTTGGATGAGGGTAGTGAGTTCACATGC


rs2062232ACGTTGGATGTCCTGCTCAGATAACTGCTGACGTTGGATGGCGGTAGTTTTCCCTAAACC


rs26609 ACGTTGGATGCAAGGGAGATCAGAAACATCACGTTGGATGAATTCATTGTTCTTGATGGC


rs1370987ACGTTGGATGATACTTTGGATGTCTGGTGGACGTTGGATGGGTCTTTGGTCACAACTATC


rs1012414ACGTTGGATGACTTGGAAAGTCAGTCTGGGACGTTGGATGGAAACCGAGAAATGGCTATG


rs435903ACGTTGGATGGGCATAAGTTAGAGACAACCACGTTGGATGGGCTATGTTATGCTGCTGTG


rs1248 ACGTTGGATGGAGATTGTGCATTTTGGCAAGACGTTGGATGCAGACACCATCTTAACCAAG


rs703508ACGTTGGATGAGCTCTGTGGCCTCTTTTGGACGTTGGATGTACTCACAGTCTTCCCGGCG


rs226465ACGTTGGATGAATTTTGACCCCTGCCAACCACGTTGGATGTATGTGAAAGAGGCGTGAAG


rs241448ACGTTGGATGCAAGCTGCAGAAGCTTGCCACGTTGGATGTGAGAAGAGGGCCCAGTATC


rs763155ACGTTGGATGGGGAAACCCAAAATAGTGTCACGTTGGATGTCACAGGAGAGTAATGCCTC


rs1040461ACGTTGGATGACATCTGGTGGAAGTCACTCACGTTGGATGGGTCCTTTGTTTGTTGGGTC


rs462832~ ACGTTGGATGCACTTTCTCTGTAATATTTGACGTTGGATGTGAGACAACAAAAATTTGCC
~


62


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
SNP Forward PCR primer Reverse PCR primer
Reference


rs804194ACGTTGGATGTAATCCGGTGGCAGATCAAGACGTTGGATGGAAATTCATGTGCTGACGGG


rs1022646ACGTTGGATGACTGTCACCTAATCATCCTGACGTTGGATGGACTATGTTGGAGTTCAGAG


rs1569112ACGTTGGATGTCATGATCTGCCTGTGGAGAACGTTGGATGACCATCCTCACACCCATCCA


rs805623ACGTTGGATGATCAACCACTCATACACTGCACGTTGGATGCACAGAAACAGCTGGATTGC


rs1019850ACGTTGGATGTTTTACTCCAGGAAGCCACCACGTTGGATGAGCAGGGAGAATTGTTCCAG


rs1599931ACGTTGGATGTCAAACCCTTCCTGTAGACGACGTTGGATGTGAACATAGTAGGCGCTCAG


AA ACGTTGGATGTAGGAGTGCTCGTATTTTGGACGTTGGATGCTGGGAACAGCTTTTGATCC


rs279941ACGTTGGATGCATAGGGAACACCGAGAATGACGTTGGATGGGTTGTCATCTATGGGCTAG


rs1062230ACGTTGGATGAAACTCCTTTCCCTCTCAAGACGTTGGATGGGCCCATCAGTCTATAGTTT


rs1859911ACGTTGGATGCTGTITfTCCGAGCATCTACACGTTGGATGCCTCTTGCATATGAGATAGG


rs1477261ACGTTGGATGCAGGGTTATGTGGTATTATCACGTTGGATGGGGAAAGTAAAAGATAAGAG


rs1191119ACGTTGGATGACTCTCAGGGTGATTATCTGACGTTGGATGTGTAAGATTCTGGCACTGTC


rs657780ACGTTGGATGTTTAAGAAGCCGCCAAGGAGACGTTGGATGCCCATTTTCAGACCACTTGG


rs1393890ACGTTGGATGGTCTGATTATCTTTCTGCCGACGTTGGATGGGTACCTTTATCCTTGCTTC


rs1478714ACGTTGGATGAATAATTTGCTGACACCCCCACGTTGGATGGGAGTCCAGAGGTTAAACAG


rs868213ACGTTGGATGTGTCAGAACTGGGCACATTCACGTTGGATGAGGGATAGGGATCAGGAATG


rs690115ACGTTGGATGAATAGCCAAGGCCGTGTGGGACGTTGGATGCACCTGGGAGATAGCAGGG


rs1465501ACGTTGGATGTCAGGAATTGTTACCTGGACACGTTGGATGCCCTCATCTAGACACTTTTG


rs899173ACGTTGGATGAGTGCCACATCACTCTTGTGACGTTGGATGTTCTGCTCCACTACAGTCTC


rs10477 ACGTTGGATGGGGGCTACGTGGAAGTTACCACGTTGGATGATGGCAATCAAGAGAGTCTAA


rs926393ACGTTGGATGAGATCAGCCCAGGAAATGTGACGTTGGATGTGTTGGAGAAGGTTTCCACC


rs465271ACGTTGGATGAATCACAGCTCATGGCTCACACGTTGGATGATGGTAGTGTGCACCTATGG


rs13847 ACGTTGGATGCGCCCGTAGTGATAAGCACACGTTGGATGCAGGACAGGGCAGAGTGAG


rs738658ACGTTGGATGGATGGTATGTGTGCATCAGGACGTTGGATGCTTTCCAAGAGATGGCGTTC


rs756519ACGTTGGATGTCTAGAGACACCTGAGGTTGACGTTGGATGTGTTTCACTTCAGAGCCCTG


rs1042327ACGTTGGATGAACTTCACATCACAGCTCCCACGTTGGATGCAGAAGTTGGGTTTTCCAGC


rs8770 ACGTTGGATGCTGTCACTGGACACTTTTGACGTTGGATGAAAATAGAGGTGCAGAGATG


rs1563055ACGTTGGATGAGTTCTTTCTCCTCACATTGACGTTGGATGCCCTTTAGAAGCACATACTC


rs912428ACGTTGGATGACTACATCCATTCCAGGGAGACGTTGGATGTCAGATCAGAGTGAGTTTAG


rs1888475ACGTTGGATGACCCCTGGCAAGTGAATTACACGTTGGATGGGGAGGTGGATGTTCTTATC


[0211] Samples were incubated at 95°C for 15 minutes, followed by 45
cycles of 95°C for 20
seconds, 56°C for 30 seconds, and 72°C for 1 minute, finishing
with a 3 minute final extension at 72°C.
Following amplification, shrimp alkaline phosphatase (SAP) (0.3 units in a 2
~l volume) (Amersham
Pharmacia) was added to each reaction (total reaction volume was 7 ~1) to
remove any residual dNTPs
that were not consumed in the PCR step. Samples were incubated for 20 minutes
at 37°C, followed by
minutes at 85°C to denature the SAP.
[0212] Once the SAP reaction was complete, a primer extension reaction was
initiated by adding a
polymorphism-specific MassEXTENDTM primer cocktail to each sample. Each
MassEXTENDTM
cocktail included a specific combination of dideoxynucleotides (ddNTPs) and
deoxynucleotides
(dNTPs) used to distinguish polymorphic alleles from one another. Methods for
verifying, allelotyping
and genotyping SNPs are disclosed, for example, in U.S. Pat. No. 6,258,538,
the content of which is
hereby incorporated by reference. In Table 4, ddNTPs are shown and the fourth
nucleotide not shown is
the dNTP.
63


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
TABLE 4: Extension Primers
SNP Termination
ReferenceExtend Probe Mix


rs552 TGATGCTGTTGTCAGATACC ACT


rs12904 AGCCTCAAAACGGGTCA ACT


rs2282146GGACCTGGAGCCCCCACC ACG


rs734784GCCTCCGACACCCCATCAA ACG


rs1042164CTTGCTCGGGACCAGTCCA ACT


rs749670GGTGGTGGGCATCCCTTTC ACG


rs955592TTGGGCTCTGACCACCTCT ACT


rs1143016ATGCAGCGTCACCAGCAC ACT


rs755248TGAGGAAGTGGCAGGTGTG ACG


rs1055055CCCAGTTCAGGCTCACTTTC ACT


rs835409TTGCAGACCAGCCAATTAAGAA ACT


rs927663GGTTGCCCCAAACTCCCTT ACT


rs8162 AACACAGAGCAAAGCACC ACT


rs831038CGTTATAGTAAAGGAAAGGCAG ACG


rs33079 CCCATCACCTGGAGCTTTG ACG


rs1710880CTGTATTATGTTTCCCCTTGG CGT


rs1078153GCCGGCACCGTCAGAAAC CGT


rs799570GCAGTTCCTAGAAGACAGCT ACT


rs1282730TGCTGGCCCAACTTTTGTCT ACG


rs1518875CTGCAATGTTTCCAAACCCC ACT


rs1568694AGTTATGGACGGAAGAAGGG ACG


rs905042GGTAAGGGCCAAGTGAGTG CGT


rs1957723AGCATGGCATAGGCACTGG ACG


rs794018AAATGACTGAAAATGTGTACTATA ACG


rs707723CCTGAGGTATATTCAATA ACG


rs893861CATGTACACAAAACTGTTAAGTAA ACG


rs1914903TCCCCATAGATGGACCTGC ACG


rs2062232GCTGAAGACAAGGATTAGGTT ACG


rs26609 GAGATCAGAAACATCACCTTG CGT


rs1370987TTTGGGAGTTACTGCCTTAGAA ACT


rs1012414ACTAGGAACCAGAATATGAGCATC ACG


rs435903AAGCTAACAATGGAATAATGGC ACG


rs1248 GTGCATTTTGGCAAGAATATATG CGT


rs703508GGGGTCCAGGCAGAAAGAAAC ACG


rs226465CCTCTTCCCCTCCTCCCT ACT


rs241448GCAGAAGCTTGCCCAGCTC ACG


rs763155GCAGCCTGCAAGTGAGTGA ACT


rs 1040461AAGTCACTCCGGTCAGAATTCA ACT


rs462832ATAAGAATCTTTTAGATCCCAACA CGT


rs804194GATCAAGGCTGATCTCGCC ACT


rs1022646CCTAATCATCCTGCCACCC ACT


rs1569112ACCAGGCCGCATGGGCTG ACG


rs805623CTGTGTTCAAATAAGGCAACC ACT


rs1019850AGGAAGCCACCAGCTAATAC CGT


rs1599931CTGAGGCCGGGAGGGATT ACT


AA TAGTTTTAAATTCTGCACA ACT


rs279941AACACCGAGAATGAAAACATC ACT


rs1062230ATGCTGGTTCTGTCCAA ACG


rs1859911TCCGAGCATCTACATGCTCA ACT


rs1477261AGGAGGAGCCCAAATATGAAA CGT


rs1191119GTCTTTTTGTTAACTGGGGAACCC ACG


rs657780CGCCAAGGAGTTTCCCACA ACT


rs1393890CTGCCGTACCTGGCAAGC ACT


rs147871~CCCCGAGGGGACAGTCCA ~ ACG


64


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
SNP Extend Probe Termination
Reference Mix


rs868213GGGCACATTCTTGAGGAGGT ACG


rs690115AGCCGAGGGAGCTGACCCTG ACG


rs1465501TCCAGGAGCCCTCAGAATG ACT


rs899173CCTCTGGCAAAGTGTGGAGC ACG


rs10477 AGTACGATATCAAAGATC ACG


rs926393CAGGAAATGTGCTTTCGAGTTCC ACG


rs465271GGCTCAAGGGATCCTCCCA ACG


rs13847 AAGCACACCGGCACGAAC ACT


rs738658GAGGCATTTTCATTAATGCATG CGT


rs756519CAGAGCCCTGTTCTTTGATTT ACG


rs1042327CATCACAGCTCCCCACCAT ACT


rs8770 TAGACACTGTGTAAGCAATC ACG


rs 1563055TTCTCCTCACATTGTTTCTACT ACG


rs912428CCATTCCAGGGAGACTCCCA ACT


rs1888475GACATCAAATGATTCCCCTGT ~ ACT


[0213] The MassEXTENDTM reaction was performed in a total volume of 9 ~,1,
with the addition of
1X ThermoSequenase buffer, 0.576 units of ThermoSequenase (Amersham
Pharmacia), 600 nM
MassEXTENDTM primer, 2 mM of ddATP and/or ddCTP and/or ddGTP and/or ddTTP, and
2 mM of
dATP or dCTP or dGTP or dTTP. The deoxy nucleotide (dNTP) used in the assay
normally was
complementary to the nucleotide at the polymorphic site in the amplicon.
Samples were incubated at
94°C for 2 minutes, followed by 55 cycles of 5 seconds at 94°C,
5 seconds at 52°C, and 5 seconds
at 72°C.
[0214] Following incubation, samples were desalted by adding 16 ~1 of water
(total reaction
volume was 25 ~l), 3 mg of SpectroCLEANTM sample cleaning beads (Sequenom,
Inc.) and allowed to
incubate for 3 minutes with rotation. Samples were then robotically dispensed
using a piezoelectric
dispensing device (SpectroJETTM (Sequenom, Inc.)) onto either 96-spot or 384-
spot silicon chips
containing a matrix that crystallized each sample (SpectroCHIPTM (Sequenom,
Inc.)). Subsequently,
MALDI-TOF mass spectrometry (Biflex and Autoflex MALDI-TOF mass spectrometers
(Bruker
Daltonics) can be used) and SpectroTYPER RTTM software (Sequenom, Inc.) were
used to analyze and
interpret the SNP genotype for each sample.
Genetic Anal
[0215] Minor allelic frequencies for the polymorphisms set forth in Table A
were verified as being
10% or greater using the extension assay described above in a group of samples
isolated from 92
individuals originating from the state of Utah in the United States, Venezuela
and France (Coriell cell
repositories).
[0216] Genotyping results are shown for female pools in Table 5. In Table 5,
"AF" refers to allelic
frequency; and "F case" and "F control" refer to female case and female
control groups, respectively.


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
TABLE 5: Genotyping Results
SNP Reference p-~alue


F c se F control


A=0.190 A=0.123


rs552 G = 0.810 G = 0.877 0.0011


A = 0.455 A = 0.375


rs12904 G = 0,545 G = 0.625 0.0012


C = 0.906 C = 0.939


rs2282146 T = 0.094 T = 0.061 0.0105


G=0.483 G=0.416


rs734784 A = 0.517 A = 0.584 0.0052


T=0.233 T=0.159


rs1042164 C = 0.767 C = 0.841 0.0002


C=0.342 C=0.419


rs749670 T = 0.658 T = 0.581 0.0038


T = 0.045 T = 0.076


rs955592 C = 0.955 ' C = 0.924 0.0177


T = 0.093 T = 0.054


rs1143016 C = 0.907 C = 0.946 0.0071


G=0.146 G=0.069


rs755248 A = 0.854 A = 0.931 0.0000


A = 0.432 A = 0.355


rs 1055055 G = 0.568 G = 0.645 0.0046


T=0.620 T=0.681


rs835409 G = 0.380 G = 0.319 0.0222


T=0.301 T=0.358


rs927663 G = 0.699 G = 0.642 0.0289


A=0.591 A=0.657


rs8162 G = 0.409 G = 0.343 0.0149


C=0.617 C=0.666


rs831038 T = 0.383 T = 0.334 0.0359


G=0.823 G=0.881


rs33079 A = 0.177 A = 0.119 0.0013


C=0.303 C=0.371


rs1710880 A = 0.697 A = 0.629 0.0129


T=0.818 T=0.875


rs1078153 A = 0.182 A = 0.125 0.0039


A=0.675 A=0.740


rs799570 G = 0.325 G = 0.260 0.0100


G=0.086 G=0.127


rs1282730 A = 0.914 A = 0.873 0.0150


T = 0.033 T = 0.055


rs1518875 C = 0.967 C = 0.945 0.0508


G=0.045 G=0.081


rs1568694 A = 0.955 A = 0.919 0.0064


A = 0.832 A = 0.769


rs905042 T = 0.168 T = 0.231 0.0047


G = 0.778 G = 0.839


rs1957723 A = 0.222 A = 0.161 0.0048


G = 0.273 G = 0.220


rs794018 A = 0.727 A = 0.780 0.0034


C=0.759 C=0.811


rs707723 T = 0.241 T = 0.189 0.0195


G=0.246 G=0.196


rs893861 A = 0.754 A = 0.804 0.0251


G=0.861 G=0.910


rs1914903 A = 0.139 A = 0.090 0.0055


C=0.064 C=0.117


rs2062232 T = 0.936 T = 0.883 0.0012


A = 0.777 A = 0.840


rs26609 T = 0.223 T = 0.160 0.0039


A=0.422 A=0.341


rs1370987 G = 0.578 G = 0.659 0.0007


G=0.876 G=0.833


rs1012414 A = 0.124 A = 0.167 0.0289


rs435903 G = 0.766 G = 0.685 0.0013


66


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913



SNP ReferenceF case F co trol p-value


A=0.234 A=0.315


T = 0.668 T = 0.593


rs1248 A = 0.332 A = 0.407 0.0014


G=0.875 G=0.910


rs703508 A = 0.125 A = 0.090 0.0375


G=0.094 G=0.129


rs226465 C = 0.906 C = 0.871 0.0454


C=0.294 C=0.212


rs241448 T = 0.706 T = 0.788 0.0010


A=0.160 A=0.114


rs763155 C = 0.840 C = 0.886 0.0140


T = 0.069 T = 0.098


rs1040461 C = 0.931 C = 0.902 0.0281


A=0.218 A=0.145


rs462832 T = 0.782 T = 0.855 0.0008


T=0.583 T=0.679


rs804194 C = 0.417 C = 0.321 0.0004


A=0.169 A=0.103


rs1022646 G = 0.831 G = 0.897 0.0007


G=0.853 G=0.812


rs1569112 A = 0.147 A = 0.188 0.0468


A=0.097 A=0.140


rs805623 G = 0.903 G = 0.860 0.0143


A = 0.330 A = 0.240


rs 1019850 T = 0.670 T = 0.760 0.0005


A = 0.581 A = 0.659


rs1599931 G = 0.419 G = 0.341 0.0037


A = 0.506 A = 0.577


AA G = 0.494 G = 0.423 0.0102


T=0.100 T=0.138


rs279941 G = 0.900 G = 0.862 0.0324


C=0.778 C=0.717


rs1062230 T = 0.222 T = 0.283 0.0109


T = 0.295 T = 0.243


rs1859911 C = 0.705 C = 0.757 0.0328


T=0.861 T=0.809


rs1477261 A = 0.139 A = 0.191 0.0105


G=0.121 G=0.078


rs1191119 A = 0.879 A = 0.922 0.0079


A = 0.674 A = 0.583


rs657780 G = 0.326 G = 0.417 0.0009


G = 0.639 G = 0.724


rs1393890 C = 0.361 C = 0.276 0.0014


G=0.331 G=0.269


rs 1478714 A = 0.669 A = 0.731 0.0136


C=0.078 C=0.044


rs868213 T = 0.922 T = 0.956 0.0083


G = 0.839 G = 0.784


rs690115 A = 0.161 A = 0.216 0.0111


A = 0.846 A = 0.903


rs1465501 G = 0.154 G = 0.097 0.0020


C = 0.895 C = 0.858


rs899173 T = 0.105 T = 0.142 0.0408


C=0.087 C=0.146


rs 10477 T = 0.913 T = 0.854 0.0010


C=0.715 C=0.647


rs926393 T = 0.285 T = 0.353 0.0082


C=0.194 C=0.130


rs465271 T = 0.806 T = 0.870 0.0019


A=0.111 A=0.163


rs13847 G = 0.889 G = 0.837 0.0056


C = 0.898 C = 0.855


rs738658 A = 0.102 A = 0.145 0.0183


rs756519 C = 0.581 C = 0.656 0.0055


T=0.419 T=0.344


67


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
SNP Reference p-~alue


F c se F control


rs1042327 T = 0.472 T = 0.563 0
0012


C=0.528 C=0.437 .


rs8770 C = 0.529 C = 0.432 0
0001


T = 0.471 T = 0.568 .


rs1563055 C = 0.653 C = 0.736 0
0013


T = 0.347 T = 0.264 .


rs912428 T = 0.228 T = 0.170 0076
0


C=0.772 C=0.830 .


rs1888475 A = 0.188 A = 0.135 0
0087


G=0.812 G=0.865 .


[0217] All of the single marker alleles set forth in Table A were considered
validated, since the
genotyping data agreed with the allelotyping data and each SNP significantly
associated with
osteoarthritis. Particularly significant associations with osteoarthritis are
indicated by a calculated p-
value of less than 0.05 for genotype results.
Example 3
Association of Pol,~phic Variants with Osteoarthritis in Replication Cohorts
[0218] The single marker polymorphisms set forth in Table A were genotyped
again in two
replication cohorts consisting of individuals selected for OA.
Sample Selection and Poolin S~gies - Replication Sample 1
[0219] A second case control sample (replication sample #1) was created by
using 100 Caucasian
female cases from Chingford, UK, and 148 unrelated female cases from the St.
Thomas twin study.
Cases were defined as having I~ellgren-Lawrence (KL) scores of at least 2 in
at least one knee x-ray. In
addition, 199 male knee replacement cases from Nottingham were included. (For
a cohort description,
see the Nottingham description provided in Example 1). The control pool was
made up of unrelated
female individuals from the St. Thomas twin study (England) with normal knee x-
rays and without
other indications of OA, regardless of anatomical location, as well as lacking
family history of OA. The
St. Thomas twin study consists of Caucasian, female participants from the St.
Thomas' Hospital,
London, adult-twin registry, which is a voluntary registry of >4,000 twin
pairs ranging from 18 to
76 years of age. The replication sample 1 cohort was used to replicate the
initial results. Table 6 below
summarizes the selected phenotype data collected from the case and conh~ol
individuals.
TABLE 6
Phenotype Female cases (n=248):Male cases (n=199):Female controls
median (range)! median (range)/ (n=313):
(n,%) (n,%) mean (range)/ (n,%)


Age 59 (39- 73) 66 (45- 73) 55 (50- 72)


Height (cm) 162 (141- 178) 175 (152- 198) 162 (141- 176)


Weight (kg) 68 (51- 123) 86 (62- 127) 64 (40- 111)


Body mass 26 (18- 44) 29 (21- 41 ) 24 (18- 46)
index


68


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
Phenotype Female cases (n=248):Male cases (n=199):Female controls
(n=313):


median (range)/ median (range)/mean (range)/ (n,%)
(n,%) (n,%)


(kg/m')


Kellgren- 0 (63, 26%), 1
(20, 8%), 2


Lawrence* (105, 43%), 3 (58,NA NA
left 23%), 4


knee (1, 0%)


Kellgren- 0 (43, 7%), 1 (18,
7%), 2


Lawrence* (127, 52%), 3 (57,NA NA
right 23%), 4


knee (1, 0%)


KL* >2 both No (145, 59%), NA NA
Yes (101,


knees 41 %)


KL* >2 eitherNo (0, 0%), Yes NA NA
(248, 100%)


knee


* 0: normal, 1: doubtful, 2: definite osteophyte (bony protuberance), 3: joint
space narrowing
(with or without osteophyte), 4: joint deformity
Sample Selection and Pooling Strategies - Replication Sample 2
[0220] A third case control sample (replication sample #2) was created by
using individuals with
symptoms of OA from Newfoundland, Canada. These individuals were recruited and
examined by
rheumatologists. Affected joints were x-rayed and a final diagnosis of
definite or probable OA was
made according to American College of Rheumatology criteria by a single
rheumatologist to avoid any
inter-examiner diagnosis variability. Controls were recruited from volunteers
without any symptoms
from the musculoskeletal system based on a normal joint exam performed by a
rheumatologist. Only
cases with a diagnosis of definite OA were included in the study. Only
individuals of Caucasian origin
were included. The cases consisted of 228 individuals with definite knee OA,
106 individuals with
definite hip OA, and 74 individuals with hip OA.
TABLE 7
Phenotype Case Control


Age at Visit 62.7 52.5


Sex (Female/Male) 227/119 174/101


Knee OA Xray: No 35% (120) 80% (16)


Unknown 1 % (4) 0% (0)


Yes 64% (221 ) 20% (4)


Hip OA Xray: No 63% (215) 80% (16)


2 /0 7
Unknown ( ) 0 / 0
( )


Yes 35% (121) 20% (4)


Assay for Veri ins, Allelotypin~, and Genotyping SNPs
[0221] Genotyping of the replication cohorts described in Tables 6 and 7 was
performed using the
same methods used for the original genotyping, as described herein. A
MassARRAYTM system
69


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
(Sequenom, Inc.) was utilized to perform SNP genotyping in a high-throughput
fashion. This
genotyping platform was complemented by a homogeneous, single-tube assay
method (hMETM or
homogeneous MassEXTENDTM (Sequenom, Inc.)) in which two genotyping primers
anneal to and
amplify a genomic target surrounding a polymorphic site of interest. A third
primer (the
MassEXTENDTM primer), which is complementary to the amplified target up to but
not including the
polymorphism, was then enzymatically extended one or a few bases through the
polymorphic site and
then terminated.
[0222] For each polymorphism, SpectroDESIGNERTM software (Sequenom, Inc.) was
used to
generate a set of PCR primers and a MassEXTENDTM primer which where used to
genotype the
polymorphism. Other primer design software could be used or one of ordinary
skill in the art could
manually design primers based on his or her knowledge of the relevant factors
and considerations in
designing such primers. Table 3 shows PCR primers and Table 4 shows extension
probes used for
analyzing (e.g., genotyping) polymorphisms in the replication cohorts. The
initial PCR amplification
reaction was performed in a 5 p1 total volume containing 1X PCR buffer with
1.5 mM MgCl2 (Qiagen),
200 pM each of dATP, dGTP, dCTP, dTTP (Gibco-BRL), 2.5 ng of genomic DNA, 0.1
units of HotStar
DNA polymerase (Qiagen), and 200 nM each of forward and reverse PCR primers
specific for the
polymorphic region of interest.
[0223] Samples were incubated at 95°C for 15 minutes, followed by 45
cycles of 95°C for 20
seconds, 56°C for 30 seconds, and 72°C for 1 minute, finishing
with a 3 minute final extension at 72°C.
Following amplification, shrimp alkaline phosphatase (SAP) (0.3 units in a 2
p.1 volume) (Amersham
Pharmacia) was added to each reaction (total reaction volume was 7 p,1) to
remove any residual dNTPs
that were not consumed in the PCR step. Samples were incubated for 20 minutes
at 37°C, followed by
minutes at 85°C to denature the SAP.
[0224] Once the SAP reaction was complete, a primer extension reaction was
initiated by adding a
polymorphism-specific MassEXTENDTM primer cocktail to each sample. Each
MassEXTENDTM
cocktail included a specific combination of dideoxynucleotides (ddNTPs) and
deoxynucleotides
(dNTPs) used to distinguish polymorphic alleles from one another. Methods for
verifying, allelotyping
and genotyping SNPs are disclosed, for example, in U.S. Pat. No. 6,258,538,
the content of which is
hereby incorporated by reference. In Table 7, ddNTPs are shown and the fourth
nucleotide not shown is
the dNTP.
[0225] The MassEXTENDTM reaction was performed in a total volume of 9 p,1,
with the addition of
1X ThermoSequenase buffer, 0.576 units of ThermoSequenase (Amersham
Pharmacia), 600 nM
MassEXTENDTM primer, 2 mM of ddATP and/or ddCTP and/or ddGTP and/or ddTTP, and
2 mM of
dATP or dCTP or dGTP or dTTP. The deoxy nucleotide (dNTP) used in the assay
normally was
complementary to the nucleotide at the polymorphic site in the amplicon.
Samples were incubated at
94°C for 2 minutes, followed by 55 cycles of 5 seconds at 94°C,
5 seconds at 52°C, and 5 seconds
at 72°C.


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
[0226] Following incubation, samples were desalted by adding 16 p,1 of water
(total reaction
volume was 25 p.1), 3 mg of SpectroCLEANTM sample cleaning beads (Sequenom,
Inc.) and allowed to
incubate for 3 minutes with rotation. Samples were then robotically dispensed
using a piezoelectric
dispensing device (SpectroJETTM (Sequenom, Inc.)) onto either 96-spot or 384-
spot silicon chips
containing a matrix that crystallized each sample (SpectroCHl1'TM (Sequenom,
Inc.)). Subsequently,
MALDI-TOF mass spectrometry (Biflex and Autoflex MALDI-TOF mass spectrometers
(Bruker
Daltonics) can be used) and SpectroTYPER RTTM software (Sequenom, Inc.) were
used to analyze and
interpret the SNP genotype for each sample.
Genetic Analysis
[0227] Genotyping results for replication cohorts #1 and #2 are provided in
Tables 8 and 9,
respectively.
TABLE 8
Replication Meta-analysis
rslD #1 Disc. + Rep
(Mixed #1
MaleIFemale P-value
cases
and Female
controls)
AF OA Con
AF OA
Cas Delta
P-value


rs552 0.87 0.85 0.02 0.344 0.0300


rs12904 0.57 0.57 0.00 0.936 0.2700


rs22821460.08 0.1 -0.020.342 0.0190


rs734784 0.52 0.54 -0.020.451 0.7200


rs10421640.79 0.82 -0.030.161 0.9100


rs749670 0.62 0.66 -0.040.173 0.0019


rs955592 0.93 0.94 -0.010.521 0.0600


rs11430160.93 0.93 0.00 0.869 NA


rs755248 0.9 0.89 0.01 0.544 0.1600


rs10550550.64 0.64 0.00 0.947 0.3300


rs835409 0.34 0.35 -0.010.715 0.1300


rs927663 0.64 0.65 -0.010.611 0.0690


rs831038 0.35 0.37 -0.020.399 NA


rs33079 0.14 0.14 0.00 0.995 0.3100


rs17108800.66 0.62 0.04 0.087 0.9000


rs799570 0.29 0.29 0.00 0.903 0.2500


rs12827300.88 0.87 0.01 0.751 0.4800


rs15686940.93 0.94 0.00 0.928 0.2600


rs905042 0.21 0.2 0.01 0.829 0.2200


rs19577230.13 0.16 -0.030.124 0.0009


rs794018 0.74 0.72 0.02 0.518 0.0710


rs707723 0.18 0.19 -0.010.658 0.0650


rs19149030.15 0.14 0.01 0.605 0.5500


rs20622320.91 0.91 0.00 0.788 0.2100


rs26609 0.16 0.19 -0.020.226 0.0032


rs13709870.63 0.63 -0.010.857 0.3900


rs10124140.12 0.13 -0.010.669 0.5600


rs435903 0.27 0.27 0.00 0.950 0.2800


rs 1248 0.36 0.36 0.00 0.917 0.2400
~


71


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
Replication Meta-analysis
rslD #1 Disc. + Rep
(Mixed #1
MaleIFemale P-value
cases
and Female
controls)
AF OA
Con AF
OA Cas
Delta
P-value


rs703508 0.11 0.12 -0.010.558 0.0660


rs226465 0.87 0.88 -0.010.436 0.0500


rs241448 0.74 0.75 -0.010.805 0.4100


rs763155 0.86 0.88 -0.020.273 0.8800


rs1040461 0.92 0.92 0.00 0.826 NA


rs1022646 0.85 0.87 -0.020.219 0.8200


rs1569112 0.16 0.18 -0.020.402 0.8800


rs805623 0.87 0.88 -0.010.460 0.0370


rs1019850 0.69 0.7 0.00 0.890 0.3700


AA 0.47 0.48 -0.010.681 0.1200


rs279941 0.87 0.89 -0.010.400 0.0340


rs1062230 0.26 0.26 0.00 0.896 0.4200


rs1859911 0.71 0.75 -0.040.128 0.9000


rs1477261 0.16 0.16 0.00 0.986 0.3000


rs 11911190.89 0.88 0.01 0.569 0.1200


rs1393890 0.29 0.31 -0.020.527 0.1400


rs1478714 0.69 0.67 0.03 0.300 0.0140


rs868213 0.92 0.93 -0.010.455 0.7000


rs690115 0.2 0.21 -0.010.729 0.4900


rs1465501 0.11 0.1 0.01 0.718 0.5600


rs899173 0.1 0.11 0.00 0.924 0.3300


rs10477 0.89 0.88 0.01 0.691 0.4700


rs926393 0.3 0.31 -0.010.830 0.4200


rs465271 0.86 0.85 0.01 0.516 0.0660


rs13847 0.86 0.85 0.01 0.547 0.5900


rs738658 0.14 0.15 -0.010.536 0.6700


rs756519 0.4 0.43 -0.040.140 0.0098


rs1042327 0.49 0.52 -0.030.234 0.0430


rs8770 0.51 0.48 0.03 0.303 0.0480


rs1563055 0.31 0.35 -0.040.083 0.0002


rs912428 0.86 0.8 0.06 0.004 0.00001


rs1888475 0.86 0.81 _ 0.032 0.0002
I
0.04


TABLE 9
Replication Meta-analysis
rslD #2 (Newfoundland) Disc. + Rep
(MaleIFemale #2
cases Not Done
and controls)
AF OA Con
AF OA
Cas Delta
P-value


rs552 0.85 0.86 -0.0140.496


rs12904 0.58 0.57 0.011 0.719


rs22821460.08 0.08 0.002 0.876


rs734784 0.53 0.54 -0.0030.907


rs10421640.83 0.80 0.026 0.248


rs749670 0.66 0.62 0.036 0.208


rs955592 0.95 0.92 0.033 0.027


rs 11430160.96 0.94 0.015 0.236


rs755248 0.89 0.90 -0.0090.608


72


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
Replication Meta-analysis
rslD #2 (Newfoundland) Disc. + Rep
(MaleIFemale #2
cases Not Done
and controls)
AF OA
Con AF
OA Cas
Delta
P-value


rs 10550550.64 0.61 0.034 0.249


rs835409 0.36 0.31 0.047 0.101


rs927663 0.67 0.68 -0.013Ø631


rs831038 0.34 0.35 -0.0140.612


rs33079 0.17 0.19 -0.0190.417


rs1710880 0.64 0.62 0.029 0.309


rs799570 0.35 0.30 0.058 0.033


rs1282730 0.89 0.89 -0.0010.982


rs1568694 0.95 0.94 0.009 0.518


rs905042 0.19 0.20 -0.0020.933


rs1957723 0.18 0.20 -0.0170.454


rs794018 0.73 0.72 0.015 0.586


rs707723 0.20 0.21 -0.0070.759


rs1914903 0.14 0.16 -0.0220.285


rs2062232 0.92 0.91 0.008 0.632


rs26609 0.19 0.18 0.005 0.827


rs1370987 0.59 0.61 -0.0230.423


rs 10124140.15 0.14 0.008 0.679


rs435903 0.24 0.26 -0.0260.316


rs1248 0.33 0.38 -0.0510.078


rs703508 0.10 0.11 -0.0020.916


rs226465 0.89 0.89 -0.0070.699


rs241448 0.76 0.77 -0.0070.778


rs763155 0.89 0.84 0.049 0.016


rs 10404610.91 0.91 0.001 0.948


rs1022646 0.86 0.86 -0.0010.974


rs1569112 0.16 0.17 -0.0160.446


rs805623 0.89 0.87 0.022 0.256


rs1019850 0.71 0.69 0.026 0.341


AA 0.48 0.44 0.035 0.234


rs279941 0.91 0.87 0.037 0.047


rs1062230 0.23 0.22 0.011 0.653


rs1859911 0.72 0.71 0.015 0.560


rs1477261 0.17 0.14 0.031 0.143


rs1191119 0.86 0.88 -0.0170.377


rs1393890 0.30 0.28 0.017 0.516


rs1478714 0.68 0.70 -0.0250.358


rs868213 0.91 0.93 -0.0190.260


rs690115 0.19 0.18 0.005 0.811


rs1465501 0.10 0.12 -0.0200.282


rs899173 0.14 0.12 0.020 0.319


rs10477 0.86 0.88 -0.0160.442


rs926393 0.37 0.32 0.042 0.137


rs465271 0.87 0.85 0.023 0.263


rs13847 0.84 0.85 -0.0120.582


rs738658 0.18 0.15 0.021 0.340


rs756519 0.39 0.40 -0.0070.816


rs1042327 0.49 0.51 -0.0240.405


rs8770 0.53 I 0.49 0.039 0.195


73


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
Replication Meta-analysis
rslD #2 (Newfoundland) Disc. + Rep
(MaleIFemale #2
cases Not Done
and controls)
AF OA Con
AF OA
Cas Delta
P-value


rs15630550.34 0.34 -0.0050.864


rs912428 0._82 0.76 0.058 0.016
- -.


~ ~ _ -0.0250.280
rs1888475x.80 0.82 I


[0228] To combine the evidence for association from multiple sample
collections, a meta-analysis
procedure was employed. The allele frequencies were compared between cases and
controls within the
discovery sample, as well as within the replication cohort #1 using the
DerSimian-Laird approach
(DerSimonian, R. and N. Laird. 1986. Meta-analysis in clinical trials. Control
Clin Trials 7: 177-188.)
[0229] The absence of a statistically significant association in one or more
of the replication
cohorts should not be interpreted as minimizing the value of the original
fording. There are many
reasons why a biologically derived association identified in a sample from one
population would not
replicate in a sample from another population. The most important reason is
differences in population
history. Due to bottlenecks and founder effects, there may be common disease
predisposing alleles
present in one population that are relatively rare in another, leading to a
lack of association in the
candidate region. Also, because common diseases such as arthritis-related
disorders are the result of
susceptibilities in many genes and many environmental risk factors,
differences in population-specific
genetic and environmental backgrounds could mask the effects of a biologically
relevant allele. For
these and other reasons, statistically strong results in the original,
discovery sample that did not replicate
in one or more of the replication samples may be further evaluated in
additional replication cohorts and
experimental systems.
Example 4
KIAA0296 Reeion Proximal SNPs
[0230] SNP rs749670 is associated with osteoarthritis and is described in
Table A. It lies within
the KIAA0296 gene and codes for a G327E amino acid change. The thymine allele
of SNP rs749670 is
associated with osteoarthritis (see Table 5) and codes for glutamic acid.
KIAA0296 shares homology
with C2H2-type Zn-finger protein and is likely a novel transcription factor.
One-hundred one additional
allelic variants proximal to rs749670 were identified and subsequently
allelotyped in osteoarthritis case
and control sample sets as described in Examples 1 and 2. The polymorphic
variants are set forth in
Table 10. The chromosome positions provided in column four of Table 10 are
based on Genome
"Build 34" of NCBI's GenBank.
TABLE 10
dbSNP Position ChromosomeAllele
Chromosomein SEQ


rs# ID NO: Position Variants
1


rs750017616 247 31077197 a/


rs656521216 1535 31078485 c/t


74


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAllele
rs# Chromosomein SEQ Position Variants
1D NO:
1


rs805404616 2386 3107933_6 c/t


rs805684216 6440 3108339 c/t
0


rs73217316 9133 _ It
31086083


rs73217216 9143 31086093 a/


rs718855716 9471 3108642 alt
1


rs228800416 13150 _ c/
31090100


rs433731016 13717 31090667 c/t


rs201655416 14466 31091416 al


rs656521316 15769 31092719 a/c


rs720476216 16870 31093820 a/


rs488952916 18545 31095495 clt


rs656521416 18749 31095699 c/t


rs749967416 19123 31096073 /t


rs656521516 20736 31097686 al


rs102362316 21038 31097988 c/t


rs102362416 21046 31097996 c/t


rs102362516 21050 31098000 c/t


rs154929716 21056 31098006 alt


rs308489416 21706 31098656 -/acc


rs804822816 23170 31100120 a/


rs740543216 25028 31101978 a/t


rs805424916 27871 31104821 a/


rs806104716 28070 31105020 c/t


rs718722016 31717 31108667 a/


rs804697816 32019 31108969 a/


rs228800316 32318 31109268 a/


rs719642116 33080 31110030 a/


rs719643116 33101 31110051 a/


rs720315816 34236 31111186 a/


rs230322316 34285 31111235 c/t


rs203291716 34818 31111768 c/


rs804413416 35168 31112118 c/


rs488953116 37981 31114931 c/t


rs488953216 38113 31115063 c/


rs488953316 38117 31115067 c/t


rs88192916 38481 31115431 /t


rs804710416 38615 31115565 c/


rs804780316 38944 31115894 a/c


rs464487416 39288 31116238 a/c


rs235967316 41385 31118335 c/t


rs443527116 42136 31119086 a/t


rs719771716 42185 31119135 a/c


rs235967416 42353 31119303 a/


rs656521716 42434 31119384 a/


rs230322216 44580 31121530 a/


rs488961516 44675 31121625 alt


rs462419716 45739 31122689 /t


rs375185316 46439 31123389 c/t


rs74967116 47457 31124407 c/t


rs74967016 47735 31124685 c/t


rs375185516 50319 31127269 clt


rs375185616 50708 31127658 a/




CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP ChromosomePosition ChromosomeAllele
rs# in SEQ Position Variants
ID NO:
1


rs719672616 51185 31128135 a/


rs88955016 53002 31129952 a/


rs75095216 53064 31130014 c/t


rs207763316 53637 31130587 a/


rs719994916 55274 31132224 c/


rs203291616 55825 31132775 c/t


rs446864116 55986 31132936 a/c


rs488953516 56684 31133634 c/


rs431677516 57653 31134603 c/t


rs431381916 57659 31134609 c/


rs656521816 57692 31134642 /t


rs431822416 57775 31134725 c/t


rs104603016 61313 31138263 clt


rs7294 16 61431 31138381 a/


rs720074916 61699 31138649 al


rs235961216 62906 31139856 a/


rs805089416 63619 31140569 c/


rs288473716 64664 31141614 a/c


rs189551416 68452 31145402 /t


rs806020916 69665 31146615 c/t


rs806021716 69681 31146631 c/t


rs719616116 70091 31147041 a/


rs806233616 74637 31151587 a/


rs804377816 74760 31151710 a/


rs203291516 76523 31153473 a/


rs488961616 78559 31155509 c/


rs104556416 79549 31156499 a/c


rs230322116 79882 31156832 c/t


rs154929616 81339 31158289 a/


rs88955516 81681 31158631 c/t


rs581652116 81696 31158646 -/


rs74976716 83517 31160467 c/t


rs288473816 85431 31162381 a/c


rs205258116 86332 31163282 c/t


rs488961716 87358 31164308 a/


rs488961916 87725 31164675 c/t


rs197848716 89052 31166002 a/


rs197848616 90020 31166970 a/


rs197848516 90231 31167181 al


rs488962016 90284 31167234 a/


rs488962116 90447 31167397 c/t


rs321447716 90601 31167551 -!


rs452703416 90724 31167674 a/


rs106050616 92559 31169509 c/t


rs720012516 95176 31172126 a/


rs656521916 95195 31172145 c/t


rs88954816 96822 31173772 a/


76


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
Assay for Verifying and Allelotypin~NPs
[0231] The methods used to verify and allelotype the 101 proximal SNPs of
Table 10 are the same
methods described in Examples 1 and 2 herein. The primers and probes used in
these assays are
provided in Table 11 and Table 12, respectively.
TABLE 11
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs7500176ACGTTGGATGACAGTGGCTCATGCCTGTAAACGTTGGATGTTTCACCATATTGGCCAGGC


rs6565212ACGTTGGATGTTAGGAAGGATGTGGAAGGGACGTTGGATGGACCTGACCTCAAAGAGAAG


rs8054046ACGTTGGATGCACTGAAGTTTAGAGCAGCCACGTTGGATGTGCACAGTGGGTAACTGTAG


rs8056842ACGTTGGATGATGAGGTTTCACCTTGTTGGACGTTGGATGATCATAGCACTTTGCGAGGC


rs732173ACGTTGGATGAGACCAGGCTCAGTCCAAACACGTTGGATGTGGCCAAACCTGGAAGACAC


rs732172ACGTTGGATGCTCAGTCCAAACTGCCAGACACGTTGGATGCATGGCCAAACCTGGAAGAC


rs7188557ACGTTGGATGAACATCTGTACAAGGCTGGGACGTTGGATGATTGGCTGTAGCATGACTGA


rs2288004ACGTTGGATGAAAGACACTGGAAGGCTGTGACGTTGGATGAGAGAAGGTGGAGCTCTTTC


rs4337310ACGTTGGATGAGGGAAGAGATGTACACAGGACGTTGGATGTTTGGAGCAGATCTGGTAGG


rs2016554ACGTTGGATGAAGCAATCCTCCCACCTCAGACGTTGGATGCAAGAGCAAAACTCCCTCTC


rs6565213ACGTTGGATGAGATGGAGTCTCACTCCATCACGTTGGATGTGAGGCAGGAGAATCGCTTG


rs7204762ACGTTGGATGAGTGGCTCACACCTGTAATCACGTTGGATGGCTGGTCTTGAACTTCTGAC


rs4889529ACGTTGGATGCAAGCAATCCTTGCCTCAAGACGTTGGATGGGTGGTTCACATCTGCAATC


rs6565214ACGTTGGATGTGATCTCGGCTCACTGCAAGACGTTGGATGAAAATTAGCCGGGCATGGTG


rs7499674ACGTTGGATGAACTAGGGAACTCTTCCCACACGTTGGATGTGGGCCCCACTAAGTCTAAA


rs6565215ACGTTGGATGAGACGGAAAGTTCCAGCTTGACGTTGGATGTGGGACCACTCTGTTCTATG


rs1023623ACGTTGGATGACAGAGCAAGACTCCATCTCACGTTGGATGTCCTCTTCAGAGCTGTTCAC


rs1023624ACGTTGGATGTGACAGAGCAAGACTCCATCACGTTGGATGGTCCTAACCAGTGAGCCTAT


rs1023625ACGTTGGATGTGGTGACAGAGCAAGACTCCACGTTGGATGTCAGGTCCTAACCAGTGAGC


rs1549297ACGTTGGATGTTGCATTGATCCGAGATCGCACGTTGGATGTCAGGTCCTAACCAGTGAGC


rs3084894ACGTTGGATGTCCCAGGTTCAAGCGATTCTACGTTGGATGCCATGAAACCCCATCTCTAC


rs8048228ACGTTGGATGAATTGCTTGAACCTGGGAGGACGTTGGATGTTCGACAGTCTCCCTCTATC


rs7405432ACGTTGGATGAGATCATGCCACTGCACTACACGTTGGATGCACTGCACTTGGCCTAATTG


rs8054249ACGTTGGATGATCTCCTGACCTCATGATCTACGTTGGATGTAATCAAACACCAGGCTGGG


rs8061047ACGTTGGATGATGATCACAGCTCACTGCAGACGTTGGATGCTCCCTGCCTCTACAAAAAG


rs7187220ACGTTGGATGAAGGAGACCTTCTCCACAATACGTTGGATGCCGGTCAGAGAAGCTCTTGC


rs8046978ACGTTGGATGTGCACAGGAGCTGGTGGTGACGTTGGATGATCACACCACCTGACTCCGG


rs2288003ACGTTGGATGACCGGCCGTTCAAGTGCCTGACGTTGGATGAGAGTGCACCAGCGCGTGC


rs7196421ACGTTGGATGTTCACGCCATTCTCCTGCCTACGTTGGATGAAATTAGCCAGGCGTGGTGG


rs7196431ACGTTGGATGAGATCTCGGCTCACTGCAAGACGTTGGATGATGTAGTCCCAGCTACTCGG


rs7203158ACGTTGGATGAAGCCTATGCGGAGCTCAAGACGTTGGATGATTGGCTGCAGCAACGCTGT


rs2303223ACGTTGGATGACCCTCACCGCTCATGGTTGACGTTGGATGTGCGGCCCTACAGCTGTGA


rs2032917ACGTTGGATGCCTGGGCGCGTTTGGAAATGACGTTGGATGAGCCCCCGGCTACAAGCGCT


rs8044134ACGTTGGATGACTAAGAAAGGAGGCTGAGGACGTTGGATGACAGTGTTTGGAAAAGCCCG


rs4889531ACGTTGGATGATTCCTCACCCAACTCTGTCACGTTGGATGGACCGTGTGTAATGTACTGC


rs4889532ACGTTGGATGGGGACAAGAATCCCTATCTCACGTTGGATGTAGAGCCAGACACATTGCTG


rs4889533ACGTTGGATGCTCTGTAAAGTAGGGACAAGACGTTGGATGTAGAGCCAGACACATTGCTG


rs881929ACGTTGGATGTTGACCCAGTGGTTCTGAGCACGTTGGATGCCAGCTACCTGGTGTCTAAC


rs8047104ACGTTGGATGGTGGGATGTTAGACAGAGACACGTTGGATGTGCCAGGTTGGTCTCAGCAT


rs8047803ACGTTGGATGAAAGTGCTGGGATTACAGGCACGTTGGATGAAATACAGATTCCTGAGGCC


rs4644874ACGTTGGATGAGTCTTGCTATGTTGCCTGGACGTTGGATGTAATCCCAGCACTTTGGGAG


rs2359673ACGTTGGATGGTGTGATGTCAGTTCACTGCACGTTGGATGATCCCAAATACTTGGGAGGC


rs4435271ACGTTGGATGACAGTGGTCTCAAGAACTCCACGTTGGATGTGGCTCATGCCTGTAATCAC


77


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs7197717ACGTTGGATGTGTGATTACAGGCATGAGCCACGTTGGATGGCTTGCAAGGAGTATTGTCC


rs2359674ACGTTGGATGGCCTAGCAGTTCATTATGAGACGTTGGATGCCTTGTCTCCAAATACAGTC


rs6565217ACGTTGGATGAAGAACGCTAATCCTACTGGACGTTGGATGTGGAGACAAGGCCTTTATGG


rs2303222ACGTTGGATGTTGGGAAAAGTCCTCCAGAGACGTTGGATGGCGCAGAAAGGGAGAAAAAG


rs4889615ACGTTGGATGTAAGTTCTAGGTCTGCACGGACGTTGGATGATGCACCGGAACGATTCTAG


rs4624197ACGTTGGATGCGCTAAGAGAGTCTTTTGGGACGTTGGATGCAGAGCGAGACTCCATCTCA


rs3751853ACGTTGGATGTCCCCTAGGCTTAAGTCATCACGTTGGATGGGTCTGTGATCAGAAGTAGG


rs749671ACGTTGGATGTGACTACATTTGTACCGCCGACGTTGGATGTCAGTAGTGAACTTCACAGG


rs749670ACGTTGGATGTCTCATCTGTGTGCCCATTGACGTTGGATGATGAGGGTGAAAGGCAGGAG


rs3751855ACGTTGGATGAAGAAGAGGTGTGGGAGGAGACGTTGGATGTCAGAGCTGGCTTCAGTCTG


rs3751856ACGTTGGATGAGCTGTACTGGCCCGTCTCGACGTTGGATGCAGTGCGGGCGGACCTATC


rs7196726ACGTTGGATGGACCTAGTTAGGAACTGAGGACGTTGGATGTCAGGGCAGCAAGCTCAGAAG


rs889550ACGTTGGATGTCCACCCAGCACTGCTGGAACGTTGGATGCAGGTCCTGCTGAGGGAAC


rs750952ACGTTGGATGTTCCCTCAGCAGGACCTGGACGTTGGATGGGTGGCCACTAGATGGAATG


rs2077633ACGTTGGATGTTTCTCAGGAGTAGTTCGGGACGTTGGATGAAAGAAGCCAGATCTGGGTC


rs7199949ACGTTGGATGTCCCCATCAGGCAGGTGGTACGTTGGATGCAGCCTGTGACACTGGGAG


rs2032916ACGTTGGATGGTTCCCCTCATTACTGAAGGACGTTGGATGTGCCACTTGCCTGTAGTTAC


rs4468641ACGTTGGATGATGAGTCAGGAATACGGGAGACGTTGGATGAATGCCCCTACTTGTCACTC


rs4889535ACGTTGGATGCTATGGCAGACACCCTCTGAACGTTGGATGGAAGAGAAGGAGCAGAAGGG


rs4316775ACGTTGGATGAGTAGCTCACGCTTGTAATCACGTTGGATGCTATGTTGCACAGGCTAGTC


rs4313819ACGTTGGATGTGCACAGGCTAGTCTTGAACACGTTGGATGAGTAGCTCACGCTTGTAATC


rs6565218ACGTTGGATGTTAAAGTCACAGACTGAGGCACGTTGGATGTTGAACTCTTGGGCTCAAGC


rs4318224ACGTTGGATGTCAGTCTGTGACTTTAAGCGACGTTGGATGACCACCTTTCATGGTAGAAG


rs1046030ACGTTGGATGGTCTCCAAAGCTCTTTCCATTACGTTGGATGGATTGATCTAAGAAACTTTA


rs7294 ACGTTGGATGGCACTGGGTGTAAAAAAGAGACGTTGGATGTTCTAGATTACCCCCTCCTC


rs7200749ACGTTGGATGGAGCACGAAGAACAGGATCCACGTTGGATGTCTGTCCTGATGCTGCTGAG


rs2359612ACGTTGGATGAAATCGGCCAAGTCTGAACCACGTTGGATGTCCAGAGAAGGCATCACTGA


rs8050894ACGTTGGATGAATCTTGGTGATCCACACAGACGTTGGATGTAGTTACCTCCCCACATCCC


rs2884737ACGTTGGATGTCATTATGCTAACGCCTGGCACGTTGGATGTTGACGATGGTCTCAAGGAC


rs1895514ACGTTGGATGCAATCTCAGCTCACTGCAACACGTTGGATGTAATCCCAGCTACTTGGGAG


rs8060209ACGTTGGATGGGTCAGGAGTTTAAGACAAGACGTTGGATGCCATGCCCGGCTAATTTTTG


rs8060217ACGTTGGATGTGAGTAGCTGGGATTACAGGACGTTGGATGAGACAAGCTTGGCCAACATG


rs7196161ACGTTGGATGGTGTTTTTAGTAGAGACGGGACGTTGGATGATCCCAGCACTTTAGGAAGC


rs8062336ACGTTGGATGTGCTCCCCACATCTCAGACGACGTTGGATGAAGCGAGGAGCGCCTCTTC


rs8043778ACGTTGGATGTTCCTCACTTCTCAGACGGGACGTTGGATGATCGTCTGAGATGTGGGGAG


rs2032915ACGTTGGATGATTCCCACCCGTTCTTTCCCACGTTGGATGTTCCCGCTCCCTTTTACCAC


rs4889616ACGTTGGATGGAACCAAGAACTGGAAGGAGACGTTGGATGTGTAAAGCGCACAGATCACG


rs1045564ACGTTGGATGTGTCAGCATCCTCGACGCACACGTTGGATGACCCAGGCGACCCAAAATGG


rs2303221ACGTTGGATGAGAACCCCCAACACTCTCCCACGTTGGATGAGCGGAGAAGGTGCGCAAG


rs1549296ACGTTGGATGATGCTGCTGAACTTCCTAACACGTTGGATGAGCAGGGTTTCTCAACCATG


rs889555ACGTTGGATGAGACCAGTAGGTACAAGCACACGTTGGATGTCAAGAATGCCATGAGGTGG


rs5816521ACGTTGGATGATTGTGGCTCTATGCAGAGGACGTTGGATGTCAAGAATGCCATGAGGTGG


rs749767ACGTTGGATGCTGATAGAAAGGACCAAGGAACGTTGGATGCTGGAGTTCTGATTCAGGTC


rs2884738ACGTTGGATGAGAACTGCTTGAACCCAGGAACGTTGGATGATGGAGTCTTGTTGTGTCGG


rs2052581ACGTTGGATGTGGGACATGCGGATATGGAGACGTTGGATGGAGGGTTCTGTGAGAGTCAG


rs4889617ACGTTGGATGCAGAGCGAGACTCCATCTCAACGTTGGATGACACTCGCGCTGGCCTAATG


rs4889619ACGTTGGATGAAAATTAGATGGGCGTGGTGACGTTGGATGATCTCGGCTCACTGCAACCT


rs1978487ACGTTGGATGTCCCTTCTCTATGTTCCTGCACGTTGGATGATGGAGGAAGACAGAGAGAG


rs1978486ACGTTGGATGTACCTAGGGTCACAGATTTGACGTTGGATGGGGTATGTGGTAAAATGAGC


rs1978485ACGTTGGATGTCAAGCAATTTTCCTGCCTCACGTTGGATGCCATCTGTACCAAAAAGACG


rs4889620ACGTTGGATGTGGCAAAACCCCATCTGTACACGTTGGATGAGTAGTTGGGATTACAGGTG


rs4889621ACGTTGGATGTACTCAATCACTGCCACAACACGTTGGATGGCCAGTTATTTTCTCATTCG


78


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs3214477ACGTTGGATGACTCGAGACTGGATCACTTCACGTTGGATGCCTTTTGTTCCAGCCTTACC


rs4527034ACGTTGGATGAAGTATGGGCCATAAGAGTGACGTTGGATGTATGTACACTACGTGGGCTG


rs1060506ACGTTGGATGATCAGGAGTGCAAACCAGAGACGTTGGATGGGATGAAGCTGCAATAGCTG


rs7200125ACGTTGGATGATTTTGCCATTGCACTCCAGACGTTGGATGTACAGGCATGAGCCATAGCC


rs6565219ACGTTGGATGCTTGGCCTCTCAAAGTGCTGACGTTGGATGAGGGCGAGGCTCCATTTCAA


rs889548ACGTTGGATGCTGGCCAAGTCCTAATACAGACGTTGGATGCCCAATTCCAGAGATGTCAG


'TABLE 12
dbSNP Extend Term
rs# Primer Mix


rs7500176 GATCACGAGGTCAGGAGTTC ACT


rs6565212 GCTGGAAAACTGTTGAGGGT ACT


rs8054046 TTTAGAGCAGCCGATACCCA ACG


rs8056842 GCTGGTCTCGAACTCCTGA ACG


rs732173 GCTCAGTCCAAACTGCCAG CGT


rs732172 ACTGCCAGACTCCCGCCA ACG


rs7188557 CCTGGCCCTGGTTGTGAGT CGT


rs2288004 CGGCAGATCCAGTGTGTC ACT


rs4337310 CACGGAATCTCCAGTGCAC ACT


rs2016554 GGCACGTACCACTGACATG ACG


rs6565213 GCAGTGGCGCAATCTTGAC ACT


rs7204762 CCCAGCACTTTGGGAGGC ACG


rs4889529 CTCAAGTGATCCTCCTGCCT ACG


rs6565214 GAGTAGCTGGGACTACAGG ACG


rs7499674 GTTCTTCTCAACATCTGCCCA ACT


rs6565215 TTTCCTTCAGACAGGGCTCT ACT


rs1023623 GACTCCATCTCAAAAAAAAAAAAAACT


rs1023624 GAGCAAGACTCCATCTCAAAAA ACT


rs1023625 CAGAGCAAGACTCCATCTCA ACT


rs1549297 GGTGACAGAGCAAGACTCC CGT


rs3084894 CGAGTAGGTGGGACTACAG ACT


rs8048228 TGAGCCGAGATGGCAACAC ACG


rs7405432 CTACAGGCTAGGAGACAGAG CGT


rs8054249 AAAGTGCTGGGATTACAGGC ACT


rs8061047 CCTCCTGAGGAGCTGGTCT ACT


rs7187220 GGCCCTTCCCCTGCACC ACG


rs8046978 AGAGTTCAGCCGCCCCGG ACG


rs2288003 GTGACAAGACGTTCGTGGC ACT


rs7196421 CTCAGCCTCCCGAGTAGC ACG


rs7196431 CGGGTTCACGCCATTCTCC ACG


rs7203158 CAACCATGAGCGGTGAGGG ACG


rs2303223 TTGAGCTCCGCATAGGCTTT ACT


rs2032917 TGGAAATGTCTTGGTACAGGACA ACT


rs8044134 CCTACACGTCCCCCCCC ACT


rs4889531 CAACTCTGTCAGGTAAGTACT ACT


rs4889532 CAAGAATCCCTATCTCAGAAAG ACT


rs4889533 GGACAAGAATCCCTATCTCAG I ACT


79


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Extend Term
rs# Primer Mix


rs881929 CTGCCTCTTGCCAGCTCTG ACT


rs8047104 CAGAGACCTAGCCTACCTG ACT


rs8047803 TTACAGGCGAGAGCCACCA CGT


rs4644874 GGGCTCAAGTGATCCTCCC CGT


rs2359673 ACTGCGACCTCTGCCTCC ACG


rs4435271 GCTTCAGATGCTCCTCCACT CGT


rs7197717 GCATGAGCCGTGACCAGC CGT


rs2359674 GAATGTTTGTGTTCCCTGTCC ACT


rs6565217 CCAGGGCCATACCCTTATGA ACG


rs2303222 AAAGTGTCACCAAAGTAC ACG


rs4889615 GCGGCGTCTTTGCACGCTA CGT


rs4624197 AGAGAGTCTTTTGGGGTTTTTT ACT


rs3751853 CCTACAGGTATAGCTAAGGAA ACT


rs749671 ATTTGTACCGCCGCTCCTC ACG


rs749670 GGTGGTGGGCATCCCTTTC ACG


rs3751855 AGAGCCCAGGCTGGAGAC ACG


rs3751856 CCGTCTCGTGGCTGCGC ACG


rs7196726 GTTAGGAACTGAGGAACCCAG ACG


rs889550 AGCACTGCTGGAAGCCGC ACT


rs750952 GCTGGCCTCTCCACCTCC ACG


rs2077633 CCATATCTTCTCCTCTCCCC ACG


rs7199949 CAGGCAGGTGGTGGTCAG ACT


rs2032916 CCAAAGTTCCAGAGAGGTTAA ACT


rs4468641 ATACGGGAGGCAGGCCCA ACT


rs4889535 CAGACACCCTCTGATTGCAG ACT


rs4316775 GAGGATCGCTTGAGCCCAA ACT


rs4313819 GCTAGTCTTGAACTCTTGGG ACT


rs6565218 CTCACGCTTGTAATCCCAGC CGT


rs4318224 TTCCCTTGCAACCTGAGTTTT ACG


rs1046030 GCCCAGGGAGGGAAGGTT ACG


rs7294 TTGGTCCATTGTCATGTG ACG


rs7200749 GAAGAACAGGATCCAGGCCA ACT


rs2359612 CCATGTGTCAGCCAGGACC ACT


rs8050894 CCAGCTAGCTGCTCATCAC ACT


rs2884737 TCGCCAACACCCCCCTTC CGT


rs1895514 CCCCTCTCGGGTTCAAGC CGT


rs8060209 TGGCCAACATGGCGAAACC ACG


rs8060217 CCATGCCCGGCTAATTTTTGT ACT


rs7196161 AACTCCTGACCTCATGATCC ACT


rs8062336 TCACTTCCTAGATGGGAAGG ACG


rs8043778 CGCTCCTCACCTCCCAGA ACG


rs2032915 TTCTTTCCCAACGTCCTGGA ACT


rs4889616 GAACTGGAAGGAGGACAAGA ACT


rs1045564 GTCCCTGAAGTCGGAGAAG CGT


rs2303221 CTCTCCCTCCCGCCTACAT ACG


rs1549296 TGCACGGGGCAGCCCCT ACT


rs889555 AGCACCCCGGTTCCTGTCC ACT


rs5816521 CCAGTA ACT
GGTACAAGCACCC


rs749767 _ ~ ACT
I GACCAAGGATTTGGGCAAAG




CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Extend Term
rs# Primer Mix


rs2884738 CCAGGAGGTGGAGGTTGCA ACT


rs2052581 GGATATGGAGGGCCGATTGT ACT


rs4889617 GAGACTCCATCTCAAAAAAAAAA ACT


rs4889619 GCAGAGGAATCGCTTGAACC ACG


rs1978487 GTTCCTGCAACATTTTTTTCCTA ACG


rs1978486 GGGTCACAGATTTGAAAAGTG ACT


rs1978485 TTTTCCTGCCTCAGCCTCC ACG


rs4889620 ACCCCATCTGTACCAAAAAGA ACG


rs4889621 CTGTGAGGTGGATCAGGTTG ACT


rs3214477 GCAGAATCTGTGATGGAAAAAG ACT


rs4527034 CCAGGGCAGCCAACTCCC ACG


rs1060506 AAGTCTCCAGACACCCAGA ACG


rs7200125 AGGCTCCATTTCAAAAAAAAAAAAACT


rs6565219 AAAGTGCTGGGATTACAGGC ACT


rs889548 AGTCCTAATACAGTGGATGTC ACT
I


Genetic Analysis
[0232] Allelotyping results from the discovery cohort are shown for cases and
controls in
Table 13. The allele frequency for the A2 allele is noted in the fifth and
sixth columns for osteoarthritis
case pools and control pools, respectively, where "AF" is allele frequency.
The allele frequency for the
A1 allele can be easily calculated by subtracting the A2 allele frequency from
1 (Al AF = 1-A2 AF).
For example, the SNP rs732173 has the following case and control allele
frequencies: case A1 (G) _
0.55; case A2 (T) = 0.45; control A1 (G) = 0.58; and control A2 (T) = 0.42,
where the nucleotide is
provided in paranthesis. Some SNPs are labeled "untyped" because of failed
assays.
'TABLE 13
dbSNP PositionChromosomeAl/A2 F A2 F A2 F p-
rs# in position Allele Case Control Value
SEQ iD AF AF
NO:


rs7500176247 31077197 A/G


rs65652121535 31078485 C/T


rs80540462386 31079336 C/T


rs80568426440 31083390 C/T


rs732173 9133 31086083 G/T 0.45 0.42 0.382


rs732172 9143 31086093 A/G


rs71885579471 31086421 A/T


rs228800413150 31090100 C/G 0.52 0.45 0.026


rs433731013717 31090667 C/T 0.18 unt ed


rs201655414466 31091416 A/G


rs656521315769 31092719 A/C


rs720476216870 31093820 A/G


rs488952918545 31095495 C/T


rs656521418749 31095699 C/T


rs749967419123 31096073 GlT


rs656521520736 31097686 A/G


rs102362321038 31097988 C/T 0.02 unt ed


rs102362421046 31097996 C/T 0.16 0.11 0.035


rs102362521050 31098000 C/T 0.32 NA


rs154929721056 31098006 A/T


81


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP PositionCpromosomeAl/A2 F A2 F A2 F p-
rs# in position Allele Case Control Value
SEA iD AF AF
NO:


rs308489421706 31098656 -/ACC


rs804822823170 31100120 A/G 0.54 0.61 0.040


rs740543225028 31101978 A/T 0.35 0.43 0.025


rs805424927871 31104821 A/G


rs806104728070 31105020 C/T 0.21 0.21 0.903


rs718722031717 31108667 A/G


rs804697832019 31108969 A/G 0.34 0.28 0.083


rs228800332318 31109268 A/G


rs719642133080 31110030 A/G


rs719643133101 31110051 A/G


rs720315834236 31111186 A/G


rs230322334285 31111235 C/T 0.52 0.45 0.060


rs203291734818 31111768 C/G


rs804413435168 31112118 C/G 0.97 0.97 0.856


rs488953137981 31114931 ClT


rs488953238113 31115063 CIG


rs488953338117 31115067 C/T


rs881929 38481 31115431 G/T 0.38 0.34 0.228


rs804710438615 31115565 C/G 0.60 0.65 0.117


rs804780338944 31115894 A/C 0.35 0.33 0.437


rs464487439288 31116238 A/C


rs235967341385 31118335 C/T 0.18 0.20 0.563


rs443527142136 31119086 A/T


rs719771742185 31119135 A/C


rs235967442353 31119303 A/G 0.22 0.18 0.122


rs656521742434 31119384 A/G 0.35 0.33 0.608


rs230322244580 31121530 A/G 0.60 0.52 0.022


rs488961544675 31121625 A/T


rs462419745739 31122689 G/T


rs375185346439 31123389 C/T


rs749671 47457 31124407 C/T 0.32 0.37 0.095


rs'T4967047735 31124685 C/T


rs375185550319 31127269 C/T 0.53 0.57 0.287


rs375185650708 31127658 A/G


rs719672651185 31128135 A/G 0.41 0.37 0.258


rs889550 53002 31129952 A/G


rs750952 53064 31130014 C/T 0.43 0.41 0.535


rs207763353637 31130587 A/G


rs719994955274 31132224 C/G 0.46 0.53 0.051


rs203291655825 31132775 C/T


rs446864155986 31132936 A/C 0.26 0.25 0.902


rs488953556684 31133634 C/G


rs431677557653 31134603 C/T


rs431381957659 31134609 C/G


rs656521857692 31134642 G/T


rs431822457775 31134725 C/T


rs104603061313 31138263 C/T


rs7294 61431 31138381 A/G 0.38 0.37 0.669


rs720074961699 31138649 A/G


rs235961262906 31139856 A/G 0.56 0.48 0.017


rs805089463619 31140569 C/G 0.48 0.45 0.320


rs288473764664 31141614 AIC 0.68 0.60 0.016


rs189551468452 31145402 G/T


rs806020969665 31146615 C/T


rs806021769681 31146631 C/T


rs719616170091 31147041 A/G


rs806233674637 31151587 A/G


rs804377874760 31151710 A/G


rs203291576523 31153473 A/G 0.43 0.41 0.505


rs488961678559 31155509 C/G


rs104556479549 31156499 A/C


rs230322179882 31156832 C/T


rs154929681339 31158289 A/G


82


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP PositionChromosomeAl/A2 F A2 F A2 F p-
rs# in position Allele Case Control Value
SEQ 1D AF AF
NO:


rs889555 81681 31158631 C/T 0.49 0.50 0.740


rs581652181696 31158646 -/G


rs749767 83517 31160467 C/T 0.28 0.36 0.020


rs288473885431 31162381 AlC


rs205258186332 31163282 C/T


rs488961787358 31164308 A/G


rs488961987725 31164675 ClT


rs197848789052 31166002 A/G 0.62 0.57 0.124


rs197848690020 31166970 A/G


rs197848590231 31167181 A/G 0.90 0.88 0.513


rs488962090284 31167234 A/G


rs488962190447 31167397 C/T


rs321447790601 31167551 -/G


rs452703490724 31167674 A/G 0.37 0.43 0.079


rs106050692559 31169509 C/T 0.29 0.28 0.720


rs720012595176 31172126 AlG


rs656521995195 31172145 C/T


rs889548 96822 31173772 A/G 0.54 0.51 0.320


rs6145813Not mappedNot mapped~TTTTT p,33 0.32 0.909
TTTTTT


[0233] Allelotyping results were considered particularly significant with a
calculated p-value of
less than or equal to 0.05 for allelotype results. These values are indicated
in bold. The allelotyping p-
values were plotted in Figure 1A for the discovery cohort. The position of
each SNP on the
chromosome is presented on the x-axis. The y-axis gives the negative logarithm
(base 10) of the p-
value comparing the estimated allele in the case group to that of the control
group. The minor allele
frequency of the control group for each SNP designated by an X or other symbol
on the graphs in
Figure 1 C can be determined by consulting Table 13. For example, the left-
most X on the left graph is
at position 31077197. By proceeding down the Table from top to bottom and
across the graphs from
left to right the allele frequency associated with each symbol shown can be
determined.
[0234] To aid the interpretation, multiple lines have been added to the graph.
The broken
horizontal lines are drawn at two common significance levels, 0.05 and 0.01.
The vertical broken lines
are drawn every 20kb to assist in the interpretation of distances between
SNPs. Two other lines are
drawn to expose linear trends in the association of SNPs to the disease. The
generally bottom-most
curve is a nonlinear smoother through the data points on the graph using a
local polynomial regression
method (W.S. Cleveland, E. Grosse and W.M. Shyu (1992) Local regression
models. Chapter 8 of
Statistical Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth &
Brooks/Cole.). The black line
provides a local test for excess statistical significance to identify regions
of association. This was
created by use of a l Okb sliding window with lkb step sizes. Within each
window, a chi-square
goodness of fit test was applied to compare the proportion of SNPs that were
significant at a test wise
level of 0.01, to the proportion that would be expected by chance alone (0.05
for the methods used
here). Resulting p-values that were less than 10-8 were truncated at that
value.
[0235] Finally, the exons and introns of the genes in the covered region are
plotted below each
graph at the appropriate chromosomal positions. The gene boundary is indicated
by the broken
83


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
horizontal line. The exon positions are shown as thick, unbroken bars. An
arrow is place at the 3' end
of each gene to show the direction of transcription.
Example 5
Chromosome 4 Region Proximal SNPs
[0236] SNP rs1957723 is associated with osteoarthritis and is described in
Table A. SNP
rs 1957723 falls in an intergenic region on chromosome 4 that does not include
a known gene, therefore,
the region is referred to herein as the Ch~om 4 region. One hundred-thirty
additional allelic variants
proximal to rs1957723 were identified and subsequently allelotyped in
osteoarthritis case and control
sample sets as described in Examples 1 and 2. The polymorphic variants are set
forth in Table 14. The
chromosome positions provided in column four of Table 14 are based on Genome
"Build 34" of NCBI's
GenBank.
TABLE 14
dbSNP Position ChromosomeAllele
rs# Chromosomein SEQ Position Variants
ID NO:
2


rs38490234 211 36870611 /t


rs14443114 7217 36877617 a/


rs20442954 7895 36878295 alC


rs21660934 13308 36883708 C/t


rs23763344 14279 36884679 /t


rs14443204 17026 36887426 c/t


rs20442944 18271 36888671 a/


rs18998644 20417 36890817 C/t


rs15620944 21843 36892243 a/


rs15620984 22069 36892469 a/


rs15620974 22145 36892545 al


rs15620964 22519 36892919 a/


rs15620954 22539 36892939 a/


rs14443194 23236 36893636 alC


rs14443184 23256 36893656 a/c


rs10259384 23402 36893802 c/t


rs10259374 23499 36893899 a/c


rs10259364 23620 36894020 C/t


rs10203334 23871 36894271 a/t


rs21206544 24136 36894536 c/


rs25885474 25427 36895827 a/


rs20442934 25866 36896266 /t


rs27603244 26541 36896941 a/


rs25885464 26576 36896976 /t


rs25885454 26689 36897089 a/


rs27603284 26720 36897120 a/c


rs25885444 27113 36897513 c/t


rs27603314 27164 36897564 c/t


rs25885434 27186 36897586 a/


rs25885424 28341 36898741 alt


rs25885414 29160 36899560 C/t


rs25885404 29844 36900244 a/g
~


84


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAllele
rs# Chromosomein SEQ Position Variants
ID NO:
2


rs27603364 30665 36901065 /t


rs27603374 30830 36901230 a/


rs20287324 31061 36901461 a/c


rs25885384 31523 36901923 c/t


rs19926174 32326 36902726 c/t


rs19984694 32346 36902746 al


rs19984704 32358 36902758 c/t


rs19754984 34909 36905309 c/t


rs15620934 34975 36905375 a/


rs19754974 35066 36905466 c/t


rs15620924 35096 36905496 /t


rs22487884 35375 36905775 c/t


rs18998624 36304 36906704 a/


rs25885324 36712 36907112 a/t


rs18858784 36770 36907170 c/t


rs9866484 37342 36907742 c/t


rs9866474 37412 36907812 c/t


rs10100104 37884 36908284 al


rs10100094 38077 36908477 a/c


rs27603254 38300 36908700 c/t


rs25885314 38301 36908701 c/t


rs18383884 41189 36911589 c/t


rs19754954 44408 36914808 c/t


rs21814914 44493 36914893 a/c


rs19754964 44571 36914971 a/


rs21814924 44670 36915070 a/


rs22247194 45219 36915619 a/


rs22247204 45258 36915658 C/t


rs19517704 47261 36917661 a/


rs22960404 48473 36918873 a/c


rs19577234 48771 36919171 a/


rs19577254 55292 36925692 c/t


rs28893464 56479 36926879 a/


rs18858794 56747 36927147 a/c


rs19577264 60620 36931020 /t


rs19577274 60688 36931088 a/c


rs18858804 61058 36931458 a/c


rs18858814 61129 36931529 clt


rs9421084 61577 36931977 c/t


rs19517714 61961 36932361 a/


rs23763234 63351 36933751 /t


rs20133584 63926 36934326 a/


rs21814944 65798 36936198 a/


rs19577284 66043 36936443 a/c


rs19577294 66044 36936444 a/


rs19577304 66246 36936646 c/t


rs19577314 66318 36936718 c/t


rs19984684 66547 36936947 /t


rs19577324 71238 36941638 c/t


rs19577334 71283 36941683 a/


rs23763224 71492 36941892 a/


_ ~ 4 72274 36942674 alg
rs2889345




CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAllele
rs# Chromosomein SEQ Position Variants
ID NO:
2


rs18152674 73762 36944162 alt


rs19577344 74209 36944609 /t


rs19577354 75284 36945684 a/t


rs19577364 77347 36947747 a/c


rs19577374 77589 36947989 c/t


rs19577384 78096 36948496 a/


rs19577394 78606 36949006 a/


rs19577404 78862 36949262 /t


rs19577414 79135 36949535 a/


rs19577424 79146 36949546 a/


rs19577434 79456 36949856 c/t


rs19577444 79609 36950009 a/


rs19577454 80086 36950486 a/


rs19577464 80119 36950519 a/


rs19577474 80766 36951166 c/t


rs21466704 81110 36951510 a/


rs21466714 81269 36951669 a/t


rs19577484 81668 36952068 c/t


rs21623074 82433 36952833 clt


rs19628394 82559 36952959 c/


rs23763154 83298 36953698 c/t


rs14264104 83821 36954221 a/


rs18959214 84121 36954521 c/t


rs18959224 84147 36954547 c/t


rs10357794 84543 36954943 a/


rs10357804 84554 36954954 a/


rs10357814 84691 36955091 a/


rs10357824 84727 36955127 a/


rs14264114 85678 36956078 c/t


rs18346024 86699 36957099 clt


rs18346034 86700 36957100 a/


rs18346044 86792 36957192 a/


rs18346054 86832 36957232 a/


rs21623084 87045 36957445 a/


rs13653414 87140 36957540 a/


rs18204584 87365 36957765 a/c


rs14693104 88342 36958742 c/t


rs30578794 88498 36958898 -/tca


rs14693114 88589 36958989 a/


rs7683264 95502 36965902 a/


rs18635234 96968 36967368 c/t


rs14693124 97448 36967848 c/t


rs14693134 97568 36967968 c/t


rs19517734 98724 36969124 c/t


rs21206554 Not ma Not ma t/
ed ed


rs21814954 Not ma Not ma /a
ed ed


86


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
Assay for Verifyin~ and AllelotYpin~ SNPs
[0237] The methods used to verify and allelotype the 130 proximal SNPs of
Table 14 are the same
methods described in Examples 1 and 2 herein. The primers and probes used in
these assays are
provided in Table 15 and Table 16, respectively.
TABLE 15
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs3849023ACGTTGGATGGGTAATTGCTAACCATGTTCACGTTGGATGGACCCAGTCAAGTCAATAAAC


rs1444311ACGTTGGATGGCCTATTGGTTTAACTAGGCACGTTGGATGTCTGGCTTCTTCAGGAGTTC


rs2044295ACGTTGGATGCCACACCACTACTATTCAAGACGTTGGATGGTGGTGTGTTAGAAGGTTAC


rs2166093ACGTTGGATGAAAATCCTGGAGATGGATGGACGTTGGATGTAGGTGTACAGTTCAGTGTC


rs2376334ACGTTGGATGTCTCAGAGAACCAGCTTTTGACGTTGGATGGGGAATATTAAACATTGGGG


rs1444320ACGTTGGATGTAATTCTCTCCTCCAAATGCACGTTGGATGCTAGAAACAAAAGACTACATG


rs2044294ACGTTGGATGAACCTAAATCTCCTCAAGCCACGTTGGATGTTCTGACCACTTCTCTATGG


rs1899864ACGTTGGATGTTTATAGGCGTGGGCAATCGACGTTGGATGTTGTCAGAAAGTGTCGTGCC


rs1562094ACGTTGGATGTGGATTCCTTTCTTGAAGACACGTTGGATGGCAACAAAGAAACTTAATGC


rs1562098ACGTTGGATGTCTGAGTCCGAGTGATCATCACGTTGGATGAAACAATTAGCAGGGCACAG


rs1562097ACGTTGGATGCACAGGATCTTACTCTGTTGACGTTGGATGCGGACTCAGAAATTCAAGTC


rs1562096ACGTTGGATGACCCAGGGCATGTTATATAGACGTTGGATGTTTCTCTCTGGTACCCTCTC


rs1562095ACGTTGGATGTGTTAGTAACCCAGGGCATGACGTTGGATGTGACAGATGCCACCAGTTAC


rs1444319ACGTTGGATGTTCAACTTTAGCCTCTGGGCACGTTGGATGCCCTGCAAAGTCAAAGGAAC


rs1444318ACGTTGGATGCTCTGGGCAATTATCAAGCCACGTTGGATGAGTTCGCTGATGTGTTTGGG


rs1025938ACGTTGGATGCAGGTAAGAAAAGCTTTTTGGACGTTGGATGCCCTGCTAATGACTGAATTTC


rs1025937ACGTTGGATGGAATAGGAAAGGTAGTATACCACGTTGGATGAAATTCAGTCATTAGCAGGG


rs1025936ACGTTGGATGTCTCCAGGTAGATGAGTCAGACGTTGGATGCCACACACCAAAGCAATCAC


rs1020333ACGTTGGATGGCATCTCTTCAATCTGGACGACGTTGGATGGTGGATCACAGAAGTCAGAG


rs2120654ACGTTGGATGACCAGAAAGACCAGGGCATGACGTTGGATGAACCTTTAGCTCTTCTCCCC


rs2588547ACGTTGGATGTCACAAATGTAATATAAATCACGTTGGATGGATAGCTACGTTTAAAAATG


rs2044293ACGTTGGATGTGTCAACAATACAAGACTAAACGTTGGATGTGCACTGGACTTTTTTTTT


rs2760324ACGTTGGATGACAAACCAGTGGTTGAGGAGACGTTGGATGCCTCACGAATCCAACAGAAC


rs2588546ACGTTGGATGCTTAGAGGATGGAGTCAGTCACGTTGGATGTACTACCAGAGATGCTGGTG


rs2588545ACGTTGGATGCAACACAGCTACAGTGCATCACGTTGGATGTGGGTAAAGGGAAAAGAAGG


rs2760328ACGTTGGATGGCCATAAAATTGGGTAAAGGGACGTTGGATGGCATCTATTTGACACCAACG


rs2588544ACGTTGGATGTAAGAATTAGCATGTGAAAGACGTTGGATGTTTGTGCACAAAGAATTTGG


rs2760331ACGTTGGATGAAACAGTATGCCTTTTGTGCACGTTGGATGCTTCTCGTAATTTTACATGAC


rs2588543ACGTTGGATGGTGCCAAATTCTTTGTGCACACGTTGGATGCTAAGATAGGTAGATACCAG


rs2588542ACGTTGGATGTGGCAGCAAAGCTTAAGCTCACGTTGGATGTCCACAGTCACCTCTCATTC


rs2588541ACGTTGGATGTGACAAGGTCTATGTCAGGGACGTTGGATGGGCATTGTCATGGTGATGAG


rs2588540ACGTTGGATG.TGCTGTATGATCCAGCAATCACGTTGGATGGGTGCAAATACTGTCTCTTC


rs2760336ACGTTGGATGAAGCTGAGGCAGGAGAATGGACGTTGGATGTGTTTTGAGACGGAGTCTCG


rs2760337ACGTTGGATGGGTGTTCGAACTGATACAAGACGTTGGATGACTACCATTCTACTCTCTGC


rs2028732ACGTTGGATGTTCCTGGACAGCTAAATAGGACGTTGGATGGCCATTGTCGTTTTCTTGTT


rs2588538ACGTTGGATGTATCTTCTGGGAAGCCTTTCACGTTGGATGGACTTGAAATCACTCCATGC


rs1992617ACGTTGGATGGGAGGACATTGCCTTCAAAGACGTTGGATGCTGACCTTCTGTCTAGTCAC


rs1998469ACGTTGGATGTATATGCCAAGGACCAACGGACGTTGGATGCTGACCTTCTGTCTAGTCAC


rs1998470ACGTTGGATGATTTCCCCCATTAAGCTTTGACGTTGGATGGAAAAGTATTATATGCCAAGG


rs1975498ACGTTGGATGAGCTCTCTTTTTGCCTGCTGACGTTGGATGAGGAGGCTTCACAATCATGG


rs1562093ACGTTGGATGTGATTGTGAAGCCTCCTCTGACGTTGGATGAAAGACATACCCAAGACTGG


rs1975497ACGTTGGATGTCAGCAGCATGAAAACTGACACGTTGGATGCATTTAGACTTTTTCTGGGG


Irs1562092ACGTTGGATGTTCCAGTGACTGGACCATAGACGTTGGATGTCAGCAGCATGAAAACTGAC


87


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs2248788ACGTTGGATGGGGAAAAGAAAAAAGACTTCCACGTTGGATGGTAGTAGCTGCTTCTAAAAG


rs1899862ACGTTGGATGTAATCTCCCATAATAAGTGCACGTTGGATGGCTACAAAAGAAAATGAATAC


rs2588532ACGTTGGATGCAAACAATAGTGGCTGAGAGACGTTGGATGTTTGTAGCACAGGCGCATAG


rs1885878ACGTTGGATGTGACTCAGCGAGTTTGTAGCACGTTGGATGAGCCAGATTGGGTGCTTTTC


rs986648ACGTTGGATGTGAGAAAGCTTTCTGAGGACACGTTGGATGGGTTTTCTGTTGTGAATGGG


rs986647ACGTTGGATGACACACTCTTTCTCAAGCAGACGTTGGATGCTTATTTGTCCTCAGAAAGC


rs1010010ACGTTGGATGACTGTAGCTAAGTTGGCATACGTTGGATGTTCACCAACACCAATAAGGC


rs1010009ACGTTGGATGTCTCATCAGCTCTTTCCTGGACGTTGGATGAAAGGGATGAGGAAGTGAGG


rs2760325ACGTTGGATGATCCCCAGCATGTAGCATAGACGTTGGATGCTGCCCATAAGTCTCTTCTG


rs2588531ACGTTGGATGATCCCCAGCATGTAGCATAGACGTTGGATGCTGCCCATAAGTCTCTTCTG


rs1838388ACGTTGGATGGTACCTCATGGATATTTACACACGTTGGATGTTGGTGTTGTTATAAATGAC


rs1975495ACGTTGGATGCAGGTCAGGAGTTTAAGACCACGTTGGATGAGCTGGGATTACAGTCATGC


rs2181491ACGTTGGATGGTACCTAATATATGCTTCTGGACGTTGGATGTTATTCCCGTCTTACTTTCC


rs1975496ACGTTGGATGTATATTAGGTACAGTGTGGCACGTTGGATGCAACCAACTTCACTGAAAGC


rs2181492ACGTTGGATGCTTGCAGGAAGAGGAAGAAGACGTTGGATGACAATCACCTTTGGAGGCAG


rs2224719ACGTTGGATGTCAAGGGTGTAGATGTGTAGACGTTGGATGCCAGAGAGGAGTAATGGTAT


rs2224720ACGTTGGATGCCAATTACTCAAGGGTGTAGACGTTGGATGAATTCAGTACAGACAGAGGG


rs1951770ACGTTGGATGCCTGGGAACTTCAGCTTTTCACGTTGGATGTGGCACAGCAGGAATATCAG


rs2296040ACGTTGGATGGGGCATCATGAAATGCAGACACGTTGGATGGCATGTACAGGAAAGCAGTG


rs1957723ACGTTGGATGTACTCACTTGTGTACTGCTCACGTTGGATGGCTGCAGCGTCACATTAATC


rs1957725ACGTTGGATGTTATTGGAATTCTCCAGGTCACGTTGGATGAAGATGATTAGTCCAGCCTG


rs2889346ACGTTGGATGTGACTGACTTCCTAGGTCAGACGTTGGATGTGACAGTGTTTGAGTGGCAG


rs1885879ACGTTGGATGTTCACCCCTTCACATCTGATACGTTGGATGCTACAAGGAAGATAACAGAG


rs1957726ACGTTGGATGAAATTCAGCCACTCAACCAGACGTTGGATGAAGTGGTTGGGATTTGTGAG


rs1957727ACGTTGGATGGCCAACGTATCTTTAAAACCCACGTTGGATGGTTTTGTCTTGGTTCTCATC


rs1885880ACGTTGGATGTGGAATGCCCCAAGATTTCAACGTTGGATGCTGGAATCCCAAGGTTCCTG


rs1885881ACGTTGGATGTAGACGTGTTCTGCATCATGACGTTGGATGATGAAATCTTGGGGCATTCC


rs942108ACGTTGGATGGAGCTGTTAGGGTAGAAATGACGTTGGATGGTCCTTGGACTAATTTTGACC


rs1951771ACGTTGGATGGGCATTCCCTTTTGTCTAAGACGTTGGATGAGTAAACAAGGACTAGAGCC


rs2376323ACGTTGGATGTCCTTACTTGCTAGCACTGCACGTTGGATGGCATCCCTTGGTGACTGATA


rs2013358ACGTTGGATGGGAATTTTAGGAGTACTGTAGACGTTGGATGGCCAACCATAGAACCTAAATC


rs2181494ACGTTGGATGATTCAATTACCTCCCACTGGACGTTGGATGTATCCCCACCCAAATGTCAC


rs1957728ACGTTGGATGAAATAGATCCCAACCAAGGGACGTTGGATGGTAACATTTACCTAAGCGGG


rs1957729ACGTTGGATGAAATAGATCCCAACCAAGGGACGTTGGATGGTAACATTTACCTAAGCGGG


rs1957730ACGTTGGATGGGTCTAAACATGAGAGACTCACGTTGGATGTCTTTATGGATATAGGGTCC


rs1957731ACGTTGGATGTATTGGAACCTGGTACCTGGACGTTGGATGGACCTGAATCATGTCTCCAG


rs1998468ACGTTGGATGTATAAAGCCTCAAAAGTGGGACGTTGGATGACCTTATTCCAGAATGAAAC


rs1957732ACGTTGGATGAAGAGAGGAGTTTATTGGCCACGTTGGATGCGGCCTGATCTTTATTTTCG


rs1957733ACGTTGGATGCTATCAAGACTCTGATTGCCACGTTGGATGTGTTTGCAGGTAAACTTGGC


rs2376322ACGTTGGATGTCGTTCTCTCTCTGTGCATGACGTTGGATGTTAGTCAGATGCTTGGTGAG


rs2889345ACGTTGGATGTGGAATCCCAAACCTTTCAGACGTTGGATGTTCTTGCTAAATGTAGGCC


rs1815267ACGTTGGATGCAGGAAAGGGCTACTATCAGACGTTGGATGGTAGGCCAAACTAGCTTTGG


rs1957734ACGTTGGATGCTACCCCTGCCTTATAATTCACGTTGGATGCAAGTGGTAAAAGGATGTGG


rs1957735ACGTTGGATGAGCTTCCCATGGTTATAGAGACGTTGGATGCTGAAAACAATACCGGTCTC


rs1957736ACGTTGGATGCTGAAGCAAAGATTTCTCTCACGTTGGATGAGCATCTTTTGCTGTCACTG


rs1957737ACGTTGGATGACATGGAAGCTGAAGCCAAGACGTTGGATGCAGAGCTTTGACCTTACTCC


rs1957738ACGTTGGATGATGTCCCTTAAAAGGCTGCCACGTTGGATGCAGATGATCTTGCTTCCCAG


rs1957739ACGTTGGATGTCACTGCCTGAGTGCTTTAGACGTTGGATGCTGATGGCCTGAGAACTAAG


rs1957740ACGTTGGATGGCCCAGTCAAGTTGACATACACGTTGGATGCACCTGCTCCAGTTATATAC


rs1957741ACGTTGGATGAGGAGCATTATCCCTATTAGACGTTGGATGCCTCTTAGTAAAATATGGATG


rs1957742ACGTTGGATGGGATGATATCTACTTTGTACGACGTTGGATGGACTCCATCTGAGATGTTAG


rs1957743ACGTTGGATGCAACTGTCTTGTATTTGAAGACGTTGGATGGACAGACTTTCATTGTTTTC


88


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs1957744ACGTTGGATGTCAGTGTACCCTGTAATGCCACGTTGGATGTGCCCAGCAGTGAGTAATTG


rs1957745ACGTTGGATGGTTTAGAAAGTGTTGGGTTCCACGTTGGATGAGCAAATGCAGCTTATTACC


rs1957746ACGTTGGATGTCTCATACAACATAGTTAGCACGTTGGATGGGTTTAGGTTTGGTTTGATG


rs1957747ACGTTGGATGGTCACTCAAGATAACAGTTCCACGTTGGATGTTACCTAACGTGAAGGTAGC


rs2146670ACGTTGGATGCCTAACACATCTTTATGAGCACGTTGGATGCTCATAAGATATGCTAAGCAC


rs2146671ACGTTGGATGATGAGGAGCAACTAGAAGGCACGTTGGATGAAAGGGCTGGAAGAAACAGG


rs1957748ACGTTGGATGTGAAGTTTGTAGTAGGGAGCACGTTGGATGTTCTGTCACACAAACACTCC


rs2162307ACGTTGGATGACATGCGGTGCCTGGCCCTTTACGTTGGATGCCTTTGTAGGGACATGGATG


rs1962839ACGTTGGATGGGCTGCATAGTATTCCATGGACGTTGGATGAGGGAATCCTTTCCCCATTG


rs2376315ACGTTGGATGTGGCCTTGGATTTCTTCCACACGTTGGATGAGAATTGGACAGAGTGGCAG


rs1426410ACGTTGGATGGAGAAAGTTGCATCTTGCCCACGTTGGATGGGGAAGTTTTACCTTGGCTC


rs1895921ACGTTGGATGGGTGATGGTGTTTGAGGTACACGTTGGATGATTAGGCTTCTCCCACCATC


rs1895922ACGTTGGATGCAATGCATTAGGCTTCTCCCACGTTGGATGGAGGTACATTTCTCAGGCAG


rs1035779ACGTTGGATGGAGAATCACTTGAACCCGGGACGTTGGATGTGGAGTGCAGTGGCATGATC


rs1035780ACGTTGGATGTTTGAGATGGAGTCTCGCTCACGTTGGATGAATCACTTGAACCCGGGAGG


rs1035781ACGTTGGATGGGAAGATGCTGACTCTGAACACGTTGGATGCCTTGACTGTTTAGGGATCC


rs1035782ACGTTGGATGGGATCCCTAAACAGTCAAGGACGTTGGATGAGTTGGCTAGACTTGCGTTC


rs1426411ACGTTGGATGCAAGAGTGCTACACAAGTCGACGTTGGATGTGTACCTTGGTCAGGTGATC


rs1834602ACGTTGGATGGATGGGCCCTATTTTTCTTGACGTTGGATGCTTTTCCAACCCAGTAATGTC


rs1834603ACGTTGGATGGATGGGCCCTATTTTTCTTGACGTTGGATGTCTTTTCCAACCCAGTAATG


rs1834604ACGTTGGATGGAAAGACATTACTGGGTTGGACGTTGGATGAGAATTCTTCCTGACTGTGG


rs1834605ACGTTGGATGGCCCACAGTCAGGAAGAATTACGTTGGATGTTGTGGAGACTGGCCAAAAG


rs2162308ACGTTGGATGTAAAGAAACAGAGGGACACCACGTTGGATGTATGATCAGAGTCATCAGGG


rs1365341ACGTTGGATGTCCCTCTGTTTCTTTAGGCAACGTTGGATGCATCTCCCCTGGTAGCATTT


rs1820458ACGTTGGATGCACCCTCAGACTTGGAAATGACGTTGGATGGTCAGGTGACTCTATTCAGC


rs1469310ACGTTGGATGTACTACAGCGTGTTTAGCAGACGTTGGATGTGTCAAAGGGAGAGTTAGAG


rs3057879ACGTTGGATGGGCACATTGGAAAATAAAGCCACGTTGGATGACGGCATGAACAATTCTCAG


rs1469311ACGTTGGATGCCTGAGAATTGTTCATGCCGACGTTGGATGTTTTCAGTGTTCTCTCCAGG


rs768326ACGTTGGATGAATTAGCCAGGCATGGTGTCACGTTGGATGACATCCTAGGCTCAAGTGAC


rs1863523ACGTTGGATGGGCAGACACATTCCTATTCGACGTTGGATGGGGAAAGGTGTGCTGAGTAA


rs1469312ACGTTGGATGCATTTCGTCAGCATTCTAGCACGTTGGATGGGACTCATGTCATCTCTTGG


rs1469313ACGTTGGATGAGTGAGGGAGAAAAGTGAACACGTTGGATGCCTAACTTCTCTCCAATCTC


rs1951773ACGTTGGATGAAGGTTCAAGTTACCGCATGACGTTGGATGCACTGTGGTCCATGAAAAA


rs2120655ACGTTGGATGACAGGGTTTCTGCATGTTGCACGTTGGATGACGCCTGTAATCCCAGCACT


rs2181495ACGTTGGATGGAATTGTGGGAGTTACAATTC~ACGTTGGATGGAATCAAGCTAATTAACATGTG~


TABLE 16
dbSNP Extend Term
rs# Primer Mix


rs3849023 CTCATAACATAAGAAGTTGATGC CGT


rs1444311 CTAGGCATGCTAGCTTGGC ACT


rs2044295 CACTACTATTCAAGATTACCCTTTACT


rs2166093 GGTGGTGATGGCTGCACAA ACG


rs2376334 TCAGAGAACCAGCTTTTGATTTCAACT


rs1444320 GCCTAGACCCCGTGCAAC ACG


rs2044294 CTCCTCAAGCCAATAGGTCTTA ACG


rs1899864 CGCACCTGGCCGAAAATAAC ACT


rs1562094 AACCTGCAAAAGATTTACACTTGCACT


rs1562098 TCCTGCCTCAGCCTTCCTAGA ACT


~9


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Extend Term
rs# Primer Mix


rs1562097 ACTCTGTTGTTCAGGCTGGGGT ACT


rs1562096 TAAGCTAGCTAGTAACTGGTG ACT


rs1562095 ATGTTATATAGAACATCCCTTTTTACT


rs1444319 TCTGGGCAATTATCAAGCCTTT ACT


rs1444318 CTTTGCATTTTCCTGAGTTCCTTTACT


rs1025938 AAGAAAAGCTTTTTGGTTTGGG ACT


rs1025937 GGTAGTATACCTAAAAAAACAGC CGT


rs1025936 TCAAAGGACACCCAGCATTCA ACG


rs1020333 ACGTTTATCTGTAACCTTTCCA CGT


rs2120654 GAAAGACCAGGGCATGATTAGA ACT


rs2588547 ACAAATGTAATATAAATCAAGCTCACG


rs2044293 ACCAGCCTGGGTAACATAGCCA ACT


rs2760324 GGTTGAGGAGAAGCACCAGCA ACG


rs2588546 TACAATTTCTAGCCTTAATAAGATACT


rs2588545 TACAGTGCATCTATTTGACACCAAACG


rs2760328 AAATTGGGTAAAGGGAAAAGAAG ACT


rs2588544 ATTAGCATGTGAAAGACTTCTC ACT


rs2760331 AGTATGCCTTTTGTGCACAAAGA ACT


rs2588543 ATTCTTTGTGCACAAAAGGCATA ACG


rs2588542 GCTTAAGCTCTTACAGGCAG CGT


rs2588541 AGGTCTATGTCAGGGAAAACCTTAACG


rs2588540 GATCCAGCAATCCCACTGAT ACG


rs2760336 AGGCGGAGCTTGCAGTGAG ~ ACT


rs2760337 CACCAATACTGTATGATTCTTTT ACT


rs2028732 CAGCTAAATAGGGCTTGAGTCAAT~ CGT


rs2588538 AATTTGTACAAATTTATGGGGTATACT


rs1992617 ATTGCCTTCAAAGAACATCAAAGCACG


rs1998469 GACCAACGGGAGGACATTG ACG


rs1998470 CTTTGAAGGCAATGTCCTCC ACG


rs1975498 TTTTGCCTGCTGCTATCCAC ACT


rs1562093 CTCCTCTGCCATGTGGAAC ACG


rs1975497 AAAACTGACTAATACACACTGTT ACT


rs1562092 TTTGGTTAATGGACATTTAGACT ACT


rs2248788 TGTGGGATTTTATTATTTTCATCAACT


rs1899862 TAAGTGCATAACTTGTCTTTGAGGACT


rs2588532 ATAGTGGCTGAGAGCCAGAT CGT


rs1885878 GCGAGTTTGTAGCACAGGC ACT


rs986648 GTACATGTAATGCTAGTAAAGAAAACG


rs986647 CTCTTTCTCAAGCAGGAGTTA ACG


rs1010010 AGCTAAGTTGGCATGTGGGA ACT


rs1010009 CCTGGCTACCTTCCAAAAAG ACT


rs2760325 TCTCAGGAAGTATGAAATAAATAGACG


rs2588531 CTCAGGAAGTATGAAATAAATAGTACT


rs1838388 TCATGGATATTTACACCTACTAC ACT


rs1975495 AGGAGTTTAAGACCAGCCTG ACT


rs2181491 TGCTTCTGGATTTTTAATGATCACACT


rs1975496 ATGATCAAATCATTTTGAGGGC ACT


rs2181492 GTTGCATTGCTATGGTCTGC ACT


rs2224719 CATATATCCCTCTGTCTGTAC ~ ACG




CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Extend Term
rs# Primer Mix


rs2224720 GGGTGTAGATGTGTAGATTTATA ACT


rs1951770 ACAAGCATTAGAGACTTGATTG ACG


rs2296040 CTTTGTTTCTAAAATCTGATAGTCACT


rs1957723 AGCATGGCATAGGCACTGG ACG


rs1957725 GCGAGGAAAGACCTGTTCTA ACG


rs2889346 GGTCAGCTCAGCTGGTTTTT ACG


rs1885879 CACATCTGATGCTCTCCTAAA ACT


rs1957726 GCCACTCAACCAGTAGGAAA ACT


rs1957727 GTATCTTTAAAACCCTCACAAAT CGT


rs1885880 TTACGTTAGTCTGCCTACTTCCA ACT


rs1885881 TGGGCTATCAATGATGGAAAC ACT


rs942108 AAATGAAATAGAATTGTGTACTTCACT


rs1951771 TCCCTTTTGTCTAAGAATATTAG ACG


rs2376323 CTAGCACTGCCAAGTGCAAC ACT


rs2013358 TTTTAGGAGTACTGTAGAACACA ACG


rs2181494 TGGGTCCCTCCCATAACAC ACT


rs1957728 AGAAGCATGTGCTTATAACAATAACGT


rs1957729 GAAGCATGTGCTTATAACAATAAAACT


rs1957730 ACATGAGAGACTCTGAAGACT ACT


rs1957731 GGGTGAGCTTTGGGATCAC ACT


rs1998468 GGGCATAATTAATCCATGTTAG ACT


rs1957732 GGCCAAGTTTACCTGCAAAC ACT


rs1957733 TCTAATGTTAAAGAGAGGAGTTTAACG


rs2376322 GCGCCAAGGAAAGGCCAC ACT


rs2889345 TCATTTCTCACCCTTGATATCCA ACT


rs1815267 AAAGGGCTACTATCAGTTTTGT CGT


rs1957734 CTGCCTTATAATTCTAAAAAGGT ACT


rs1957735 CTAAAACTAAGAAATGTTTCCAC CGT


rs1957736 TAATACTAAGGAGAGGGCTCCT ACT


rs1957737 AGCCAAGGGTGTGGATGAG ACT


rs1957738 CCTTAAAAGGCTGCCTACAAAATAACT


rs1957739 CTGAGTGCTTTAGCTGGATTA ACG


rs1957740 TTAAGCATCACACTGAGTTTGAG ACT


rs1957741 AGCTGAATTAAGCGCGACAGCTA ACG


rs1957742 TCTACTTTGTACGTAGCTGTCGC ACT


rs1957743 GAAAATATTACTAAAAAAGACCTCACG


rs1957744 TGTACCCTGTAATGCCTAAAGC ACG


rs1957745 TTTTCAAAGGTTTAGGTTTGGTTTACT


rs1957746 ACAACATAGTTAGCAAATGCAG ACG


rs1957747 GATAACAGTTCCAATTACAACAA ACG


rs2146670 ATCTTTATGAGCTTTTCCTTTCTTACG


rs2146671 TACAACCCTTTCAGGACTTCA CGT


rs1957748 TTGTAGTAGGGAGCCATGGT ACT


rs2162307 CCTGGCCCTTTGTCCCTG ACG


rs1962839 CCACATCTTTGACAAACCTGA ACT


rs2376315 CCCCCTTCCTTTTCCAGGC ACT


rs1426410 CATCTTGCCCTAAAATCACTC ACG


rs1895921 GTACATTTCTCAGGCAGCTC ACG


rs1895922 ATTAGGCTTCTCCCACCATC I ACT


91


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Extend Term
rs# Primer Mix


rs1035779 ACCCGGGAGGGTTGCAGT ACT


rs1035780 GGCTGGAGTGCAGTGGCA ACG


rs1035781 ACCTAGACTAAGAGAGTGATTGCAACT


rs1035782 CCTAAACAGTCAAGGCAAAGG ACT


rs1426411 TTTATGGTCTTCTTAGGATATCAACG


rs1834602 AGGAAGGTGCCCAGATCCT ACG


rs1834603 AGGAAGGTGCCCAGATCCTT ACT


rs1834604 AGTTTTCTAGTAACTTCTCTAAAAACT


rs1834605 ACAGTCAGGAAGAATTCTGTCT ACT


rs2162308 CACCTACAGAGTTTAAGTAAATTTACG


rs1365341 AAATCTCCTGGAGGGCTTCATAAACT


rs1820458 TGGAAATGGCAACTGAATCCT ACT


rs1469310 ACCCACACAATGCCAATAGCAC ACT


rs3057879 TGGAAAATAAAGCCTTTTGAGGTTACT


rs1469311 TGCCGTTAAAGAGGAAAAGCT ACT


rs768326 CAGCTACTCTGTAAAGCTGAA ACT


rs1863523 ATATTCTTGCTCATCTTTCTCTATACT


rs1469312 TAGTCCAGCAAACGCCAGC ACT


rs1469313 GTGAACAAATAATGCAAGTTCAGACT


rs1951773 CCCTTTGGGAGAGAAGGGC ACT


rs2120655 AGCAATCCTCCCACTTTGGC CGT


rs2181495 GGTGACATTTGGGTGGGGATACAACT


Genetic Analysis
[0238] Allelotyping results from the discovery cohort are shown for cases and
controls in Table 17.
The allele frequency for the A2 allele is noted in the fifth and sixth columns
for osteoarthritis case pools
and control pools, respectively, where "AF" is allele frequency. The allele
frequency for the A1 allele
can be easily calculated by subtracting the A2 allele frequency from 1 (A1 AF
= 1-A2 AF). For
example, the SNP rs1444311 has the following case and control allele
frequencies: case A1 (A) = 0.74;
case A2 (G) = 0.26; control A1 (A) = 0.75; and control A2 (G) = 0.25, where
the nucleotide is provided
in paranthesis. Some SNPs are labeled "untyped" because of failed assays.
TABLE 17
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position AlleleCase Control Value
SEQ ID AF AF
NO: 2


rs3849023211 36870611 G/T


rs14443117217 36877617 A/G 0.26 0.25 0.566


rs20442957895 36878295 A/C


rs216609313308 36883708 C/T


rs237633414279 36884679 G/T 0.15 0.16 0.734


rs144432017026 36887426 C/T


rs204429418271 36888671 A/G 0.16 0.14 0.412


rs189986420417 36890817 C/T


rs156209421843 36892243 A/G 0.22 0.23 0.586


rs156209822069 36892469 A/G


rs156209722145 36892545 A/G NA 0.97 NA


rs156209622519 36892919 A/G 0.20 0.21 0.773


rs156209522539 36892939 A/G 0.53 0.51 0.407


rs144431923236 36893636 A/C 0.74 0.79 0.023
~


92


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position Allele Case Control Value
SEQ ID AF AF
NO: 2


rs144431823256 36893656 A/C 0.12 0.13 0.559


rs102593823402 36893802 C/T 0.18 0.19 0.633


rs102593723499 36893899 A/C


rs102593623620 36894020 C/T 0.84 0.84 0.907


rs102033323871 36894271 A/T


rs212065424136 36894536 CIG 0.15 0.16 0.718


rs258854725427 36895827 A/G 0.39 0.40 0.603


rs204429325866 36896266 G/T


rs276032426541 36896941 A/G 0.59 0.61 0.395


rs258854626576 36896976 G/T 0.07 0.05 0.352


rs258854526689 36897089 A/G


rs276032826720 36897120 A/C 0.25 0.26 0.791


rs258854427113 36897513 C/T


rs276033127164 36897564 C/T 0.91 0.94 0.184


rs258854327186 36897586 A/G 0.59 0.59 0.828


rs258854228341 36898741 A/T


rs258854129160 36899560 ClT 0.61 0.59 0.313


rs258854029844 36900244 A/G 0.62 0.62 0.999


rs276033630665 36901065 G/T


rs276033730830 36901230 A/G 0.16 0.16 0.826


rs202873231061 36901461 A/C 0.60 0.58 0.432


rs258853831523 36901923 C/T 0.62 0.61 0.853


rs 199261732326 36902726 C/T 0.61 0.59 0.282


rs199846932346 36902746 A/G


rs199847032358 36902758 C/T 0.81 0.86 0.018


rs197549834909 36905309 C/T


rs156209334975 36905375 A/G 0.89 0.87 0.529


rs197549735066 36905466 C/T 0.13 0.13 0.691


rs156209235096 36905496 G/T


rs224878835375 36905775 C/T 0.29 0.31 0.368


rs189986236304 36906704 A/G 0.18 0.16 0.274


rs258853236712 36907112 A/T 0.30 0.32 0.443


rs188587836770 36907170 C/T 0.35 0.35 0.866


rs986648 37342 36907742 C/T 0.74 0.73 0.679


rs986647 37412 36907812 C/T 0.78 0.76 0.263


rs101001037884 36908284 A/G 0.25 0.26 0.649


rs101000938077 36908477 A/C 0.26 0.25 0.781


rs276032538300 36908700 C/T


rs258853138301 36908701 C/T


rs183838841189 36911589 C/T 0.75 0.74 0.650


rs197549544408 36914808 C/T


rs218149144493 36914893 A/C 0.14 _0.12 0.235


rs197549644571 36914971 A/G 0.26 0.26 0.944


rs218149244670 36915070 A/G 0.11 0.09 0.311


rs222471945219 36915619 A/G 0.78 0.78 0.866


rs222472045258 36915658 C/T 0.20 0.21 0.641


rs 195177047261 36917661 A/G 0.22 0.18 0.029


rs229604048473 36918873 A/C 0.41 0.43 0.459


rs995772348771 36919171 A/G 0.42 0.38 0.113


rs195772555292 36925692 CIT 0.75 0.78 0.196


rs288934656479 36926879 A/G 0.54 0.55 0.677


rs188587956747 36927147 A/C 0,44 0.48 0.123


rs195772660620 36931020 G/T 0.14 0.14 0.741


rs195772760688 36931088 A/C 0.73 0.76 0.271


rs188588061058 36931458 A/C 0.43 0.43 0.935


rs188588161129 36931529 C/T 0.12 0.11 0.681


rs942108 61577 36931977 C/T 0.49 0.52 0.317


rs195177161961 36932361 A/G 0.93 NA NA


rs237632363351 36933751 G/T


rs201335863926 36934326 A/G 0.13 0.13 0.821


rs218149465798 36936198 A/G 0.42 0.43 0.512


rs195772866043 36936443 A/C


rs 195772966044 36936444 A/G 0.79 0.77 0.405


rs195773066246 36936646 C/T 0.15 0.16 0.719


93


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position Allele Case Control Value
SEQ ID AF AF
N~: 2


rs195773166318 36936718 C/T 0.14 0.16 0.413


rs199846866547 36936947 G/T 0.13 0.12 0.468


rs195773271238 36941638 C/T 0.10 0.10 0.841


rs195773371283 36941683 A/G 0.63 0.61 0.632


rs237632271492 36941892 A/G 0.26 0.28 0.509


rs288934572274 36942674 A/G 0.20 0.18 0.234


rs181526773762 36944162 A/T 0.46 0.45 0.674


rs195773474209 36944609 G/T 0.55 0.64 0.003


rs195773575284 36945684 A/T 0.63 0.61 0.430


rs195773677347 36947747 A/C 0.05 0.05 0.903


rs195773777589 36947989 C/T 0,71 0.75 0.164


rs195773878096 36948496 A/G


rs195773978606 36949006 A/G


rs195774078862 36949262 G/T


rs195774179135 36949535 A/G 0.76 0.80 0.077


rs195774279146 36949546 A/G 0.95 0.96 0.500


rs195774379456 36949856 C/T 0.21 0.16 0.039


rs195774479609 36950009 A/G 0.66 0.70 0.088


rs195774580086 36950486 A/G 0.88 0.90 0.354


rs195774680119 36950519 A/G 0.40 0.44 0.120


rs195774780766 36951166 C/T 0.72 0.76 0.093


rs214667081110 36951510 A/G 0.73 0.77 0.072


rs214667181269 36951669 A/T 0.17 0.15 0.250


rs195774881668 36952068 C/T 0.16 0.14 0.407


rs216230782433 36952833 C/T 0.73 0.76 0.170


rs196283982559 36952959 C/G


rs237631583298 36953698 C/T 0.62 0.66 0.179


rs142641083821 36954221 A/G 0.75 0.77 0.307


rs189592184121 36954521 C/T 0.75 0.78 0.175


rs189592284147 36954547 C/T 0.15 0.12 0.095


rs103577984543 36954943 A/G 0.66 0.64 0.649


rs103578084554 36954954 A/G


rs103578184691 36955091 A/G 0.73 0.77 0.100


rs103578284727 36955127 A/G


rs142641185678 36956078 C/T 0.76 0.80 0.084


rs183460286699 36957099 C/T 0.20 0.16 0.072


rs183460386700 36957100 A/G 0.94 0.92 0.326


rs183460486792 36957192 A/G 0.70 0.73 0.287


rs183460586832 36957232 A/G 0.72 0.76 0.057


rs216230887045 36957445 A/G


rs136534187140 36957540 A/G 0.18 0.15 0.086


rs182045887365 36957765 A/C 0.23 0.21 0.298


rs146931088342 36958742 C/T 0.20 0.18 0.265


rs305787988498 36958898 -ITCA 0.70 0.71 0.649


rs146931188589 36958989 A/G 0.70 0.74 0.065


rs768326 95502 36965902 A/G


rs186352396968 36967368 C/T 0.21 0.18 0.247


rs146931297448 36967848 C/T 0.78 0.76 0.312


rs146931397568 36967968 C/T 0.81 0.80 0.617


rs195177398724 36969124 C/T


rs2120655Not ma Not ma T/G
ed ed


rs2181495Not ma Not ma G/A 0.78 0.76 0.617
ed ed


[0239] The chrorn 4 proximal SNPs were also allelotyped in the replication
cohorts using the
methods described herein and the primers provided in Tables 15 and 16. The
replication allelotyping
results for replication cohort #1 and replication cohort #2 are provided in
Tables 18 and 19,
respectively.
94


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
TABLE 18
Position
dbSNP in ChromosomeAl/A2 A2 CaseA2 Control
rs# position Allele AF AF -Value
SEQ D
NO:


rs3849023211 36870611 G/T


rs14443117217 36877617 A/G 0.27 0.25 0.441


rs20442957895 36878295 A/C


rs216609313308 36883708 C/T


rs237633414279 36884679 G/T 0.14 0.14 0.970


rs144432017026 36887426 C/T


rs204429418271 36888671 A/G 0.16 0.14 0.423


rs189986420417 36890817 C/T


rs156209421843 36892243 A/G 0.22 0.21 0.725


rs156209822069 36892469 A/G


rs156209722145 36892545 A/G


rs156209622519 36892919 A/G 0.20 0.19 0.795


rs156209522539 36892939 A/G 0.55 0.53 0.453


rs144431923236 36893636 A/C 0.70 0.80 0.003


rs144431823256 36893656 A/C 0.12 0.13 0.645


rs102593823402 36893802 C/T 0.18 0.18 0.824


rs102593723499 36893899 A/C


rs102593623620 36894020 C/T 0.85 0.83 0.622


rs102033323871 36894271 A/T


rs212065424136 36894536 C/G 0.16 0.16 0.914


rs258854725427 36895827 A/G 0.40 0.40 0.980


rs204429325866 36896266 G/T


rs276032426541 36896941 A/G 0.57 0.61 0.287


rs258854626576 36896976 G/T 0.08 0.05 0.265


rs258854526689 36897089 A/G


rs276032826720 36897120 A/C 0.25 unt ed NA


rs258854427113 36897513 C/T


rs276033127164 36897564 C/T 0.88 0.92 0.193


rs258854327186 36897586 A/G 0.57 0.58 0.869


rs258854228341 36898741 A/T


rs258854129160 36899560 C/T 0.61 0.57 0.230


rs258854029844 36900244 A/G 0.64 0.64 0.926


rs276033630665 36901065 G/T


rs276033730830 36901230 A/G 0.16 0.16 0.956


rs202873231061 36901461 A/C 0.60 0.57 0.330


rs258853831523 36901923 C/T 0.62 0.61 0.747


rs199261732326 36902726 C/T 0.62 0.59 0.341


rs199846932346 36902746 A/G


rs199847032358 36902758 C/T 0.78 0.88 0.0001


rs197549834909 36905309 CIT


rs156209334975 36905375 A/G 0.89 0.90 0.905


rs197549735066 36905466 C/T 0.12 0.12 0.873


rs156209235096 36905496 G/T


rs224878835375 36905775 C/T 0.28 0.31 0.308


rs189986236304 36906704 A/G 0.19 0.14 0.088


rs258853236712 36907112 A/T 0.30 0.33 0.347


rs188587836770 36907170 C/T 0.36 0.34 0.362


rs98664837342 36907742 C/T 0.74 0.75 0.773


rs98664737412 36907812 C/T 0.78 0.77 0.693


rs101001037884 36908284 A/G 0.25 0.26 0.690


rs101000938077 36908477 A/C 0.27 0.26 0.870


rs276032538300 36908700 C/T


rs258853138301 36908701 C/T


rs183838841189 36911589 C/T 0.74 0.75 0.826


rs197549544408 36914808 C/T


rs218149144493 36914893 A/C 0.16 0.10 0.057


rs 197549644571 36914971 A/G 0.25 0.26 0.596


rs218149244670 36915070 A/G 0.11 0.08 0.167


rs222471945219 36915619 A/G 0.78 0.79 0.705


rs222472045258 36915658 C/T 0.19 0.21 0.478


rs195177047261 36917661 A/G 0.25 0.16 0.003




CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
Position
dbSNP in ChromosomeAl/A2 A2 CaseA2 Control
rs# position Allele AF AF -Value
SEQ D
NO:


rs229604048473 36918873 A/C 0.39 0.43 0
.241


rs195772348771 36919171 A/G 0.44 0.36 _
0.027


rs195772555292 36925692 C/T 0.73 0.80 0.024


rs288934656479 36926879 A/G 0.53 0_.55 0.552


rs188587956747 36927147 A/C 0.43 0.50 0.057


rs195772660620 36931020 G/T 0.14 0.14 0.918


rs19577276_0688 36931088 A/C 0.71 0_.78 0.038


rs188588061058 36931458 A/C 0.44 0.42 0.627


rs188588161129 36931529 C/T 0.12 0.12 0.833


rs94210861577 36931977 C/T 0.42 0.49 0.096


rs195177161961 36932361 A/G 0.93 NA NA


rs237632363351 36933751 G/T


rs201335863926 36934326 A/G 0.13 0.12 0.795


rs218149465798 36936198 A/G 0.38 0.41 0.424


rs195772866043 36936443 A/C


rs195772966044 36936444 A/G 0.78 0.77 0.672


rs195773066246 36936646 C/T 0.15 0.15 0.885


rs 195773166318 36936718 CIT 0.15 0.16 0.719


rs199846866547 36936947 G/T 0.14 0.10 0.243


rs195773271238 36941638 C/T 0.10 0.09 0.817


rs195773371283 36941683 A/G 0.62 NA 0.628


rs237632271492 36941892 A/G 0.26 0.27 0.660


rs288934572274 36942674 A/G 0.22 0.16 0.020


rs181526773762 36944162 A/T 0.46 0.48 0.626


rs195773474209 36944609 G/T 0.44 0.61 0.0001


rs195773575284 36945684 A/T 0.63 0.63 0.792


rs195773677347 36947747 A/C 0.03 0.03 0.987


rs195773777589 36947989 C/T 0.69 0.77 0.024


rs195773878096 36948496 A/G


rs195773978606 36949006 A/G


rs195774078862 36949262 G/T


rs195774179135 36949535 A/G 0.75 0.83 0.008


rs195774279146 36949546 A/G 0.94 0.96 0.459


rs195774379456 36949856 C/T 0.24 0.14 0.009


rs195774479609 36950009 A/G 0.63 0.72 0.006


rs195774580086 36950486 A/G 0.86 0.90 0.229


rs195774680119 36950519 A/G 0.42 0.50 0.019


rs195774780766 36951166 C/T 0.71 0.79 0.009


rs214667081110 36951510 A/G 0.72 0.81 0.004


rs214667181269 36951669 A/T 0.17 0.13 0.106


rs195774881668 36952068 C/T 0.17 0.13 0.133


rs216230782433 36952833 C/T 0.72 0.78 0.020


rs196283982559 36952959 C/G


rs237631583298 36953698 C/T 0.61 0.67 0.074


rs142641083821 36954221 A/G 0.73 0.79 0.058


rs189592184121 36954521 C/T 0.72 0.80 0.013


rs189592284147 36954547 C/T 0.17 0.11 0.014


rs103577984543 36954943 A/G 0.66 0.64 0.613


rs103578084554 36954954 A/G


rs103578184691 36955091 A/G 0.71 0.78 0.059


rs103578284727 36955127 A/G


rs142641185678 36956078 C/T 0.75 0.82 0.008


rs183460286699 36957099 C/T 0.22 0.15 0.020


rs183460386700 36957100 A/G 0.94 0.92 0.483


rs183460486792 36957192 A/G 0.69 0.75 0.056


rs183460586832 36957232 A/G 0.71 0.79 0.007


rs216230887045 36957445 A/G


rs136534187140 36957540 A/G 0.19 0.13 0.017


rs182045887365 36957765 A/C 0.24 0.19 0.141


rs146931088342 36958742 C/T 0.22 0.17 0.061


rs305787988498 36958898 -/TCA 0.67 NA NA


rs146931188589 36958989 A/G 0.67 0.76 0.006


rs76832695502 36965902 A/G


96


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
Position
dbSNP in ChromosomeAl/A2 A2 CaseA2 Control
rs# position Allele AF AF -Value
SEQ D
NO:


rs186352396968 36967368 C/T 0.22 0.17 0.103


rs146931297448 36967848 C/T 0.80 0.77 0.236


rs146931397568 36967968 C/T 0.83 0.80 0.422


rs195177398724 36969124 C/T


rs2120655Not ma Not ma T/G
ed ed


rs2181495Not ma Not ma G/A 0.78 0.76 0.617
ed ed


TABLE 19
Position
dbSNP in ChromosomeAllA2 A2 CaseA2 Control
rs# position Allele AF AF -Value
SEQ D
NO:


rs3849023211 36870611 G/T


rs14443117217 36877617 A/G 0.25 0.26 0.876


rs20442957895 36878295 A/C


rs216609313308 36883708 C/T


rs237633414279 36884679 G/T 0.16 0.18 0.532


rs144432017026 36887426 C/T


rs204429418271 36888671 A/G NA 0.15 NA


rs189986420417 36890817 C/T


rs156209421843 36892243 A/G NA 0.28 NA


rs156209822069 36892469 A/G


rs156209722145 36892545 A/G


rs156209622519 36892919 A/G 0.20 0.23 0.364


rs156209522539 36892939 A/G 0.50 0.48 0.588


rs144431923236 36893636 A/C 0.79 0.79 0.923


rs144431823256 36893656 A/C 0.12 0.13 0.711


rs102593823402 36893802 ClT 0.18 0.22 0.247


rs102593723499 36893899 A/C


rs102593623620 36894020 C/T 0.84 0.86 0.403


rs102033323871 36894271 A/T


rs212065424136 36894536 ClG 0.14 0.16 0.682


rs258854725427 36895827 A/G 0.37 NA


rs204429325866 36896266 G/T


rs276032426541 36896941 A/G 0.60 0.60 0.965


rs258854626576 36896976 G/T 0.05 0.06 0.797


rs258854526689 36897089 A/G


rs276032826720 36897120 A/C 0.25 0.26 0.816


rs258854427113 36897513 C/T


rs276033127164 36897564 C/T 0.95 0.96 0.597


rs258854327186 36897586 A/G 0.60 0.61 0.801


rs258854228341 36898741 A/T


rs258854129160 36899560 C/T 0.62 0.61 0.972


rs258854029844 36900244 A/G 0.60 0.59 0.810


rs276033630665 36901065 G/T


rs276033730830 36901230 A/G 0.16 0.17 0.659


rs202873231061 36901461 A/C 0.60 0.60 0.976


rs258853831523 36901923 ClT 0.61 0.61 0.912


rs199261732326 36902726 C/T 0.61 0.59 0.583


rs199846932346 36902746 A/G


rs199847032358 36902758 C/T 0.84 0.81 0.338


rs197549834909 36905309 C/T


rs156209334975 36905375 A/G 0.88 0.84 0.199


rs197549735066 36905466 C/T 0.13 0.15 0.613


rs156209235096 36905496 G/T


rs224878835375 36905775 C/T 0.30 0.31 0.884


rs189986236304 36906704 A/G 0.17 0.18 0.563


rs258853236712 36907112 A/T 0.29 0.29 0.952


rs188587836770 36907170 C/T 0.33 0.36 0.405


rs98664837342 36907742 C/T 0.75 0.72 0.283


rs98664737412 36907812 C/T 0.79 0.74 0.186


97


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
Position
dbSNP in ChromosomeAllA2 A2 CaseA2 Control
rs# position Allele AF AF -Value
SEQ D
NO:


rs101001037884 36908284 A/G _0.25 0.26 0.843_


rs101000938077 36908477 A/C 0.25 0.24 0.764


rs276032538300 36908700 C/T


rs258853138301 36908701 C/T


rs183838841189 36911589 C/T 0.76 0.72 0.284


rs197549544408 36914808 ClT


rs218149144493 36914893 A/C 0.12 0.15 0.464


rs197549644571 36914971 A/G 0.27 0.25 0.577


rs218149244670 36915070 A/G 0.10 0.11 0.844


rs222471945219 36915619 A/G 0.78 0.75 0.426


rs222472045258 36915658 C/T 0.21 0.20 0.790


rs195177047261 36917661 A/G 0.19 0.20 0.796


rs229604048473 36918873 A/C 0.43 0.42 0.804


rs195772348771 36919171 A/G 0.41 0.42 0.653


rs195772555292 36925692 C/T 0.77 0.75 0.439


rs288934656479 36926879 A/G 0.56 0.56 0.948


rs188587956747 36927147 A/C 0.46 0.45 0.959


rs195772660620 36931020 G/T 0.14 0.15 0.673


rs195772760688 36931088 A/C 0.76 0.73 0.255


rs188588061058 36931458 A/C 0.43 0.45 0.614


rs188588161129 36931529 C/T 0.13 0.10 0.346


rs94210861577 36931977 C/T 0.58 0.56 0.730


rs195177161961 36932361 A/G


rs237632363351 36933751 GlT


rs201335863926 36934326 A/G 0.13 0.15 0.469


rs218149465798 36936198 A/G 0.46 0.47 0.820


rs195772866043 36936443 A/C


rs195772966044 36936444 A/G 0.80 0.78 0.440


rs195773066246 36936646 C/T 0.15 0.17 0.668


rs195773166318 36936718 C/T 0.14 0.16 0.387


rs199846866547 36936947 G/T 0.12 0.13 0.615


rs195773271238 36941638 C/T 0.09 0.11 0.469


rs195773371283 36941683 A/G 0.60 0.02


rs237632271492 36941892 A/G 0.27 0.29 0.582


rs288934572274 36942674 A/G 0.17 0.21 0.308


rs181526773762 36944162 A/T 0.46 0.41 0.151


rs195773474209 36944609 G/T 0.68 0.69 0.766


rs195773575284 36945684 A/T 0.62 0.58 0.311


rs195773677347 36947747 A/C 0.07 0.08 0.688


rs195773777589 36947989 C/T 0.75 0.71 0.305


rs195773878096 36948496 A/G


rs195773978606 36949006 A/G


rs195774078862 36949262 G/T


rs195774179135 36949535 A/G 0.78 0.76 0.446


rs195774279146 36949546 A/G 0.96 0.96 0.938


rs 195774379456 36949856 C/T 0.17 0.19 0.667


rs195774479609 36950009 A/G 0.69 0.66 0.423


rs195774580086 36950486 A/G 0.90 0.89 0.738


rs195774680119 36950519 A/G 0.37 0.35 0.708


rs195774780766 36951166 C/T 0.72 0.70 0.639


rs214667081110 36951510 A/G 0.75 0.72 0.306


rs214667181269 36951669 A/T 0.16 0.17 0.806


rs195774881668 36952068 C/T 0.14 0.17 0.453


rs216230782433 36952833 C/T 0.76 0.73 0.465


rs196283982559 36952959 CIG


rs237631583298 36953698 C/T 0.64 0.63 0.767


rs142641083821 36954221 A/G 0.77 0.74 0.465


rs189592184121 36954521 C/T 0.78 0.75 0.320


rs189592284147 36954547 C/T 0.12 0.13 0.586


rs103577984543 36954943 A/G NA 0.65 NA


rs103578084554 36954954 A/G


rs103578184691 36955091 A/G 0.75 0.76 0.830


rs103578284727 36955127 A/G


98


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
Position
dbSNP in ChromosomeAllA2 A2 CaseA2 Control
rs# position Allele AF AF -Value
SEQ ~D
NO:


rs142641185678 36956078 C/T 0.78 0.76 0.488


rs183460286699 36957099 C/T 0.18 0.18 0.945


rs183460386700 36957100 A/G 0.95 NA


rs183460486792 36957192 A/G 0.72 0.69 0.427


rs183460586832 36957232 A/G 0.73 0.72 0.647


rs216230887045 36957445 A/G


rs136534187140 36957540 A/G 0.16 0.17 0.667


rs182045887365 36957765 A/C 0.23 0.24 0.670


rs146931088342 36958742 C/T 0.19 0.21 0.592


rs305787988498 36958898 -/TCA 0.74 0.71 0.478


rs146931188589 36958989 A/G 0.74 0.72 0.582


rs76832695502 36965902 A/G


rs186352396968 36967368 C/T 0.20 0.21 0.687


rs146931297448 36967848 C/T 0.76 0.75 0.807


rs146931397568 36967968 C/T 0.78 0.79 0.824


rs195177398724 36969124 C/T


rs2120655Not ma Not ma T/G
ed ed


rs2181495Not mapped~ Not G/A
~ mapped


[0240] Allelotyping results were considered particularly significant with a
calculated p-value of
less than or equal to 0.05 for allelotype results. These values are indicated
in bold. The allelotyping p-
values were plotted in Figure 1B for the discovery cohort. The position of
each SNP on the
chromosome is presented on the x-axis. The y-axis gives the negative logarithm
(base 10) of the p-
value comparing the estimated allele in the case group to that of the control
group. The minor allele
frequency of the control group for each SNP designated by an X or other symbol
on the graphs in
Figure 1B can be determined by consulting Table 17. For example, the left-most
X on the left graph is
at position 36870611. By proceeding down the Table from top to bottom and
across the graphs from
left to right the allele frequency associated with each symbol shown can be
determined.
[0241] To aid the interpretation, multiple lines have been added to the graph.
The broken
horizontal lines are drawn at two common significance levels, 0.05 and 0.01.
The vertical broken lines
are drawn every 20kb to assist in the interpretation of distances between
SNPs. Two other lines are
drawn to expose linear trends in the association of SNPs to the disease. The
generally bottom-most
curve is a nonlinear smoother through the data points on the graph using a
local polynomial regression
method (W.S. Cleveland, E. Grosse and W.M. Shyu (1992) Local regression
models. Chapter 8 of
Statistical Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth &
Brooks/Cole). The black line
provides a local test for excess statistical significance to identify regions
of association. This was
created by use of a l Okb sliding window with lkb step sizes. Within each
window, a chi-square
goodness of fit test was applied to compare the proportion of SNPs that were
significant at a test wise
level of 0.01, to the proportion that would be expected by chance alone (0.05
for the methods used
here). Resulting p-values that were less than 10-8 were truncated at that
value.
[0242] Finally, the exons and introns of the genes in the covered region are
plotted below each
graph at the appropriate chromosomal positions. The gene boundary is indicated
by the broken
99


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
horizontal line. The exon positions are shown as thick, unbroken bars. An
arrow is place at the 3' end
of each gene to show the direction of transcription.
Example 6
Chrom 6 Region Proximal SNPs
[0243] It has been discovered that SNPs rs756519, rs1042327 and rs8770 on
chromosome 6 (6q27)
are associated with occurrence of osteoarthritis in subjects. This region
contains genes that encode
proteasome (prosome, macropain) subunit, beta type, 1 (PSMBI), TATA box
binding protein (TBP),
and programmed cell death 2 (PDCD2).
[0244] One hundred-nine additional allelic variants proximal to rs756519,
rs1042327 and rs8770
were identified and subsequently allelot0yped in osteoarthritis case and
control sample sets as described
in Examples 1 and 2. The polymorphic variants are set forth in Table 20. The
chromosome positions
provided in column four of Table 20 are based on Genome "Build 34" of NCBI's
GenBank.
TABLE 20
dbSNP Position Chromosome Allele
rs# Chromosomein SEQ Position Variants
ID NO:
3


rs14745556 229 170689279 c/t


rs14745546 6310 170695360 a/


rs10334 6 11840 170700890 /t


rs10541 6 11870 170700920 a/t


rs38232996 12064 170701114 a/


rs742348 6 13392 170702442 c/


rs14746446 16354 170705404 a/


rs14746436 16559 170705609 c/t


rs20569706 16935 170705985 a/


rs22234746 17616 170706666 c/t


rs22062846 17737 170706787 c/t


rs756519 6 18321 170707371 c/t


rs756518 6 18453 170707503 a/


rs756517 6 18811 170707861 c/t


rs14746426 20020 170709070 c/t


rs20380936 21662 170710712 c/


rs20380926 23197 170712247 cl


rs22234736 23446 170712496 /t


rs760909 6 24339 170713389 /t


rs20763196 25504 170714554 a/


rs37785896 27174 170716224 a/


rs38002366 28008 170717058 alt


rs22062866 29294 170718344 c/t


rs12717 6 29759 170718809 c/


rs21793736 30832 170719882 a/


rs38002356 44512 170733562 a/c


rs38232986 44850 170733900 c/


rs20763186 45884 170734934 a/


rs22355066 46345 170735395 clt


rs20729166 48589 170737639 a/


rs37347ti36 53371 170742421 a/


100


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP ChromosomePosition ChromosomeAllele
rs# in SEQ Position Variants
ID NO:
3


rs31775716 53911 170742961 /t


rs8770 6 53990 170743040 al


rs31732196 55152 170744202 c!


rs9607446 55667 170744717 c/t


rs20669546 58952 170748002 a/c


rs20729176 59315 170748365 /t


rs31732206 60029 170749079 a/


rs7342496 61477 170750527 a/c


rs20923106 62988 170752038 c/t


rs20923096 63090 170752140 c/


rs10165366 64021 170753071 alc


rs22355066 65685 170754735 c/t


rs20769986 70220 170759270 a/


rs20769976 70323 170759373 a/c


rs23454786 70959 170760009 a/c


rs20218996 73436 170762486 c/


rs20218986 82945 170771995 a/


rs23456826 82958 170772008 /t


rs23456836 82961 170772011 c/


rs28811956 82964 170772014 c/t


rs23456846 82965 170772015 It


rs30462616 83006 170772056 -/cttt


rs40834136 83025 170772075 c/t


rs40834126 83034 170772084 a/


rs23456856 83074 170772124 /t


rs20218976 83132 170772182 /t


rs40362116 83155 170772205 c/t


rs40362126 83172 170772222 alt


rs40362136 83174 170772224 /t


rs23456866 83206 170772256 c/t


rs40362146 83216 170772266 /t


rs40362156 83234 170772284 /t


rs23456876 83252 170772302 a/


rs23456886 83260 170772310 a/c


rs28811966 83263 170772313 a/c


rs30462886 83296 170772346 -/at


rs40362166 83319 170772369 a/


rs40362056 83322 170772372 c/


rs20923076 83324 170772374 alc


rs40362066 83357 170772407 c/


rs23456896 83375 170772425 c/t


rs23456906 83381 170772431 c/t


rs23456916 83389 170772439 a/t


rs23456926 83443 170772493 a/


rs30463066 83499 170772549 -/ t


rs40362076 83545 170772595 clt


rs23456936 83566 170772616 clt


rs23456946 83591 170772641 c/t


rs23456956 83619 170772669 /t


rs23456966 83698 170772748 a/


rs40362096 83780 170772830 /t


rs2345697~ 83784 170772834 g/t


101


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position Chromosome Allele
rs# Chromosomein SEQ Position Variants
ID NO:
3


rs28811976 83826 170772876 /t


rs23456986 83832 170772882 c/t


rs23456996 83852 170772902 c/t


rs27446406 86297 170775347 c/t


rs27446396 86315 170775365 /t


rs27446386 86420 170775470 c!


rs27446376 86460 170775510 c/


rs27446366 86714 170775764 c/t


rs27446356 86718 170775768 clt


rs27446346 86736 170775786 c/


rs27446336 86753 170775803 c/t


rs27446326 86766 170775816 It


rs27446306 88162 170777212 c/


rs27446296 88218 170777268 a/


rs27446286 88246 170777296 al


rs27446276 88255 170777305 c/t


rs29776166 88309 170777359 /t


rs29776176 88310 170777360 a/t


rs27446266 88471 170777521 a/


rs27446256 88619 170777669 c/t


rs31158476 88904 170777954 c/t


rs27446236 89044 170778094 c/


rs40361936 90531 170779581 -/aaaaa


rs40361946 90534 170779584 a/


rs40361966 90613 170779663 c/


rs10423276 46252 170735302 c/t


Assay for Verifying and Allelotypin~ SNPs
[0245] The methods used to verify and allelotype the 109 proximal SNPs of
Table 20 are the same
methods described in Examples 1 and 2 herein. The primers and probes used in
these assays are
provided in Table 21 and Table 22, respectively.
TABLE 21
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs1474555ACGTTGGATGACATCAACTGAAGCCGACAGACGTTGGATGAATGGTGGAATGTGATGAGA


rs1474554ACGTTGGATGATACACCTAGGACACCTCCAACGTTGGATGCAGAAGGAGATAAACCCAGC


rs10334ACGTTGGATGAACAGTTTCCTCCCTGATGCACGTTGGATGCGGCTGGTGAAAGATGTCTT


rs10541ACGTTGGATGACTATGCAGATCCGGAGTGCACGTTGGATGGTCCTTGGACAGAGCCATG


rs3823299ACGTTGGATGCTCATGTGTACGAGGATTTGACGTTGGATGGTCTGGAAGGGTCTTTATTC


rs742348ACGTTGGATGTGTGGATTTTCCAGTGCTCGACGTTGGATGCTGTACTTGAACTCCCAAGC


rs1474644ACGTTGGATGGCAAGACAAGCATAATTGGGACGTTGGATGTAAAGGGCATTTTGGCTTCC


rs1474643ACGTTGGATGTCTCCCAAATTAAAAGTGGCACGTTGGATGGATACCAAAGTCCTACTTAC


rs2056970ACGTTGGATGTGGGACTACAGGAAGAGAAGACGTTGGATGCAAAACACAGACCTTCAGCC


rs2223474ACGTTGGATGCCAGGGTAAAGAAAAGATCCACGTTGGATGAGAGGCTTACCTCCTAAAAG


rs2206284ACGTTGGATGTCACATACTAGGTGGATCCCACGTTGGATGAAAGAGGAGAACACAGGATG


rs756519ACGTTGGATGTCTAGAGACACCTGAGGTTGACGTTGGATGTGTTTCACTTCAGAGCCCTG


rs756518ACGTTGGATGCCCAGATTAGACTCTCTAACACGTTGGATGAAATAGCTGAGCTGCCATTG


102


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs756517ACGTTGGATGCTCGGTTGTTGACTCCTATCACGTTGGATGGCGGATGTTAAGAGTCAGAG


rs1474642ACGTTGGATGGGAGGTCATACATTAGCTTCACGTTGGATGTACCATCTGACACAATTCTC


rs2038093ACGTTGGATGGAGACAGAGTTTCACTCTTGACGTTGGATGTAATCACTTGAACCCAGGAG


rs2038092ACGTTGGATGTTACCTGAGGTCAGGAGTTTACGTTGGATGCCACACCCAGCTGATTTTTG


rs2223473ACGTTGGATGCCTTTATGTTATTGCTTTCCACGTTGGATGCAGGGAAATTTAAGAATAGC


rs760909ACGTTGGATGGGAAGAGGCAAGCTTAGTTCACGTTGGATGGCAGCATTAACGAATGCCTG


rs2076319ACGTTGGATGGACATTTCACAATGCCTTTGACGTTGGATGCCAACAGCAACTTAAAAACTC


rs3778589ACGTTGGATGGCAAGAGAGAGAAAAGTTCCACGTTGGATGGTGTTTCTGTCCCATTTCAC


rs3800236ACGTTGGATGAGAGAATGAGGCCTCATTTTACGTTGGATGCTCAGTCATTGTTCTTTTTC


rs2206286ACGTTGGATGTTCAGACGCTAACCCTCTACACGTTGGATGAACATAGCCTCTGCTCTGTG


rs12717ACGTTGGATGAAAATCGCAGCTGCAAAGGGACGTTGGATGAGACAGCAAGTGTCGGATCC


rs2179373ACGTTGGATGGAAGTGACCTATGCTCACACACGTTGGATGAATGTCACTTCCGCCAGTTC


rs3800235ACGTTGGATGCTATGTGTTGATACCTCCAAGACGTTGGATGGCTTCATAAATGAACTGAAC


rs3823298ACGTTGGATGGGTGGTTTCTTGTCTTGATGACGTTGGATGTTTTTGTCCCAGAGCATCTG


rs2076318ACGTTGGATGTCCGCCAAATTATTGTAGCCACGTTGGATGCTCAGTAGAAATGCATGGGC


rs2235506ACGTTGGATGTAACCATGTCAACTGTTCTCACGTTGGATGCCCACCAACAATTTAGTAGG


rs2072916ACGTTGGATGACGCTGGAGTCACTAAGATGACGTTGGATGCAGATTAAGGCACAGGCATG


rs3734763ACGTTGGATGGCCTTTTGCCTTTCAGTGTCACGTTGGATGTAAAGAGGCTGGACCTTCAG


rs3177571ACGTTGGATGGTCTGTTGTCAATATAGGTGACGTTGGATGACAAAAGTGTCCAGTGACAG


rs8770 ACGTTGGATGAATTCCCTGTCACTGGACACACGTTGGATGCCAAAAATAGAGGTGCAGAG


rs3173219ACGTTGGATGACATAACCACACTGGAGGTGACGTTGGATGCCTAGTTTTCAGACACGGTC


rs960744ACGTTGGATGAAAGGCATGTCACAGTTCCCACGTTGGATGGCCCTCTGAGTCAGATAAAC


rs2066954ACGTTGGATGGAGGTTCTGGGTATAACTTTCACGTTGGATGCTACAAACCAGTAAGCTGATG


rs2072917ACGTTGGATGTGCTAGGCACTCACACTATCACGTTGGATGAGGCTTGGTAAGTTCCTCTG


rs3173220ACGTTGGATGTATCTGGGTTGACAAAGGCGACGTTGGATGACATAAGCAGGCTTGTGCAC


rs734249ACGTTGGATGAGGTGGACACCAGCAGGGAAACGTTGGATGTCACCTCTGCACATGTCTTG


rs2092310ACGTTGGATGTTAGTCAGGTAAAGCGGGACACGTTGGATGTCAGTGGAAGGCTGATCAAG


rs2092309ACGTTGGATGATCTAATTGCTTCCCCTCCCACGTTGGATGCAGCCTTCCACTGAATACAC


rs1016536ACGTTGGATGCCCCAAAAATTGGAGACAGGACGTTGGATGGGCTGTCATAATCGTGTGTC


rs2235506ACGTTGGATGAAGTGATTCTCCTGCCTCAGACGTTGGATGTGGTGAAACCCTGTCTCTAC


rs2076998ACGTTGGATGGCTCTGTGATTTCGATGATGACGTTGGATGAGCTACTTCTTGCAGGAGTC


rs2076997ACGTTGGATGCAGAGCTTCCAAGTGTTTTCACGTTGGATGAAAGGAGTGCTTAAAGGAGC


rs2345478ACGTTGGATGCCTTCAACAAGTGCTGACACACGTTGGATGATCCAGGCATTATTGCCAGC


rs2021899ACGTTGGATGGTTTTGTGGTGGATGATGGGACGTTGGATGAGAGTGCCCATAATGGACAG


rs2021898ACGTTGGATGCGCAAGAAACTCCTTGGATGACGTTGGATGCCAATTAAAGCCAAGGTCAC


rs2345682ACGTTGGATGATTCGCAAGAAACTCCTTGGACGTTGGATGGGAAGAAATCTTACCAGAAC


rs2345683ACGTTGGATGATTCGCAAGAAACTCCTTGGACGTTGGATGGGAAGAAATCTTACCAGAAC


rs2881195ACGTTGGATGATTCGCAAGAAACTCCTTGGACGTTGGATGGGAAGAAATCTTACCAGAAC


rs2345684ACGTTGGATGATTCGCAAGAAACTCCTTGGACGTTGGATGGGAAGAAATCTTACCAGAAC


rs3046261ACGTTGGATGCTCCACTCAGACATCAAAAGACGTTGGATGGTGACCTTGGCTTTAATTGG


rs4083413ACGTTGGATGGTGACCTTGGCTTTAATTGGACGTTGGATGCTCCACTCAGACATCAAAAG


rs4083412ACGTTGGATGGTGACCTTGGCTTTAATTGGACGTTGGATGCTCCACTCAGACATCAAAAG


rs2345685ACGTTGGATGGTTCTGGTAAGATTTCTTCCACGTTGGATGAGTCTTACAATAGATGACTG


rs2021897ACGTTGGATGGCAATTATTTACAGAAGCCCACGTTGGATGTCCCACACAGTCATCTATTG


rs4036211ACGTTGGATGCCCATTACAAGTTGGGCAGTTACGTTGGATGCTTTCTGATTCCTTTTTTTTCC


rs4036212ACGTTGGATGCTTTCTGATTCCTTTTTTTTCCACGTTGGATGCCCATTACAAGTTGGGCAGTT


rs4036213ACGTTGGATGCCCATTACAAGTTGGGCAGTTACGTTGGATGCTTTCTGATTCCTTTTTTTTCC


rs2345686ACGTTGGATGCCCATTACAAGTTGGGCAGTTACGTTGGATGCTTTCTGATTCCTTTTTTTTCC


rs4036214ACGTTGGATGCCCATTACAAGTTGGGCAGTTACGTTGGATGCTTTCTGATTCCTTTTTTTTCC


rs4036215ACGTTGGATGCTTTCTGATTCCTTTTTTTTCCACGTTGGATGCCCATTACAAGTTGGGCAGTT


rs2345687ACGTTGGATGGGATTGTAAGGTGAGACTTGACGTTGGATGTTCCTCCCCATTACAAGTTG


rs2345688ACGTTGGATGAGGGTCCCATCTAAGAATTC~ ACGTTGGATGGGATTGTAAGGTGAGACTTG


103


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs2881196ACGTTGGATGAGGGTCCCATCTAAGAATTCACGTTGGATGGGATTGTAAGGTGAGACTTG


rs3046288ACGTTGGATGCCAACTTGTAATGGGGAGGAACGTTGGATGCAGTTTTTACAGAGGGTCCC


rs4036216ACGTTGGATGCTTGTAATGGGGAGGAAAAAAACGTTGGATGTTCTCATTTTAATCTGTCAG


rs4036205ACGTTGGATGCTTGTAATGGGGAGGAAAAAAACGTTGGATGTTCTCATTTTAATCTGTCAG


rs2092307ACGTTGGATGCTTGTAATGGGGAGGAAAAAAACGTTGGATGTTCTCATTTTAATCTGTCAG


rs4036206ACGTTGGATGGACCCTCTGTAAAAACTGACACGTTGGATGCCACTGCACCTCAAATCTTC


rs2345689ACGTTGGATGTTCCCTGAGTATCTCCCATGACGTTGGATGGGGACCCTCTGTAAAAACTG


rs2345690ACGTTGGATGTTCCCTGAGTATCTCCCATGACGTTGGATGGGGACCCTCTGTAAAAACTG


rs2345691ACGTTGGATGGCCACCTGTTGGAGATTTACACGTTGGATGGGGACCCTCTGTAAAAACTG


rs2345692ACGTTGGATGTACATGGGAGATACTCAGGGACGTTGGATGCCACTGCACCTCAAATCTTC


rs3046306ACGTTGGATGGTATAACAAACCTTACCCTTGACGTTGGATGTAAAGAAAGAAGATTTGAGG


rs4036207ACGTTGGATGTATCAATGGAGAATGCGTGGACGTTGGATGGGGAGTTAACCAGCAAAAGC


rs2345693ACGTTGGATGTCGACAACAAGAAGAGAAGGACGTTGGATGCACATTAGACAAGGGTAAGG


rs2345694ACGTTGGATGCTACCTCTCTCGACAACAAGACGTTGGATGCTTAAGTCCACGCATTCTCC


rs2345695ACGTTGGATGCGCATTCTCCATTGATAAGACACGTTGGATGCCATTTAAAAGCTACCTCTC


rs2345696ACGTTGGATGCCTTACACAAGTGTAACTTCACGTTGGATGCCCCAAAATATAATGGTAGG


rs4036209ACGTTGGATGGGAACACAGTGTATAAGACCACGTTGGATGGTTTTCACAACTTCGTTAGC


rs2345697ACGTTGGATGGTTTTCACAACTTCGTTAGCACGTTGGATGGCCACCCCAAAATATAATGG


rs2881197ACGTTGGATGGCTGGAGGAAAAACAAGAACACGTTGGATGCCTACCATTATATTTTGGGG


rs2345698ACGTTGGATGCTGGAGGAAAAACAAGAACTCACGTTGGATGCATTATATTTTGGGGTGGCAT


rs2345699ACGTTGGATGGCTGGAGGAAAAACAAGAACACGTTGGATGGGGTGGCATATTTTGGTCTT


rs2744640ACGTTGGATGGCAACAGCACTTAGTATGCCACGTTGGATGTGTGAAGCTGCAAATCTGGC


rs2744639ACGTTGGATGGCAACAGCACTTAGTATGCCACGTTGGATGTGTGAAGCTGCAAATCTGGC


rs2744638ACGTTGGATGAACCGTGGCAATACCACGTCACGTTGGATGTGGGTTTGGGCTGGATTTGG


rs2744637ACGTTGGATGTGAGTTGACAGCCTCTGCTGGACGTTGGATGCACGTCAGTAAGGCAGAGAC


rs2744636ACGTTGGATGTCGGAGATGACATTGTCACCACGTTGGATGTTCCAGGGGTTACGTGTGTG


rs2744635ACGTTGGATGTGAGTCTGACTGTGTCACGGACGTTGGATGTCGGAGATGACATTGTCACC


rs2744634ACGTTGGATGCGTGTTCCAGGGATTATATGACGTTGGATGGCACATAACGCTTGGAACTC


rs2744633ACGTTGGATGTATGAGTGTGACGGGTGTAGACGTTGGATGGCACATAACGCTTGGAACTC


rs2744632ACGTTGGATGTAGCTGCCTTCCACATCCAAACGTTGGATGTGTGACGGGTGTAGCGTTAG


rs2744630ACGTTGGATGGGGTTCAAATGCCTCTGATAGACGTTGGATGGGTCTAGGACAAGACCCATT


rs2744629ACGTTGGATGAACTTTCCCTTAGCCAGTGGACGTTGGATGATCAGAGGCATTTGAACCCC


rs2744628ACGTTGGATGTTGACCTCAAATCATGTCACACGTTGGATGTATCAGAGGCATTTGAACCC


rs2744627ACGTTGGATGGGGTGGTTTATGTTCCACTGACGTTGGATGCCAGAACTAATGCTAGCTTC


rs2977616ACGTTGGATGTTCCACTGGCTAAGAGAAAGACGTTGGATGCCAGAACTAATGCTAGCTTC


rs2977617ACGTTGGATGCCAGAACTAATGCTAGCTTCACGTTGGATGTTCCACTGGCTAAGAGAAAG


rs2744626ACGTTGGATGACAGTGAAATTGTATTTCCGACGTTGGATGGCACAAACTTAAGAATCTCC


rs2744625ACGTTGGATGAGCAAAATCCACCTATGTCCACGTTGGATGCTGAATTTTGTCTCCAGTAC


rs3115847ACGTTGGATGTCGAGGCAGAGGCGTAGTAACGTTGGATGATAGGAATGACATGAACCCG


rs2744623ACGTTGGATGACGCGAGTCCGTAGGTGCTGACGTTGGATGAAGAGGCTGCTACCCAGAG


rs4036193ACGTTGGATGAGAGCAAGACTCCGTCTCAAACGTTGGATGACATGTCGCTTGATGTGTGC


rs4036194ACGTTGGATGACATGTCGCTTGATGTGTGCACGTTGGATGAGAGCAAGACTCCGTCTCAA


rs4036196ACGTTGGATGCCCCAGCGTTCATATTTGTCACGTTGGATGTCTGGCCAAATGGTCATACC


rs1042327ACGTTGGATGAACTTCACATCACAGCTCCCACGTTGGATGCAGAAGTTGGGTTTTCCAGC


TABLE 22
dbSNP Extend 'Perm


rs# Primer Mix


rs1474555 TGAAGCCGACAGTGACACC ACT


rs1474554 CCAATTTTGCACACCTCCAGCA ( ACG


104


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Extend Term
rs# Primer Mix


rs10334 CAGATCCGGAGTGCGTCC CGT


rs10541 TCTCTCTCAGCCGCAGAA CGT


rs3823299 GAGGATTTGTGATGAAAATACTA ACG


rs742348 AATCCCCGTGTTGTTCAAGG ACT


rs1474644 AAGGATGTTCATCATAGTGTTTA ACG


rs1474643 ACATGTTTATACATACACTCATG ACG


rs2056970 TTGGCAGCTTTTTAGGCCTC ACT


rs2223474 AAGTCTCAAAAAGGTCCC ACT


rs2206284 TAGGTGGATCCCTTTTCCC ACG


rs756519 CAGAGCCCTGTTCTTTGATTT ACG


rs756518 CAAAGGATGCTGTCTGGCC ACG


rs756517 GTTCCATGAGCGTTTTCTTTG ACG


rs1474642 CTTCAGTTTCTTCATCACTTTC ACT


rs2038093 TTTCACTCTTGTTGCCCAGG ACT


rs2038092 CCAACATGGTGAAACCCCATCT ACT


rs2223473 TAGAATTAAAATTAGACTTTGGGGACT


rs760909 GCAAGCTTAGTTCTAGGTCAG CGT


rs2076319 TCACAATGCCTTTGTAATGATTT ACT


rs3778589 GTTTTAGGAAGACTGCTCTGACAAACG


rs3800236 CTGAGAGCCAGCTGCAGTAA CGT


rs2206286 CCTCGCCGGCTGGCATAA ACT


rs12717 CCATCCCCAAGTCTCTGCCAG ACT


rs2179373 TGACCTATGCTCACACTTCTCA ACG


rs3800235 GTGTTGATACCTCCAAGTACATTTCGT


rs3823298 CTTGATGAAATAGTCATCCAACTAACT


rs2076318 TGAATTATCACCATCATCA ACT


rs2235506 TGTTGCCAATAACAATCA ACG


rs2072916 TGTGACAAGGGATTCCAC ACG


rs3734763 CATCTGTAAGCAGGGCCGC ACG


rs3177571 AAGACTGTGTAGCCTTCCTCTG ACT


rs8770 GTAGACACTGTGTAAGCAATC ACG


rs3173219 CACTGGAGGTGGAGAGCA ACT


rs960744 CCCCATCAGACCTGGCTGT ACT


rs2066954 TTACAATTTGAGCCTTGAGC CGT


rs2072917 CTATCCCGACCCGAGAAAC CGT


rs3173220 GCGATGAAACTGAACTGA ACT


rs734249 CACCAGCAGGGAAGGTTTG CGT


rs2092310 TTGAGGTGAGGGCTTCCAG ACT


rs2092309 TCCCCTCCCCTATTGTTTAC ACT


rs1016536 AAATTGGAGACAGGTCTCAGT ACT


rs2235506 CTGGGAGTACAGGTGCGC ACT


rs2076998 GTTTTTGTATAGTCTGCAGATGC ACT


rs2076997 ATCCATTTTAATGGGTTGCTAGCTACT


rs2345478 ACAACTGTACTTATTGGGCATA ACT


rs2021899 CTTTCTTGGAAACTCTTCCCA ACT


rs2021898 TTGGATGGGGTTAATGGCAG ACG


rs2345682 GTTAATGGCAGCTGTATTTTTCTGACT


rs2345683 GGCAGCTGTATTTTTCTGTGA ACT


rs2881195 CAGCTGTATTTTTCTGTGACCT ACG


105


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Extend Term
rs# Primer Mix


rs2345684 GCAGCTGTATTTTTCTGTGACCTTACT


rs3046261 GAAAACATTTGAGATACTGAAGATACT


rs4083413 TTCCTTTATCTTCAGTATCTCAA ACT


rs4083412 TCTTCAGTATCTCAAATGTTTTCAACG


rs2345685 CAACTTTTGATGTCTGAGTGGA ACT


rs2021897 ATTATTTACAGAAGCCCTATTCA ACT


rs4036211 TTTCCAAACAAAAGCTACCATGCAACT


rs4036212 AAATAATTGCATGGTAGCTTTTG CGT


rs4036213 ACAACTACTTTGATGTTATTTCC CGT


rs2345686 ACAATCCAAAAATCACATTCCTA ACT


rs4036214 GTCTCACCTTACAATCCAAAAAT CGT


rs4036215 AATGTGATTTTTGGATTGTAAGG ACT


rs2345687 AAGGTGAGACTTGTTTAGCTTT ACT


rs2345688 TCCTCCCCATTACAAGTTGGGCA ACT


rs2881196 TTTTCCTCCCCATTACAAGTTGG ACT


rs3046288 TAATGGGGAGGAAAAAAATTTTCTACT


rs4036216 ATGTTTTTGGAATTCTTAGATGG ACT


rs4036205 GTTTTTGGAATTCTTAGATGGGACACT


rs2092307 TGGAATTCTTAGATGGGACCC ACT


rs4036206 ACTGACAGATTAAAATGAGAAAAAACT


rs2345689 TCCCATGTATCCATAAGGTATAC ACT


rs2345690 GTATCTCCCATGTATCCATAAG ACT


rs2345691 CCCTGAGTATCTCCCATGTA CGT


rs2345692 TCTCCAACAGGTGGCTTTCA ACT


rs3046306 TTGCTGGTTAACTCCCCACT CGT


rs4036207 GCGTGGACTTAAGTCTGTATAAC ACT


rs2345693 AGAGTCTTATCAATGGAGAATGC ACT


rs2345694 GAAGAGAAGGATAACTAAATCACTACT


rs2345695 ATTTAGTTATCCTTCTCTTCTTG ACT


rs2345696 ACACAAGTGTAACTTCTACTCT ACT


rs4036209 GGAAACCAGAATATGCCACC CGT


rs2345697 AGCCAAAGGGACATATTTTGTGGTACT


rs2881197 GGAACACAGTGTATAAGACCAAA CGT


rs2345698 CGGTGGAACACAGTGTATAAG ACT


rs2345699 AAAACAAGAACTCTTTTCATTGCCACT


rs2744640 TTTATCTCCAGTTCCCCAGC ACG


rs2744639 AGCACTTAGTATGCCTTCTCCTT ACT


rs2744638 TGGCAATACCACGTCAGTAAG ACT


rs2744637 GCTGGGCTGGGTTTGGGCTG ACT


rs2744636 ACCCGTCACACTCATATAATCCC ACG


rs2744635 ACACATGCGTGTTCCAGGG ACT


rs2744634 GGGATTATATGAGTGTGACGG ACT


rs2744633 GGGTGTAGCGTTAGGTGAC ACT


rs2744632 GCGCACATAACGCTTGGAAC ACT


rs2744630 CGTGTTAAAACTCATGGCCAAAC ACT


rs2744629 ATAAACCACCCTGGAGTTCAT ACT


rs2744628 TTGAAGAAAACTTTCCCTTAGCCAACT


rs2744627 GTTTATGTTCCACTGGCTAAG ACT


~rs2977616 TTGAGGTCAAACATTAATATCAAGI ACT


106


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Extend Term
rs# Primer Mix


rs2977617 CTAGCTTCTCAATCTTTTGAGTT CGT


rs2744626 GTGAAATTGTATTTCCGGATTTC ACT


rs2744625 TCCTGAACACTTATCCACTTTAC ACT


rs3115847 CCAGGGCTGGAGGGGCC ACT


rs2744623 GGTGCTGGCGGGAGCGAGAGT ACT


rs4036193 GACTCCGTCTCAAAAAAAAAAAAAACT


rs4036194 CTTGATGTGTGCTTCAGGGTA ACG


rs4036196 CAGTGCAAGTAAAGAGCCTTA ACT


rs1042327 CATCACAGCTCCCCACCAT ACT


Genetic Anal,
[0246] Allelotyping results from the discovery cohort are shown for cases and
controls in Table 23.
The allele frequency for the A2 allele is noted in the fifth and sixth columns
for osteoarthritis case pools
and control pools, respectively, where "AF" is allele frequency. The allele
frequency for the A1 allele
can be easily calculated by subtracting the A2 allele frequency from 1 (A1 AF
= 1-A2 AF). For
example, the SNP rs1474555 has the following case and control allele
frequencies: case Al (C) = 0.64;
case A2 (T) = 0.36; control A1 (C) = 0.70; and control A2 (T) = 0.30, where
the nucleotide is provided
in paranthesis. Some SNPs are labeled "untyped" because of failed assays.
TABLE 23
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position AlleleCase Control Value
SEQ ID AF AF
NO: 3


rs1474555 229 170689279 C/T 0.36 0.30 0.024


rs1474554 6310 170695360 A/G 0.48 0.43 0.058


rs10334 11840 170700890 G/T


rs10541 11870 170700920 A/T


rs3823299 12064 170701114 A/G 0.45 0.41 0.125


rs742348 13392 170702442 C/G 0.46 0.44 0.275


rs1474644 16354 170705404 A/G 0.75 0.77 0.270


rs1474643 16559 170705609 C/T 0.45 0.40 0.042


rs2056970 16935 170705985 A/G 0.36 0.33 0.242


rs2223474 17616 170706666 C/T 0.42 0.46 0.140


rs2206284 17737 170706787 C/T 0.37 0.35 0.493


rs756519 18321 170707371 C/T


rs756518 18453 170707503 A/G 0.49 0.53 0.133


rs756517 18811 170707861 C/T


rs1474642 20020 170709070 ClT 0.12 0.12 0.904


rs2038093 21662 170710712 C/G


rs2038092 23197 170712247 C/G


rs2223473 23446 170712496 G/T 0.42 0.45 0.296


rs760909 24339 170713389 G/T 0.49 0.52 0.255


rs2076319 25504 170714554 A/G 0.43 0.46 0.219


rs3778589 27174 170716224 A/G 0.49 0.54 0.081


rs3800236 28008 170717058 A/T 0.47 0.50 0.319


rs2206286 29294 170718344 C/T 0.81 0.82 0.831


rs12717 29759 170718809 C/G 0.52 0.57 0.081


rs2179373 30832 170719882 A/G 0.58 0.62 0.089


rs3800235 44512 170733562 A/C 0.60 0.64 0.077


rs3823298 44850 170733900 C/G 0.44 0.38 0.022


rs2076318 45884 170734934 A/G 0.41 0.45 0.109


rs2235506 46345 170735395 C/T 0.68 0.66 0.320


rs2072916 48589 170737639 A/G 0.48 0.51 0.192


107


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position Allele . Control Value
SEQ ID Case AF
NO: 3 AF


rs373476353371 170742421A/G 0.50 0.54 0.142


rs317757153911 170742961G/T


rs8770 53990 170743040A/G


rs317321955152 170744202C/G 0.49 0.53 0.056


rs960744 55667 170744717C/T 0.39 0.35 0.179


rs206695458952 170748002A/C 0.37 0.32 0.057


rs207291759315 170748365G/T 0.46 0.42 0.153


rs317322060029 170749079A/G


rs734249 61477 170750527A/C 0.48 0.40 0.022


rs209231062988 170752038C/T


rs209230963090 170752140C/G 0.43 0.47 0.165


rs101653664021 170753071A/C 0.10 0.10 0.985


rs223550665685 170754735C/T


rs207699870220 170759270A/G


rs207699770323 170759373AlC 0.90 0.90 0.814


rs234547870959 170760009A/C 0.09 0.09 0.947


rs202189973436 170762486C/G 0.46 0.43 0.218


rs202189882945 170771995A/G


rs234568282958 170772008G/T


rs234568382961 170772011C/G 0.28 0.34 0.019


rs288119582964 170772014C/T


rs234568482965 170772015G/T


rs304626183006 170772056-/CTTT


rs408341383025 170772075C/T


rs408341283034 170772084A/G


rs234568583074 170772124G/T 0.71 0.71 0.835


rs202189783132 170772182G/T


rs403621183155 170772205C/T


rs403621283172 170772222A/T


rs403621383174 170772224G/T


rs234568683206 170772256C/T


rs403621483216 170772266G/T


rs403621583234 170772284G/T


rs234568783252 170772302A/G 0.55 0.50 0.085


rs234568883260 170772310AlC 0.53 0.52 0.958


rs288119683263 170772313A/C


rs304628883296 170772346-/AT


rs403621683319 170772369A/G


rs403620583322 170772372C/G


rs209230783324 170772374A/C


rs403620683357 170772407C/G


rs234568983375 170772425C/T


rs234569083381 170772431C/T


rs234569183389 170772439A/T


rs234569283443 170772493A/G


rs304630683499 170772549-/GGTG 0.42 0.43 0.761


rs403620783545 170772595C/T


rs234569383566 170772616C/T


rs234569483591 170772641C/T


rs234569583619 170772669G/T


rs234569683698 170772748A/G


rs403620983780 170772830G/T 0.79 0.73 0.156


rs234569783784 170772834G/T


rs288119783826 170772876G/T


rs234569883832 170772882C/T


rs234569983852 170772902C/T


rs274464086297 170775347C/T 0.53 0.53 0.973


rs274463986315 170775365G/T 0.40 0.40 0.789


rs274463886420 170775470C/G 0.39 0.39 0.941


rs274463786460 170775510C/G 0.40 0.42 0.497


rs274463686714 170775764C/T 0.76 0.73 0.271


rs274463586718 170775768C/T 0.03 0.02 0.425


rs274463486736 170775786C/G 0.96 0.94 0.436


rs274463386753 170775803C/T 0.14 0.16 0.409


108


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position AlleleCase Control Value
SEQ ID AF AF
NO: 3


rs274463286766 170775816G/T 0.80 0.83 0.217


rs274463088162 170777212CIG


rs274462988218 170777268A/G 0.80 0.80 0.978


rs274462888246 170777296AlG 0.71 0.67 0.206


rs274462788255 170777305C/T 0.32 0.30 0.335


rs297761688309 170777359G/T


rs297761788310 170777360A/T


rs274462688471 170777521A/G


rs274462588619 170777669C/T


rs311584788904 170777954C/T


rs274462389044 170778094ClG


rs403619390531 170779581-/AAAAA


rs403619490534 170779584AlG


rs403619690613 170779663C/G


rs 104232746252 170735302ClT 0.45 0.39 0.028


[0247] The Chrom 6 proximal SNPs were also allelotyped in the replication
cohorts using the
methods described herein and the primers provided in Tables 11 and 12. The
replication allelotyping
results for replication cohort # 1 and replication cohort #2 are provided in
Tables 24 and 25,
respectively.
TABLE 24
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position Allele Case Control Value
SEQ ID AF AF
NO: 3


rs1474555 229 170689279C/T 0.37 0.27 0.004


rs1474554 6310 170695360A/G 0.50 0.42 0.020


rs10334 11840 170700890G/T


rs10541 11870 170700920A/T


rs3823299 12064 170701114A/G 0.45 0.40 0.080


rs742348 13392 170702442C/G 0.47 0.41 0.075


rs1474644 16354 170705404A/G 0.75 0.79 0.231


rs1474643 16559 170705609C/T 0.46 0.39 0.028


rs2056970 16935 170705985A/G 0.38 0.33 0.129


rs2223474 17616 170706666C/T 0.41 0.48 0.052


rs2206284 17737 170706787C/T 0.37 0.34 0.342


rs756519 18321 170707371C/T


rs756518 18453 170707503A/G 0.48 0.56 0.013


rs756517 18811 170707861C/T


rs1474642 20020 170709070C/T 0.10 0.13 0.27_7_


rs2038093 21662 170710712C/G


rs2038092 23197 170712247C/G


rs2223473 23446 170712496G/T 0.42 0.48 0.070


rs760909 24339 170713389G/T 0.47 0.54 0.077


rs2076319 25504 170714554A/G 0.41 0.49 0.017


rs3778589 27174 170716224A/G 0.50 0.57 0.035


rs3800236 28008 170717058A/T 0.47 0.52 0.126


rs2206286 29294 170718344ClT 0.80 0.80 0.952


rs12717 29759 170718809C/G 0.53 0.59 0.059


rs2179373 30832 170719882AlG 0.57 0.64 0.025


rs3800235 44512 170733562A/C 0.59 0.65 0.065


rs3823298 44850 170733900C/G 0.46 0.36 0.003


rs2076318 45884 170734934A/G 0.40 0.47 0.017


rs2235506 46345 170735395C/T 0.68 0.65 0.434


rs2072916 48589 170737639A/G 0.47 0.54 0.026


rs3734763 53371 170742421A/G 0.49 0.56 0.052


rs3177571 53911 170742961G/T


rs8770 53990 170743040A/G


rs3173219 55152 170744202C/G 0.49 0.55 0.069


rs960744 55667 170744717C/T 0.39 0.34 0.131


109


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position AlleleCase Control Value
SEQ ID AF AF
NO: 3


rs2066954 58952 170748002 A/C 0.36 0.31 0.096


rs2072917 59315 170748365 G/T 0.46 0.41 0.070


rs3173220 60029 170749079 A/G


rs734249 61477 170750527 A/C 0.37 NA 0.484


rs2092310 62988 170752038 C/T


rs2092309 63090 170752140 C/G 0.43 0.49 0.102


rs1016536 64021 170753071 A/C 0.08 0.11 0.277


rs2235506 65685 170754735 C/T


rs2076998 70220 170759270 A/G


rs2076997 70323 170759373 A/C 0.89 0.91 0.655


rs2345478 70959 170760009 A/C 0.08 0.09 0.660


rs2021899 73436 170762486 C/G 0.48 0.42 0.081


rs2021898 82945 170771995 A/G


rs2345682 82958 170772008 G/T


rs2345683 82961 170772011 C/G 0.32 0.39 0.046


rs2881195 82964 170772014 C/T


rs2345684 82965 170772015 G/T


rs3046261 83006 170772056 -/CTTT


rs4083413 83025 170772075 C/T


rs4083412 83034 170772084 A/G


rs2345685 83074 170772124 G/T 0.69 0.70 0.772


rs2021897 83132 170772182 G/T


rs4036211 83155 170772205 C/T


rs4036212 83172 170772222 A/T


rs4036213 83174 170772224 G/T


rs2345686 83206 170772256 C/T


rs4036214 83216 170772266 G/T


rs4036215 83234 170772284 G/T


rs2345687 83252 170772302 A/G 0.62 NA NA


rs2345688 83260 170772310 A/C 0.46 0.49 0.383


rs2881196 83263 170772313 A/C


rs3046288 83296 170772346 -/AT


rs4036216 83319 170772369 AIG


rs4036205 83322 170772372 C/G


rs2092307 83324 170772374 A/C


rs4036206 83357 170772407 C/G


rs2345689 83375 170772425 ClT


rs2345690 83381 170772431 C/T


rs2345691 83389 170772439 A/T


rs2345692 83443 170772493 A/G


rs3046306 83499 170772549 -/GGTG0.39 0.40 0.729


rs4036207 83545 170772595 C/T


rs2345693 83566 170772616 C/T


rs2345694 83591 170772641 C/T


rs2345695 83619 170772669 G/T


rs2345696 83698 170772748 A/G


rs4036209 83780 170772830 G/T 0.79 0.73 0.156


rs2345697 83784 170772834 G/T


rs2881197 83826 170772876 G/T


rs2345698 83832 170772882 C/T


rs2345699 83852 170772902 C/T


rs2744640 86297 170775347 C/T 0.49 0.51 0.583


rs2744639 86315 170775365 G/T 0.45 0.43 0.745


rs2744638 86420 170775470 C/G 0.38 0.38 0.852


rs2744637 86460 170775510 C/G 0.35 0.40 0.216


rs2744636 86714 170775764 C/T 0.71 0.73 0.482


rs2744635 86718 170775768 CIT 0.05 0.03 0.195


rs2744634 86736 170775786 C/G 0.93 0.92 0.601


rs2744633 86753 170775803 C/T 0.19 0.20 0.681


rs2744632 86766 170775816 G/T 0.85 0.90 0.070


rs2744630 88162 170777212 C/G


rs2744629 88218 170777268 A/G 0.78 0.79 0.891


rs2744628 88246 170777296 A/G 0.68 0.67 0.766


rs2744627 88255 170777305 C/T 0.32 0.30 0.636


110


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position Allele Case Control Value
SEQ ID AF AF
NO: 3


rs2977616 88309 170777359G/T


rs2977617 88310 170777360A/T


rs2744626 88471 170777521A/G


rs2744625 88619 170777669C/T


rs3115847 88904 170777954C/T


rs2744623 89044 170778094C/G


rs4036193 90531 170779581-/AAAAA


rs4036194 90534 170779584A/G


rs4036196 90613 170779663C/G


rs1042327 46252 170735302C/T 0.46 0.37 0.004


TABLE 25
dbSNP Position ChromosomAl/A2 F A2 F A2 F p-
rs# in a PositionAllele Case Control Value
SEQ ID AF AF
NO: 3


rs1474555 229 170689279C/T 0.35 0.36 0.770


rs1474554 6310 170695360A/G 0.45 0.44 0.873


rs10334 11840 170700890G/T


rs10541 11870 170700920A/T


rs3823299 12064 170701114A/G unt 0.43 NA
ed


rs742348 13392 170702442C/G 0.45 0.47 0.600


rs1474644 16354 170705404A/G 0.74 0.75 0.775


rs 147464316559 170705609C/T 0.43 0.41 0.614


rs2056970 16935 170705985A/G 0.33 0.33 0.978


rs2223474 17616 170706666C/T 0.44 0.43 0.944


rs2206284 17737 170706787C/T 0.36 0.37 0.901


rs756519 18321 170707371C/T


rs756518 18453 170707503A/G 0.50 0.47 0.453


rs756517 18811 170707861C/T


rs1474642 20020 170709070C/T 0.15 0.11 0.147


rs2038093 21662 170710712C/G


rs2038092 23197 170712247ClG


rs2223473 23446 170712496G/T 0.43 0.40 0.408


rs760909 24339 170713389G/T 0.51 0.48 0.506


rs2076319 25504 170714554A/G 0.44 0.40 0.264


rs3778589 27174 170716224A/G 0.49 0.48 0.910


rs3800236 28008 170717058A/T 0.48 0.46 0.670


rs2206286 29294 170718344C/T 0.83 0.84 0.685


rs12717 29759 170718809C/G 0.51 0.53 0.726


rs2179373 30832 170719882A/G 0.59 0.58 0.880


rs3800235 44512 170733562A/C 0.60 0.62 0.632


rs3823298 44850 170733900C/G 0.41 0.41 0.945


rs2076318 45884 170734934A/G 0.43 0.42 0.636


rs2235506 46345 170735395C/T 0.69 0.67 0.594


rs2072916 48589 170737639A/G 0.49 0.46 0.399


rs3734763 53371 170742421A/G 0.51 0.51 0.888


rs3177571 53911 170742961G/T


rs8770 53990 170743040A/G


rs3173219 55152 170744202C/G 0.48 0.51 0.493


rs960744 55667 170744717C/T 0.38 0.37 0.738


rs2066954 58952 170748002A/C 0.37 0.34 0.378


rs2072917 59315 170748365G/T 0.45 0.45 0.982


rs3173220 60029 170749079A/G


rs734249 61477 170750527A/C 0.46 0.02


rs2092310 62988 170752038C/T


rs2092309 63090 170752140C/G 0.43 0.44 0.891


rs1016536 64021 170753071A/C 0.13 0.09 0.173


rs2235506 65685 170754735C/T


rs2076998 70220 170759270A/G


rs2076997 70323 170759373A/C 0.92 0.89 0.256


rs2345478 70959 170760009A/C 0.11 0.10 0.545


rs2021899 73436 170762486C/G 0.44 0.45 0.797


111


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position Chromosom~ Al/A2F A2 F A2 F p-
rs# in a PositionAllele Case Control Value
SEQ ID AF AF
NO: 3


rs202189882945 170771995A/G


rs234568282958 170772008G/T


rs234568382961 170772011C/G 0.23 0.26 0.407


rs288119582964 170772014C/T


rs234568482965 170772015G/T


rs304626183006 170772056-/CTTT


rs408341383025 170772075C/T


rs408341283034 170772084A/G


rs234568583074 170772124G/T 0.74 0.71 0.533


rs202189783132 170772182GlT


rs403621183155 170772205C/T


rs403621283172 170772222A/T


rs403621383174 170772224G/T


rs234568683206 170772256C/T


rs403621483216 170772266G/T


rs403621583234 170772284G/T


rs234568783252 170772302A/G 0.47 0.50 0.457


rs234568883260 170772310A/C 0.61 0.58 0.434


rs288119683263 170772313A/C


rs304628883296 170772346-/AT


rs403621683319 170772369A/G


rs403620583322 170772372C/G


rs209230783324 170772374A/C


rs403620683357 170772407C/G


rs234568983375 170772425C/T


rs234569083381 170772431C/T


rs234569183389 170772439A/T


rs234569283443 170772493A/G


rs304630683499 170772549-/GGTG


rs403620783545 170772595C/T


rs234569383566 170772616C/T


rs234569483591 170772641C/T


rs234569583619 170772669G/T


rs234569683698 170772748A/G


rs403620983780 170772830G/T


rs234569783784 170772834G/T


rs288119783826 170772876G/T


rs234569883832 170772882C/T


rs234569983852 170772902C/T


rs274464086297 170775347C/T 0.57 0.55 0.595


rs274463986315 170775365G/T 0.35 0.34 0.752


rs274463886420 170775470C/G 0.41 0.40 0.793


rs274463786460 170775510C/G 0.47 0.46 0.836


rs274463686714 170775764C/T 0.83 NA


rs274463586718 170775768C/T


rs274463486736 170775786C/G unt 0.97 NA
ed


rs274463386753 170775803C/T 0.09 0.10 0.691


rs274463286766 170775816G/T 0.74 0.72 0.529


rs274463088162 170777212C/G


rs274462988218 170777268A/G 0.81 0.81 0.959


rs274462888246 170777296A/G 0.74 NA


rs274462788255 170777305C/T 0.33 0.29 0.341


rs297761688309 170777359G/T


rs297761788310 170777360AIT


rs274462688471 170777521A/G


rs274462588619 170777669C/T


rs311584788904 170777954C/T


rs274462389044 170778094C/G


rs403619390531 170779581-lAAAAA


rs403619490534 170779584A/G


rs403619690613 170779663C/G


rs104232746252 170735302C/T 0.42 0.43 0.880


112


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
[0248] Allelotyping results were considered particularly significant with a
calculated p-value of
less than or equal to 0.05 for allelotype results. These values are indicated
in bold. The allelotyping p-
values were plotted in Figure 1 C for the discovery cohort. The position of
each SNP on the
chromosome is presented on the x-axis. The y-axis gives the negative logarithm
(base 10) of the p-
value comparing the estimated allele in the case group to that of the control
group. The minor allele
frequency of the control group for each SNP designated by an X or other symbol
on the graphs in Figure
1 C can be determined by consulting Table 23. For example, the left-most X on
the left graph is at
position 170689279. By proceeding down the Table from top to bottom and across
the graphs from left
to right the allele frequency associated with each symbol shown can be
determined.
[0249] To aid the interpretation, multiple lines have been added to the graph.
The broken
horizontal lines are drawn at two common significance levels, 0.05 and 0.01.
The vertical broken lines
are drawn every 20kb to assist in the interpretation of distances between
SNPs. Two other lines are
drawn to expose linear trends in the association of SNPs to the disease. The
generally bottom-most
curve is a nonlinear smoother through the data points on the graph using a
local polynomial regression
method (W.S. Cleveland, E. Grosse and W.M. Shyu (1992) Local regression
models. Chapter 8 of
Statistical Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth &
Brooks/Cole.). The black line
provides a local test for excess statistical significance to identify regions
of association. This was
created by use of a l Okb sliding window with lkb step sizes. Within each
window, a chi-square
goodness of fit test was applied to compare the proportion of SNPs that were
significant at a test wise
level of 0.01, to the proportion that would be expected by chance alone (0.05
for the methods used
here). Resulting p-values that were less than 10-8 were truncated at that
value.
[0250] Finally, the exons and introns of the genes in the covered region are
plotted below each
graph at the appropriate chromosomal positions. The gene boundary is indicated
by the broken
horizontal line. The exon positions are shown as thick, unbroken bars. An
arrow is place at the 3' end
of each gene to show the direction of transcription.
Example 7
ELP3 Region Proximal SNPs
[0251] It has been discovered that SNP rs1563055 in elongation protein 3
homolog (ELP3) is
associated with occurrence of osteoarthritis in subjects.
[0252] Thirty-three additional allelic variants proximal to rs1563055 were
identified and
subsequently allelotyped in osteoarthritis case and control sample sets as
described in Examples 1 and 2.
The polymorphic variants are set forth in Table 26. The chromosome positions
provided in column
four of Table 26 are based on Genome "Build 34" of NCBI's GenBank.
TABLE 26
dbSNP Position Chromosome Allele
in SEQ


rs# ChromosomeID NO: Position Variants
4


rs10006588 211 27927511 c/t


113


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAllele
rs# Chromosomein SEQ Position Variants
ID NO:
4


rs19848808 473 27927773 c/t


rs999112 8 1536 27928836 c/t


rs735880 8 5639 279'32939 c/t


rs20450298 17186 27944486 a/


rs20450288 17335 27944635 c/t


rs19473848 25029 27952329 c/


rs19473858 25111 27952411 c/t


rs19017448 28811 27956111 a/


rs19017458 28863 27956163 a/t


rs971882 8 30809 27958109 alc


rs13773388 40985 27968285 a/c


rs23054528 45147 27972447 c/t


rs23054518 45282 27972582 a/


rs21234728 46168 27973468 /t


rs21677688 46328 27973628 al


rs15630558 49077 27976377 a/


rs22903718 51925 27979225 c/t


rs22903708 52141 27979441 a/


rs22903698 52168 27979468 c/t


rs28749048 60852 27988152 c/t


rs32139978 62468 27989768 a/


rs32139988 65572 27992872 /t


rs15309298 79089 28006389 a/c


rs10002758 79541 28006841 c/t


rs10002748 79790 28007090 c/t


rs37578968 90843 28018143 a/


rs37578958 90978 28018278 c/t


rs37578948 91052 28018352 c/


rs37578938 91131 28018431 a/


rs37578928 91132 28018432 c/t


rs37578918 94439 28021739 a/


rs37578908 94621 28021921 a/t


Assay for Verifying and Allelotypin~ SNPs
[0253] The methods used to verify and allelotype the 33 proximal SNPs of Table
26 are the same
methods described in Examples 1 and 2 herein. The primers and probes used in
these assays are
provided in Table 27 and Table 28, respectively.
TABLE 27
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs1000658ACGTTGGATGTTCTCAAAAAAGAAACACATACGTTGGATGGGGTTATCAGTTTGAGATTC


rs1984880ACGTTGGATGCCATTTGCCAATTCCTGTGGACGTTGGATGATGGGCTGAAATGTATCCCC


rs999112ACGTTGGATGCTAAGCACATGCCTTTCTTGACGTTGGATGCTATTTTCTACTGGGAGATG


rs735880ACGTTGGATGTGCCTTCATTCTCCAACCACACGTTGGATGAACAGAGTGAGACCCATCTG


rs2045029ACGTTGGATGAGTCATTGCTAGCTTTCTGGACGTTGGATGGGGACTTTAGGGAAGTTATAG


rs2045028ACGTTGGATGAGCTTGTAGTGAGCCGAGATACGTTGGATGTGAGACAGAGTCTTGCTCTG


rs1947384ACGTTGGATGATTCTCCACCGAGAAACCAGACGTTGGATGTTGTGGCAGCAAGAAGGAAC
~


114


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs1947385ACGTTGGATGAAATTTCAACAGTCAACAATACGTTGGATGGTCAGTTTTGAAAACTGATC


rs1901744ACGTTGGATGCCTTGATTGAAGAGTAAAGCACGTTGGATGATCAAATATTCCTCATCCCC


rs1901745ACGTTGGATGCTTCTGCCTTTACCTGTGTCACGTTGGATGAAATGAAGCAGCACTCACAG


rs971882ACGTTGGATGAAGCCCTAATCATTGGTACGACGTTGGATGGATGGGTGCTAAAAAGACAC


rs1377338ACGTTGGATGCCCACATATCTACACATCAAGACGTTGGATGAGGGAGATAGGTGGTTAAAG


rs2305452ACGTTGGATGCCGTGTTGCAACTAACAGGGACGTTGGATGAGACGTTCCCATCCTCCATC


rs2305451ACGTTGGATGGCAGAGCCACCAGAGATAAAACGTTGGATGTTTTACGACAGGCGGGATTG


rs2123472ACGTTGGATGCACTTAGAATTGTTGCTTGGACGTTGGATGGCTGTATCTGTGACCTCAAA


rs2167768ACGTTGGATGGAATCAACATGACTTGGTGACACGTTGGATGATCTCACTCTAACTTGCTCC


rs1563055ACGTTGGATGAGTTCTTTCTCCTCACATTGACGTTGGATGCCCTTTAGAAGCACATACTC


rs2290371ACGTTGGATGATCCTCTTGGTAGCTTGTCCACGTTGGATGCTGTCTTGGTTTTCACCCTG


rs2290370ACGTTGGATGCAACCTCTACCTCACTACACACGTTGGATGATGAGGTATCGACACACTGG


rs2290369ACGTTGGATGACACACTGGGTATCTGTTCTACGTTGGATGTCAGAATCCCCAACCTCTAC


rs2874904ACGTTGGATGAAATTCCAGGCTGGGTACAGACGTTGGATGTGCTGACCTTAAGTGATCCG


rs3213997ACGTTGGATGGGTTGGCTAGAAGAGAAAAAACGTTGGATGTACAGTCCTTTTGAAACTAC


rs3213998ACGTTGGATGACAGTTTGTTGACATAGTAGACGTTGGATGAGGCTGAAAAGACATTCATG


rs1530929ACGTTGGATGGGCTTTCACTATATTTCCTCACGTTGGATGGAATACAGTAAGCCTATGGG


rs1000275ACGTTGGATGAACCCCAGAAAGCAAAAAGCACGTTGGATGCACGCTTGCTAACTTAATGG


rs1000274ACGTTGGATGGCCTAAGACAGGATCCAAACACGTTGGATGTTACTGCGTGCCTTAGTACC


rs3757896ACGTTGGATGCCTTCAAGCAAGTCAGTTACACGTTGGATGCAGAAACTGTGTGACTGATC


rs3757895ACGTTGGATGAAAATCATTGGCCAAACTGCACGTTGGATGCTCCTTAGTATTCTTAGGTG


rs3757894ACGTTGGATGAGAAGGGTTGAACAACAAGGACGTTGGATGCACCTAAGAATACTAAGGAG


rs3757893ACGTTGGATGCCCTTGTTGTTCAACCCTTCACGTTGGATGCTGCATGTGGATACCTACAC


rs3757892ACGTTGGATGTCCTGCATGTGGATACCTACACGTTGGATGCCCTTGTTGTTCAACCCTTC


rs3757891ACGTTGGATGATGGGCCAATTCTCCATAGGACGTTGGATGAGGCCTGTTAAGGAAACCTG


rs3757890ACGTTGGATGCAGGTGGATGTAGGCTTAAGACGTTGGATGGCACCACTGCCTCTTGTTTT


TABLE 28
dbSNP Extend Term
rs# Primer Mix


rs1000658 AATTGACAATGTTGGGACTGTT ACG


rs1984880 TGTGGTGTAAATAGGAGTTAGTGGACT


rs999112 GCACATGCCTTTCTTGGAACTG ACG


rs735880 AACCTTTACTTGTACTACATGC ACG


rs2045029 GCTAGCTTTCTGGTAATGAAAAT ACT


rs2045028 GATCGCACCACTGCACTCCAG ACG


rs1947384 ATAGCGGCAGTCCAAAAAGC ACT


rs1947385 TTCAACAGTCAACAATGAAACC ACT


rs1901744 ATAGTCAAGTATGCAAATGAAGC ACT


rs1901745 CCTTTACCTGTGTCTTCCCT CGT


rs971882 CCTAATCATTGGTACGGTCTCA ACT


rs1377338 AGTATTAGCTCAAATATCACATTGACT


rs2305452 CAGGGTAGCAGGCGGCC ACG


rs2305451 CCACAAACTCAGACCACGG ACT


rs2123472 CAGTTAATGTCAAGAAGCATAG ACT


rs2167768 ACATGACTTGGTGACAGAAGAA ACT


rs1563055 TTCTCCTCACATTGTTTCTACT ACG


rs2290371 GGTAGCTTGTCCTTAAATAACCGTACT


rs2290370 GGAGCAGGGACTTCTGCCA ACT


115


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Extend Term
rs# Primer Mix


rs2290369 AGTCCCTGCTCCATGTGAC ACT


rs2874904 GGCTAACGCCTGTAATCCCA ACT


rs3213997 AGAAAAATATTGTTATGCCCACA ACG


rs3213998 TAGTATTCTCAAATAGAGAGATTCACT


rs1530929 TTTCCTCTTTCCAGAATTGTATTTACT


rs1000275 ATGAGAATATCCTAGAATGAGGCAACG


rs1000274 GAATCATCAGGTCCTGTGCC ACG


rs3757896 TAATTCTCCTTAAGTAGTTAATTCACT


rs3757895 TTGGCCAAACTGCAGGATCT ACT


rs3757894 AAGGGCCACACAAGCAATTTCAA ACT


rs3757893 CCAAAGGACATTAGGTGGTG ACG


rs3757892 TGTGGATACCTACACTGCTC ACG


rs3757891 AGGATAAGTGTAACGGGGTC ACT


rs3757890 AGTGACACTCTTACTTCACAC I
CGT


Genetic Anal, sis
[0254] Allelotyping results from the discovery cohort are shown for cases and
controls in Table 29.
The allele frequency for the A2 allele is noted in the fifth and sixth columns
for osteoarthritis case pools
and control pools, respectively, where "AF" is allele frequency. The allele
frequency for the A1 allele
can be easily calculated by subtracting the A2 allele frequency from 1 (A1 AF
= 1-A2 AF). For
example, the SNP rs1000658 has the following case and control allele
frequencies: case A1 (C) = 0.36;
case A2 (T) = 0.64; control A1 (C) = 0.37; and control A2 (T) = 0.63, where
the nucleotide is provided
in paranthesis. Some SNPs are labeled "untyped" because of failed assays.
TABLE 29
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position Allele Case Control Value
SEQ ID AF AF
NO: 4


rs1000658211 27927511 C/T 0.79 0.80 0.591


rs1984880473 27927773 C/T 0.47 0.48 0.735


rs999112 1536 27928836 C/T 0.72 0.72 0.775


rs735880 5639 27932939 C/T 0.20 0.19 0.561


rs204502917186 27944486 A/G 0.54 0.56 0.361


rs204502817335 27944635 C/T


rs194738425029 27952329 C/G 0.63 0.60 0.122


rs194738525111 27952411 C/T


rs190174428811 27956111 A/G 0.18 0.18 0.796


rs190174528863 27956163 A/T 0.14 0.18 0.117


rs971882 30809 27958109 A/C


rs137733840985 27968285 A/C 0.28 0.24 0.085


rs230545245147 27972447 C/T 0.31 0.27 0.078


rs230545145282 27972582 A/G 0.48 0.52 0.130


rs212347246168 27973468 G/T 0.42 0.45 0.239


rs216776846328 27973628 A/G 0.38 0.35 0.350


rs156305549077 27976377 A/G


rs229037151925 27979225 C/T 0.28 0.24 0.039


rs229037052141 27979441 A/G 0.85 0.84 0.551


rs229036952168 27979468 C/T 0.43 0.47 0.138


rs287490460852 27988152 C/T 0.26 0.23 0.132


rs321399762468 27989768 A/G 0.44 0.47 0.201


rs321399865572 27992872 G/T 0.83 0.80 0.223


116


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position AlleleCase C_on_trolValue
SEQ ID AF AF
NO: 4


rs153092979089 28006389 A/C 0.47 0.49 0.556


rs100027579541 28006841 C/T 0.86 0.87 0.771


rs100027479790 28007090 C/T 0.54 0.56 0.510


rs375789690843 28018143 AlG


rs375789590978 28018278 C/T 0.46 0.47 0.874


rs375789491052 28018352 C/G 0.08 0.09 0.709


rs375789391131 28018431 A/G 0.16 0.15 0.590


rs375789291132 28018432 C/T 0.09 0.08 0.595


rs375789194439 28021739 A/G


rs375789094621 28021921 A/T 0.98 0.96 0.167


[0255] The ELP3 proximal SNPs were also allelotyped in the replication cohorts
using the methods
described herein and the primers provided in Tables 27 and 28. The replication
allelotyping results for
replication cohort #1 and replication cohort #2 are provided in Tables 30 and
31, respectively.
TABLE 30
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position Allele Case Control Value
SEQ ID AF AF
NO: 4


rs1000658211 27927511 C/T 0.78 0.79 0.863


rs1984880473 27927773 C/T 0.46 0.48 0.594


rs999112 1536 27928836 C/T 0.71 0.70 0.759


rs735880 5639 27932939 C/T 0.20 0.17 0.255


rs204502917186 27944486 A/G 0.55 0.57 0.526


rs204502817335 27944635 C/T


rs194738425029 27952329 C/G 0.65 0.61 0.198


rs194738525111 27952411 C/T


rs190174428811 27956111 A/G 0.19 0.18 0.674


rs190174528863 27956163 A/T 0.15 0.18 0.448


rs971882 30809 27958109 A/C


rs137733840985 27968285 A/C 0.29 0.22 0.039


rs230545245147 27972447 C/T 0.31 0.26 0.067


rs230545145282 27972582 A/G 0.49 0.56 0.063


rs212347246168 27973468 G/T 0.42 0.49 0.039


rs216776846328 27973628 A/G 0.36 0.34 0.396


rs156305549077 27976377 AlG


rs229037151925 27979225 C/T 0.28 0.23 0.054


rs229037052141 27979441 A/G 0.85 0.83 0.488


rs229036952168 27979468 C/T 0.41 0.49 0.036


rs287490460852 27988152 C/T 0.29 0.22 0.062


rs321399762468 27989768 A/G 0.44 0.50 0.064


rs321399865572 27992872 G/T 0.84 0.82 0.336


rs153092979089 28006389 A/C 0.48 0.52 0.311


rs100027579541 28006841 C/T 0.86 0.87 0.566


rs100027479790 28007090 C/T 0.54 0.59 0.159


rs375789690843 28018143 A/G


rs375789590978 28018278 C/T 0.45 0.49 0.308


rs375789491052 28018352 C/G 0.09 0.09 0.914


rs375789391131 28018431 A/G 0.15 0.14 0.803


rs375789291132 28018432 C/T 0.09 0.08 0.798


rs375789194439 28021739 A/G


rs375789094621 28021921 A/T 0.98 0.95 0.159


TABLE 31
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
in


rs# SEQ ID Position AlleleCase Control Value
NO: 4 AF AF


rs1000658211 27927511 C/T 0.80 0.82 0.443


rs1984880473 27927773 C/T 0.48 0.47 0.898


117


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position AlleleCase Control Value
SEQ ID AF AF
NO: 4


rs9991121536 27928836 C/T 0.72 0.76 0.319


rs7358805639 27932939 C/T 0.20 0.22 0.598


rs204502917186 27944486 AIG 0.52 0.54 0.581


rs204502817335 27944635 C/T


rs194738425029 27952329 C/G 0.62 0.59 0.348


rs194738525111 27952411 C/T


rs190174428811 27956111 A/G 0.18 0.18 0.928


rs190174528863 27956163 A/T 0.13 0.17 0.113


rs97188230809 27958109 A/C


rs137733840985 27968285 A/C 0.27 0.27 0.961


rs230545245147 27972447 C/T 0.32 0.30 0.673


rs230545145282 27972582 AlG 0.47 0.47 0.911


rs212347246168 27973468 G/T 0.41 0.38 0.348


rs216776846328 27973628 A/G 0.39 0.37 0.664


rs956305549077 27976377 A/G


rs229037151925 27979225 C/T 0.28 0.25 0.403


rs229037052141 27979441 A/G 0.85 0.84 0.939


rs229036952168 27979468 C/T 0.46 0.44 0.712


rs287490460852 27988152 C/T 0.24 0.24 0.888


rs321399762468 27989768 A/G 0.45 0.43 0.752


rs321399865572 27992872 G/T 0.81 0.78 0.373


rs153092979089 28006389 A/C 0.46 0.43 0.445


rs100027579541 28006841 C/T 0.87 0.86 0.767


rs100027479790 28007090 C/T 0.54 0.51 0.394


rs375789690843 28018143 A/G


rs375789590978 28018278 C/T 0.47 0.42 0.202


rs375789491052 28018352 C/G 0.07 0.09 0.478


rs375789391131 28018431 A/G 0.17 0.16 0.653


rs375789291132 28018432 C/T 0.09 0.07 0.567


rs375789194439 28021739 A/G


rs375789094621 28021921 A/T 0.97 0.97 0.728


[0256] Allelotyping results were considered particularly significant with a
calculated p-value of
less than or equal to 0.05 for allelotype results. These values are indicated
in bold. The allelotyping p
values were plotted in Figure 1D for the discovery cohort. The position of
each SNP on the
chromosome is presented on the x-axis. The y-axis gives the negative logarithm
(base 10) of the p-
value comparing the estimated allele in the case group to that of the control
group. The minor allele
frequency of the control group for each SNP designated by an X or other symbol
on the graphs in Figure
1D can be determined by consulting Table 29. For example, the left-most X on
the left graph is at
position 27927511. By proceeding down the Table from top to bottom and across
the graphs from left
to right the allele frequency associated with each symbol shown can be
determined.
[0257] To aid the interpretation, multiple lines have been added to the graph.
The broken
horizontal lines are drawn at two common significance levels, 0.05 and 0.01.
The vertical broken lines
are drawn every 201cb to assist in the interpretation of distances between
SNPs. Two other lines are
drawn to expose linear trends in the association of SNPs to the disease. The
generally bottom-most
curve is a nonlinear smoother through the data points on the graph using a
local polynomial regression
method (W.S. Cleveland, E. Grosse and W.M. Shyu (1992) Local regression
models. Chapter 8 of
Statistical Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth &
BrookslCole.). The black line
provides a local test for excess statistical significance to identify regions
of association. This was
created by use of a lOkb sliding window with lkb step sizes. Within each
window, a chi-square
118


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
goodness of fit test was applied to compare the proportion of SNPs that were
significant at a test wise
level of 0.01, to the proportion that would be expected by chance alone (0.05
for the methods used
here). Resulting p-values that were less than 10-8 were truncated at that
value.
[0258] Finally, the exons and introns of the genes in the covered region are
plotted below each
graph at the appropriate chromosomal positions. The gene boundary is indicated
by the broken
horizontal line. The exon positions are shown as thick, unbroken bars. An
arrow is place at the 3' end
of each gene to show the direction of transcription.
Example 8
LRCHI Reason Proximal SNPs
[0259] It has been discovered that SNP rs912428 in leucine-rich repeats and
calponin homology
(CIT) domain containing 1 (LRCHI) is associated with occurrence of
osteoarthritis in subjects.
[0260] Forty-three additional allelic variants proximal to rs912428 were
identified and
subsequently allelotyped in osteoarthritis case and control sample sets as
described in Examples 1 and 2.
The polymorphic variants are set forth in Table 32. The chromosome positions
provided in column
four of Table 32 are based on Genome "Build 34" of NCBI's GenBank.
TABLE 32
dbSNP Position ChromosomeAllele
rs# Chromosomein SEQ Position Variants
ID NO:
5


rs101262813 243 44917643 c/t


rs157097613 10208 44927608 c/t


rs912436 13 15049 44932449 c/t


rs912435 13 15111 44932511 a/


rs912433 13 15272 44932672 c/t


rs912432 13 15287 44932687 a/


rs912431 13 15326 44932726 a/


rs912430 13 15327 44932727 c/t


rs140822513 17038 44934438 c/t


rs998657 13 19391 44936791 a/


rs132400613 21702 44939102 c/t


rs192441713 22431 44939831 c/


rs203872813 22881 44940281 a/


rs912429 13 27744 44945144 a/t


rs374226913 32564 44949964 a/


rs374227013 32698 44950098 a/c


rs380319213 33104 44950504 /t


rs380319113 33181 44950581 c/t


rs754106 13 33256 44950656 c/t


rs200505313 33543 44950943 c/t


rs153579313 35567 44952967 c/t


rs188622013 40085 44957485 c/t


rs188621913 40482 44957882 alt


rs153579213 45641 44963041 a/t


rs153579113 46059 44963459 a/


rs912428 13 48504 44965904 c/t


rs188621813 48919 44966319 a/c


119


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP ChromosomePosition ChromosomeAllele
rs# in SEQ Position Variants
ID NO:
5


rs157062213 49693 44967093 c/t


rs912427 13 49874 44967274 a/


rs912426 13 50020 44967420 al


rs306869313 50616 44968016 -/ttt


rs157062113 50719 44968119 a/


rs188696513 55511 44972911 c/t


rs100884913 65533 44982933 a/


rs912434 13 70529 44987929 a/c


rs388909513 75591 44992991 c/t


rs716223 13 77266 44994666 /t


rs289720713 80368 44997768 /t


rs157062013 82475 44999875 a/


rs146760513 92462 45009862 /t


rs146760413 92480 45009880 c/t


rs140822413 95819 45013219 c/t


rs140822313 96275 45013675 c/t


Assax for Veri in and Allelotyping SNPs
[0261] The methods used to verify and allelotype the 43 proximal SNPs of Table
32 are the same
methods described in Examples 1 and 2 herein. The primers and probes used in
these assays are
provided in Table 33 and Table 34, respectively.
TABLE 33
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs1012628ACGTTGGATGGATTTTCTGTGTCCCCCAAGACGTTGGATGTTGCAACAGAGAGAGCTCTG


rs1570976ACGTTGGATGTGATGTGTCTGCTGTGTTGGACGTTGGATGTTCACATGGCGAGGTCTTAG


rs912436ACGTTGGATGCCATATAAGGTGGTTATGGGACGTTGGATGCAAACAGGTTTTTCTGAGGC


rs912435ACGTTGGATGCAAGCCAATATCCAAGACAGACGTTGGATGAAAAACCTGTTTGTGAGGCC


rs912433ACGTTGGATGTGCCTTCCATCCTTAACACGACGTTGGATGGGCTTGAGCTTAGATATGGC


rs912432ACGTTGGATGAAATAGTTGGGTTTTGTGCCACGTTGGATGATTTGGTGTTAATTGCAGTG


rs912431ACGTTGGATGTGGAAGGCACAAAACCCAACACGTTGGATGCAGAAGCTAGGCTTCCTATG


rs912430ACGTTGGATGTGGAAGGCACAAAACCCAACACGTTGGATGCAGAAGCTAGGCTTCCTATG


rs1408225ACGTTGGATGGGGCACCATGACAATATTCCACGTTGGATGACACCTTGATCTTGGACTTC


rs998657ACGTTGGATGACTGGGCCAGGGAGGAATAGACGTTGGATGGTTGGGGAGATAATACAGAAG


rs1324006ACGTTGGATGGCTGAAAACCCAAATGTGTGACGTTGGATGCCAGCTATCAGCTCCATTTC


rs1924417ACGTTGGATGACAAAAGCAAGCCTTCACAGACGTTGGATGGTACTGTAAAAGGTACTGTG


rs2038728ACGTTGGATGAAGGCTTTTGGACACAAGTCACGTTGGATGGCACCTCTTATGATGTTCCC


rs912429ACGTTGGATGTTCAATTCCCCAAAGCCCTCACGTTGGATGGGCAAGTTCCATAACCTCTC


rs3742269ACGTTGGATGGAGAAAAGAGAACGAGAAGGACGTTGGATGTAAATGACAGCAGTCTGGAG


rs3742270ACGTTGGATGCTAAAACCAAAGCTGACGGGACGTTGGATGTTCTGCTCCTGTGGCATAGC


rs3803192ACGTTGGATGTCCTTTTGCTTCTGCGATGCACGTTGGATGTGCTTCCCCATCAGTTCTTG


rs3803191ACGTTGGATGCTGTCTGTACATTACCAGGCACGTTGGATGAATAGCAGCTGGAGGATCTC


rs754106ACGTTGGATGTTCTTACCATCCAGCAAGGCACGTTGGATGGCCTGGTAATGTACAGACAG


rs2005053ACGTTGGATGCTGTTGCTAGCTTGGATTTGACGTTGGATGTTCCCTGTCCTTTCTGGCAT


rs1535793ACGTTGGATGAACAAAGAGGAACAGAGCCCACGTTGGATGGCATAAGCCCCTTTTCCTAG


rs1886220ACGTTGGATGTCACCGTGTTAGCGAGAATGACGTTGGATGTAATCCCAGCACTTTGGGAG


rs1886219ACGTTGGATGTGTAACTGGATTTGCTGGAGACGTTGGATGTACATCAATAGCCGAGGAAG


120


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs1535792ACGTTGGATGCTGTATATCAGTGACTGTCCACGTTGGATGCAGAGAAGAAACATCTCAGC


rs1535791ACGTTGGATGGAGGGTTTATCCTTACAATTGACGTTGGATGTTTTAGGGTCCCTTGATAAG


rs912428ACGTTGGATGACTACATCCATTCCAGGGAGACGTTGGATGTCAGATCAGAGTGAGTTTAG


rs1886218ACGTTGGATGTCCCGAAAACAAGTCAAGACACGTTGGATGAGTCCAGGCAAAACAGTAAG


rs1570622ACGTTGGATGATAGCTGCCACACTCTTTAGACGTTGGATGGCGCAGTTTAGAAAAACCTG


rs912427ACGTTGGATGTAGGGTTCTCGATGGGTATGACGTTGGATGTTTGCCCTGGTCACTTTAGG


rs912426ACGTTGGATGTTAGAGGATGCATAGGCCAGACGTTGGATGAAGTCACTTACTGCATGGTC


rs3068693ACGTTGGATGAAATTGGCCACATGGAATCCACGTTGGATGCTACCTTTAACATCCCTGTC


rs1570621ACGTTGGATGAATTAAGAATGGCAGCTATGACGTTGGATGGTTTAAAACTAAAAACAC


rs1886965ACGTTGGATGCTGCTAAGGATATGTGTTTCCACGTTGGATGACACCAGTGCTCAGTATTTG


rs1008849ACGTTGGATGGCAGTTGTGAATTGTGCAGCACGTTGGATGTGGTGCAGAACATGTCAGAC


rs912434ACGTTGGATGTTCTGACATGTACAGACGTGACGTTGGATGTCCTGGGAAATCTTTCCATC


rs3889095ACGTTGGATGAAGGTAATGATATGTCCCCCACGTTGGATGCGCATTTTACAGAGACATTG


rs716223ACGTTGGATGACACTGTCTCTAGAAGCAGGACGTTGGATGGAAGCAGGAAAAGAGTGAGG


rs2897207ACGTTGGATGTCAGCCTCCAGAACTATGAGACGTTGGATGAACAGAGAGAGACCCTGTCT


rs1570620ACGTTGGATGCTGTTCCTGCCTTGATATGGACGTTGGATGGAAGGAAGTCTATTCAGCCC


rs1467605ACGTTGGATGATGTTACAGGGTGGTAAGCGACGTTGGATGTAAAGTTGCCACGCTTCTCC


rs1467604ACGTTGGATGATATACGGCATGTTACAGGGACGTTGGATGTTAAAGTTGCCACGCTTCTC


rs1408224ACGTTGGATGACTTCCCACTCCTCTAGACAACGTTGGATGTATTGGCTGGGTAGCACTCC


rs1408223ACGTTGGATGTCATTACCAGTTCCACAGAGACGTTGGATGTTGAGACATCATGAGGAGTG


TABLE 34
dbSNP Extend Term
rs# Primer Mix


rs1012628 CTGTGTCCCCCAAGTCTTTG ACG


rs1570976 TTGGCATTTCTTTGAGAA ACT


rs912436 AGGTGGTTATGGGTTTGTCACTCAACT


rs912435 TCCAAAAAGCCCAAGAAATTCT ACT


rs912433 CCTTAACACGTTTATAATAGATTAACG


rs912432 GTGCCTTCCATCCTTAACAC ACT


rs912431 GGCACAAAACCCAACTATTTTTC ACG


rs912430 GCACAAAACCCAACTATTTTTCC ACT


rs1408225 CCTCAGACTGGGTGGCTTA ACT


rs998657 CACCCACCTGAGGGAGGC ACT


rs1324006 GATACCTTGAAGAATTTTTAAAACACG


rs1924417 TTTAGGCACATTTGTACTTATAAAACT


rs2038728 TGGACACAAGTCCATGCAACA ACG


rs912429 CTGTGACAGGTGCTATTATCA CGT


rs3742269 TTTTGGACCGATTTCCGGTG ACT


rs3742270 GCTGACGGGGATTCCCTTTA ACT


rs3803192 GATGCACTAAAAGCAGCAATGT ACT


rs3803191 TCCAGCCTTCATATTTTCCTC ACG


rs754106 ATCCAGCAAGGCACTTAGAAT ACT


rs2005053 TGTGGCCTTCAGATGCTTACAT ACG


rs1535793 GAGGAACAGAGCCCAAAGGACA ACT


rs1886220 CTGACCTCGTGATCCGCC ACG


rs1886219 ACTGGATTTGCTGGAGTTAAGAA CGT


rs1535792 TATCAGTGACTGTCCTTTTCTTTTCGT


rs1535791 TTATCCTTACAATTGAAGAAAGGAI ACT


121


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Extend Term
rs# Primer Mix


rs912428 CCATTCCAGGGAGACTCCCA ACT


rs1886218 GAAAACAAGTCAAGACATTTATTGACT


rs1570622 CTGCCACACTCTTTAGATGAAGTTACG


rs912427 GGGAGATGACAGAACAAAACT ACT


rs912426 AGGTGCCAAGTGTTAGAAGAAACACG


rs3068693 GCCTCACATTGTTTTTTTTTTTTTACT


rs1570621 TCGGTCATAACTTTAATGAAGG ACG


rs1886965 TGATTTTATGACTCACATTATTTCACT


rs1008849 GTGAATTGTGCAGCTATAAACATGACG


rs912434 AGACGTGCCCAGCTATGATA ACT


rs3889095 TCCCCCATAACATTTCAGCAT ACT


rs716223 GTGGTTTGTATTTCCAGTGTCA ACT


rs2897207 AACTATGAGAAATAAATGTGTGGGACT


rs1570620 TTGATATGGTTCTTGGTTGTTGGACG


rs1467605 GTAAGCGCTAGAAAGAAAAATAAACT


rs1467604 ACGGCATGTTACAGGGTGGTAAGACG


rs1408224 GGGCACACATTCAGAACTGCCC ACG


rs1408223 ACAGAGGAAGACCAAATGACA I ACG


Genetic Anal,
[0262] Allelotyping results from the discovery cohort are shown for cases and
controls in Table 35.
The allele frequency for the A2 allele is noted in the fifth and sixth columns
for osteoarthritis case pools
and control pools, respectively, where "AF" is allele frequency. The allele
frequency for the Al allele
can be easily calculated by subtracting the A2 allele frequency from 1 (Al AF
= 1-A2 AF). For
example, the SNP rs1570976 has the following case and control allele
frequencies: case A1 (C) = 0.49;
case A2 (T) = 0.51; control A1 (C) = 0.53; and control A2 (T) = 0.47, where
the nucleotide is provided
in paranthesis. Some SNPs are labeled "untyped" because of failed assays.
TABLE 35
dbSNP Position ChromosomeAl/A2 F A2 F A2
rs# in Position Allele Case C AF Value
SEQ ID AF ~l
NO: 5


rs1012628243 44917643 C/T 0.70 0.70 0.768


rs157097610208 44927608 C/T 0.51 0.47 0.125


rs912436 15049 44932449 C/T 0.98 unt ed


rs912435 15111 44932511 A/G 0.64 0.36 0.0001
.


rs912433 15272 44932672 C/T 0.22 0.23 0.581


rs912432 15287 44932687 AIG 0.46 0.44 0.282


rs912431 15326 44932726 A/G 0.46 0.46 0.969


rs912430 15327 44932727 C/T 0.20 0.19 0.584


rs140822517038 44934438 C/T


rs998657 19391 44936791 A/G 0.47 0.44 0.254


rs132400621702 44939102 C/T 0.55 0.53 0.419


rs192441722431 44939831 C/G 0.53 0.49 0.108


rs203872822881 44940281 A/G 0.34 0.38 0.082


rs912429 27744 44945144 A/T


rs374226932564 44949964 A/G 0.83 0.83 0.967


rs374227032698 44950098 A/C 0.53 0.50 0.170


rs380319233104 44950504 G/T


rs380319133181 44950581 C/T


122


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAl/A2 F A2 Co t of F p-
rs# in Position Allele Case AF Value
SEQ ID AF
NO: 5


rs754106 33256 44950656 C/T 0.40 0.41 0.714


rs200505333543 44950943 C/T 0.40 0.40 0.877


rs153579335567 44952967 C/T 0.26 0.26 0.910


rs188622040085 44957485 C/T


rs188621940482 44957882 A/T 0.21 0.22 0.867


rs153579245641 44963041 A/T 0.73 0.71 0.550


rs153579146059 44963459 A/G 0.08 0.15 0.009


rs912428 48504 44965904 C/T


rs188621848919 44966319 A/C


rs157062249693 44967093 C/T 0.73 0.75 0.451


rs912427 49874 44967274 A/G 0.68 0.70 0.352


rs912426 50020 44967420 A/G 0.76 0.77 0.680


rs306869350616 44968016 -/TTT 0.22 0.21 0.597


rs157062150719 44968119 A/G 0.19 0.18 0.569


rs188696555511 44972911 C/T


rs100884965533 44982933 AIG 0.48 0.43 0.160


rs912434 70529 44987929 A/C 0.23 0.23 0.988


rs388909575591 44992991 C/T 0.90 0.90 0.880


rs716223 77266 44994666 G/T 0.91 0.90 0.981


rs289720780368 44997768 G/T 0.46 0.46 0.921


rs157062082475 44999875 A/G 0.67 0.68 0.738


rs146760592462 45009862 G/T 0.29 0.22 0.044


rs146760492480 45009880 C/T 0.68 0.67 0.537


rs140822495819 45013219 ClT 0.66 0.65 0.683


rs140822396275 45013675 C/T 0.29 0.28 0.587


[0263] The LRCHI proximal SNPs were also allelotyped in the replication
cohorts using the
methods described herein and the primers provided in Tables 33 and 34. The
replication allelotyping
results for replication cohort #1 and replication cohort #2 are provided in
Tables 36 and 37,
respectively.
TABLE 36
dbSNP Position ChromosomeAl/A2 F A2 Co t F p
rs# in Position Allele Case of Value
SEQ ID AF AF
NO: 5


rs1012628243 44917643 C/T 0.69 0.72 0.337


rs157097610208 44927608 C/T 0.48 0.46 0.490


rs912436 15049 44932449 C/T


rs912435 15111 44932511 A/G 0.16 unt 0.637
ed


rs912433 15272 44932672 C/T 0.28 0.28 0.984


rs912432 15287 44932687 AIG 0.46 0.42 0.260


rs912431 15326 44932726 A/G 0.46 0.48 0.602


rs912430 15327 44932727 C/T 0.18 0.20 0.476


rs140822517038 44934438 C/T


rs998657 19391 44936791 A/G 0.46 0.43 0.380


rs132400621702 44939102 C/T 0.54 0.53 0.811


rs192441722431 44939831 C/G 0.51 0.49 0.440


rs203872822881 44940281 A/G 0.35 0.39 0.181


rs912429 27744 44945144 A/T


rs374226932564 44949964 A/G 0.84 0.85 0.911


rs374227032698 44950098 A/C 0.56 0.50 0.090


rs380319233104 44950504 G/T


rs380319133181 44950581 C/T


rs754106 33256 44950656 C/T 0.40 0.40 0.827


rs200505333543 44950943 C/T 0.40 0.37 0.328


rs153579335567 44952967 C/T 0.27 0.24 0.259


rs188622040085 44957485 C/T


rs188621940482 44957882 A/T 0.22 0.19 0.302


123


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position Allele Case C AF Value
SEQ ID AF of
NO: 5


rs 153579245641 44963041 A/T 0.73 0.76 0.435


rs 153579146059 44963459 A/G 0.08 0.08 0.958


rs912428 48504 44965904 Cn- See replication
genotyping
results
in
Tables
8 &
9.


rs188621848919 44966319 A/C


rs157062249693 44967093 C/T 0.71 0.79 0.007


rs912427 49874 44967274 A/G 0.65 0.73 0.007


rs912426 50020 44967420 A/G 0.74 0.80 0.047


rs306869350616 44968016 -/TTT 0.25 0.21 0.236


rs157062150719 44968119 A/G 0.22 0.15 0.028


rs188696555511 44972911 C/T


rs100884965533 44982933 A/G 0.47 unt NA
ed


rs912434 70529 44987929 AIC 0.24 0.19 0.083


rs388909575591 44992991 C/T 0.91 0.91 0.867


rs716223 77266 44994666 G/T 0.91 0.93 0.598


rs289720780368 44997768 G/T 0.48 0.45 0.321


rs157062082475 44999875 A/G 0.66 0.72 0.034


rs146760592462 45009862 G/T 0.29 0.22 0.044


rs146760492480 45009880 C/T 0.66 0.70 0.307


rs140822495819 45013219 C/T 0.64 0.67 0.312


rs140822396275 45013675 C/T 0.31 0.23 0.028


TABLE 37
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position Allele Case Control Value
SEQ ID AF AF
NO: 5


rs1012628243 44917643 C/T 0.71 0.68 0.438


rs157097610208 44927608 C/T 0.55 0.50 0.159


rs912436 15049 44932449 C/T


rs912435 15111 44932511 A/G 0.66 unt ed


rs912433 15272 44932672 C/T 0.14 0.17 0.479


rs912432 15287 44932687 A/G 0.47 0.46 0.806


rs912431 15326 44932726 A/G 0.46 0.44 0.513


rs912430.15327 44932727 C/T 0.23 0.17 0.084


rs140822517038 44934438 C/T


rs998657 19391 44936791 A/G 0.48 0.45 0.518


rs132400621702 44939102 C/T 0.55 0.52 0.324


rs192441722431 44939831 C/G 0.54 0.49 0.123


rs203872822881 44940281 A/G 0.34 0.37 0.295


rs912429 27744 44945144 A/T


rs374226932564 44949964 A/G 0.82 0.82 0.861


rs374227032698 44950098 A/C 0.50 0.49 0.873


rs380319233104 44950504 G/T


rs380319133181 44950581 C/T


rs754106 33256 44950656 C/T 0.41 0.44 0.346


rs200505333543 44950943 C/T 0.40 0.44 0.302


rs 153579335567 44952967 C/T 0.25 0.31 0.096


rs188622040085 44957485 C/T


rs188621940482 44957882 A/T 0.20 0.27 0.053


rs153579245641 44963041 A/T 0.73 0.63 0.007


rs153579146059 44963459 A/G NA 0.27 NA


rs912428 48504 44965904 Cn- See
replication
genotyping
results
in
Tables
8 &
9.


rs188621848919 44966319 A/C


rs 157062249693 44967093 C/T 0.75 0.67 0.040


rs912427 49874 44967274 A/G 0.71 0.64 0.059


rs912426 50020 44967420 A/G 0.78 0.72 0.065


rs306869350616 44968016 -/TTT 0.19 0.21 0.520


rs157062150719 44968119 A/G 0.15 0.21 0.077


rs188696555511 44972911 C/T


rs100884965533 44982933 A/G 0.49 0.43 0.138


124


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position Allele Case Control Value
SEQ ID AF AF
NO: 5


rs912434 70529 44987929 A/C 0.21 0.28 0.027


rs388909575591 44992991 C/T 0.89 0.88 0.583


rs716223 77266 44994666 G/T 0.90 0.87 0.368


rs289720780368 44997768 G/T 0.44 0.48 0.276


rs157062082475 44999875 A/G 0.70 0.62 0.026


rs146760592462 45009862 G/T


rs146760492480 45009880 C/T 0.71 0.62 0.018


rs140822495819 45013219 C/T 0.68 0.61 0.060


rs140822396275 45013675 C/T 0.27 0.34 0.023


[0264] Allelotyping results were considered particularly significant with a
calculated p-value of
less than or equal to 0.05 for allelotype results. These values are indicated
in bold. The allelotyping p-
values were plotted in Figure 1E for the discovery cohort. The position of
each SNP on the
chromosome is presented on the x-axis. The y-axis gives the negative logarithm
(base 10) of the p-
value comparing the estimated allele in the case group to that of the control
group. The minor allele
frequency of the control group for each SNP designated by an X or other symbol
on the graphs in Figure
1E can be determined by consulting Table 35. For example, the left-most X on
the left graph is at
position 44917643. By proceeding down the Table from top to bottom and across
the graphs from left
to right the allele frequency associated with each symbol shown can be
determined.
[0265] To aid the interpretation, multiple lines have been added to the graph.
The broken
horizontal lines are drawn at two common significance levels, 0.05 and 0.01.
The vertical broken lines
are drawn every 20kb to assist in the interpretation of distances between
SNPs. Two other lines are
drawn to expose linear trends in the association of SNPs to the disease. The
generally bottom-most
curve is a nonlinear smoother through the data points on the graph using a
local polynomial regression
method (W.S. Cleveland, E. Grosse and W.M. Shyu (1992) Local regression
models. Chapter 8 of
Statistical Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth &
Brooks/Cole.). The black line
provides a local test for excess statistical significance to identify regions
of association. This was
created by use of a lOkb sliding window with lkb step sizes. Within each
window, a chi-square
goodness of fit test was applied to compare the proportion of SNPs that were
significant at a test wise
level of 0.01, to the proportion that would be expected by chance alone (0.05
for the methods used
here). Resulting p-values that were less than 10-8 were truncated at that
value.
[0266] Finally, the exons and introns of the genes in the covered region are
plotted below each
graph at the appropriate chromosomal positions. The gene boundary is indicated
by the broken
horizontal line. The exon positions are shown as thick, unbroken bars. An
arrow is place at the 3' end
of each gene to show the direction of transcription.
Example 9
SNWI Region Proximal SNPs
[0267] SNP rs 1477261 is associated with osteoarthritis and is described in
Table A. It lies within
an intron of the SKI-interacting protein gene (SNWI ). This gene, a member of
the SNW gene family,
125


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
encodes a coactivator that enhances transcription from some Pol II promoters.
This coactivator can bind
to the ligand-binding domain of the vitamin D receptor and to retinoid
receptors to enhance vitamin D-,
retinoic acid-, estrogen-, and glucocorticoid-mediated gene expression. It
also can interact with
poly(A)-binding protein 2 to directly control the expression of muscle-
specific genes at the
transcriptional level. One hundred sixty-three additional allelic variants
proximal to rs1477261 were
identii ed and subsequently allelotyped in osteoarthritis case and control
sample sets as described in
Examples 1 and 2. The polymorphic variants are set forth in Table 38. The
chromosome position
provided in column four of Table 38 is based on Genome "Build 34" of NCBI's
GenBank.
TABLE 38
dbSNP Position ChromosomeAllele
rs# Chromosomein SEQ Position Variants
ID NO: 6


rs714392614 218 76161268 a/t


rs154907114 1440 76162490 c/t


rs801285814 1442 76162492 c/t


rs715561114 2611 76163661 c/t


rs176941 14 4317 76165367 a/c


rs 17694214 4724 76165774 alg


rs176943 14 4788 76165838 g/t


rs176944 14 5202 76166252 g/t


rs436522114 5780 76166830 c/t


rs316895214 5974 76167024 c/t


rs176945 14 6644 76167694 c/g


rs176946 14 7430 76168480 a/g


rs176947 14 7938 76168988 .~ c/t


rs176948 14 8095 76169145 c/t


rs176949 14 8183 76169233 a/c


rs176950 14 8312 76169362 c/t


rs176951 14 8352 76169402 a/c


rs715690514 9348 76170398 c/t


rs321719714 9378 76170428 -/tctc


rs227044314 9617 76170667 a/g


rs176952 14 9727 76170777 c/t


rs176953 14 9834 76170884 c/t


rs176954 14 9899 76170949 g/t


rs176955 14 10211 76171261 c/t


rs321441614 10377 76171427 -/t


rs176956 14 10695 76171745 c/t


rs254456614 10729 76171779 c/g


rs254456714 10730 76171780 c/t


rs176957 14 11433 76172483 a/g


rs176958 14 11951 76173001 c/g


rs176959 14 12697 76173747 c/t


rs180222714 12982 76174032 a/c


rs176961 14 14419 76175469 c/t


rs176962 14 14501 76175551 c/t


rs740128514 14983 76176033 a/c


rs176963 14 15280 76176330 c/t


rs176964 14 15475 76176525 a/g


rs490363114 15888 76176938 a/g


126


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position Chromosome Allele
rs# Chromosomein SEQ Position Variants
ID NO:
6


rs490363214 15976 76177026 a/t


rs176965 14 16307 76177357 a/c


rs490363314 16442 76177492 a/c


rs176966 14 17255 76178305 clt


rs176968 14 18948 76179998 g/t


rs176969 14 19435 76180485 a/t


rs176970 14 19753 76180803 clt


rs714919814 20021 76181071 c/t


rs714791814 20022 76181072 a/c


rs714868514 20503 76181553 a/g


rs118423214 20590 76181640 g/t


rs118423314 21804 76182854 g/t


rs118423414 21919 76182969 c/t


rs740199814 21990 76183040 a/t


rs176974 14 22412 76183462 a/g


rs657439014 22536 76183586 c/t


rs176975 14 23432 76184482 a/g


rs176976 14 23468 76184518 g/t


rs176977 14 23772 76184822 c/t


rs801372714 24325 76185375 c/t


rs176978 14 24773 76185823 c/t


rs211182914 26274 76187324 clt


rs176980 14 27440 76188490 c/g


rs580984814 28561 76189611 -/acag


rs580984914 30071 76191121 -la


rs438307014 31764 76192814 a/t


rs749365214 33008 76194058 c/t


rs211213314 35310 76196360 a/t


rs196383314 35460 76196510 a/c


rs657439114 37112 76198162 a/g


rs715506214 37285 76198335 a/g


rs489967414 37747 76198797 c/t


rs802251614 38057 76199107 c/t


rs714083814 38859 76199909 a/c


rs714112714 38860 76199910 a/g


rs657439214 39525 76200575 a/g


rs800369114 40216 76201266 a/g


rs800397914 40281 76201331 c/t


rs801054114 41453 76202503 c/g


rs801641614 42091 76203141 a/t


rs801617514 42513 76203563 a/g


rs715457114 42935 76203985 c/t


rs715882614 42985 76204035 a/g


rs715931014 43003 76204053 a/g


rs740190014 43281 76204331 a/g


rs716035514 43716 76204766 c/t


rs203278114 43866 76204916 a/g


rs657439414 44234 76205284 g/t


rs800759814 44596 76205646 a/g


rs226776714 44871 76205921 c/t


rs657439514 45005 76206055 a/g


rs715006614 45282 76206332 a/c


127


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP . Position Chromosome Allele
rs# Chromosomein SEQ Position Variants
I~ NO:
6


rs749233414 47178 76208228 a/c


rs435936114 47816 76208866 g/t


rs460508914 47887 76208937 a/g


rs714644614 48134 76209184 c/t


rs434614414 48135 76209185 alg


rs714807814 48276 76209326 g/t


rs714828614 48400 76209450 c/t


rs378398014 48798 76209848 a/g


rs154911914 48803 76209853 a/t


rs198492514 49146 76210196 c/t


rs147726114 49969 76211019 alt


rs801644714 51059 76212109 a/g


rs749404414 51064 76212114 c/t


rs202328814 53285 76214335 alt


rs715168514 54560 76215610 c/t


rs211213514 54748 76215798 a/g


rs216108814 54785 76215835 c/g


rs490363814 55102 76216152 c/g


rs147726214 55644 76216694 alg


rs147726314 55705 76216755 g/t


rs147726414 55841 76216891 a/g


rs227791714 56623 76217673 c/g


rs227791814 56825 76217875 ~~ ~a/c


rs227791914 56827 76217877 a/g


rs197841614 56892 76217942 c/t


rs375972814 59150 76220200 a/t


rs657439914 59958 76221008 ea/t


rs715533614 60231 76221281 c/t


rs715618614 60524 76221574 a/g


rs714239014 61871 76222921 c/t


rs714587514 62226 76223276 c/t


rs801463514 63230 76224280 g/t


rs801593814 63468 76224518 g/t


rs801531314 63787 76224837 c/t


rs800631514 65732 76226782 a/c


rs657440014 65989 76227039 a/g


rs714081614 68832 76229882 g/t


rs456607814 69904 76230954 c/t


rs714105014 70365 76231415 a/g


rs304935614 70886 76231936 -/tatc


rs490363914 73088 76234138 a/t


rs490364114 73103 76234153 c/t


rs236483814 75934 76236984 c/t


rs236483914 75966 76237016 c/t


rs463206614 76273 76237323 c/t


rs211213614 77943 76238993 c/t


rs464165514 78466 76239516 c/t


rs463526914 78861 76239911 c/t


rs457076414 78872 76239922 a/g


rs759808 14 79836 76240886 g/t


rs715053114 80908 76241958 c/t


rs715496814 81509 76242559 c/g


128


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position Chromosome Allele
rs# Chromosomein SEQ Position Variants
ID NO:
6


rs714665714 83576 76244626 c/t


rs714585914 83662 76244712 c/g


rs490364314 83782 76244832 c/t


rs71768214 84282 76245332 g/t


rs71768314 84444 76245494 a/g


rs147725914 85129 76246179 clg


rs801906414 85151 76246201 a/g


rs801897114 85296 76246346 a/c


rs147726014 85809 76246859 c/g


rs580985114 86387 76247437 -/t


rs198514914 86494 76247544 a/g


rs100898814 89786 76250836 a/g


rs100898914 89894 76250944 a/t


rs801822214 90122 76251172 glt


rs100604014 92067 76253117 a/g


rs100603914 92187 76253237 c/t


rs100603814 92312 76253362 a/g


rs800978414 92824 76253874 g/t


rs490364414 93733 76254783 c/t


rs714949614 96553 76257603 c/g


rs657440214 96941 76257991 a/c


Assay for Verifying and Allelotypin~ SNPs
[0268] The methods used to verify and allelotype the 101 proximal SNPs of
Table 38 are the same
methods described in Examples 1 and 2 herein. The primers and probes used in
these assays are
provided in Table 39 and Table 40, respectively.
TABLE 39
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs7143926ACGTTGGATGGAGTCACCCAAAATTAAGGCACGTTGGATGGAAAGCCAAAATTAGCCTGC


rs1549071ACGTTGGATGGTGAGACGCTGTCTCAGTAAACGTTGGATGCTCCACACTTGGAGAAGTTG


rs8012858ACGTTGGATGGTGAGACGCTGTCTCAGTAAACGTTGGATGCTCCACACTTGGAGAAGTTG


rs7155611ACGTTGGATGATGGAATACAGGCACCGTTCACGTTGGATGCCCCTTCTTAATCTCCATGG


rs176941ACGTTGGATGTTAGTATGGGAAAAGGGCTCACGTTGGATGCAACAATCCTATGAGTTGGG


rs176942ACGTTGGATGAGTGGCTCAGATGTGAGTAGACGTTGGATGTGGTCTTCACCAACCACATG


rs176943ACGTTGGATGACCAAGCCCAGTAAAGTCTCACGTTGGATGGCATCCGCAAGATGCTAATG


rs176944CGTTGGATGGGCCTCAATATTGGCTAAATGACGTTGGATGCTTAACCATTAGAGCCCTTC


rs4365221ACGTTGGATGAAATAAGGCAGGAAGGGTAGACGTTGGATGTCCCAACTTACTGGTCTTTC


rs3168952ACGTTGGATGATGTACCAGACTTGGTGGTGACGTTGGATGTTTGCTGAGGATGGAGACTG


rs176945ACGTTGGATGCCTACTATACACTCACAAAAACGTTGGATGTTTTTTAAAACACTTTAAGC


rs176946ACGTTGGATGGCTTTATCATAGGTATTTGTGACGTTGGATGGAGAGATGTGTTGTTTTTGAG


rs176947ACGTTGGATGTGAGTAGCTGGGACTACAGGACGTTGGATGGGCCAACATAGCGAAACTCC


rs176948ACGTTGGATGCAGAGCCAAAGGTCAACAAGACGTTGGATGTACAGGTGTGAGCCTTCATG


rs176949ACGTTGGATGTAGGAACTCCCTGCAGTTCCACGTTGGATGCCTTGCTGGCTTTAAAGAAG


rs176950ACGTTGGATGAATCACAGGAGTGACATCCCACGTTGGATGTGGAGGAGAAACCTGACTTG


rs176951ACGTTGGATGCCCTATATAATCTCCTCCCCACGTTGGATGCAGGAGTGACATCCCATTAC


129


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs7156905ACGTTGGATGTGAGAGAGAGAACCTGTCTCACGTTGGATGAAAGGCGGCTTTGATGTTGG


rs3217197ACGTTGGATGTTGATTGTGCCACTGCACTCACGTTGGATGACTCTAGTTGGAAATCCTGG


rs2270443ACGTTGGATGATAACTCAGTCCAGGTGTGGACGTTGGATGCACTCAAGCAGTCTACTCAC


rs176952ACGTTGGATGGATCTCAGCTCACTGCAATCACGTTGGATGTATCTGGGTGACTGAGGAAG


ys176953ACGTTGGATGTTGAGGTCAGGAGTTTGGGAACGTTGGATGGCCACCACACCCAGCTAATT


rs176954ACGTTGGATGAAAACATAGGCCAGGTGCAGACGTTGGATGAAACTCCTGACCTCAAGCCA


rs176955ACGTTGGATGCTAGAGTGCTTGGATGTACCACGTTGGATGGTCATCTACAGGGACTAGAC


rs3214416ACGTTGGATGACGACTATCATCACGTGTTCACGTTGGATGACCAGAAGTCTGTAACTAGG


rs176956ACGTTGGATGTACAGGCATAAGCCACCATGACGTTGGATGAGGAAGGGTGTAAAGCAAGG


rs2544566ACGTTGGATGCAAGCAATCTTCCCATCTGGACGTTGGATGTGATCCGATTTTTGGCTGGG


rs2544567ACGTTGGATGCAAGCAATCTTCCCATCTGGACGTTGGATGTGATCCGATTTTTGGCTGGG


rs176957ACGTTGGATGTTTCACCGTGTTAGCCAGGAACGTTGGATGTAATCCCAGCACTTTGGGAG


rs176958ACGTTGGATGAAAACTGGGCACTCTACCACACGTTGGATGAAAATCGCGCCATTGCACTC


rs176959ACGTTGGATGCAGGCAGTTTTTATTTGTCCCACGTTGGATGGGTTAGGGAGTCATAATACC


rs1802227ACGTTGGATGAACAAATAGTTGCACCAAGACGTTGGATGTTTTAATTTGGAGTGGGCA


rs176961ACGTTGGATGAACCCAGTTTAAGACCGGCCACGTTGGATGTACAGGTGTGTGCCACCATG


rs176962ACGTTGGATGATATTTCTGGCTGGGCACTGACGTTGGATGACTGGGTTCAAGCAATCTGC


rs7401285ACGTTGGATGACAGAGTGGGACTCCATATCACGTTGGATGGATTCAAACTGGGTGTCTTG


rs176963ACGTTGGATGTAAGCCTGGGAAAACACACGACGTTGGATGCCCACTCTACTTTCCAGTAG


rs176964ACGTTGGATGAGAGTCAGTGTCCTACAAAAACGTTGGATGTAATCCCGTTTTACAGCTTC


rs4903631ACGTTGGATGGTAAATGCCAGCATGATGACACGTTGGATGTCTCAGCCCACTATAAGAAG


rs4903632ACGTTGGATGTGTGAATACCTATCCTCAGGACGTTGGATGGTCATCATGCTGGCATTTAC


rs176965ACGTTGGATGAATGCTTTATAAGGGCTGCCACGTTGGATGTCTCAGAAACAAAGGATGTG


rs4903633ACGTTGGATGCAACCCCCAAACCATCATATACGTTGGATGCTAACAGATTCGTTGACATGG


rs176966ACGTTGGATGCTCTCGAGTAGCTGGGACTAACGTTGGATGTGGCCAACATGGTGAAACCC


rs176968ACGTTGGATGGCGAAACTCCGTCTCAAAACACGTTGGATGTAGTGATCTTCCCACCTAGG


rs176969ACGTTGGATGCTGTCTGTCCGATTTACTGCACGTTGGATGTCTAGAATCAAGCATGCGGC


rs176970ACGTTGGATGCTAATGTTCCTAGTACAGTGGACGTTGGATGCTTCTCTTCTAGCTATTTTGC


rs7149198ACGTTGGATGCAATGGGATATTACTCAGCCACGTTGGATGTTTCTGTGCCGGGCTTATTC


rs7147918ACGTTGGATGCAATGGGATATTACTCAGCCACGTTGGATGTTTCTGTGCCGGGCTTATTC


rs7148685ACGTTGGATGTGTCTTCTTTTGAGACCGTCACGTTGGATGCTCAATCGCAAAGAAACGAG


rs1184232ACGTTGGATGAAGAGGCCACCTACAGAATGACGTTGGATGCTCGTTTCTTTGCGATTGAG


rs1184233ACGTTGGATGAAGTGTTGGGATTACAGGTGACGTTGGATGAGTGAAAGATCGCCACAAAG


rs1184234ACGTTGGATGGCTATGTGCAGTGACTCATGACGTTGGATGTCTCAGACCTCAGGTGATCT


rs7401998ACGTTGGATGTGAGTAGCTAGGACAACAGGACGTTGGATGAACGTGGTGAAACCCCATCT


rs176974ACGTTGGATGTTACAGCGAGCTGAGATCATACGTTGGATGAGGATCATACTGTCTCTGAC


rs6574390ACGTTGGATGTGATGAAACCCCGTCTGTACACGTTGGATGTCCTGAGTAGCTGGGATTAC


rs176975ACGTTGGATGTGTAGAATCTAGGTGGTAGGACGTTGGATGCCAGCCTTTCCTGACATTTT


rs176976ACGTTGGATGGGTAGGAGATACAGGTGTTCACGTTGGATGCCCAGCCTTTCCTGACATTT


rs176977ACGTTGGATGTTGCATCATTACACTTCAGCACGTTGGATGGGGAAACATTATGCATAATTCC


rs8013727ACGTTGGATGTGCCTGGTTGTATACCTAACACGTTGGATGCTTGAGAACGATTCTGTTGTC


rs176978ACGTTGGATGGGGACCATGTTTTTGTTACCACGTTGGATGAATACTGTGGAATGGGCATG


rs2111829ACGTTGGATGCATGTGGAAAAAGGTATGACACGTTGGATGCCTACTTTATATGCAGTAGG


rs176980ACGTTGGATGATGGCCAATGCTATGAACGCACGTTGGATGAAGGGCAGTTGCAGGAAAAG


rs5809848ACGTTGGATGTCTATTTTTCCAGAGCTTGGGACGTTGGATGCCATTTCACTGATGCTTTGG


rs5809849ACGTTGGATGGTGAATACCGTGTCAGTTCCACGTTGGATGTGCAGTGAGCTGAGATCATG


rs4383070ACGTTGGATGAGCGATTCTCTTGTCTCAGCACGTTGGATGAACTTAGCTGGGCATTGTGG


rs7493652ACGTTGGATGGGTCATATACCACAAGTAACACGTTGGATGCTGGCCCTATGCTATTTTCA


rs2112133ACGTTGGATGGCCACCACAACTGGCTAATTACGTTGGATGTGTGGTCAGGAGATCGAAAC


rs1963833ACGTTGGATGTAAGCCAAGATTGCGTCACTACGTTGGATGAGCATTAAAGGTAGAATGCC


rs6574391ACGTTGGATGTAACCGTTGCTATGGAGAAGACGTTGGATGACCTATACAACCCTAAGCTG


rs7155062ACGTTGGATGGCTCCTTATTTGGGCATTCCACGTTGGATGCACTCAGCCTTGTGAGATAC


130


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs4899674ACGTTGGATGAATGTGCTGAGGAAACTGAGACGTTGGATGGCTTCTGATACTTTCAAGAG


rs8022516ACGTTGGATGGTTGAAGGCATTCTTTTGGGACGTTGGATGCTAGCCTGGGCAATATAATG


rs7140838ACGTTGGATGCCTCGTTTCTGAAGAATACCACGTTGGATGGAGACTGAACAGGTTATTGG


rs7141127ACGTTGGATGCCTCGTTTCTGAAGAATACCACGTTGGATGGAGACTGAACAGGTTATTGG


rs6574392ACGTTGGATGAGAAAATAGCATAGGCTGGGACGTTGGATGAAATGATCCATCCTCCTCAG


rs8003691ACGTTGGATGACTGAAGTCAAGTGAAGGCCACGTTGGATGTTAGGCCCCTATACATGGAG


rs8003979ACGTTGGATGCACAAAACCACTTCTGAAGCACGTTGGATGGGGCCTAATTTTCCTTTTGC


rs8010541ACGTTGGATGCACTTTTCTTGGCTAGCTTCACGTTGGATGCAGAATGGCTAAAACTGAAC


rs8016416ACGTTGGATGTGCCCATAACTTCCTTTGACACGTTGGATGGCCACGGAATCCTATATAGA


rs8016175ACGTTGGATGTTGAGCACTGAGTGAGTGAGACGTTGGATGTCCTAACCGTGAGTGATCTG


rs7154571ACGTTGGATGATGTGAGGAGCACCTCTGCCACGTTGGATGCTCTTCCCTTCTCAGACGG


rs7158826ACGTTGGATGCACCTCCCTCCTGGACGGGACGTTGGATGGCCACCCCGTCTGAGAAGG


rs7159310ACGTTGGATGACCCCGTCTGAGAAGGGAAGACGTTGGATGCACCTCCCTCCTGGACGGG


rs7401900ACGTTGGATGCCCAACAGCTCATTGAGAACACGTTGGATGTCTTTTCCCCACATTTCCCC


rs7160355ACGTTGGATGTCACTTGTTTATCTGCTGACACGTTGGATGTTATTGATCATTCTTGGGTG


rs2032781ACGTTGGATGTATATCACTGTAGTAACAGCACGTTGGATGACCATAAGTATATATCACAAG


rs6574394ACGTTGGATGACCACACCCAGCCTATTTGTACGTTGGATGTTATGCTGAAAGCCTGGGAG


rs8007598ACGTTGGATGCTGGCAAAAGTCTCTTAACACACGTTGGATGTTGGTTAAAGTCACAGAATG


rs2267767ACGTTGGATGGTTTCACCATGTTAGCCAGGACGTTGGATGTAATCCCAGCACTTTGGGAG


rs6574395ACGTTGGATGAACCTTGAACTCTTGGGCTCACGTTGGATGAAAAAATTCACCGGGCATGG


rs7150066ACGTTGGATGAAGCAATCCTCCTGCTTCTGACGTTGGATGAGATCAGGTGTAGATCCAGG


rs7492334ACGTTGGATGGCCTTTGCATTGGCTATTTGACGTTGGATGTAGAAAGCAGTCATGGGAAG


rs4359361ACGTTGGATGGTAGTATTTGCTTAGTACACACGTTGGATGTTCTAAGCCTGAATGTTTCC


rs4605089ACGTTGGATGAATACCTATGAGATCTCAGGACGTTGGATGCCTTGTAACTCTTTAACATC


rs7146446ACGTTGGATGATTCACTTTTACAAGACCTCACGTTGGATGGCATATTGTACTTAGGAACTC


rs4346144ACGTTGGATGATTCACTTTTACAAGACCTCACGTTGGATGGCATATTGTACTTAGGAACTC


rs7148078ACGTTGGATGTGTGTCAGATTGATGGCTTGACGTTGGATGCCAAGAGAATAAAGCTGAGAG


rs7148286ACGTTGGATGGTGGTCATTAAGCTTGCCAGACGTTGGATGTGCTATGGATGCTGCTTGAG


rs3783980ACGTTGGATGTTTTTTGCCCCAGGTAAGACACGTTGGATGTGGTGCTTTTGTTCTCTCTG


rs1549119ACGTTGGATGTTTCATCTTCCTCTGCCTCCACGTTGGATGGTGAAGGCCAGTCATATTGC


rs1984925ACGTTGGATGAAGTAGCCAGGATTACAGGCACGTTGGATGCCAGCCTAGCAAACATGGTG


rs1477261ACGTTGGATGCAGGGTTATGTGGTATTATCACGTTGGATGGGGAAAGTAAAAGATAAGAG


rs8016447ACGTTGGATGAATTACAGACGTGTGCCACCACGTTGGATGTGACACAGAGAGACTCTGTC


rs7494044ACGTTGGATGAATTACAGACGTGTGCCACCACGTTGGATGTGACACAGAGAGACTCTGTC


rs2023288ACGTTGGATGGAGAAAAATTGTGATTGATTGACGTTGGATGGCCATCAAATCAATCTAATC


rs7151685ACGTTGGATGACAGTGCTGGCATTACTGGCACGTTGGATGTAAAGATCGTCTGCCACTGC


rs2112135ACGTTGGATGAGTGCAGTGGCCCAATCACAACGTTGGATGGTCTAGAGTCCCAGCTACTC


rs2161088ACGTTGGATGTATAGGGTCTCACTCTTGCCACGTTGGATGAGGAGGATCACCTGAGCCTT


rs4903638ACGTTGGATGATAGGGTGTTACTGCGTTGGACGTTGGATGAGGCCTAGGTGAGAAGATTG


rs1477262ACGTTGGATGATGCGTGAGGAGAATGAAGGACGTTGGATGAAGGCTAGTGTTCAGGAAGG


rs1477263ACGTTGGATGAACCTTCCTGAACACTAGCCACGTTGGATGCCTTGCTGCCCCATTTTAAG


rs1477264ACGTTGGATGCGTAGATAGAACCACCTCAGACGTTGGATGAAAGGCGGAGAGCACTTTAC


rs2277917ACGTTGGATGGCATTTGTTGCTAGCTGAAGACGTTGGATGTTGAACAGGAGTACCGTTTG


rs2277918ACGTTGGATGTTACGTTCCTTACTCAGTCCACGTTGGATGACCTGTCGTTTTAAACGCCC


rs2277919ACGTTGGATGTTACGTTCCTTACTCAGTCCACGTTGGATGACCTGTCGTTTTAAACGCCC


rs1978416ACGTTGGATGAGGGCGTTTAAAACGACAGGACGTTGGATGCGGGTGAGAGGATATGGTTT


rs3759728ACGTTGGATGATAGTCCCTCGCTGTTTTGGACGTTGGATGAGAAAGCACTAGGCCTTTGG


rs6574399ACGTTGGATGATGCTCTGATGCCATTATGCACGTTGGATGAGGGCACGTAAAACACATCC


rs7155336ACGTTGGATGGAGGAAGACTCGGTCTAAAAACGTTGGATGAACAATCTGACACTAGGTGC


rs7156186ACGTTGGATGATTACGGGTATGAGCCACTGACGTTGGATGGAACTGGACATTAGGTCTGG


rs7142390ACGTTGGATGTAATCAAGACAGTGTGGTACACGTTGGATGGGGTTTATTTCAGGACTCTC


rs7145875ACGTTGGATGGTCCTTTGAAGCACAAAACCACGTTGGATGCTTCATGATCTTGGATTTGGC


131


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs8014635ACGTTGGATGGTCTTCTCACTCAAGAACACACGTTGGATGCAACAGAGCAAGACTCCAAC


rs8015938ACGTTGGATGCCCTGAACTCAAGTGATCTGACGTTGGATGATCTAAACAGTGTTCCTGGC


rs8015313ACGTTGGATGAAAACTGATTCTGTACCTGGACGTTGGATGGTCAGTCATTTTATAGGCAG


rs8006315ACGTTGGATGTCACTTGAGGTCAGGAGTTCACGTTGGATGCCATGCCTGGCTAAGTTTTG


rs6574400ACGTTGGATGTTATCCTTCCTCTGCCAGTGACGTTGGATGCCTTTGAACTTCCTACCCAG


rs7140816ACGTTGGATGCAATAGAGTGAGACTCTGTCACGTTGGATGATTCATGAGCCTCTCTTTAC


rs4566078ACGTTGGATGTAGAGTCTTGTTCTGTCACCACGTTGGATGAGGAGAATCGCTTGAACCCA


rs7141050ACGTTGGATGATATGTTATACATATTAGTCACGTTGGATGCAAGTTAACCATTATCAACTC


rs3049356ACGTTGGATGTACCACTGGCAGAGTAGAAGACGTTGGATGCACATGGTTTGGGTACTGAG


rs4903639ACGTTGGATGAGCGAGACTCCGTCTCAAAAACGTTGGATGTCAAAGGTAGCCTTGACTGG


rs4903641ACGTTGGATGACTCCAACCTGGGCAACAGAACGTTGGATGCTGGCTCCAGCACACTTATC


rs2364838ACGTTGGATGTGTAGTCCCAGCTACTTGTGACGTTGGATGTGATCATAGCTCACTGCAGC


rs2364839ACGTTGGATGTGGGCAACATAGCAAGATCCACGTTGGATGCTCACAAGTAGCTGGGACTA


rs4632066ACGTTGGATGGAGAAAAAAGAGATGGAGGGACGTTGGATGGCCCTGACTGTGTTTTTATG


rs2112136ACGTTGGATGTTTCTTGGGGACTAAGGCTCACGTTGGATGTAACAGGCCCTGAAGGAATG


rs4641655ACGTTGGATGCGATAGAGCAACCCTGTCTCACGTTGGATGGCCCTACACCCAGATTCAAG


rs4635269ACGTTGGATGAAAGTGCTGGGATTACAGGCACGTTGGATGCTTGCAGCATATTTCTGAGG


rs4570764ACGTTGGATGCTTGCAGCATATTTCTGAGGACGTTGGATGAAAGTGCTGGGATTACAGGC


rs759808ACGTTGGATGATGAGCTGTGATCATGCCACACGTTGGATGCCTGAACTTCATTGTGCTCC


rs7150531ACGTTGGATGATGTGCGGTGTGAAGCAAAGACGTTGGATGTTGTTTGGCCTGGTCTGATG


rs7154968ACGTTGGATGTACCCAGGTAACAAACCTGCACGTTGGATGTCCCCTATAAGGCTTTCAGG


rs7146657ACGTTGGATGTGAGTAGCTGGGACTACAGGACGTTGGATGTAACACGGTGAAACCCCGTC


rs7145859ACGTTGGATGAGGCAGGAGAATGGCGTGAAACGTTGGATGTTTTTGAGACGGAGTCTTGC


rs4903643ACGTTGGATGTATTCCATGCTGTCTGCCTCACGTTGGATGAGTTGACCTTAAAGGCTGGG


rs717682ACGTTGGATGTTTAGGGACAGAGGCTGAGGACGTTGGATGAAGTGCAGTGGCCTGATCTC


rs717683ACGTTGGATGTTGGCAAAAAAGGTGGAGGCACGTTGGATGTGATGATGGCACAGGGAATG


rs1477259ACGTTGGATGTGACTGAGACTACCTTCACCACGTTGGATGAAGTGCTCACGTAGGTTGTC


rs8019064ACGTTGGATGCCTTGCAGCAAACTTCAGAGACGTTGGATGTGACTGAGACTACCTTCACC


rs8018971ACGTTGGATGATGGTCTCACTCTGTCACTCACGTTGGATGAATTGTTTGAGCCCAGGAGG


rs1477260ACGTTGGATGAGTGTCATGGTAGCAAGGACACGTTGGATGTGCCATCTGTTTCCCATAGG


rs5809851ACGTTGGATGACAGAGAGTGTTCAGCACAGACGTTGGATGTTGGGCAACAGAGAGAGACT


rs1985149ACGTTGGATGACTGAAATCTTTGCCTCCCGACGTTGGATGGTGGTGCACTTATGTAGTCC


rs1008988ACGTTGGATGAGTGTGTCTCAGGGAATGTGACGTTGGATGCCTGGCAATTTGTTCTCTGC


rs1008989ACGTTGGATGGGAATAGCAAGTGTAACGGCACGTTGGATGACTCCAACCGCATCAGCTTC


rs8018222ACGTTGGATGATCCTCCATATGCTGAACGCACGTTGGATGAAGGTGGAACGAGAGACTTG


rs1006040ACGTTGGATGTTTAGCTCTCTCTCTGTTGCACGTTGGATGTCTTGAGCCCAGGAGTTCAA


rs1006039ACGTTGGATGTGAAGCTGGGAGTTAGAGACACGTTGGATGCCACCATGCCCAGCTAATTT


rs1006038ACGTTGGATGATAAGCCACTGTGCTCAGTCACGTTGGATGGGTAGGGTTTATTAAGTGCC


rs8009784ACGTTGGATGTGTTTTGGCTATGCTTTGCCACGTTGGATGTGACAGAGCGAGACTTTGTC


rs4903644ACGTTGGATGTTGCAGTGAGCTGAGATTGGACGTTGGATGGTGAATGAATGAATAAGGGCC


rs7149496ACGTTGGATGACAACACACAGTACTGGACCACGTTGGATGTGGGTGCATGTTAGAAACGC


rs6574402ACGTTGGATGCAGGTCCTTTGTCTGACAAGACGTTGGATGGGGATGTGCGATTTGATCTG


TABLE 40
dbSNP Extend Term
rs# Primer Mix


rs7143926 ACCCAAAATTAAGGCAAAATGG CGT


rs1549071 CACACACATATATACACACACA ACG


rs8012858 CACACATATATACACACACACA ACG


132


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Extend Term
rs# Primer Mix


rs7155611 GGCACCGTTCTCTCTCTCA ACT


rs176941 CTGGGCCTCAGTTTACTCAT CGT


rs176942 AATAGGTTGGTTTGTGCCCC ACT


rs176943 CCCGTAGTCCCTGTGAAAC ACT


rs176944 AAAAGTCCACTAATCCTTCCAA CGT


rs4365221 GAGGGCAACTCAACACATTTTA ACG


rs3168952 TTGGTGGTGAGATGGACAGA ACT


rs176945 TACTATACACTCACAAAAATTGTTACT


rs176946 TTGTATAACAAAATACCACAAGCACT


rs176947 GGCGCCCGCCACTACGC ACG


rs176948 AAAACAGACCTCAGTCCTACA ACT


rs176949 CTCCCTGCAGTTCCTTGTTA CGT


rs176950 GGAGTGACATCCCATTACTTT ACG


rs176951 TCCTCCCCTCCTTGGGTG ACT


rs7156905 CTGTCTCAAAAAAGGAACCAG ACT


rs3217197 CTCCAGCCTGAGTGAGAGA ACT


rs2270443 CAGGTGTGGTGGCTCATGC ACG


rs176952 CACTGCAATCGCTGCCTCC ACG


rs176953 GGACCAGCCTGGCCAACAT ACT


rs176954 GCAGTGGCTCAATCCCAGC CGT


rs176955 CTGCCCCTCCAGCCCTTC ACT


rs3214416 CATCACGTGTTCCTAATGAAAA CGT


rs176956 AAGCCACCATGCCCAGCC ACT


rs2544566 CATCTGGGCCTCCCAAAGTA ACT


rs2544567 CATCTGGGCCTCCCAAAGT ACT,


rs176957 GGTCTCGATCTCCTGACCT ACG


rs176958 GGAGTTTTGCTCTTGTTGCC ACT


rs176959 TTTTATTTGTCCCTTGTTCTTTCACT


rs1802227 AATAGTTGCACCAAGCAAGAG ACT


rs176961 TATGGCAAAACCCTGTCTACA ACT


rs176962 GGCTCACGCCTGTAATCCTA ACT


rs7401285 GGGACTCCATATCAGAAAACA CGT


rs176963 GAAAACACACGCGGGCGC ACT


rs176964 CAGTGTCCTACAAAAGTGCCT ACG


rs4903631 CTTGAGACAAGATGAAACAGTT ACG


rs4903632 ATCCTCAGGGAAACGAAAATTA CGT


rs176965 ATAAGGGCTGCCAGCTTGAT ACT


rs4903633 TAGCAATTTTATATCTCAGCATGACT


rs176966 ACCACACCCAGCTAATTTTTG ACG


rs176968 TCACACCTGTGACTCCAGC CGT


rs176969 CCGATTTACTGCATTGCATTTC CGT


rs176970 GTACAGTGGGGTGAATAGTTA ACT


rs7149198 GATATTACTCAGCCATAAAAAAGACT


rs7147918 GGATATTACTCAGCCATAAAAAAACT


rs7148685 TTGAGACCGTCTATTCAGATC ACT


rs1184232 GAATGGAAGAAAATGGTTGCAAACGT


rs1184233 TGCCCAGCCTCTTCAATTAC ACT


rs1184234 TACCAGCACTTTGGGAGGC ACG


rs7401998 ~ CCACGCCTGGCTAATTTTTTTT~ CGT


133


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Extend Term
rs# Primer Mix


rs176974 CTGGGCAACAAAGCAAGACT ACG


rs6574390 AAATTAGCTGGGTATGATGGC ACT


rs176975 AATCTAGGTGGTAGGAGATAC ACT


rs176976 TATAATTCTTTCAGCTTTTCTGTAACT


rs176977 TCAGCCTGGGCAACAAGAG ACG


rs8013727 CCTAACCATAGAAGATAATTAGAAACT


rs176978 ATGTTTTTGTTACCTCTTGTTAC ACG


rs2111829 GAATTTTGCTTGGTGAACAAAAT ACT


rs176980 GCTATGAACGCCATTTTATGTA ACT


rs5809848 TGGGTTCTGAAATCCTGCTG CGT


rs5809849 CGTGTCAGTTCCTTTTTTTTTTT ACT


rs4383070 GCCTCCTGAGTAGCTGGG CGT


rs7493652 TATACCACAAGTAACTGTTAATTTACG


rs2112133 CCACAACTGGCTAATTTTTTGT CGT


rs1963833 CTGGGTGACAGAGCAAGAC CGT


rs6574391 TGGAGAAGTGATAAACTC ACG


rs7155062 ATAACCCTTCAAATGAGCATCA ACT


rs4899674 GGCAAATGGGCTGGGGAG ACG


rs8022516 AGGCATTCTTTTGGGTATAGTA ACG


rs7140838 TCTGAAGAATACCAGACCTCT CGT


rs7141127 CTGAAGAATACCAGACCTCTC ACT


rs6574392 CTGGGCACAGCGACTCAC ACT


rs8003691 TGAAGGCCTCCATGGTATAG ACT


rs8003979 TCTGAAGCCAGTGAGGAAGT ACT


rs8010541 GCTAGCTTCAACTCTCCTGAT ACT


rs8016416 TAACTTCCTTTGACTTGCTTTTT CGT


rs8016175 GTCTGCAATCCCGGCACCT ACG


rs7154571 GTGAGGAGCGTCTCTGCC ACG


rs7158826 TCGCTCCTCACTTCCCAGA ACG


rs7159310 CATCTGGGAAGTGAGGAGC ACT


rs7401900 TGAGAACAGGCCATGATGAC ACT


rs7160355 CCTGCCAAATCCCCCTCTC ACG


rs2032781 GAGAAAAGCGGGCAGGACT ACT


rs6574394 CACCCAGCCTATTTGTATAATT ACT


rs8007598 CTCTTAACACATTTTTTTACAGCAACG


rs2267767 CTGACCTCGTGATCTGCCC ACT


rs6574395 GGCTCAGGCGATCATCGTA ACG


rs7150066 CTGCCACCCAAAGTGCTGG ACT


rs7492334 TTGTGTGTGTGTGTGTGTGG ACT


rs4359361 GCTTAGTACACTTTAAACATGAT ACT


rs4605089 TCAGGAACACCGCTTAATTTTT ACG


rs7146446 CAAGACCTCTTTAAGTAATACTC ACG


rs4346144 AGACCTCTTTAAGTAATACTCC ACT


rs7148078 GGCTTGGGTACGGGAAGC CGT


rs7148286 CATTAAGCTTGCCAGAAAATCA ACG


rs3783980 CATCTTCCTCTGCCTCCCA ACG


rs1549119 CTTCCTCTGCCTCCCATAAAT CGT


rs1984925 CAGGCACGTGCCACCACA ACG


rs1477261 AGGAGGAGCCCAAATATGAAA I
CGT


134


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Extend Term
rs# Primer Mix


rs8016447 CACACCTGGCCATGCTTCC ACT


rs7494044 CCTGGCCATGCTTCCGTATT ACG


rs2023288 AATTGTGATTGATTGATTGCGAT CGT


rs7151685 GTGAGCCACCACATCATCTG ACT


rs2112135 TCAGGTGATCCTCCTGCCT ACG


rs2161088 CCAATCACAGCCCACTGCA ACT


rs4903638 GCCAGAGTGGTCTCCAACT ACT


rs1477262 AGAGCTCAAGCTGATGTCCT ACT


rs1477263 TTTTCCTGTTGAGTTCGCATG ACT


rs1477264 ACCACCTCAGTTTTGCTGTTT ACG


rs2277917 CCTTGATAACCGCTTGGTCT ACT


rs2277918 AAAAGCTTCCCGGGGACAG CGT


rs2277919 AGCTTCCCGGGGACAGCT ACT


rs1978416 TGAGACTAGCTAATGGAGAGT ACG


rs3759728 AGCAAATCTACTGCAAACGTG CGT


rs6574399 AAGTAGAGCTGCTCCACC CGT


rs7155336 GAAGACTCGGTCTAAAAAAAAAA ACT


rs7156186 GCCACTGCACCTGGCCG ACT


rs7142390 TGGTACTGGCATAAGGATAGA ACG


rs7145875 CACAAAACCTTAACTTTTGATTTAACT


rs8014635 CAAGAACACTGGTTTTGGTTTT ACT


rs8015938 CTCAAGTGATCTGCCTGCC ACT


rs8015313 GATTCTGTACCTGGTTGATCAT ACT


rs8006315 AACATGGTGAAGCCCCATCT CGT


rs6574400 GAGATCGCCAGAGACACCA ACG


rs7140816 TGAGACTCTGTCTCAAATACTA CGT


rs4566078 CTCAGCTCACTGCAACCTC ACG


rs7141050 AGCACATAGTAAGTGCCCTAT ACT


rs3049356 GAATAGTGGAAGGTATTGAAATA ACT


rs4903639 GAGACTCCGTCTCAAAAAAAAAA CGT


rs4903641 GGCAACAGAGCGAGACTCC ACT


rs2364838 CCAGCTACTTGTGAGGCCAA ACT


rs2364839 AGCCAGACGTGGTGGCAC ACT


rs4632066 GAGATGGAGGGGGAGCCT ACT


rs2112136 GGGACTAAGGCTCGCATCC ACT


rs4641655 GGATTTCTGGGTCCCACTC ACG


rs4635269 AGCCACCGCGCCCGGCC ACT


rs4570764 GTGATTATTGGCCGGGCGC ACT


rs759808 TGCACCACACAGCCTGGG CGT


rs7150531 AGCAAAGTTAATGGGAGGCC ACT


rs7154968 AACAAACCTGCATATGTACCC ACT


rs7146657 CACCCACCACCCCGCCC ACT


rs7145859 CGGGAGGTGGAGCTTGCA ACT


rs4903643 GCTCCCTTCTGTCTACTGC ACT


rs717682 AGGCTGAGGCAGGAGAATC ACT


rs717683 AAAAGGTGGAGGCCAAAGAC ACT


rs1477259 CGGAATAATTATATCTGCCTCT ACT


rs8019064 CAGAGGCAGATATAATTATTCC ACT


rs8018971 GTCACTCAGGCTGGAGTGC CGT


135


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Extend Term
rs# Primer Mix


rs1477260 GACGAGGAGGAAAGCCATC ACT


rs5809851 CACAGCAGTGTCTTTTTTTTTTT ACT


rs1985149 TTCTTCTCCCTCAGCCTCC ACG


rs1008988 GGGGATGACCTCTCTGGAG ACT


rs1008989 GCCAGCTTGGCAGATTGAG CGT


rs8018222 TGCTGAACGCTGGTCCCC CGT


rs1006040 TGGAGTGCAGTGGCAAGAC ACG


rs1006039 CATAGCCAGACCCTATGAGA ACG


rs1006038 ACTGTGCTCAGTCTATGCTG ACG


rs8009784 ATGCTTTGCCTTAAAGTGGTG ACT


rs4903644 GCCTGGGCAACAGAGCAAG ACT


rs7149496 GATTCTGTAAGTCTGGTATGAG ACT


rs6574402 CTGACAAGAAAATGACTGCATA ACT


Genetic Analysis
[0269] Allelotyping results are shown for cases and controls in Table 41. The
allele frequency for
the A2 allele is noted in the fifth and sixth columns for osteoarthritis case
pools and control pools,
respectively, where "AF" is allele frequency. The allele frequency for the A1
allele can be easily
calculated by subtracting the A2 allele frequency from 1 (A1 AF = 1-A2 AF).
For example, the SNP
rs7143926 has the following case and control allele frequencies: case Al (A) =
0.75; case A2 (T) _
0.25; control A1 (A) = 0.71; and control A2 (T) = 0.29, where the nucleotide
is provided in parenthesis.
Some SNPs are labeled "untyped" because of failed assays.
TABLE 41
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position Allele Case Control Value
SEQ ID AF AF
NO: 6


rs7143926218 76161268 A/T 0.25 0.29 0.216


rs15490711440 76162490 C/T 0.15 0.20 0.098


rs80128581442 76162492 C/T 0.93 0.95 0.335


rs71556112611 76163661 C/T 0.02 0.02 0.949


rs176941 4317 76165367 A/C 0.31 0.35 0.271


rs176942 4724 76165774 A/G 0.02 0.02 0.911


rs176943 4788 76165838 G/T 0.13 0.18 0.037


rs 1769445202 76166252 G/T 0.09 0.14 0.107


rs43652215780 76166830 C/T


rs31689525974 76167024 C/T


rs176945 6644 76167694 C/G 0.95 0.96 0.801


rs176946 7430 76168480 A/G 0.10 0.15 0.054


rs176947 7938 76168988 C/T 0.10 0.08 0.473


rs176948 8095 76169145 C/T 0.31 0.35 0.132


rs176949 8183 76169233 A/C 0.03 0.02 0.887


rs176950 8312 76169362 C/T 0.78 0.70 0.008


rs176951 8352 76169402 A/C


rs71569059348 76170398 C/T 0.89 0.90 0.794


rs32171979378 76170428 -/TCTC 0.29 0.35 0.036


rs22704439617 76170667 A/G 0.39 0.34 0.176


rs176952 9727 76170777 C/T 0.17 0.24 0.018


rs176953 9834 76170884 C/T


rs176954 9899 76170949 G/T 0.43 0.52 0.010


rs176955 10211 76171261 C/T 0.12 0.18 0.028


136


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position Allele Case Control Value
SEQ ID AF AF
NO: 6


rs321441610377 76171427 -/T 0.91 0.89 0.544


rs 17695610695 76171745 C/T 0.51 0.49 0.492


rs254456610729 76171779 C/G


rs254456710730 76171780 C/T


rs17695711433 76172483 A/G


rs17695811951 76173001 C/G 0.02 NA NA


rs17695912697 76173747 C/T 0.30 0.34 0.147


rs180222712982 76174032 A/C 0.92 0.95 0.332


rs17696114419 76175469 C/T 0.51 0.47 0.158


rs 17696214501 76175551 C/T 0.82 0.79 0.192


rs740128514983 76176033 A/C


rs17696315280 76176330 C/T 0.51 0.46 0.155


rs 17696415475 76176525 A/G 0.53 0.49 0.197


rs490363115888 76176938 A/G


rs490363215976 76177026 A/T


rs17696516307 76177357 A/C 0.55 0.52 0.368


rs490363316442 76177492 A/C 0.83 0.83 0.970


rs17696617255 76178305 C/T


rs17696818948 76179998 G/T 0.23 0.27 0.246


rs17696919435 76180485 A/T 0.14 0.20 0.052


rs17697019753 76180803 C/T 0.35 0.38 0.328


rs714919820021 76181071 C/T


rs714791820022 76181072 A/C


rs714868520503 76181553 A/G 0.19 0.18 0.669


rs 118423220590 76181640 G/T 0.16 0.19 0.316


rs118423321804 76182854 G/T 0.36 0.36 0.895


rs118423421919 76182969 C/T 0.36 0.35 0.797


rs740199821990 76183040 A/T


rs17697422412 76183462 A/G


rs657439022536 76183586 C/T


rs17697523432 76184482 A/G 0.18 0.23 0.147


rs17697623468 76184518 G/T 0.86 0.80 0.087


rs17697723772 76184822 C/T 0.42 0.41 0.794


rs801372724325 76185375 C/T


rs17697824773 76185823 C/T 0.10 0.12 0.512


rs211182926274 76187324 C/T 0.02 NA


rs17698027440 76188490 C/G 0.79 0.73 0.018


rs580984828561 76189611 -IACAG 0.11 0.16 0.091


rs580984930071 76191121 -/A 0.60 0.57 0.355


rs438307031764 76192814 A/T


rs749365233008 76194058 C/T


rs211213335310 76196360 A/T


rs196383335460 76196510 A/C


rs657439137112 76198162 A/G 0.69 0.63 0.064


rs715506237285 76198335 A/G 0.17 0.18 0.878


rs489967437747 76198797 C/T 0.57 0.52 0.201


rs802251638057 76199107 C/T 0.57 0.51 0.135


rs714083838859 76199909 A/C 0.17 0.17 0.957


rs714112738860 76199910 A/G


rs657439239525 76200575 A/G 0.27 0.32 0.099


rs800369140216 76201266 A/G 0.70 0.63 0.029


rs800397940281 76201331 C/T 0.10 0.15 0.024


rs801054141453 76202503 C/G 0.38 0.38 0.993


rs801641642091 76203141 A/T 0.09 0.14 0.035


rs801617542513 76203563 A/G


rs715457142935 76203985 C/T


rs715882642985 76204035 AlG


rs715931043003 76204053 A/G 0.62 NA


rs740190043281 76204331 A/G


rs716035543716 76204766 C/T


rs203278143866 76204916 A/G 0.80 0.74 0.047


rs657439444234 76205284 G/T 0.61 0.54 0.091


rs800759844596 76205646 A/G 0.09 0.10 0.734


rs226776744871 76205921 C/T


137


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position Allele Case Control Value
SEQ ID AF AF
NO: 6


rs657439545005 76206055 A/G 0.10 0.14 0.203


rs715006645282 76206332 A/C 0.91 NA


rs749233447178 76208228 A/C


rs435936147816 76208866 G/T


rs460508947887 76208937 A/G


rs714644648134 76209184 C/T 0.09 0.09 0.981


rs434614448135 76209185 A/G 0.83 0.85 0.368


rs714807848276 76209326 G/T 0.44 0.50 0.098


rs714828648400 76209450 C/T 0.96 0.96 0.893


rs378398048798 76209848 A/G 0.15 0.20 0.073


rs154911948803 76209853 A/T 0.18 0.25 0.027


rs198492549146 76210196 C/T 0.04 0.04 0.882


rs147726149969 76211019 A/T


rs801644751059 76212109 A/G 0.10 0.15 0.049


rs749404451064 76212114 C/T


rs202328853285 76214335 A/T 0.97 0.98 0.774


rs715168554560 76215610 C/T


rs211213554748 76215798 A/G 0.05 NA


rs216108854785 76215835 C/G


rs490363855102 76216152 C/G 0.59 0.59 0.975


rs 147726255644 76216694 A/G 0.12 0.17 0.040


rs 147726355705 76216755 G/T 0.18 0.23 0.057


rs147726455841 76216891 A/G 0.45 0.42 0.271


rs227791756623 76217673 C/G 0.30 0.36 0.039


rs227791856825 76217875 A/C 0.49 0.45 0.232


rs227791956827 76217877 A/G 0.20 _ 0.310
0.17


rs197841656892 76217942 C/T 0.79 0.73 0.074


rs375972859150 76220200 A/T 0.13 0.18 0.083


rs657439959958 76221008 A/T 0.33 0.36 0.396


rs715533660231 76221281 C/T 0.25 _ 0.250
0.28


rs715618660524 76221574 A/G 0.85 0.85 0.965


rs714239061871 76222921 C/T


rs714587562226 76223276 C/T


rs801463563230 76224280 G/T 0.07 0.11 0.062


rs801593863468 76224518 G/T 0.08 0.07 0.693


rs801531363787 76224837 C/T 0.67 0.71 0.135


rs800631565732 76226782 A/C


rs657440065989 76227039 A/G 0.75 0.70 0.099


rs714081668832 76229882 G/T 0.54 0.48 0.095


rs456607869904 76230954 C/T


rs714105070365 76231415 A/G


rs304935670886 76231936 -/TATC 0.64 0.69 0.091


rs490363973088 76234138 A/T


rs490364173103 76234153 C/T 0.54 0.66 ~0.0001


rs236483875934 76236984 C/T


rs236483975966 76237016 C/T 0.18 0.18 0.988


rs463206676273 76237323 C/T 0.66 0.66 0.961


rs211213677943 76238993 C/T 0.70 0.64 0.064


rs464165578466 76239516 C/T 0.52 0.48 0.174


rs463526978861 76239911 C/T


rs457076478872 76239922 A/G 0.55 0.68 ~0.0001


rs75980879836 76240886 G/T 0.12 0.18 0.043


rs715053180908 76241958 C/T 0.33 0.31 0.491


rs715496881509 76242559 C/G 0.03 NA


rs714665783576 76244626 C/T 0.57 NA NA


rs714585983662 76244712 C/G


rs490364383782 76244832 C/T 0.10 0.14 0.074


rs71768284282 76245332 G/T 0.11 0.13 0.624


rs71768384444 76245494 A/G 0.79 0.75 0.121


rs147725985129 76246179 C/G 0.11 0.16 0.022


rs801906485151 76246201 A/G 0.90 0.93 0.192


rs801897185296 76246346 A/C


rs147726085809 76246859 C/G 0.12 0.16 0.085


rs580985186387 ~ 76247437 -/T 0.30 0.30 0 993
~ ~ ~ ~


138


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAllA2 F A2 F A2 F p-
rs# in Position Allele Case Control Value
SEQ ID AF AF
NO: 6


rs198514986494 76247544 A/G 0.22 0.23 0.892


rs100898889786 76250836 A/G 0.61 0.58 0.380


rs100898989894 76250944 A/T 0.14 0.18 0.172


rs801822290122 76251172 G/T


rs100604092067 76253117 A/G 0.13 0.18 0.092


rs100603992187 76253237 C/T 0.06 0.10 0.133


rs 100603892312 76253362 AIG 0.19 0.24 0.114


rs800978492824 76253874 G/T 0.13 0.18 0.037


rs490364493733 76254783 C/T 0.41 0.38 0.383


rs714949696553 76257603 ClG


rs657440296941 76257991 A/C 0.12 0.17 0.037


[0270] Allelotyping results were considered particularly significant with a
calculated p-value of
less than or equal to 0.05 for allelotype results. These values are indicated
in bold. The allelotyping p-
values were plotted in Figure 1F for the discovery cohort. The position of
each SNP on the
chromosome is presented on the x-axis. The y-axis gives the negative logarithm
(base 10) of the p-
value comparing the estimated allele in the case group to that of the control
group. The minor allele
frequency of the control group for each SNP designated by an X or other symbol
on the graphs in
Figure 1F can be determined by consulting Table 41. For example, the left-most
X on the left graph is
at position 76161268. By proceeding down the Table from top to bottom and
across the graphs from
left to right the allele frequency associated with each symbol shown can be
determined.
[0271] To aid the interpretation, multiple lines have been added to the graph.
The broken
horizontal lines are drawn at two common significance levels, 0.05 and 0.01.
The'vertical broken lines
are drawn every 20kb to assist in the interpretation of distances between
SNPs. Two other lines are
drawn to expose linear trends in the association of SNPs to the disease. The
generally bottom-most
curve is a nonlinear smoother through the data points on the graph using a
local polynomial regression
method (W.S. Cleveland, E. Grosse and W.M. Shyu (1992) Local regression
models. Chapter 8 of
Statistical Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth &
Brooks/Cole.). The black line
provides a local test for excess statistical significance to identify regions
of association. This was
created by use of a lOkb sliding window with lkb step sizes. Within each
window, a chi-square
goodness of fit test was applied to compare the proportion of SNPs that were
significant at a test wise
level of 0.01, to the proportion that would be expected by chance alone (0.05
for the methods used
here). Resulting p-values that were less than 10-$ were truncated at that
value.
[0272] Finally, the exons and introns of the genes in the covered region are
plotted below each
graph at the appropriate chromosomal positions. The gene boundary is indicated
by the broken
horizontal line. The exon positions are shown as thick, unbroken bars. An
arrow is place at the 3' end
of each gene to show the direction of transcription.
139


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
Example 10
ERG Region Proximal SNPs
[0273] It has been discovered that SNP rs1888475 in v-ets erythroblastosis
virus E26 oncogene
like (ERG) is associated with occurrence of osteoarthritis in subjects. One
hundred sixty-six additional
allelic variants proximal to rs1888475 were identified and subsequently
allelotyped in osteoarthritis case
and control sample sets as described in Examples 1 and 2. The polymorphic
variants are set forth in
Table 42. The chromosome positions provided in column four of Table 42 are
based on Genome "Build
34" of NCBI's GenBank.
TABLE 42
dbSNP Position Chromosome Allele
rs# Chromosomein SEQ Position Variants
ID NO:
7


rs289835321 231 38783681 alt


rs960818 21 882 38784332 al


rs960819 21 960 38784410 a/c


rs241003421 1194 38784644 a/c


rs283643721 1530 38784980 al


rs283643821 1673 38785123 a/


rs283643921 2096 38785546 c/t


rs283644021 2285 38785735 a/


rs222668321 5873 38789323 c/t


rs283644121 7256 38790706 a/


rs283644221 7988 38791438 a/


rs283644321 8222 38791672 /t


rs283644421 8381 38791831 c/t


rs378790621 8814 38792264 c/t


rs383810821 8915 38792365 -/c


rs283644521 9642 38793092 a/


rs283644621 9902 38793352 a/t


rs378790821 10619 38794069 a/


rs283644721 10927 38794377 c/t


rs283644821 11032 38794482 clt


rs283645021 14377 38797827 c/t


rs283645121 15608 38799058 c/t


rs101502221 15928 38799378 c!


rs283645221 16296 38799746 a/


rs283645321 17598 38801048 a/t


rs378790921 19272 38802722 a/


rs283645421 20084 38803534 a/


rs283645521 20577 38804027 a/t


rs215571821 28051 38811501 a/


rs283645621 29466 38812916 a/


rs283645721 29530 38812980 c/t


rs283645821 29987 38813437 a/


rs203232321 30012 38813462 clt


rs205140021 30322 38813772 /t


rs283645921 32216 38815666 c/t


rs283646021 32516 38815966 clt


rs283646121 32544 38815994 a/


rs283646221 32746 38816196 a/


140


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAllele
rs# Chromosomein SEQ Position Variants
ID NO:
7


rs283646321 33137 38816587 /t


rs283646421 33538 38816988 a/


rs283646521 33798 38817248 c/t


rs283646621 33802 38817252 a/c


rs283646721 33964 38817414 c/t


rs382720421 34132 38817582 a/


rs283646821 34210 38817660 c/t


rs378791121 34317 38817767 a/


rs283646921 34499 38817949 c/t


rs283647021 34753 38818203 a/c


rs221259921 34845 38818295 c/t


rs283647221 35335 38818785 c/t


rs283647321 36423 38819873 clt


rs188846921 36450 38819900 a/


rs188847021 36481 38819931 /t


rs203232221 38447 38821897 c!


rs241003521 38784 38822234 c/t


rs157333221 39387 38822837 alt


rs283647421 39458 38822908 c/t


rs283647521 39822 38823272 c/


rs378791421 40305 38823755 c/


rs188847121 40869 38824319 c/t


rs188847221 40926 38824376 c/t


rs188847321 41010 38824460 c/t


rs188847421 41134 38824584 clt


rs283647621 41984 38825434 a/


rs378791621 42172 38825622 a/t


rs283647721 42753 38826203 /t


rs970043 21 43011 38826461 c/t


rs221260021 43176 38826626 a/


rs283647821 43320 38826770 /t


rs283647921 43381 38826831 alt


rs147587721 44142 38827592 a/


rs283648021 44383 38827833 a/


rs283648121 44726 38828176 c/t


rs283648321 45087 38828537 a/


rs283648421 45141 38828591 clt


rs283648521 45359 38828809 c/


rs283648621 45421 38828871 c/t


rs283648721 45456 38828906 c/t


rs189319921 45467 38828917 c/t


rs283648821 45486 38828936 c/t


rs189320021 45709 38829159 a/


rs189320121 45716 38829166 al


rs283648921 47626 38831076 c/t


rs188847521 49413 38832863 a/


rs283649021 49796 38833246 c/t


rs283649121 49962 38833412 a/


rs283649221 50075 38833525 c/t


rs283649321 50093 38833543 a/


rs283649421 50571 38834021 c/t


rs283649521 50615 38834065 a/


141


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position Chromosome Allele
rs# Chromosomein SEQ Position Variants
ID NO:
7


rs289835421 50780 38834230 a/


rs306539021 50851 38834301 -/ta


rs283649621 51459 38834909 alc


rs283649721 53193 38836643 c/t


rs283649821 53702 38837152 c/t


rs283649921 53736 38837186 a/c


rs283650021 53795 38837245 c/t


rs283650121 54109 38837559 a/t


rs283650221 54126 38837576 c/t


rs283650321 54230 38837680 a/c


rs283650421 54894 38838344 c/t


rs378791721 55455 38838905 a/


rs283650521 55499 38838949 a/


rs283650621 56522 38839972 c/t


rs283650721 56662 38840112 c/t


rs283650821 56954 38840404 a/


rs283650921 57267 38840717 a/


rs283651021 58282 38841732 a/


rs283651121 58916 38842366 a/c


rs221260121 59544 38842994 c/


rs221260221 59666 38843116 c/t


rs222668221 59913 38843363 a/t


rs283651221 66846 38850296 a/


rs283651321 67245 38850695 /t


rs199932821 67652 38851102 a/c


rs221260321 67955 38851405 a/


rs378791921 67966 38851416 a/c


rs283651421 68420 38851870 a/


rs102315321 70226 38853676 a/


rs102337221 70810 38854260 c/t


rs221260421 72246 38855696 a/


rs222668421 73330 38856780 /t


rs221260521 73457 38856907 c/t


rs218730721 74389 38857839 a/


rs306541221 74638 38858088 -/aa


rs289835521 74640 38858090 a/c


rs283651821 75358 38858808 a/c


rs383811021 75952 38859402 -/


rs283651921 76098 38859548 al


rs382720721 77836 38861286 a/


rs283652021 78449 38861899 alc


rs283652121 78507 38861957 /t


rs283652221 80031 38863481 /t


rs283652321 81695 38865145 clt


rs283652421 82775 38866225 al


rs283652521 82795 38866245 a/


rs383335021 84611 38868061 -!c


rs283652621 84657 38868107 c/t


rs283652721 84693 38868143 a/c


rs383467621 85020 38868470 -/t


rs283652821 85048 38868498 clt


rs376136421 85100 38868550 c/t


142


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position Chromosome Allele
rs# Chromosomein SEQ Position Variants
ID NO:
7


rs2836529 21 85325 38868775 a/c


rs2836530 21 85452 38868902 c/t


rs3761366 21 85868 38869318 a/


rs2836531 21 85936 38869386 a/


rs2836532 21 85990 38869440 a/t


rs2836533 21 86139 38869589 c/t


rs2836534 21 86497 38869947 c/t


rs2836535 21 87236 38870686 a/


rs2836536 21 87248 38870698 c/t


rs3827208 21 87533 38870983 c/


rs715860 21 87912 38871362 a/


rs717231 21 88108 38871558 /t


rs2836537 21 88494 38871944 a/c


rs2836538 21 89598 38873048 a/c


rs2836539 21 90235 38873685 a/t


rs2836540 21 91287 38874737 /t


rs2836541 21 91359 38874809 c/t


rs2836542 21 92384 38875834 a/c


rs2836543 21 92410 38875860 c/t


rs881837 21 92900 38876350 c/t


rs3949052 21 94495 38877945 a/


rs2065307 21 94512 38877962 a/


rs3216105 21 97777 38881227 -/a


rs2073427 21 98333 38881783 c/t


Assay for Verif~n~ and Allelotypin~ SNPs
[0274] The methods used to verify and allelotype the 166 proximal SNPs of
Table 42 are the same
methods described in Examples 1 and 2 herein. The primers and probes used in
these assays are
provided in Table 43 and Table 44, respectively.
TABLE 43
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs2898353ACGTTGGATGAATGTGAATGTGGAGGTAGCACGTTGGATGCTCCCTTGCTGGTTTTTTTG


rs960818ACGTTGGATGTGGGATTTTTCCCAGAAGAGACGTTGGATGCTGTGCAGAGAAACATGATG


rs960819ACGTTGGATGCTGTCTCCCTTCTCTTTATCACGTTGGATGCATCATGTTTCTCTGCACAG


rs2410034ACGTTGGATGTTTAGAGACATTTCTCCTAGACGTTGGATGTTAGGATGATGTTAGTTTGG


rs2836437ACGTTGGATGAGCTTCTGCGATATCAGTGGACGTTGGATGTTCCTGTCAGCACATTCTCC


rs2836438ACGTTGGATGAACATGTCTTGGCCAAGCTCACGTTGGATGCCACTGTGACCTCTGGATTT


rs2836439ACGTTGGATGCCTAGTGTATAAAGTGATGCACGTTGGATGTCCTTTCTAGGCACCAATAC


rs2836440ACGTTGGATGAGATCCTAACCAACCACAGCACGTTGGATGAGGTAGGTAGATACAAGGCC


rs2226683ACGTTGGATGAATATGGCTCCTATAGACAGACGTTGGATGTTTTGGGTCACAAAATCAAG


rs2836441ACGTTGGATGTTACCTTAATAGTGCTGGCCACGTTGGATGACTTTCTGGTCAGAGAGAAG


rs2836442ACGTTGGATGCAAGGACTCTAGGCTTACAGACGTTGGATGGGGACATTTGTAGTCACTTC


rs2836443ACGTTGGATGGGGCCCCATTACATGTCTAAACGTTGGATGTTCGCTGTACTTCCTTCGAG


rs2836444ACGTTGGATGCTGCAACCAGGAATTGTCAGACGTTGGATGAGGACCCATAAAGAGGTGTG


rs3787906ACGTTGGATGTGAAAAGAGCGGAAATCAACACGTTGGATGGTAAGAAAATCATTCTGTGG


rs3838108ACGTTGGATGATGAATAAGATGGCAGGCTGACGTTGGATGAAGCTGCCCAGATAAAACAG


143


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs2836445ACGTTGGATGCATTTCCAAAATTAGACGCAGACGTTGGATGAAAAAGAGAAAAACAGATGC


rs2836446ACGTTGGATGGTGCCTTGTCCTATCAAGAGACGTTGGATGAGCATCCAAGCCTGGTAATC


rs3787908ACGTTGGATGAATCACCACACTAGACCAGCACGTTGGATGCATGCAAGGGAAATGTGTGC


rs2836447ACGTTGGATGATCTCCTCTCTTTGCTCTGCACGTTGGATGGAGGAAGGTTAGGAGCTAAG


rs2836448ACGTTGGATGTGTAGGGATGTATAGGGCAGACGTTGGATGAAAGAGAGGAGATCCGTCTG


rs2836450ACGTTGGATGTGTGGGCATCAGATGACAACACGTTGGATGATCCCGTTAAATGCACCGAC


rs2836451ACGTTGGATGCAGACAAACAACTGTCACCCACGTTGGATGGTATTTCCTTTTCTCGCCGC


rs1015022ACGTTGGATGTCGAGCCAGCGTCTTTTATCACGTTGGATGGTAACAGTCGTACATTCCGG


rs2836452ACGTTGGATGATCACTGACACAGTCATGAGACGTTGGATGCCAGTAACTTTGCAGGTTTG


rs2836453ACGTTGGATGTGTATTTCCCAAGATGGCCCACGTTGGATGCCTCACTTTCTGATGGAAGC


rs3787909ACGTTGGATGACTTCTCAGTGTTCTGGCTGACGTTGGATGCGTCACTCTCTGTTTCATGG


rs2836454ACGTTGGATGAGGAATGATTCACAACCTCCACGTTGGATGGAATGTTCAAATGTAGGGTGG


rs2836455ACGTTGGATGGGTCTATTGCTGTGACATTTACGTTGGATGCATCCCAATTTTTAAGCAAG


rs2155718ACGTTGGATGAGAACTCTCACACACAGCTGACGTTGGATGTGCCTCTTATTACAGCCCTG


rs2836456ACGTTGGATGGGGATTGTCTGATCTCCTTGACGTTGGATGCCAGCTTTCCTTTGTGCATG


rs2836457ACGTTGGATGAACTCCTGGAATGAGTCACCACGTTGGATGATGCACAAAGGAAAGCTGGG


rs2836458ACGTTGGATGATCACTTAGAAGCCCAGCAGACGTTGGATGTGATGCACACTCACTGAAGC


rs2032323ACGTTGGATGGTAGCCGCACTTTGAGATGCACGTTGGATGAGCACAGAGTCGAGGAGGAG


rs2051400ACGTTGGATGACAGACCTCAGACCAAAGTCACGTTGGATGTTTGTCCTAGAGTAACCCCC


rs2836459ACGTTGGATGGCAAGAATGTTACTTTCTGGACGTTGGATGCCATCAAATAGTTGGTTGTC


rs2836460ACGTTGGATGCAATATCTGAGTTTCACCCCACGTTGGATGGTAGATGAGAATTCCGTGTG


rs2836461ACGTTGGATGGTTACCCACACGGAATTCTCACGTTGGATGCCAGATCCAGGTTCTTTCTG


rs2836462ACGTTGGATGTCTCCTCCGTATGTCTCCATACGTTGGATGATCCCGGAACTCTCTGTTTC


rs2836463ACGTTGGATGGCACTATTTGACTTGAGCTCACGTTGGATGAATTCAAGCCAGAAAGGCTC


rs2836464ACGTTGGATGGTCTTTTTCACCCCAGTAAAGACGTTGGATGATAAGCAAAAGGACCTTTGG


rs2836465ACGTTGGATGTGAGCTCTTGTGTTTTGCCCACGTTGGATGGAGAATTCTCCAGCCTTCTC


rs2836466ACGTTGGATGTGAGCTCTTGTGTTTTGCCCACGTTGGATGGAGAATTCTCCAGCCTTCTC


rs2836467ACGTTGGATGGACTCTGCTCATTTCCTTGGACGTTGGATGAAGAGTAGGGGTAGATGCAG


rs3827204ACGTTGGATGTGAAGATCACACGTGGTGTAACGTTGGATGGGGTGAATGCCAAAAAGAGG


rs2836468ACGTTGGATGTAGAGGCAGGAAAGAGCATGACGTTGGATGTTTTTGGCATTCACCCTCTC


rs3787911ACGTTGGATGTAACCCTCTTCTGGATTCGGACGTTGGATGTCATGTGCTCTGAGAGCATC


rs2836469ACGTTGGATGATTTCTCTACCTCATCCCCCACGTTGGATGGGTTGAAGTCACGTAACAGC


rs2836470ACGTTGGATGCCACTGTTAATCGTATTGCCACGTTGGATGACGGACTGAAAGCCAAATGG


rs2212599ACGTTGGATGAGGAGTTATTCTTCCCCAACACGTTGGATGCAGTGGTCCATTAAGAATCC


rs2836472ACGTTGGATGGAGTATCGTTCTCTATCATGACGTTGGATGTAAAAGAGTCAGAGCAGGAC


rs2836473ACGTTGGATGTCTCAGCCAGAGTTTTGACCACGTTGGATGAATCAACGCCTCCTCTTCAG


rs1888469ACGTTGGATGACCACCAGGAAGGGTCTGAAACGTTGGATGGAGGATCAGAGGCAGAAAAC


rs1888470ACGTTGGATGGCGTTGATTGCAGTTTTCTGACGTTGGATGTTCTTTGGCCTCCGTGTAAG


rs2032322ACGTTGGATGTGATACTCTGTTGAGCCTCCACGTTGGATGGGGGAGCAGTGATGAGTTAT


rs2410035ACGTTGGATGAATCACTTGAACCCAGGAGGACGTTGGATGTTTTTGAGACGGAGTTTCGC


rs1573332ACGTTGGATGGGGTGAACTTTACAGAGAGGACGTTGGATGCTGCCAGACAGTTTTGAGAC


rs2836474ACGTTGGATGAATTCTGCACAGGAGAGTCCACGTTGGATGCAGGAAATGAAGATGTCGCC


rs2836475ACGTTGGATGAGTTCTACATGGGAAGCTGCACGTTGGATGATATCTGTGTCTACAGGCCC


rs3787914ACGTTGGATGGGCTGAAGGCTAAAATCACCACGTTGGATGGTCTGAGAAGTAGGAATGGC


rs1888471ACGTTGGATGACTGAGGCAATTGTGTAGACACGTTGGATGTTGACTTTGTTTTGAGAGGC


rs1888472ACGTTGGATGTTGCCTCTCAAAACAAAGTCACGTTGGATGCTATTATTCTGGAAGCAGCC


rs1888473ACGTTGGATGAGAAAGTTCAGTTCTCAGCCACGTTGGATGTGTTTGCTCCTGTGAGTAAC


rs1888474ACGTTGGATGTGTTATGTGAGTCCAGGGTGACGTTGGATGTCTTGTTATGTGGGTGGGTG


rs2836476ACGTTGGATGTTACCTGTGACCTCATTTGGACGTTGGATGGAACACACAACATACGGTAC


rs3787916ACGTTGGATGAAGGCATCTCAGTCATTCTCACGTTGGATGTGAGTTTGACACAAAGAAGC


rs2836477ACGTTGGATGTTTAGCTCTCCTGGATGATGACGTTGGATGCCATGATTAGTGCATGAAGG


rs970043ACGTTGGATGTATAACTCCCCTCTCTCCTG~ ACGTTGGATGAGAGCAGACCCTTATCAGAG


144


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs2212600ACGTTGGATGGAAACAGGTGTTCATTTGGCACGTTGGATGTCTGCATGAACCAGTAAGTC


rs2836478ACGTTGGATGAGCTATTGAGTGTCACTTGCACGTTGGATGCAGAAGCTTCTGACTTCAAC


rs2836479ACGTTGGATGAGTAGCCATCCTAATAGGTGACGTTGGATGAGCAAGTGACACTCAATAGC


rs1475877ACGTTGGATGAATCAACACTCCCCGTGTTCACGTTGGATGGGTACCTAGAGTAGTCCAAG


rs2836480ACGTTGGATGTACCAAACCCACTGTACATCACGTTGGATGCATAACCTAACACATTGTGGG


rs2836481ACGTTGGATGTAAGAAGTTCTTTCTCCCCCACGTTGGATGGCTGCTTCTTTCATAAGAGG


rs2836483ACGTTGGATGCACTGAGGTAATCTCCAACCACGTTGGATGGGTGGAGATATGGCTTGATG


rs2836484ACGTTGGATGAAGCCCACCAGAGTCATCAAACGTTGGATGACTACTGACCAGCTTTCCAG


rs2836485ACGTTGGATGTTCTAAGTGAAGCCCTCCTCACGTTGGATGTACAGCTGTGCAAACAGTTG


rs2836486ACGTTGGATGCATGGTCTGTTGCCTCTAAGACGTTGGATGCCCTAGCATTTTATGCATCC


rs2836487ACGTTGGATGTGAATACCCACTAGGTCTCGACGTTGGATGCCACCACTAAACTTAGAGGC


rs1893199ACGTTGGATGGGCAACAGACCATGGTTTTGACGTTGGATGCTTCCCTTCAACATGCACTG


rs2836488ACGTTGGATGGGCAACAGACCATGGTTTTGACGTTGGATGCTTCCCTTCAACATGCACTG


rs1893200ACGTTGGATGAGTTAAGTCTTCGCATAACCACGTTGGATGCCTCTCACACACTAAATCTTG


rs1893201ACGTTGGATGGTCTTCGCATAACCAAAACAGACGTTGGATGCCTCTCACACACTAAATCTTG


rs2836489ACGTTGGATGGTCAACCATGGAGCTTGAACACGTTGGATGAGAAGACATGTGGGCTTGTG


rs1888475ACGTTGGATGACCCCTGGCAAGTGAATTACACGTTGGATGGGGAGGTGGATGTTCTTATC


rs2836490ACGTTGGATGAAAGGCAGAGCTAAAGCAAGACGTTGGATGAGCACAACCCAGCAATGCAG


rs2836491ACGTTGGATGACAACTTGGAGTGGAAAGGGACGTTGGATGATCCAGATGGATTCCACAGC


rs2836492ACGTTGGATGACATATGGGCATGGAAGAGCACGTTGGATGAATCCATCTGGATGGAAGAC


rs2836493ACGTTGGATGTTAAGAGTTCCGATGCTTGCACGTTGGATGGTAATCTGGACTTCTCTTCC


rs2836494ACGTTGGATGGTGCATTCATTTGAATTGCTGACGTTGGATGCAGTCTTACTTAAAACTGAC


rs2836495ACGTTGGATGGAATTTAACGAAACTTCAGCACGTTGGATGGGATATTTTCAGGATATCTG


rs2898354ACGTTGGATGTGTAACAAACCTGCACATCCACGTTGGATGGGTACTTTCCAAATATCTGC


rs3065390ACGTTGGATGCGAGACTCCATCTCAAAAAAGACGTTGGATGTGGAAAGTACCAATAGCTTC


rs2836496ACGTTGGATGTGGAGCTTAATGTGTTCCTGACGTTGGATGGTTAGCCATGCATAAGACAG


rs2836497ACGTTGGATGAGCCGGGATGACTGCTAGACACGTTGGATGAGATGAGGCTGAAGAAGTAA


rs2836498ACGTTGGATGGGTCCTGGGAAAATAGGATGACGTTGGATGCACCCTTGCTCTTTCTGAAG


rs2836499ACGTTGGATGACTAGTCAGAGCACAGTGAGACGTTGGATGGCTCTCTCCTTCTTTGACTC


rs2836500ACGTTGGATGGCTTCCTGGTTAGTAAGAGGACGTTGGATGATCAACTCAGGGCTCTTCTC


rs2836501ACGTTGGATGACTCACAAAGGTTGACCTTGACGTTGGATGGAGGTCCAGGTTGAAAGAAC


rs2836502ACGTTGGATGGAGGTCCAGGTTGAAAGAACACGTTGGATGACTCACAAAGGTTGACCTTG


rs2836503ACGTTGGATGGAGCAATTATCAACCCTACGACGTTGGATGATTCTCCCCCTTCACTCTTG


rs2836504ACGTTGGATGGAGTCTGGGTATGGAAAGAGACGTTGGATGTTCCTAGAAATGGTG1'CTGC


rs3787917ACGTTGGATGTTTGGAGGAGGAATGCCTTGACGTTGGATGCGCCCACAAACCTAAGAGAA


rs2836505ACGTTGGATGTTTTCGACTGCTCCACTCTGACGTTGGATGGCTCTCCCTCATTGTTCTTC


rs2836506ACGTTGGATGGGCTAAGGGCATCATTTTATCACGTTGGATGGTTTGCTGATTCATGGATGC


rs2836507ACGTTGGATGAGCAAAGGTTCTGGTGTTGGACGTTGGATGAAATGATGCCCTTAGCCCAG


rs2836508ACGTTGGATGGTGTGATGATATTTTTCTCCACGTTGGATGTTTCAGGTATTCCTCTTTGC


rs2836509ACGTTGGATGTAAAGCTTTCTAAGTCAATGACGTTGGATGTCATATGATAATGGTCTCTG


rs2836510ACGTTGGATGCAGGGAGAGATCTAAACAGCACGTTGGATGGCCAAAGCTATAACACGTGG


rs2836511ACGTTGGATGAGAACCTGACTTTTGGAGTGACGTTGGATGCTTCCTCATTGGTCAGAGTC


rs2212601ACGTTGGATGCCAGCCTTTAGAACTGTGAGACGTTGGATGTGGGCTGCTGTAACAAAGTG


rs2212602ACGTTGGATGACTACAACCAGCCAGAGATGACGTTGGATGCACAAACCTTGTGTGAACCC


rs2226682ACGTTGGATGCCAAGATTGAACCAGGAAAGACGTTGGATGCACAAAAGAATTCAGGAGGTG


rs2836512ACGTTGGATGCCCCAAAACTTAGCATCCTGACGTTGGATGTGTTCTCCCTGCACTTCAAC


rs2836513ACGTTGGATGCACTGGGGTTAGCAAGAAACACGTTGGATGGACTGTGATTCACCCTGTCT


rs1999328ACGTTGGATGAGTTACAGCGCAAATTGAGGACGTTGGATGGCCTTTATGACTCCATTTCTC


rs2212603ACGTTGGATGTGGAGGGTGTCTGTGAGTACACGTTGGATGTCATGGAGCAAGGTCTGTGG


rs3787919ACGTTGGATGCCATCAGCTAGGATTCATGGACGTTGGATGTCTGTGAGTACCCCACAATG


rs2836514ACGTTGGATGCAGGTCTAACTAACTGATGACACGTTGGATGGCCTCTACTGTTATTTAAGG


rs1023153ACGTTGGATGTACAAAAGTGACCTAGAGCC~ ACGTTGGATGTTCTTGCAGGACATTGTGCC


145


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Forward Reverse
rs# PCR primer PCR primer


rs1023372ACGTTGGATGCAAATTCCAAAATTCTGGTTGACGTTGGATGCTCAGAAGTAACATGTACTC


rs2212604ACGTTGGATGCAGACTTGAGCATATACCACACGTTGGATGACCCATGTGGGAAAATGTTG


rs2226684ACGTTGGATGGGTGTTGGAAAAGGAACATCACGTTGGATGTTAATGATAGTTCCCCTCAG


rs2212605ACGTTGGATGATATGAGTGATTTGCATGGGACGTTGGATGTGCATATAAGCTGTCTGCAC


rs2187307ACGTTGGATGCACATCCTGCAGCTTTAACCACGTTGGATGCCTGGCACTTTCAAGTAACG


rs3065412ACGTTGGATGGGCTGAGATAGAATGTGCTCACGTTGGATGTCTCCTGCTTTGTTCTGGAG


rs2898355ACGTTGGATGGGCTGAGATAGAATGTGCTCACGTTGGATGTCTCCTGCTTTGTTCTGGAG


rs2836518ACGTTGGATGCACTTGTTGCTTCTTCCACCACGTTGGATGATGCCAACCTTGCTGATGTC


rs3838110ACGTTGGATGGAAGTAGTGAAGTGTTCCCCACGTTGGATGAGCCTCACTGAATCTTAACG


rs2836519ACGTTGGATGTGTTTCTCCTTCTCACTGGGACGTTGGATGAAAGGCTACAGGAACTGAGC


rs3827207ACGTTGGATGTGTAGTCTGCACCTTCACCTACGTTGGATGAGCGGCTGCTGAACATAGAT


rs2836520ACGTTGGATGCCTGCAAAGGTGTTTGCTTCACGTTGGATGGCCACCTAATTTTTCCTCTC


rs2836521ACGTTGGATGAAGAATAAGAAGCAAACACCACGTTGGATGGTTTTAGGGGAAAGGCATAAG


rs2836522ACGTTGGATGTGCATCTTTGGTTGTGACAGACGTTGGATGGCACATCTACTCTTAGCATG


rs2836523ACGTTGGATGTCTCTCTTTCTTTTCCCTACACGTTGGATGACTCTCAGTTATGATTTCTC


rs2836524ACGTTGGATGGTGTGTTGGTAGAAACGTTCACGTTGGATGGTCACCCCTTCAGATAATAAG


rs2836525ACGTTGGATGCAGAGCCGAAAACATAGTTCACGTTGGATGGTGTGTTGGTAGAAACGTTC


rs3833350ACGTTGGATGGTTGTTCCTTTTGTCTTCTAGACGTTGGATGGAATCATGTCCTTCAGTAAGC


rs2836526ACGTTGGATGATTGTGTCCTGTCCTGCTAGACGTTGGATGGACGGCTAGAAGACAAAAGG


rs2836527ACGTTGGATGGTGTTTTATGTTCTAGCAGGACGTTGGATGGATGCCTTTAGGCAAACATG


rs3834676ACGTTGGATGAAGCTGAAAAGGATGTGCAGACGTTGGATGACAGGGCATACTTCTCTATC


rs2836528ACGTTGGATGCCAAAACTCATGCGATCTGCACGTTGGATGTGGCGCTGAAGTACTCAATG


rs3761364ACGTTGGATGAAACAGCACAGCTACCATTCACGTTGGATGATGAGAAAATGTGTGTGGAG


rs2836529ACGTTGGATGAGCGGTGTTTTAAAATGTCCACGTTGGATGCAGAGCCCAAAAAAAATTTGG


rs2836530ACGTTGGATGACAGACAGTGGTCAGAACATACGTTGGATGAAAGATGCCTATAATCCAGG


rs3761366ACGTTGGATGCAGGTGATAAAAAGCAAGTGACGTTGGATGGCCATCAGTTCTTTTTTGGC


rs2836531ACGTTGGATGGCCTTCGAAAATGTCTCAAGACGTTGGATGCACTTGCTTTTTATCACCTG


rs2836532ACGTTGGATGGAAAGACAGCCTTCGAAAATGACGTTGGATGCAATGGCTCTTTGCAGTAAC


rs2836533ACGTTGGATGTTTCTGACCTCTCACGGTACACGTTGGATGTGCAGATCTGGAGGTAGATG


rs2836534ACGTTGGATGAGAAGAGGCTGGGAGAGGATACGTTGGATGTGCTGCTCTTAGGATAAGGG


rs2836535ACGTTGGATGACAGGAGGAGTTGAGTGTTGACGTTGGATGTAGAGGCACGGAGAAGATAG


rs2836536ACGTTGGATGAAAAGCATGGGTACAGGAGGACGTTGGATGTAGAGGCACGGAGAAGATAG


rs3827208ACGTTGGATGGAGGATGAGAGGTACCTGAGACGTTGGATGGGGATGATCAAACGTAGT


rs715860ACGTTGGATGTTCTGGTGGAGGTTTCTTGGACGTTGGATGCGAGACATGATCTCAAACCC


rs717231ACGTTGGATGCAAGAGACTCAAACAGTTGCACGTTGGATGTCATAGAAGTTACAGCAGCC


rs2836537ACGTTGGATGTTGGTGTGTGATCACTCTGGACGTTGGATGGAACCTAAGTTTCTCCCAGC


rs2836538ACGTTGGATGGGTTAGAGCTTACGTAATTCACGTTGGATGCTACTTGTGTCACTTCTTTG


rs2836539ACGTTGGATGTTATCCTCCAAGAGCCTTAGACGTTGGATGGGGCAAATGGAGTTCTTATT


rs2836540ACGTTGGATGCCCAGTTGGTATCAGTGTTGACGTTGGATGTGCTGAACATCGTTTGGAGG


rs2836541ACGTTGGATGCTTGCACTGACACCTTTGTGACGTTGGATGGTACTGGCGAAGACATGATG


rs2836542ACGTTGGATGAGATGAGCCATTTCCTACTGACGTTGGATGCAGCATGAGAAACTGAATGC


rs2836543ACGTTGGATGAAATGGACTTCTTCAGTAGGACGTTGGATGGATACAATTCAACCCATAGC


rs881837ACGTTGGATGAATGGATGTGGCTCTTGAGGACGTTGGATGTATGGAGGGACTTACGAAAG


rs3949052ACGTTGGATGTTTTCAACGGAAACAGATGCACGTTGGATGCCAAGTAAAATATTCAATCCCC


rs2065307ACGTTGGATGTTTTCAACGGAAACAGATGCACGTTGGATGCCAAGTAAAATATTCAATCCCC


rs3216105ACGTTGGATGACCACCATGCCTGGCTAATTACGTTGGATGGGCCTGGACAAAATAGTGAG
I


rs2073427ACGTTGGATGTTTTGCTTGGGTGTTCTGCCACGTTGGATGGGATTTACACTGGTGTTGGG
~'


146


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
TABLE 44
dbSNP Extend Term
rs# Primer Mix


Rs2898353 TCCTGTCTTCAGTGCTTGATTCTGCGT


rs960818 AGTAGATAACATAAAGTAACCAGCACT


rs960819 GCTATTCACCCTAGCTGTACATAGACT


Rs2410034 AAATGTAGCTGTAGTATCTTGAA ACT


Rs2836437 TTCACACTCAACAACAAACACA ACT


Rs2836438 TGGAAAGTAAGCTAGACCAAACAGACT


Rs2836439 GTATAAAGTGATGCTGCTTGC ACT


Rs2836440 AACAATTGGGATATGTCTCTCCACACG


Rs2226683 GAGAGTTAATGTGCCCTACTT ACT


Rs2836441 TAATAGTGCTGGCCATAATGC ACT


Rs2836442 CTCTAGGCTTACAGTAAACAC ACT


Rs2836443 TATAAGTTCAGGGTCACAGGTC ACT


Rs2836444 TGTGTTCTTGGGGTCGCCT ACT


Rs3787906 TAATGTAGGTGCTGAGAACTTAG ACT


Rs3838108 GGCTGATTAAAATTCTGTTTCCCCACT


Rs2836445 AGACGCAGTAAAACTTATGGAT ACG


Rs2836446 GCCTTGTCCTATCAAGAGCCAAAGCGT


Rs3787908 CATACAGTAGCTGTGGACAGC ACT


Rs2836447 ATGTATTACATTGAGAACCATGTGACT


Rs2836448 TGTATAGGGCAGGGATAAAGAC ACT


Rs2836450 AACAACAAATTTACTGATATCATCACT


Rs2836451 CTGTCACCCATTGACCTCAC ACT


Rs1015022 CTTTTATCTGCAGTTGCACCC ACT


Rs2836452 CGGGAAGATGGCTGCCTTC ACG


Rs2836453 CCAAGATGGCCCAGTAGGA CGT


Rs3787909 AAATAGTAAAATAAAAAGAGCTCCACG


Rs2836454 CACAACCTCCCAAATGAATAAATCACT


Rs2836455 TGCTGTGACATTTTAGTGCTTCTGCGT


Rs2155718 CTCACACACAGCTGGAGTTTA ACT


Rs2836456 CGTTCTGAAGGTTTTGTGTACA ACT


Rs2836457 GAGTCACCCGTCCCCTAGA ACT


Rs2836458 ACAGAAGAGCCAGCCGACA ACT


Rs2032323 TGCACACTCACTGAAGCCC ACT


Rs2051400 AAACACTATGTGACGCCACC ACT


Rs2836459 AGAATGTTACTTTCTGGATTCTACACT


Rs2836460 ATTGTAATTCTCCGTAAAACCC ACG


Rs2836461 TACCCACACGGAATTCTCATCTACACT


Rs2836462 TCCGTATGTCTCCATCCATCTCA ACT


Rs2836463 AAACTTAAATTGCTTTAATCAGCTACT


Rs2836464 AATATCTTATCACTGCTCCTGTCTACG


Rs2836465 GCCCACTTTTGTGTTTGCTTTAG ACT


Rs2836466 TTTGCCCACTTTTGTGTTTGCT ACT


Rs2836467 TTAATTTTCTTGTCTCTTTCTGTAACT


Rs3827204 CCCTCACATCTTCCCCGC ACT


Rs2836468 GCAGGAAAGAGCATGGGCATTAACACT


Rs3787911 TACATCCAAAAGCCTGCCAG ACT


Rs2836469 TCCTGCGAGATCCTGCTCA ACG


147


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
;~",- ,~"".. ....., ....
.~ . ...., , ..,m.
....~ ~.,. .,... ...
.......
..


dbSNP Extend Term
rs# Primer Mix


Rs2836470 ACAAGCTTAATGTTTTGTTCAGA ACT


Rs2212599 TTCCCCAACAATAGTCAGAAAA ACT


Rs2836472 TTCTCTATCATGATGCAGTCC ACT


Rs2836473 GATGATGAACAGGGCTGTGA ACG


Rs1888469 AAGGGTCTGAAGAGGAGGC ACT


Rs1888470 GTTTTCTGCCTCTGATCCTCA ACT


Rs2032322 CCTATAGGTAACGTGGCTTCT ACT


Rs2410035 AGGCAGAAGTTGCAGTGAAC ACG


Rs1573332 GAGAGGCCAGAAAGCCTTC CGT


Rs2836474 GCACAGGAGAGTCCTCAATT ACG


Rs2836475 CATGGGAAGCTGCTGAACTA ACT


Rs3787914 ACAGTGTTTGAGCCCTCCTT ACT


Rs1888471 AACTGACAGAAGAAAGAAAAATATACG


Rs1888472 TGTGTTGGTGTATAAATCAAGATTACG


Rs1888473 CAGTTCTCAGCCAGACGATC ACG


Rs1888474 GAGTCCAGGGTGCTAATTTC ACG


Rs2836476 GGTGTTAGCCCTGGGTTCTAATAAACG


Rs3787916 TCTCTTATGTAAATACAAAGACG CGT


Rs2836477 CCTCTTAAAATAGCCTGCCTTCA ACT


rs970043 GCTCCTTGACTCAAGTATTTC ACG


Rs2212600 AAAACAACTTTCTCTCCCAAAC ACG


Rs2836478 CTTGCTTATCTTCAAGCAGTC CGT


Rs2836479 CCTAATAGGTGTGAAGTGTAAAA CGT


Rs1475877 CTCCCCGTGTTCTGCATGC ACG


Rs2836480 CCCACTGTACATCTTACACTC ACT


Rs2836481 TCCCCCTGAAATCCCATAGC ACT


Rs2836483 AGGTAATCTCCAACCAAACCT ACT


Rs2836484 AGTCATCAAGCCATATCTCCA ACG


Rs2836485 CTCCTCTGGGACGTCAGC ACT


Rs2836486 CCTCTAAGTTTAGTGGTGGAT ACT


Rs2836487 TGTTGGGTTCTACACATTCAAA ACT


Rs1893199 CAGACCATGGTTTTGAATGTG ACG


Rs2836488 GTAGAACCCAACACAGAGCC ACG


Rs1893200 AGTCTTCGCATAACCAAAACAGA ACT


Rs1893201 CGCATAACCAAAACAGAAAAGAACACT


Rs2836489 CAAGAGCTCTTTTCAATTCCAG ACT


Rs1888475 GACATCAAATGATTCCCCTGT ACT


Rs2836490 GAGCCAAAGCTTTCCTGATG ACT


Rs2836491 GTGGAAAGGGCACTGTGGT ACT


Rs2836492 GGCATGGAAGAGCAAGCATC ACT


Rs2836493 TCCGATGCTTGCTCTTCCAT ACT


Rs2836494 TGAAGTTTCGTTAAATTCACTACAACT


Rs2836495 CTTCAGCAATTCAAATGAATGCACACT


Rs2898354 TCCGGCACATATATCCTGGAAC ACT


Rs3065390 AAACAAACAAACAAAAACAGTGTAACT


Rs2836496 GTGTTCCTGATGTTTCTGGAGT CGT


Rs2836497 CTGCTAGACATTGTCAGTCC ACT


Rs2836498 AATAGGATGAGTCAAAGAAGGAG ACT


Rs283649~ GAGAAGAGCCCTGAGTTGATAAA I ACT


148


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Extend Term
rs# Primer Mix


Rs2836500 AGAGGATGAGCAATTTCAGGGA ACT


Rs2836501 CAAAGGTTGACCTTGTTTTCTAT CGT


Rs2836502 AAGAACTTACATTTTATGGCTTC ACT


Rs2836503 GATTTGGGAGCAAGGGAGC ACT


Rs2836504 AGAGTTAAAGATGACTCTAGGCTCACT


Rs3787917 GCAGCCAGAGTGGAGCAGT ACG


Rs2836505 AAGGCATTCCTCCTCCAAATCAC ACT


Rs2836506 GAAAATCAAATCAGTTTCTACAACACT


Rs2836507 GTGTTGGAATATTGTTGGCCT ACT


Rs2836508 ATTCTCTACCATTTCATTCTCTTTACT


Rs2836509 TTTCTAAGTCAATGTAGGCAAC ACT


Rs2836510 CAGCTAGTTATCTTACTTCACC ACT


Rs2836511 AGCAGGTGACAACCCAGACAT ACT


Rs2212601 TAAGTTTCTGTTGTTTATATGCCAACT


Rs2212602 CCAGCCAGAGATGGGATCA ACG


Rs2226682 GATTGAACCAGGAAAGAAATAGTTCGT


Rs2836512 AATGCCAGTTGCCATAGGATA ACG


Rs2836513 ATAAGAAGATGAGTACTATTATTGACT


Rs1999328 ATTGAGGGAAGAGTAAATGATTTCCGT


Rs2212603 TGTCTGTGAGTACCCCACAATGAAACT


Rs3787919 TCTGTGGCTTCAATGCTGGG ACT


Rs2836514 ACAGACTTTAACAAAATCACTGA ACT


Rs1023153 GGGTCATCTCCTTACCTGTCCAA ACG


Rs1023372 TTCCAAAATTCTGGTTGTGTTTT ACT


Rs2212604 CTGCCCCTATACATACATAGCTTCACG


Rs2226684 AAAAACAATCTGCACAACAAATATACT


Rs2212605 GCAGTGAATATGAACAAAAAAAAAACT


Rs2187307 CAGCTTTAACCTCACTCCAC ACT


Rs3065412 AGTTACAAATCAGGTGGTGCTGG ACT


Rs2898355 GTTACAAATCAGGTGGTGCTG ACT


Rs2836518 TAGGAATCGGAGTCAATAATTTT ACT


Rs3838110 GCTGCACAATCCCCCCCC CGT


Rs2836519 CCTTCTCACTGGGTTCCTG ACG


Rs3827207 TATCACCCCTGTGTCCTGC ACG


Rs2836520 CACAAATAGATTATATATCCTGTTACT


Rs2836521 AATAAGAAGCAAACACCTTTGCA ACT


Rs2836522 CCACCCCTTCAGAGAGTTG ACT


Rs2836523 TCATATTGGTTGATCGTATTGGTTACT


Rs2836524 GATTTCAGGAATGAACTATGTTTTACG


Rs2836525 AGCCGAAAACATAGTTCATTCCTGACT


Rs3833350 CTTTTGTCTTCTAGCCGTCAG ACT


Rs2836526 AGAACATAAAACACAGAAATGCA ACT


Rs2836527 TTATGTTCTAGCAGGACAGGA CGT


Rs3834676 AAAAGGATGTGCAGATCGCAT ACT


Rs2836528 ATCTGCACATCCTTTTCAGCTT ACG


Rs3761364 CTACCATTCATTGAGTACTTCAG ACG


Rs2836529 CTTCAAAATGTGGGTTGATACC ACT


Rs2836530 GGTCAGAACATGCTGCTTTAT ACT


Rs3761366 GTGATGGCTTCTAAAAATGTAAA I ACG


149


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Extend Term
rs# Primer Mix


Rs2836531 GCATTTGTTACTGCAAAGAGCCATACG


Rs2836532 AGCCTTCGAAAATGTCTCAAG CGT


Rs2836533 CACACCCATTCCAACCCAAT ACG


Rs2836534 GCTGAAGGTTTCTGGGAGCA ACG


Rs2836535 GAGGAGTTGAGTGTTGGAACCA ACG


Rs2836536 ATGGGTACAGGAGGAGTTGA ACT


Rs3827208 CACCCACCCCAATCACCC ACT


rs715860 CTTGGTTATCCTTCAGTTTCCA ACT


rs717231 CTCATTTAGTTTATGTCTTGGTTGACT


Rs2836537 GCTCATACGCCCTTGGTCTCTAATACT


Rs2836538 AGCTTACGTAATTCAAATCAAGT ACT


Rs2836539 TTACACATTTGCACAATGAGGATACGT


Rs2836540 GTATCAGTGTTGAATGACTGGT ACT


Rs2836541 TGACACCTTTGTGAATTGCTGAACACT


Rs2836542 CCATTTCCTACTGAAGAAGTCCA ACT


Rs2836543 CTTCTTCAGTAGGAAATGGCT ACG


rs881837 GGCTCTTGAGGCCATGCC ACG


Rs3949052 ACAATTTCTCATGTTGTAAGGATTACG


Rs2065307 GGAAACAGATGCCATTTACAATTTACG


Rs3216105 GCCTGGCTAATTTTTAAAAAAAAACGT


Rs2073427 CTGCCCCCACATGACCCA I
ACG


Genetic Anal. skis
[0275] Allelotyping results from the discovery cohort are shown for cases and
controls in Table 45.
The allele frequency for the A2 allele is noted in the fifth and sixth columns
for osteoarthritis case pools
and control pools, respectively, where "AF" is allele frequency. The allele
frequency for the A1 allele
can be easily calculated by subtracting the A2 allele frequency from 1 (A1 AF
= 1-A2 AF). For
example, the SNP rs2898353 has the following case and control allele
frequencies: case A1 (A) = 0.79;
case A2 (T) = 0.21; control A1 (A) = 0.81; and control A2 (T) = 0.19, where
the nucleotide is provided
in paranthesis. Some SNPs are labeled "untyped" because of failed assays.
TABLE 45
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position Allele Case Control Value
SEQ ID AF AF
NO: 7


rs2898353231 38783681 A/T 0.21 0.19 0.560


rs960818 882 38784332 A/G 0.59 0.57 0.330


rs960819 960 38784410 A/C 0.13 0.09 0.101


rs24100341194 38784644 A/C


rs28364371530 38784980 AlG 0.14 0.14 0.956


rs28364381673 38785123 A/G 0.79 0.75 0.077


rs28364392096 38785546 C/T 0.70 0.71 0.508


rs28364402285 38785735 A/G 0.19 0.18 0.623


rs22266835873 38789323 C/T 0.79 0.76 0.312


rs28364417256 38790706 A/G 0.12 0.12 0.765


rs28364427988 38791438 A/G 0.31 0.30 0.746


rs28364438222 38791672 G/T 0.22 0.23 0.728


rs28364448381 38791831 C/T 0.19 0.20 0.807


rs37879068814 38792264 C/T 0.97 unt ed NA


150


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
in


rs# SEQ ID Position AlleleCase Control Value
NO: 7 AF AF


rs3838108 8915 38792365 -/C 0.58 0.56 0.425


rs2836445 9642 38793092 A/G 0.32 0.35 0.190


rs2836446 9902 38793352 A/T 0.12 0.14 0.274


rs3787908 10619 38794069 A/G


rs2836447 10927 38794377 C/T 0.68 0.67 0.816


rs2836448 11032 38794482 C/T 0.12 0.14 0.235


rs2836450 14377 38797827 C/T 0.70 0.68 0.460


rs2836451 15608 38799058 C/T 0.92 0.95 0.157


rs1015022 15928 38799378 C/G 0.31 0.36 0.072


rs2836452 16296 38799746 A/G 0.18 0.18 0.822


rs2836453 17598 38801048 A/T 0.02 0.02 0.836


rs3787909 19272 38802722 A/G 0.06 0.03 0.091


rs2836454 20084 38803534 A/G 0.04 0.03 0.397


rs2836455 20577 38804027 A/T 0.17 0.13 0.050


rs2155718 28051 38811501 A/G 0.78 0.78 0.950


rs2836456 29466 38812916 A/G 0.94 0.92 0.569


rs2836457 29530 38812980 C/T


rs2836458 29987 38813437 A/G 0.48 0.46 0.455


rs2032323 30012 38813462 C/T


rs2051400 30322 38813772 GlT 0.03 NA NA


rs2836459 32216 38815666 C/T 0.19 0.17 0.319


rs2836460 32516 38815966 C/T


rs2836461 32544 38815994 AlG


rs2836462 32746 38816196 A/G


rs2836463 33137 38816587 G/T 0.67 0.72 0.032


rs2836464 33538 38816988 A/G 0.67 0.67 0.991


rs2836465 33798 38817248 C/T


rs2836466 33802 38817252 A/C 0.39 0.40 0.627


rs2836467 33964 38817414 C/T


rs3827204 34132 38817582 A/G 0.45 0.42 0.213


rs2836468 34210 38817660 C/T 0.13 0.14 0.678


rs3787911 34317 38817767 A/G 0.13 0.12 0.862


rs2836469 34499 38817949 C/T 0.38 0.40 0.250


rs2836470 34753 38818203 A/C 0.73 0.74 0.939


rs2212599 34845 38818295 C/T 0.66 0.64 0.474


rs2836472 35335 38818785 C/T 0.40 0.35 0.071


rs2836473 36423 38819873 C/T 0.53 0.54 0.755


rs1888469 36450 38819900 A/G 0.45 0.49 0.175


rs1888470 36481 38819931 G/T 0.17 0.18 0.623


rs2032322 38447 38821897 C/G 0.50 0.50 0.879


rs2410035 38784 38822234 C/T


rs1573332 39387 38822837 A/T 0.57 0.58 0.609


rs2836474 39458 38822908 C/T 0.33 0.35 0.564


rs2836475 39822 38823272 C/G 0.17 0,14 0.113


rs3787914 40305 38823755 ClG 0.73 0.73 0.987


rs1888471 40869 38824319 C/T 0.29 0.26 0.175


rs1888472 40926 38824376 C/T 0.62 0.63 0.818


rs1888473 41010 38824460 C/T 0.63 0.65 0.435


rs1888474 41134 38824584 C/T 0.28 0.23 0.099


rs2836476 41984 38825434 A/G 0.46 0.44 0.379


rs3787916 42172 38825622 A/T 0.45 0.43 0.314


rs2836477 42753 38826203 G/T 0.94 0.96 0.196


rs970043 43011 38826461 C/T 0.04 0.04 0.549


rs2212600 43176 38826626 A/G


rs2836478 43320 38826770 G/T 0.76 0.75 0.914


rs2836479 43381 38826831 AIT 0.44 0.43 0.670


rs1475877 44142 38827592 A/G 0.35 0.32 0.110


rs2836480 44383 38827833 A/G 0.46 0.43 0.153


rs2836481 44726 38828176 C/T 0.42 0.40 0.434


rs2836483 45087 38828537 A/G 0.47 0.45 0.393


rs2836484 45141 38828591 C/T 0.46 0.47 0.671


rs2836485 45359 38828809 C/G 0.16 0.17 0.643


rs2836486 45421 38828871 C/T


rs2836487 45456 38828906 C/T 0.02 0.03 0.758


151


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position Allele Case Control Value
SEQ ID AF AF
NO: 7


rs189319945467 38828917 C/T 0.62 0.65 0.220


rs283648845486 38828936 C/T 0.25 0.23 0.360


rs189320045709 38829159 A/G 0.16 0.14 0.177


rs189320145716 38829166 A/G 0.84 0.87 0.060


rs283648947626 38831076 C/T 0.29 0.31 0.502


rs1S8847549413 38832863 AlG


rs283649049796 38833246 C/T 0.94 0.93 0.731


rs283649149962 38833412 AIG 0.10 0.08 0.219


rs283649250075 38833525 C/T 0.20 0.22 0.518


rs283649350093 38833543 A/G 0.95 0.94 0.850


rs283649450571 38834021 C/T 0.72 0.70 0.536


rs283649550615 38834065 A/G 0.82 0.78 0.142


rs289835450780 38834230 A/G 0.25 0.25 0.728


rs306539050851 38834301 -/TA 0.10 0.11 0.845


rs283649651459 38834909 A/C 0.80 0.84 0.064


rs283649753193 38836643 C/T 0.65 0.65 0.935


rs283649853702 38837152 C/T 0.43 0.44 0.682


rs283649953736 38837186 A/C 0.33 0.30 0.169


rs283650053795 38837245 C/T


rs283650154109 38837559 A/T 0.36 0.34 0.234


rs283650254126 38837576 C/T 0.31 0.29 0.427


rs283650354230 38837680 A/C 0.32 0.29 0.194


rs283650454894 38838344 C/T 0.51 0.54 0.170


rs378791755455 38838905 A/G 0.56 0.60 0.137


rs283650555499 38838949 A/G 0.73 0.78 0.022


rs283650656522 38839972 C/T 0.52 0.56 0.145


rs283650756662 38840112 C/T 0.51 0.54 0.173


rs283650856954 38840404 A/G 0.53 0.56 0.376


rs283650957267 38840717 A/G 0.35 0.31 0.089


rs283651058282 38841732 A/G 0.65 0.59 0.034


rs283651158916 38842366 A/C 0.32 0.30 0.315


rs221260159544 38842994 ClG 0.45 0.46 0.568


rs221260259666 38843116 C/T 0.30 0.28 0.644


rs222668259913 38843363 A/T 0.38 0.35 0.164


rs283651266846 38850296 A/G 0.94 0.94 0.896


rs283651367245 38850695 G/T 0.23 0.22 0.713


rs199932867652 38851102 A/C 0.79 0.79 0.973


rs221260367955 38851405 A/G 0.73 0.72 0.776


rs378791967966 38851416 A/C


rs283651468420 38851870 A/G 0.52 0.54 0.319


rs102315370226 38853676 A/G 0.09 0.09 0.985


rs102337270810 38854260 C/T 0.83 0.81 0.518


rs221260472246 38855696 A/G 0.68 0.71 0.237


rs222668473330 38856780 G/T 0.83 0.81 0.462


rs221260573457 38856907 C/T 0.82 0,85 0.255


rs218730774389 38857839 A/G 0.13 0.13 0.869


rs306541274638 38858088 -/AA


rs289835574640 38858090 A/C 0.96 0.94 0.413


rs283651875358 38858808 A/C 0.10 0.12 0.261


rs383811075952 38859402 -/G 0.66 0.67 0.790


rs283651976098 38859548 AIG 0.60 0.61 0.509


rs382720777836 38861286 A/G 0.62 0.63 0.575


rs283652078449 38861899 A/C


rs283652178507 38861957 G/T 0.07 0.08 0.551


rs283652280031 38863481 GIT 0.11 0.08 0.155


rs283652381695 38865145 C/T


rs283652482775 38866225 A/G 0.05 0.04 0.321


rs283652582795 38866245 A/G 0.11 0.11 0.875


rs383335084611 38868061 -/C


rs283652684657 38868107 C/T 0.83 0.86 0.292


rs283652784693 38868143 A/C 0.08 0.08 0.936


rs383467685020 38868470 -/T 0.80 0.83 0.191


rs283652885048 38868498 C/T 0.84 0.87 0.089


rs376136485100 38868550 C/T 0.06 0.04 0.159


152


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position AlleleCase Control Value
SEQ ID AF AF
NO: 7


rs2836529 85325 38868775 A/C 0.09 0.06 0.100


rs2836530 85452 38868902 C/T


rs3761366 85868 38869318 A/G 0.06 0.04 0.179


rs2836531 85936 38869386 A/G 0.49 0.50 0.729


rs2836532 85990 38869440 A/T 0.30 0.29 0.766


rs2836533 86139 38869589 C/T 0.47 0.48 0.751


rs2836534 86497 38869947 C/T 0.87 0.87 0.874


rs2836535 87236 38870686 A/G 0.93 0.92 0.628


rs2836536 87248 38870698 C/T 0.86 0.84 0.474


rs3827208 87533 38870983 C/G 0.51 0.53 0.459


rs715860 87912 38871362 A/G 0.08 0.09 0.627


rs717231 88108 38871558 G/T 0.65 0.67 0.382


rs2836537 88494 38871944 A/C 0.43 0.40 0.239


rs2836538 89598 38873048 A/C


rs2836539 90235 38873685 A/T 0.98 0.97 0.796


rs2836540 91287 38874737 G/T


rs2836541 91359 38874809 C/T 0.07 0.06 0.403


rs2836542 92384 38875834 A/C 0.36 0.38 0.418


rs2836543 92410 38875860 C/T 0.54 0.50 0.202


rs881837 92900 38876350 C/T 0.29 0.28 0.639


rs3949052 94495 38877945 A/G


rs2065307 94512 38877962 A/G


rs3216105 97777 38881227 -/A 0.32 0.28 0.265


rs2073427 98333 38881783 C/T 0.09 0.07 0.242


[0276] The ERG proximal SNPs were also allelotyped in the replication cohorts
using the methods
described herein and the primers provided in Tables 43 and 44. The replication
allelotyping results for
replication cohort #1 and replication cohort #2 are provided in Tables 46 and
47, respectively.
TABLE 46
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position Allele Case Control Value
SEQ ID AF AF
NO: 7


rs2898353231 38783681 A/T 0.19 0.19 0.773


rs960818 882 38784332 A/G 0.59 0.57 0.600


rs960819 960 38784410 A/C 0.07 NA 0.132


rs24100341194 38784644 A/C


rs28364371530 38784980 A/G 0.14 0.14 0.957


rs28364381673 38785123 A/G 0.80 0.77 0.402


rs28364392096 38785546 C/T 0.68 0.73 0.089


rs28364402285 38785735 A/G 0.20 0.18 0.421


rs22266835873 38789323 C/T 0.78 0.76 0.622


rs28364417256 38790706 A/G 0.12 0.12 0.946


rs28364427988 38791438 A/G 0.30 __ 0.674
0.32


rs28364438222 38791672 G/T 0.22 0.25 0.332


rs28364448381 38791831 C/T 0.20 0.20 0.908


rs37879068814 38792264 C/T 0.97 unt ed NA


rs38381088915 38792365 -lC 0.58 0.56 0.604


rs28364459642 38793092 A/G 0.33 0.37 0.211


rs28364469902 38793352 A/T 0.13 0.15 0.481


rs378790810619 38794069 A/G


rs283644710927 38794377 C/T 0.67 0.67 0.843


rs283644811032 38794482 C/T 0.13 0.15 _
0.521


rs283645014377 38797827 C/T 0.67 0.67 0.989


rs283645115608 38799058 C/T 0.92 0.95 0.214


rs101502215928 38799378 C/G 0.30 0.36 0.076


rs283645216296 38799746 A/G 0.18 0.18 0.982


rs283645317598 38801048 A/T 0.02 unt ed NA


rs378790919272 38802722 A/G 0.06 0.03 0.110


rs283645420084 38803534 A/G 0.03 0.03 0.746


rs283645520577 ~ 38804027 A/T 0.17 0 12 0 080
~ ~ ~


153


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position Chromosome~ Al/A2F A2 F A2 F p-
rs# in Position Allele Case Control Value
SEQ ID AF AF
NO: 7


rs215571828051 38811501 A/G 0.78 0.79 0.747


rs283645629466 38812916 A/G 0.91 0.91 0.915


rs283645729530 38812980 C/T


rs283645829987 38813437 A/G 0.48 0.47 0.626


rs203232330012 38813462 C/T


rs205140030322 38813772 G/T 0.02 un ed NA


rs283645932216 38815666 C/T 0.20 0.16 0.278


rs283646032516 38815966 C/T


rs283646132544 38815994 A/G


rs283646232746 38816196 A/G


rs283646333137 38816587 G/T 0.67 0.75 0.011


rs283646433538 38816988 A/G 0.66 0.68 0.586


rs283646533798 38817248 C/T


rs283646633802 38817252 A/C 0.39 0.41 0.507


rs283646733964 38817414 C/T


rs382720434132 38817582 A/G 0.45 0.41 0.229


rs283646834210 38817660 C/T 0.13 0.14 0.736


rs378791134317 38817767 A/G 0.14 0.13 0.856


rs283646934499 38817949 C/T 0.37 0.41 0.168


rs283647034753 38818203 A/C 0.72 0.73 0.854


rs221259934845 38818295 C/T 0.63 0.65 0.636


rs283647235335 38818785 C/T 0.41 0.35 0.145


rs283647336423 38819873 C/T 0.51 0.54 0.291


rs188846936450 38819900 A/G 0.45 0.49 0.281


rs188847036481 38819931 G/T 0.17 0.17 0.949


rs203232238447 38821897 C/G 0.51 0.53 0.476


rs241003538784 38822234 C/T


rs157333239387 38822837 A/T 0.56 0.60 0.279


rs283647439458 38822908 C/T 0.33 0.36 0.330


rs283647539822 38823272 ClG 0.18 0.13 0.049


rs378791440305 38823755 C/G 0.73 0.74 0.977


rs188847140869 38824319 C/T 0.31 0.26 0.134


rs188847240926 38824376 C/T 0.62 0.65 0.247


rs188847341010 38824460 C/T 0.63 0.67 0.210


rs188847441134 38824584 C/T 0.28 0.21 0.091


rs283647641984 38825434 A/G 0.47 0.44 0.346


rs378791642172 38825622 A/T 0.46 0.41 0.171


rs283647742753 38826203 G/T 0.94 0.97 0.294


rs970043 43011 38826461 C/T 0.05 0.03 0.331


rs221260043176 38826626 A/G


rs283647843320 38826770 G/T 0.75 0.75 0.983


rs283647943381 38826831 A/T 0.44 0.43 0.752


rs147587744142 38827592 A/G 0.35 0.31 0.166


rs283648044383 38827833 A/G 0.45 0.41 0.254


rs283648144726 38828176 ClT 0.42 0.39 0.330


rs283648345087 38828537 A/G 0.46 0.46 0.797


rs283648445141 38828591 C/T 0.45 0.47 0.553


rs283648545359 38828809 CIG 0.18 0.18 0.993


rs283648645421 38828871 ClT


rs283648745456 38828906 C/T 0.03 0.03 0.955


rs189319945467 38828917 C/T 0.61 0.67 0.071


rs283648845486 38828936 C/T 0.27 0.23 0.246


rs189320045709 38829159 A/G 0.16 0.13 0.203


rs189320145716 38829166 A/G 0.83 0.89 0.021


rs283648947626 38831076 C/T 0.30 0.31 0.702


rs188847549413 38832863 A/G


rs283649049796 38833246 C/T 0.94 0.95 0.662


rs283649149962 38833412 A/G 0.10 0.06 0.038


rs283649250075 38833525 C/T 0.20 0.22 0.651


rs283649350093 38833543 A/G 0.93 0.95 0.397


rs283649450571 38834021 C/T 0.73 0.71 0.592


rs283649550615 38834065 A/G 0.81 0.77 0.212


rs289835450780 38834230 A/G 0.24 0.24 0.827


rs306539050851 38834301 -/TA 0.10 0.11 0.743


154


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in Position Allele Case Control Value
SEQ ID AF AF
NO: 7


rs283649651459 38834909 A/C 0.78 0.86 0.022


rs283649753193 38836643 C/T 0.65 0.66 0.733


rs283649853702 38837152 C/T 0.44 0.46 0.576


rs283649953736 38837186 A/C 0.33 0.29 0.200


rs283650053795 38837245 C/T


rs283650154109 38837559 A/T 0.36 0.32 0.167


rs283650254126 38837576 C/T 0.31 0.27 0.206


rs283650354230 38837680 A/C 0.32 0.28 0.173


rs283650454894 38838344 C/T 0.50 0.57 0.033


rs378791755455 38838905 A/G 0.56 0.62 0.033


rs283650555499 38838949 A/G 0.72 0.81 0.004


rs283650656522 38839972 C/T 0.52 0.58 0.093


rs283650756662 38840112 C/T 0.51 0.56 0.134


rs283650856954 38840404 A/G 0.53 0.58 0.170


rs283650957267 38840717 A/G 0.35 0.30 0.136


rs283651058282 38841732 A/G 0.62 0.56 0.035


rs283651158916 38842366 A/C 0.33 0.30 0.273


rs221260159544 38842994 C/G 0.44 0.46 0.675


rs221260259666 38843116 C/T 0.29 0.27 0.571


rs222668259913 38843363 A/T 0.38 0.33 0.127


rs283651266846 38850296 A/G 0.93 0.96 0.261


rs283651367245 38850695 G/T 0.23 0.22 0.692


rs199932867652 38851102 A/C 0.79 0.80 0.618


rs221260367955 38851405 A/G 0.73 0.74 0.676


rs378791967966 38851416 A/C


rs283651468420 38851870 A/G 0.51 0.57 0.044


rs102315370226 38853676 A/G 0.09 0.09 0.699


rs102337270810 38854260 C/T 0.82 unt ed NA


rs221260472246 38855696 A/G 0.67 0.73 0.063


rs222668473330 38856780 G/T 0.82 0.82 0.992


rs221260573457 38856907 C/T 0.83 0.86 0.180


rs218730774389 38857839 A/G 0.14 0.13 0.901


rs306541274638 38858088 -/AA


rs289835574640 38858090 A/C 0.95 0.93 0.442


rs283651875358 38858808 A/C 0.11 0.14 0.248


rs383811075952 38859402 -/G 0.65 0.68 0.399


rs283651976098 38859548 A/G 0.59 0.64 0.134


rs382720777836 38861286 A/G 0.60 0.64 0.205


rs283652078449 38861899 A/C


rs283652178507 38861957 G/T 0.08 0.09 0.765


rs283652280031 38863481 GlT 0.12 0.07 0.033


rs283652381695 38865145 C/T


rs283652482775 38866225 A/G 0.05 0.04 0.539


rs283652582795 38866245 A/G 0.12 0.09 0.179


rs383335084611 38868061 -/C


rs283652684657 38868107 C/T 0.83 0.85 0.536


rs283652784693 38868143 A/C 0.08 0.07 0.444


rs383467685020 38868470 -/T 0.79 0.82 0.270


rs283652885048 38868498 C/T 0.82 0.86 0.130


rs376136485100 38868550 C/T 0.08 0.05 0.132


rs283652985325 38868775 A/C 0.09 0.07 0.214


rs283653085452 38868902 C/T


rs376136685868 38869318 A/G 0.07 0.04 0.259


rs283653185936 38869386 A/G 0.49 0.50 0.741


rs283653285990 38869440 A/T 0.30 0.30 0.921


rs283653386139 38869589 C/T 0.48 0.48 0.843


rs283653486497 38869947 C/T 0.86 0.89 0.374


rs283653587236 38870686 A/G 0.91 0.91 0.933


rs283653687248 38870698 C/T 0.86 0.86 0.945


rs382720887533 38870983 C/G 0.51 0.55 0.183


rs715860 87912 38871362 A/G 0.07 0.07 0.893


rs717231 88108 38871558 G/T 0.65 0.68 0.506


rs283653788494 38871944 A/C 0.43 0.39 0.251


rs283653889598 38873048 A/C


155


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAllA2 F A2 F A2 F p-
rs# in Position Allele Case Control Value
SEQ ID AF AF
NO: 7


rs283653990235 38873685 A/T 0.98 0.98 0.910


rs283654091287 38874737 G/T


rs283654191359 38874809 C/T 0.09 0.06 0.324


rs283654292384 38875834 A/C 0.37 0.41 0.365


rs283654392410 38875860 C/T 0.54 0.55 0.863


rs881837 92900 38876350 C/T 0.30 0.28 0.673


rs394905294495 38877945 A/G


rs206530794512 38877962 A/G


rs321610597777 38881227 -/A 0.31 0.29 0.603


rs207342798333 38881783 C/T 0.09 0.06 0.249


TABLE 47
dbSNP Position ChromosomeAllA2 F A2 F A2 F p-
rs# in Position AlleleCase Control Value
SEQ ID AF AF
NO: 7


rs2898353231 38783681 A/T 0.22 0.21 0.629


rs960818882 38784332 A/G 0.59 0.55 0.351


rs960819960 38784410 A/C 0.12 0.01


rs24100341194 38784644 A/C


rs28364371530 38784980 A/G 0.14 0.14 0.989


rs28364381673 38785123 A/G 0.78 0.71 0.047


rs28364392096 38785546 C/T 0.72 0.68 0.265


rs28364402285 38785735 A/G 0.18 0.19 0.789


rs22266835873 38789323 C/T 0.80 0.77 0.342


rs28364417256 38790706 A/G 0.11 0.12 0.559


rs28364427988 38791438 A/G 0.32 0.28 0.269


rs28364438222 38791672 G/T 0.23 0.21 0.504


rs28364448381 38791831 C/T 0.19 0.19 0.829


rs37879068814 38792264 C/T 0.97 unt ed


rs38381088915 38792365 -/C 0.58 0.55 0.526


rs28364459642 38793092 A/G 0.30 0.32 0.722


rs28364469902 38793352 A/T 0.11 0.14 0.425


rs378790810619 38794069 A/G


rs283644710927 38794377 C/T 0.68 0.68 0.908


rs283644811032 38794482 C/T 0.11 0.14 0.302


rs283645014377 38797827 C/T 0.73 0.70 0.314


rs283645115608 38799058 C/T 0.93 0.94 0.499


rs101502215928 38799378 C/G 0.33 0.35 0.527


rs283645216296 38799746 A/G 0.17 0.18 0.750


rs283645317598 38801048 A/T 0.02 0.02 0.934


rs378790919272 38802722 A/G 0.05 0.04 0.546


rs283645420084 38803534 A/G 0.05 0.03 0.379


rs283645520577 38804027 A/T 0.17 0.15 0.472


rs215571828051 38811501 A/G 0.79 0.78 0.704


rs283645629466 38812916 A/G 0.97 0.94 0.174


rs283645729530 38812980 C/T


rs283645829987 38813437 A/G 0.48 0.45 0.532


rs203232330012 38813462 C/T


rs205140030322 38813772 G/T 0.04 0.02 0.476


rs283645932216 38815666 C/T 0.19 0.18 0.921


rs283646032516 38815966 C/T


rs283646132544 38815994 A/G


rs283646232746 38816196 A/G


rs283646333137 38816587 G/T 0.68 0.68 0.988


rs283646433538 38816988 A/G 0.69 0.66 0.430


rs283646533798 38817248 C/T


rs283646633802 38817252 A/C 0.39 0.39 0.948


rs283646733964 38817414 C/T


rs382720434132 38817582 A/G 0.45 0.43 0.614


rs283646834210 38817660 C/T 0.12 0.12 0.879


rs378791134317 38817767 A/G 0.12 0.11 0.901


rs283646934499 38817949 C/T 0.38 0.39 0.914


156


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in PositionAllele Case Control Value
SEQ ID AF AF
NO: 7


rs283647034753 38818203A/C 0.75 0.74 0.960


rs221259934845 38818295C/T 0.71 0.64 0.095


rs283647235335 38818785C/T 0.40 0.36 0.321


rs283647336423 38819873ClT 0.56 0.53 0.433


rs188846936450 38819900A/G 0.45 0.49 0.399


rs188847036481 38819931G/T 0.16 0.19 0.356


rs203232238447 38821897ClG 0.50 0.45 0.190


rs241003538784 38822234C/T


rs157333239387 38822837A/T 0.58 0.56 0.554


rs283647439458 38822908C/T 0.34 0.33 0.762


rs283647539822 38823272C/G 0.15 0.14 0.817


rs378791440305 38823755C/G 0.73 0.73 0.934


rs188847140869 38824319C/T 0.28 0.27 0.760


rs188847240926 38824376C/T 0.63 0.58 0.302


rs188847341010 38824460C/T 0.63 0.62 0.683


rs188847441134 38824584C/T 0.27 0.26 0.853


rs283647641984 38825434A/G 0.46 0.45 0.838


rs378791642172 38825622A/T 0.44 0.45 0.827


rs283647742753 38826203GlT 0.94 0.95 0.505


rs97004343011 38826461C/T 0.04 0.04 0.848


rs221260043176 38826626A/G


rs283647843320 38826770G/T 0.76 0.75 0.893


rs283647943381 38826831A/T 0.44 0.43 0.801


rs147587744142 38827592A/G 0.35 0.33 0.450


rs283648044383 38827833A/G 0.47 0.44 0.444


rs283648144726 38828176C/T 0.41 0.41 0.999


rs283648345087 38828537A/G 0.48 0.44 0.306


rs283648445141 38828591C/T 0.46 0.46 0.939


rs283648545359 38828809C/G 0.15 0.17 0.483


rs283648645421 38828871C/T


rs283648745456 38828906C/T NA 0.03 NA


rs189319945467 38828917C/T 0.63 0.62 0.868


rs283648845486 38828936C/T 0.23 0.22 0.913


rs189320045709 38829159A/G 0.17 0.16 0.653


rs189320145716 38829166A/G 0.85 0.85 0.947


rs283648947626 38831076C/T 0.27 0.30 0.597


rs188847549413 38832863A/G


rs283649049796 38833246CIT 0.94 0.91 0.196


rs283649149962 38833412A/G 0.09 0.11 0.493


rs283649250075 38833525C/T 0.20 0.21 0.669


rs283649350093 38833543A/G 0.96 0.93 0.211


rs283649450571 38834021C/T 0.70 0.69 0.697


rs283649550615 38834065A/G 0.82 0.80 0.510


rs289835450780 38834230A/G 0.27 0.26 0.846


rs306539050851 38834301-/TA 0.11 0.10 0.936


rs283649651459 38834909A/C 0.81 0.80 0.746


rs283649753193 38836643C/T 0.66 0.64 0.756


rs283649853702 38837152C/T 0.41 0.40 0.844


rs283649953736 38837186A/C 0.32 0.30 0.567


rs283650053795 38837245C/T


rs283650154109 38837559A/T 0.36 0.36 0.917


rs283650254126 38837576C/T 0.31 0.32 0.738


rs283650354230 38837680A/C 0.32 0.31 0.730


rs283650454894 38838344C/T 0.52 0.50 0.620


rs378791755455 38838905A/G 0.57 0.56 0.759


rs283650555499 38838949A/G 0.74 0.74 0.982


rs283650656522 38839972C/T 0.52 0.53 0.907


rs283650756662 38840112C/T 0.51 0.52 0.785


rs283650856954 38840404A/G 0.53 0.52 0.709


rs283650957267 38840717A/G 0.35 0.33 0.453


rs283651058282 38841732A/G 0.68 0.65 0.457


rs283651158916 38842366A/C 0.32 0.31 0.832


rs221260159544 38842994C/G 0.45 0.47 0.717


rs221260259666 38843116C/T 0.30 0.30 0.994


157


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
dbSNP Position ChromosomeAl/A2 F A2 F A2 F p-
rs# in PositionAllele Case Control Value
SEQ ID AF AF
NO: 7


rs222668259913 38843363A/T 0.39 0.38 0.801


rs283651266846 38850296A/G 0.94 0.91 0.184


rs283651367245 38850695G/T 0.23 0.23 0.949


rs199932867652 38851102A/C 0.80 0.77 0.487


rs221260367955 38851405A/G 0.74 0.70 0.289


rs378791967966 38851416A/C


rs283651468420 38851870A/G 0.53 0.49 0.363


rs102315370226 38853676A/G 0.08 0.09 0.611


rs102337270810 38854260C/T 0.84 0.81 0.315


rs221260472246 38855696A/G 0.69 0.68 0.641


rs222668473330 38856780G/T 0.85 0.81 0.216


rs221260573457 38856907C/T 0.82 0.82 0.927


rs218730774389 38857839A/G 0.12 0.13 0.685


rs306541274638 38858088-/AA


rs289835574640 38858090A/C 0.96 0.96 0.893


rs283651875358 38858808A/C 0.10 0.11 0.823


rs383811075952 38859402-/G 0.68 0.65 0.457


rs283651976098 38859548A/G 0.60 0.57 0.357


rs382720777836 38861286AIG 0.64 0.61 0.449


rs283652078449 38861899A/C


rs283652178507 38861957G/T 0.06 0.07 0.625


rs283652280031 38863481G/T 0.09 0.10 0.810


rs283652381695 38865145C/T _


rs283652482775 38866225A/G 0.05 0.04 0.419


rs283652582795 38866245A/G 0.10 0.14 0.132


rs383335084611 38868061-/C


rs283652684657 38868107C/T 0.83 0.86 0.342


rs283652784693 38868143A/C 0.08 0.11 0.209


rs383467685020 38868470-/T 0.81 0.84 0.442


rs283652885048 38868498C/T 0.86 0.88 0.350


rs376136485100 38868550C/T 0.04 0.03 0.643


rs283652985325 38868775A/C 0.08 0.06 0.271


rs283653085452 38868902C/T


rs376136685868 38869318A/G 0.06 0.04 0.473


rs283653185936 38869386A/G 0.49 0.49 0.915


rs283653285990 38869440A/T 0.31 0.28 0.446


rs283653386139 38869589C/T 0.47 0.48 0.810


rs283653486497 38869947C/T 0.88 0.84 0.149


rs283653587236 38870686A/G 0.94 0.92 0.378


rs283653687248 38870698C/T 0.86 0.82 0.311


rs382720887533 38870983C/G 0.51 0.49 0.598


rs715860 87912 38871362A/G 0.09 0.11 0.463


rs717231 88108 38871558G/T 0.65 0.67 0.588


rs283653788494 38871944A/C 0.42 0.41 0.694


rs283653889598 38873048A/C


rs283653990235 38873685A/T 0.97 0.97 0.749


rs283654091287 38874737G/T


rs283654191359 38874809C/T 0.05 0.05 0.895


rs283654292384 38875834A/C 0.34 0.34 0.998


rs283654392410 38875860C/T unt 0.43 NA
ed


rs881837 92900 38876350C/T 0.29 0.28 0.811


rs394905294495 38877945A/G


rs206530794512 38877962A/G


rs321610597777 38881227-/A 0.32 0.28 0.273


rs207342798333 38881783C/T 0.08 0.07 0.700


[0277] Allelotyping results were considered particularly significant with a
calculated p-value of
less than or equal to 0.05 for allelotype results. These values are indicated
in bold. The allelotyping p-
values were plotted in Figure 1G for the discovery cohort. The position of
each SNP on the
chromosome is presented on the x-axis. The y-axis gives the negative logarithm
(base 10) of the p-
158


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
value comparing the estimated allele in the case group to that of the control
group. The minor allele
frequency of the control group for each SNP designated by an X or other symbol
on the graphs in Figure
1 G can be determined by consulting Table 45. For example, the left-most X on
the left graph is at
position 38783681. By proceeding down the Table from top to bottom and across
the graphs from left
to right the allele frequency associated with each symbol shown can be
determined.
[0278] To aid the interpretation, multiple lines have been added to the graph.
The broken
horizontal lines are drawn at two common significance levels, 0.05 and 0.01.
The vertical broken lines
are drawn every 20kb to assist in the interpretation of distances between
SNPs. Two other lines are
drawn to expose linear trends in the association of SNPs to the disease. The
generally bottom-most
curve is a nonlinear smoother through the data points on the graph using a
local polynomial regression
method (W.S. Cleveland, E. Grosse and W.M. Shyu (1992) Local regression
models. Chapter 8 of
Statistical Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth &
Brooks/Cole.). The black line
provides a local test for excess statistical significance to identify regions
of association. This was
created by use of a lOkb sliding window with lkb step sizes. Within each
window, a chi-square
goodness of fit test was applied to compare the proportion of SNPs that were
significant at a test wise
level of 0.01, to the proportion that would be expected by chance alone (0.05
for the methods used
here). Resulting p-values that were less than 10-8 were truncated at that
value.
[0279] Finally, the exons and introns of the genes in the covered region are
plotted below each
graph at the appropriate chromosomal positions. The gene boundary is indicated
by the broken
horizontal line. The exon positions are shown as thick, unbroken bars. An
arrow is place at the 3' end
of each gene to show the direction of transcription.
Example 11
Expression of LRCHI in Human Chondroblastoma Cells
[0280] Human chondrosarcoma cells were cultured either in monolayers or in a
solid alginate
matrix to address the possibilty that chondrocytes would dedifferentiate in
monolayer culture but would
retain a chondrocytic phenotype in matrix environments (Lee, D.A., T. Reisler,
and D.L. Bader,
Expansion of chondrocytes for tissue engineering in alginate beads enhances
chondrocytic phenotype
compared to conventional monolayer techniques. Acta Orthop Scand, 2003. 74(1):
p. 6-15).
Methods
[0281] SW1353 chondrosarcoma cells (ATCC, HTB-94 ) were propagated in
Leibovitz's L-15
medium supplemented with 2 mM L-glutamine,l0% fetal calf serum and
penicillin/streptomycin
(100U/ml) as per ATCC protocol. Confluent SW1353 cells were made into single
cell suspensions by
treatment with trypsin-EDTA and were resuspended in 1.2% alginate (Keltone
LVCR, Kelco, Chicago,
USA) in 0.9%NaCI at a density of 4x106 cells/ml (10 million cells per
stimuli). Alginate beads of
uniform diameter were prepared by dispensing the cell-alginate suspension
dropwise through a 22 gauge
needle into 100mm CaCl2 from a height of approximately 2cm. After
polymerization (10 minutes),
159


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
beads were washed 3 times in PBS and then once with medium. The encapsulated
cells were
differentiated in a 24 well plate (10 beads/we11;25-SOK cells/bead) for 2
weeks under standard
conditions with medium changes every 3 days. At the end of 14 days, a few
randomly selected beads
were stained for the presence of glycosaminoglycans by alcian blue staining
suggesting a chondrocytic
phenotype [46J. After 14 days, the alginate cultured cells were stimulated
with either recombinant
human IL1-beta (R&D Systems) or phorbol 12-myristate 15 - acetate (PMA, Sigma)
alongside serum-
starved controls for 3 hours (PMA) and 24 hours (no serum and IL1-beta).
Similar experimental
conditions were applied on confluent plates of undifferentiated SW1353 cells
to compare the effects of
monolayer culture to alginate culture on gene expression. Encapsulated cells
were released from the
alginate beads by sodium citrate (SSmM in O.15M NaCI) treatment and the
expression of target genes
plus control genes (matrix metalloproteinases 8 and 13) was determined by mRNA
isolation
(Dynabeads oligo dT(25), Dynal Biotech), followed by cDNA synthesis
(Superscript II, Invitrogen) and
semi-quantitative PCR using standard molecular biology techniques and
manufacturer's protocols. PCR
was performed using a standard protocol of 30 cycles. LRCHI forward primer: 5'-

CCAAAGATCAGGACATGGATA-3'; LRCHI reverse primer: 5'-TGCTGTTTGTGGTAGGAGAG-
3'; MMP8 forward primer: 5'-CAATACTGGGCTCTGAGTGG-3'; MMP8 reverse primer: 5'-
GGAAAGGCACCTGATATGC-3'; MMP13 forward primer: 5'-ATATCTGAACTGGGTCTTCC-3';
MMPl3 reverse primer: 5'-GACAGCATCTACTTTATCACC-3'; GAPDH forward primer: 5'-
ATCATCTCTGCCCCCTCTG-3'; GAPDHreverse primer: 5'-GAGGCATTGCTGATGATCTTG-3';
Single band PCR products were resolved on 2% agarose gels and visualized by
ethidium bromide
staining. cDNA levels were normalized for cell number differences by the
housekeeping gene, GAPDH.
Control cDNA is composed of an equimolar mixture of 56 cDNA preparations from
various human cell
lines and was used to verify that the selected primers only amplified a single
predicted product.
Results
[0282] Analysis of LRCHI expression in alginate cultured human chondrosarcoma
cells treated
with inflammatory stimuli, IL1-beta and PMA revealed substantial increases in
the expression of the
known IL1-beta responsive gene, MMP13 [52], in both IL1-beta and PMA
stimulated cells.
Interestingly, MMP8 was strongly upregulated by IL1-beta but weakly
upregulated by PMA, suggesting
that MMP8 may be regulated by different inflammatory stimuli and pathways than
MMP13. LRCHl
expression after IL1-beta and PMA stimulation was unchanged from controls.
This suggests that the
effect that LRCH1 has on the etiology of osteoarthritis may be via an
inflammatory independent
mechanism, possibly involving compressive stress. There were no differences in
expression of LRCH1
or control genes in monolayer cultured SW1353 cells compared to alginate
cultured cells suggesting
that SW1353 cells retain a chondrocytic phenotype even in monolayer culture
conditions (data not
shown).
160


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
Example 12
Ire Vitro Production of Target Polyp~tides
[0283] cDNA is cloned into a pIVEX 2.3-MCS vector (Roche Biochem) using a
directional
cloning method. A cDNA insert is prepared using PCR with forward and reverse
primers having 5'
restriction site tags (in frame) and 5-6 additional nucleotides in addition to
3' gene-specific portions, the
latter of which is typically about twenty to about twenty-five base pairs in
length. A Sal I restriction site
is introduced by the forward primer and a Sma I restriction site is introduced
by the reverse primer. The
ends ~f PCR products are cut with the corresponding restriction enzymes (i.
e., Sal I and Sma I) and the
products are gel-purified. The pIVEX 2.3-MCS vector is linearized using the
same restriction enzymes,
and the fragment with the correct sized fragment is isolated by gel-
purification. Purified PCR product is
ligated into the linearized pIVEX 2.3-MCS vector and E. coli cells transformed
for plasmid
amplification. The newly constructed expression vector is verified by
restriction mapping and used for
protein production.
[0284] E. coli lysate is reconstituted with 0.25 ml of Reconstitution Buffer,
the Reaction Mix is
reconstituted with 0.8 ml of Reconstitution Buffer; the Feeding Mix is
reconstituted with 10.5 ml of
Reconstitution Buffer; and the Energy Mix is reconstituted with 0.6 ml of
Reconstitution Buffer. 0.5 ml
of the Energy Mix was added to the Feeding Mix to obtain the Feeding Solution.
0.75 ml of Reaction
Mix, 50 ~1 of Energy Mix, and 10 ~g of the template DNA is added to the E.
coli lysate.
[0285] Using the reaction device (Roche Biochem), 1 ml of the Reaction
Solution is loaded into the
reaction compartment. The reaction device is turned upside-down and 10 ml of
the Feeding Solution is
loaded into the feeding compartment. All lids are closed and the reaction
device is loaded into the
RTS500 instrument. The instrument is run at 30°C for 24 hours with a
stir bar speed of 150 rpm. The
pIVEX 2.3 MCS vector includes a nucleotide sequence that encodes six
consecutive histidine amino
acids on the C-terminal end of the target polypeptide for the purpose of
protein purification. Target
polypeptide is purified by contacting the contents of reaction device with
resin modified with Niz+ ions.
Target polypeptide is eluted from the resin with a solution containing free
Ni2+ ions.
Example 13
Cellular Production of Tar e_g t PolY~eptides
[0286] Nucleic acids are cloned into DNA plasmids having phage recombination
cites and target
polypeptides are expressed therefrom in a variety of host cells. Alpha phage
genomic DNA contains
short sequences known as attP sites, and E. coli genomic DNA contains unique,
short sequences known
as attB sites. These regions share homology, allowing for integration of phage
DNA into E. coli via
directional, site-specific recombination using the phage protein Int and the
E. coli protein IHF.
Integration produces two new att sites, L and R, which flank the inserted
prophage DNA. Phage
excision from E. coli genomic DNA can also be accomplished using these two
proteins with the
addition of a second phage protein, Xis. DNA vectors have been produced where
the
161


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
integration/excision process is modified to allow for the directional
integration or excision of a target
DNA fragment into a backbone vector in a rapid in vitt~o reaction (GatewayT"'
Technology (Invitrogen,
Inc.)).
[0287] A first step is to transfer the nucleic acid insert into a shuttle
vector that contains attL sites
surrounding the negative selection gene, ccdB (e.g. pENTER vector, Invitrogen,
Inc.). This transfer
process is accomplished by digesting the nucleic acid from a DNA vector used
for sequencing, and to
ligate it into the multicloning site of the shuttle vector, which will place
it between the two attL sites
while removing the negative selection gene ccdB. A second method is to amplify
the nucleic acid by
the polymerise chain reaction (PCR) with primers containing attB sites. The
amplified fragment then is
integrated into the shuttle vector using Int and IHF. A third method is to
utilize a topoisomerase-
mediated process, in which the nucleic acid is amplified via PCR using gene-
specific primers with the
5' upstream primer containing an additional CACC sequence (e.g., TOPO~
expression kit (Invitrogen,
Inc.)). In conjunction with Topoisomerase I, the PCR amplified fragment can be
cloned into the shuttle
vector via the attL sites in the correct orientation.
[0288] Once the nucleic acid is transferred into the shuttle vector, it can be
cloned into an
expression vector having attR sites. Several vectors containing attR sites for
expression of target
polypeptide as a native polypeptide, IvT-fusion polypeptide, and C-fusion
polypeptides are commercially
available (e.g., pDEST (Invitrogen, Inc.)), and any vector can be converted
into an expression vector for
receiving a nucleic acid from the shuttle vector by introducing an insert
having an attR site flanked by
an antibiotic resistant gene for selection using the standard methods
described above. Transfer of the
nucleic acid from the shuttle vector is accomplished by directional
recombination using Int, IHF, and
Xis (LR clonase). Then the desired sequence can be transferred to an
expression vector by carrying out
a one hour incubation at room temperature with Int, IHF, and Xis, a ten minute
incubation at 37°C with
proteinase I~, transforming bacteria and allowing expression for one hour, and
then plating on selective
media. Generally, 90% cloning efficiency is achieved by this method. Examples
of expression vectors
are pDEST 14 bacterial expression vector with att7 promoter, pDEST 15
bacterial expression vector
with a T7 promoter and a N-terminal GST tag, pDEST 17 bacterial vector with a
T7 promoter and a N-
terminal polyhistidine affinity tag, and pDEST 12.2 mammalian expression
vector with a CMV
promoter and neo resistance gene. These expression vectors or others like them
are transformed or
transfected into cells for expression of the target polypeptide or polypeptide
variants. These expression
vectors are often transfected, for example, into murine-transformed a
adipocyte cell line 3T3-L1,
(ATCC), human embryonic kidney cell line 293, and rat cardiomyocyte cell line
H9C2.
[0289] Modifications may be made to the foregoing without departing from the
basic aspects of the
invention. Although the invention has been described in substantial detail
with reference to one or more
specific embodiments, those of skill in the art will recognize that changes
may be made to the
embodiments specifically disclosed in this application, yet these
modifications and improvements are
within the scope and spirit of the invention, as set forth in the claims which
follow. All publications or
162


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
patent documents cited in this specification are incorporated herein by
reference as if each such
publication or document was specifically and individually indicated to be
incorporated herein by
reference.
[0290] Citation of the above publications or documents is not intended as an
admission that any of
the foregoing is pertinent prior art, nor does it constitute any admission as
to the contents or date of
these publications or documents. U.S. patents and other publications
referenced herein are hereby
incorporated by reference.
Nucleotide and Amino Acid Sequence Examples
[0291] Table A includes information pertaining to the incident polymorphic
variant associated with
osteoarthritis identified herein. Public information pertaining to the
polymorphism and the genomic
sequence that includes the polymorphism are indicated. The genomic sequences
identified in Table A
may be accessed at the http address
http:l/www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=snp, for example,
by using the
publicly available SNP reference number (e.g., rs552). The chromosome position
refers to the position
of the SNP within NCBI's Genome Build 34, which may be accessed at the
following http address:
www.ncbi.nlm.nih.gov/mapview/map search.cgi?chr=hum chr.inf~query=. The
"Contig Position"
provided in Table A corresponds to a nucleotide position set forth in the
contig sequence (see "Contig
Accession No."), and designates the polymorphic site corresponding to the SNP
reference number. The
sequence containing the polymorphisms also may be referenced by the
"Nucleotide Accession No." set
forth in Table A. The "Sequence Identification" corresponds to cDNA sequence
that encodes associated
target polypeptides (e.g., Q96FX2). The position of the SNP within the cDNA
sequence is provided in
the "Sequence Position" column of Table A. If the SNP falls within an exon,
the corresponding amino
acid position (and amino acid change, if applicable) is provided as well. The
amino acid found to be
associated with OA is in bold. Also, the allelic variation at the polymorphic
site and the allelic variant
identified as associated with osteoarthritis is specified in Table A. All
nucleotide and polypeptide
sequences referenced and accessed by the parameters set forth in Table A are
incorporated herein by
reference. Genomic nucleotide sequences for KLAA0296, Ch~ona 4, Chnom 6, ELP3,
LRCHI, SNWl and
ERG regions are set forth in SEQ ID NO: 1-7, respectively. A polymorphism in
Table A designated by
"AA" is present in the genomic nucleotide sequence of SEQ ID NO: 28, which
follows Table A.
163


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
ti
O


a a 1-e~I-~-U I-c~a c~c~c~I-a a a c~a U aa a e~I-c~a 1-


aa



c~c~ E'Qv E e~v Q c~c~c~c~E'Q Q Q c~Q v Q Q a ~ Q Q E'


a a ~ ~~,~ ~ ~,~ a ~ ~ a~ ~ ~ ~,a ~ ~ ~~ C~C~U CJC7U


, , ,


LL ~ ~~ I~~ ~ ~ tLtiu..u.u.~ L m.Ii~ ~ ~~ ~ ~ u.~ ~ t~


a


o r
00N ~ O I~N CO~ N ~ ~ ~ M I~(ON 07~ O d N ON N O ~ O M


~ ~ ~ M~ ~ ~ O ~O ~ ~ _O O O p N ~ c0


V ~ .d ~ st~ V C ~ O ~ O M
' O


r ~ InMO O M lf~~ N ~ N Wd"(OC4~ O)LnC COC C C ~ r 'd'
'
'


d


d' CO r O O ~ J N O
~ r N


fn N ~- r r ~ r O G(7 00O N p
z U


r J
v ~ z ~ Z~ ~ L X W d ~ ~ ~a ~ z D ~ c Xc c c ~ Q
U


O U u o U~ m uJ; r N X~ d U U J r o Uo 0 0 ~ ~ ~ ~'
_.
I-


N . U ~ _ ~ ' ~ U J V OJ (nJ N = J C V~ C C a Z U ~
LL '


O Y ~ J ( - L
j O cn n a U L


J Y t~~ ~ U . ~



O
~


O M OM ~ p
~ ~ W
;=


a 0 Q> f'> c
O >


a ..


Cc c C
OO O O O = U
,


VO U L O ~ TT >,>,~ ~ ~ L U U U U ~ O


C ~ .~7Ln>,~C C C ~'7 >,~ ~ ~C C ~ C C C '~C~ C C ~ ~ p)
O ~ ~ ~


i C
d ~ ~ OO O O N ' ~ ' M 'O O ' O O O O OO O O ~
= A (0 N ~ f9 (B CO ~


_L~ _L_L_LO)_L~ CDO)y N L _
~ r L


L ~ C ~~ ~ ~ s_C L r LC C L C C C ~ C~ ~ ~ ~ ' N C
E '- ._ ._


c o o a ' ~ o ~ ~ ~ ~ c c
C_


y a - o
o


UU U U



ODlf~h r1~O)M I~N N r OptnM N I~M ~1' r [v[vpp(O
ODN 'V'N ~O O M ' O
'


~ r r d O rN r ~ Lnlf7O O 0000~ r
~ tt7d'0000NO CON COf~f0N O I~Inr O M I~M Ln I


n O O r
p O ~'M N N'V'd'N N 'd'M a0~ 'd'd'M M O ltdOON MO N N CflO 00O
N
a


N N O O O OO O O O O r O M OO O O O ~-O O OO O O O O ~ O
p


c~ I I I I II I I I I I I r"II I I 1 t I ~ I~ ~ O I I I I
O I
Z


3
V a
Z
a


x Z Z Z ZZ Z Z Z Z Z Z ZZ Z Z Z Z Z Z Z Z X Z


C M O) N N~ON O I~M O N N~ O p r d'00CO ~ I~
(O O ~ d' N o1~ O d'I~~ h


0 M M 00(~c0a0 _ O t~
r ~N N ~'~ ~ ~ ~ ~ ON O M ~ 00r COO~ M O O


w ~ ~ l C N O O
(O O r M O ~1'r ~ N r r ~i'I~ p O CO


O N u7 N COh 00 ~ r (p;jr M_ ~ ~ ~ 0 ~ d ~
N I~N o0 O o0 ~


.d C ~t ~ N c O~ ~ ~ d
. I~.~ d . CO'V' lO ~ 0 r r M InCO


p ~ d ~.M r rO r O 0000M LI~ O ,d.
r GOti'N r 'V' d' ~ ~ 'd'I~h t~


r p N NN N r r r O) ~.N


COr 0000r r T (pC4C4(Or ~tf'~i'O d'd'~Yd'Cf7Ct7~ ~ O O O p


'd''~d'~t r r r r r r r r rr r r r r r r
~N ~Y~ M MM M ~t ~ ~ ~ ~ ~1' d' d'd~ ~ if
M ~ M M M M .~ d~ vt~te!-d'tYd' ~ ~


I II I M ,~ M M M M M
V I I o~o~N ooI M I 1 I I ~M M I M M M M MM I I M M 1
~' M O r rG(7COO I ~ M M 0 II I I I I I II I I
O


, . ~ t L d O O M O O O O d'M M M ln~ O N
-, 1~a. Inlf7'~I'O d' ' ~ ~ ~ lI~
V


~ O r r r In (OC4 CflC4COCflCflI~ 07O)r CO
a p r rr 'ctM M O ~ ~ ~ r
O


N Cp r rr N N ~ M M M W NtnInN I~f~1~I~c1'd'Cp(pM M (p(p
~ '
'


N I II I N ~ M M M h N~ lf~N ~ ~ ~ InCO(Or r COCOr r
I I I I I I I I I I I I II I I


C MI~ N N~ ~ NIN ~ N N N NI~ ~ I I I . I
I


p tn ~nvim u~vu ~ M N ~ ~ ~ ~N ~ ~ ~ ~ d.~.
N N ~


= = Z Z Z Z _ = Z = Z Z ZZ Z Z ~ ~n
V 2 Z ZZ 2 = Z Z Z Z Z Z


C M ~ COCOOOtn0~~ r10 1~O d'O ~jO CODM M t~ r '~i'r M ~


CO O LOO 00In O r (O Op M N n1~[~O O M
~ te O M O p


p ~ f~OM COM ~ V CON ~ CO.d~ M a.~ O O Or r COf~CO ~
CO r OInh O 0 I~ . C O


~ 0 M N I~ 07O CO1~N
I~N 00ON N I~p O O tn'Wt~O ~ CVr O N M d' ~ 0
0


V N C . M M ~ ~N r CO~ 1~~
N O O I~Op


a c ~ ~ ~ccr l N ~ N O ~ NO r O N 0 C
O i t7 0 (OC4O h i~


r r 'd'~r M 00N M 'd'~ ~ 'd'~ N r ~ ~ ~ ~ ~r M '~f''~I'~l'~ Cfl


O
O


O M r O OW CO
N Nr r N r r r r r NN N M M M M M d''d'd'd'd'~1'd'~f'
y"
O


t
~
U


O ~ 0 (j M ~ W N O M
O N 00 O M 00 O N 00M r


N O r Mr r'~ 'd'~ O CONM O)0 t f~ d' r N Cfl
O O h 0 r h 00O 1~
M


I~ COIn N ~i'COCOO ~ CO O ~ M O N
tnO N d.N M ~ O O a0 N o000 I~ d'N


N N O O ~ ~ ~ ~ r,rr p ~ d.I~M
M MM


s ~ ~ ~ ~ O O ~ O M I~O ~ N l(7l~~ ~ ~ ~ ~ 0 0
- N O O


r r r r r r r r r r N




CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
i-Q C~C~I-Q U U QU Q U Q f-U U C~I-C~Q C~C~I- CJU I-I-C~QU C7U C~U


C7Q Q Q Q U E'UU U C~~ U E'Q ~ C7 C7C7U C'7F U Q Q C7U Q ~ Q C~
C7CO~ C7C U a~ ~ ~ a U ~ U ~ U a~ a ~ ~ ~ ~ ~ C C ~


, 7 C a U ( aO O U C


~ m ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ m ~ ~ rl~ ~ m ~ rL~ ~


N ~ ~ ~ O N r O~ O d'~ O o0'd'M O NO N M M ~ r M 'd~ V ~


O o0 07O o N
f~ 1~COd)CO 00M M 00O M M ~ C O ~ ~ M r 0


M N M ~ N N c00 _ 0 Cr ~ M M


N C N~ 7 ( ~ ~ C ~ N C N ~ N N C'd~ a a G
O 0 O 0 0


r N N


(pN N m ~ MM J r N r m ~ NaCO Z ~ r O~O~
tt7 d ~ N 11 m Q M ON ~ r ~ CO r
r


. p 0 N M Z Z a p I-a cC7c ~ = ~ m (n J c~ M M
. U


. ~ . m o o
tiu.z ~ Q C7m > ~-7-~ m U z J oJ o U '- d. O O
~ ~ p _


Q U U Y ~ ~ U~ ~ d ~ V ~ cp c Cn~ ~ ~ ~ N.LucU ~ U U c
V


J Z cn ~ O O O



x
n


N N
O
M


cn Z


c c
O O


c
c c o L U U ~ L U L U


C C C C C ~ C C C~ C C C C 3 C C CC = V C 3 7 C C C ~ C C
~


~ O
O O O O O ' O p OO O O O O U ' O O OO O C O ' ' O O O O~ O O
L L L L L N L L L L L ~ N ~ N


_ _ _ _ _ _ _L L _L~_L~ O L _L_L_L~I-_L_LN
~1-~~1-~ C C .1uC rtu O C .1-n L L ~1-iE L L L
C C C C C L C C C C C C L C C C O C C G C ~ C C L


~ .~ . _ ~. _ ~ _ _O _O
C C E ~ C C E E ~ C E


O C
O O U


U U


f~r LOCO(O1~O V'MI~N I~I~M 'd'COO r d' d'f0 N 00(O~ ~h 00M (Oa0
00h ~ I~1~M O ~i't!7h '


r M M O O O COO CO <fr LOIwO cf'M O N r N
O O r M M r ~ ~ IwN O O O I~r tn00O M (O ~
-


r / r N N V O 1~lf7r
O)M r ~ ~ ~ r O NCON N N N M N CO00Or O (Ol(7O d'V'N V OCO000000N


r ~ O r c-O O O Lnr O O O O O O O r CO C O r O r O r O CQ7r [~[~C


O N O O O O O O rO O O O O O O O O OO O O O O O O O O OO O r r O
I I I I I I I I II I I I I I I I cI c I I I c


~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~I~I~I~I ~I~I~I~Ic


Z X Z Z Z Z Z Z ZZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z X Z Z Z


O O d'~ ~ 00N Lf~ON O 'd'O MInCO d' 'V' COO 00ODr O
QO In M OCON (pO O ~ N ' ~' ' O O M
'


M O M ~ ~ 00O O Wd'W.r I~W r ) I~~ N00tn O d N N r N Od ~ r
'd' N ~ ~r r O) CO ~f'O M OO O


O O ~ r M N
COM O N ~ O ~ ON ~OI'000000~I7LO O00N I~ I~ r r N CON N


~ r ~~ ~ ~ ~ N M L~~ N ~d 0 ue N O ~ ~ ' O


~ C O I~~ O ~ O o a c V M ' d c ~ c N ~N ~ ~ COM
O O O - ' ' - - ~ ~


M 00r r r ~ r M ~1~InCOCOInLnInN O re/'O 00 CO~ N 00O MN '~lf~~Or
r r N Ntfr r r


rr N N r Intn00Mr ~-


M M O r r r ~,,~ MM M M M r r d,COLn(Or r r r r r r rr r r r r '
r r r r r r r


r r rr r r r r
~t'd'~h'~h~ N ~I'd''d' M d'd'M M M M M M M M MM M M M M


M M M M M M MIO Mc~M M M M op~ M M MI I I I I I I I II I I I I
I I I I I I N ~ II I I I I ~ I I I IN o0 O o~d''d'~t'V'rr O tc>opM


00O ~ O O O 'd'~ O)O ~ ~ ~ O ~'O CON N00I~ 00 O O O O O ~M O t0daN
'


00I~~ M 0000O p ,d.~ O)O O d.O .~.~ N COO lf~ CO r (OCOCO(OM~l'I~(OI~r
'


Ino0d N N N ~ O ~~ 000000~ O ~ O 0000~l'O) d' O COCOCOCOOO O O O r
O M M M ~ tnIn


M o0M N N r N N N N rr r r r r
ml~IN N N N MII-~I~IN N N ~II-~I~'IN II I I I I I I I II I I I I
I I I I ~pZ OO I I I Z I Or N M M 'V'etd"d'tnInc0CO!wop


U O N N ~ N O UU ~ ~ ~ O O ~ ~ ~~ ~ ~ ~ N ~
Z Z = ZZ ~ U U


= = Z Z = 2 Z = Z Z = =Z Z Z Z Z Z Z Z ZZ Z Z Z Z


r I~~ 0~0~ W N M ODO ~ l~jO I~O ~ ~ d'~hf~(Od' ~ I~(OO)00I~N ttN M


CONO M r 1'OCOr (pO I~N r N Oo0~ O O Op
O)00Lnr ~ 00L(]Q)M O r


~(7M N 1~00.0d.ON r M tI'I~.M M M CMOONO~ t~ ~ O ~ ~-o N N~ O ~ r ~


s C
O (~r'ODCYr CO O 1~M r M COM O f~O
CO


N N O ~ ~pO O ~tO~tf~I~O M 'd'tnN M o0O ~ O)V'O
M


M Mj r O N NM t~N ~ N ~ ~ ~ O~ ~ O ~


r r r r ~ r r r ~ ~ O V ~ C C
O ' D O


InLL~Intn~ ~f2COCOCOCOCO(OCO(O(OC4f~00Or N M M M 'd''d'd''d'~t0(OCO1~00
rr r r r r r r r r rr r r r r


~'M OOIn0p~Or N d'O O f~ N ~ MO r M r O r r O OO d' r
O M '- O ~ N


O 00O (OV'~ M O r O r ~ N~ M N .~.M r (pr MO r ~ ~ O
O ~ d' ' ' ' ~ O M '-O 00O N O)N I~


O '~1InWitV r 00r Lt~ 1~ ~p r 00 tt~
~


N M M cN-O N _ CMOQ ~ O ~ ~ ~ ~ ~ ~
'd'


O a ~ ~ 00 ~ '- O O ~ ~ ~M ~ 0 0
~ ~ N N ~ ~'M 0 ~ O O


r r ~- ~-y - r r r r N r r r r Or r M O r




CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
UII-IUIUIQIC71U
E' ~ U C~ Q
U U U Ula a U
u-I~IL~I~I~Iu.lu..
N~~ N c
~ N ~ O N ~
r
m O ~ ~ 11
C7 Z
C~
Q ~' D O ~ a 1~1
a W i.u



U ~ c~
~


C7 C C ~ C
N
O O


O O O O O
cE ~ c


~ E ~ U



rInW Ctr Op
00tt~r N ChO O)


rr N ~ O N r ~O
OO O O O O O


~I~I~I~ ~I~I~I


zz z z z z


M ~ ~


MO ~ '-0~0000~ ~'
t!7O W O ~
M


~


'dCOD~ N ~7r N I~ ~,
"i


~N N ~


b


rDO00W O r O U
~t' ' '
~ '


d l d'd V'~t~
pp ~
bn


W
II I I I I l


N~ a~o~OBN t~~d
l(7r r COCOI~I~
~


Wit'~c7~ (flCOCOCOO ~ V ~ (.t.~
rr r r r r r


rr r r r r ~


r _
II I I I I U
I ~


OO O r r r N ~ t~
rN N N N N N ' L
U N O O


Z= Z 2 Z Z Z



y U y



~(flr 1~N O OO


OM M O M ~ CO~ ;~ ~ ;~ U
O


ON M tt~00N r .~,
'd'00a0COa0d'O ~ ~


.~ p ~-~ C
rM M N M d'M


f~
~


: N
~


WO O r r r N ~ '


rN N N N N N ~


a~
U


U



tf7 bl7 O ~" U O
N N f~ '
:
U


y
,


N E ~ M M U ~ C%~ ~


00r ~ C O r 1~~
O D ~
d'


r n
n
n


a ,.~, a ,.T' a




CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
AA ~enomic sequence (SEQ ID NO: 28)
TCATTAGCTTTTTCAGTTTTTCACATTCCTGATACAGACGTAGGAGTGCTCGTATTTTGGATTTTGCATCCAACTTGTA
CTTAGTT
TTAAATTCTGCACA[A/G]AAATGTTCCACTAACTTTTCATCGAAGTTTTTTCCTCCTAAGAAAGGATCAAAAGCTGTT
CCCAGTA
CCTAATTTGGTTGAAACAACAAATAGTCTGGTT
[0292] Following are genomic nucleotide sequences for a KIAA0296 region (SEQ
ID NO: 1), a
ch~om 4 region (SEQ ID NO: 2), a ch~~om 6 region (SEQ ID NO: 3), a ELP3 region
(SEQ ID NO: 4), a
LRCHI region (SEQ ID NO: 5), a SNWI region (SEQ ID NO: 6), and a ERG region
(SEQ ID NO: 7).
The following nucleotide representations are used throughout: "A" or "a" is
adenosine, adenine, or
adenylic acid; "C" or "c" is cytidine, cytosine, or cytidylic acid; "G" or "g"
is guanosine, guanine, or
guanylic acid; "T" or "t" is thymidine, thymine, or thymidylic acid; and "I"
or "i" is inosine,
hypoxanthine, or inosinic acid. Exons are indicated in italicized lower case
type, introns are depicted in
normal text lower case type, and polymorphic sites are depicted in bold upper
case type. SNPs are
designated by the following convention: "R" represents A or G, "M" represents
A or C; "W" represents A
or T; "Y" represents C or T; "S" represents C or G; "K" represents G or T; "V"
represents A, C or G; "H"
represents A, C, or T; "D" represents A, G, or T; "B" represents C, G, or T;
and "N" represents A, G, C,
or T.
KIAA0296 ~enomic sequence~S~ ID NO' 1)
>16:31076951-31174000
1 ccccaccccccaacagctgcacagtctggagcgaatatacacgcccaccacccacacacc


61 caagacccaatacacttttttaaactttatttttacttctatttatttatttttaattat


121 tttttaaaaatctaattagagatgaggtcttaggctgggcacagtggctcatgcctgtaa


181 ccccagcacttcgggaggccgaggcaggcagatcacgaggcgggaggatcacgaggtcag


241 gagttcRagaccagcctggccaatatggtgaaaccccatctctgctaaaaatacaaaaat


301 gagctgggcgcggtggtgtgcacctgtaatctcagctacttgggaggctgaggcagaatt


361 gtttgaactcaggaggcggatgctgcagtgagctgagatcgtgccactgcactccagtct


421 gggagacagagcgagactacgtctcaaaacaaacaaacaaacaaacaacaacaacaaaaa


481 cagagataaggtcttggcatgttgcccaggctggtctcaagtcctgggctcaaaggattc


541 tcctgcctcagcctcccaaagtgctaggattacaggcgtgaaccactgcacccaccctac


601 ttttttttttttttttttttatacaggatctcactctgtcacccgggctggagtgcagtg


661 gcaagatcactgctgactgtacccttgacctcagggactcaagtgatcctcctgcctcag


721 cctcctgagtagctgggactacaggagagcgccagcacacctgggtaattaagatttttt


781 ttgtagagacagacgctatgttgcccaggctgctctcgaactcctggcttcaagtgatac


841 acccttggcctcctaaagtgbtgggatcacaggcatgagccactgcacctagcctaatat


901 agttaatatccccgtcaaggctgctcagagggcctgagaggaacaaagggctcagctctg


961 gagagctccacccccagcgccaatctctctaaatggcctctttcctctccatattccacc


1021acaaggcttggagtccagcttcctgtgaccttaagtcaccattccaaagccctgcgatct


1081cacccagagaccacaagtgaaataatattataatcctgagaagtttagtggaccaagatg


1141gcatgccatcaagacgctgagaaacaaagaggaagatgggaccagggggcccagaagacg


1201ctggaacccacagtattaaaagctcagagaggctgggcacagtggctcacacctgtaatc


1261ccagcactttgggaggccaaggtgggtggatcacttgagcccaggggtttgagaacagcc


1321tgggcaacatggcgaaacccagtctctaccaaaaaatatacaaaaattagccaggcatgg


1381tggtgcgtgccttagtaccagctacttgggaggctgaggcaggaggattgactgaacctg


1441agagcacaccactgcactccagcctggatgacagaaccagacctgacctcaaagagaaga


1501aaaaaaaaaaaaaaaaaaagcccagaggggagggYaccctcaacagttttccagcccctt


1561ccacatccttcctaacctcacttgatagtgttcaagtcctaccttaggcaaggcagaaat


1621tataggaccaagccgccaaatggggaaattgagtcccagagagaagtaatgcattattta


1681agatcccatgcaggactatgagtcaggggtccaagagcccttccaccgtgtgccactcag


1741agacacagagtaggagggggaagggggtcgggtggcaggggacaaaagatgcaggaggca


1801agcagcagtgactgaagaggcagaggctgacatgaaagacccaggagcagagaatctttc


1861cttatcatctccaggggacaccactgggcagggcttggcctccggaaaaaccctgcattc


1921cctctgtgggttcatcagggcaccactctcctactagctgggttttttttttttgttttg


1981ttttgtttttgagacagagtcttactctgtcacctaggctggagtgcaatggcgtgatct


2041cagctcactgtaacctccacctcccatgttcaagcaatcctcctgtctcagcctcccaag


2101tagctgggattacaggcacctgccatcatgcctggctaatttttgtatgtttgtagagac


167




CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
2161agggtttcgccatgttggccaggctggtctccaactcctggcctcaggtgatctgcctgc


2221ctcagcctcccaaagtgctgggattacaggcatgagccaccacaccctgcctgagctggg


2281ttttaacaggaagaggagaagagccaaaactcctcacatagaatcacacagcacttgaca


2341gtttccaacctcatcatcactgaagtttagagcagccgatacccaYaaagatgatctccc


2401catccccctacagttacccactgtgcagagggagatccacacttagagacaggaagcgat


2461ttccagaagtccatagcaactcagtcccaggaatctaggtttcctgaccagggcatagca


2521gaaagggtccattcctttccttgcttgtaccttcacagaagcttcctggacagagccctg


2581gggtccaggagacctgttattcattcccggctatgctgagacttgctgagtgaccttggg


2641gactccttctagagaatataagttccacgagtgcaggaatttttgtctattagtccttga


2701tgtatctccagccctagaacagtgtttggcccatactatgtgcccaaaaaatatccatta


2761aatgactgaatgttgctgtgcatggtggtgcatgcctgtaatcccagcactttgggaagc


2821tgaggcagaaggattgcttaagcccaggagttagagaccagcttggacaacatagtgaga


2881ccgcatctcgtaaaaatttttaaaaataaaaaatgagtgaatatctagatagccaggatt


2941agagaagtgtcacagtcagaaagcctgaagcctaaagaagaccaaggaaccaggggcttt


3001atcctcagatacatgaaagcctgaaattctgtccacaagtatttatagagggcccgtaat


3061gttcttggtactgggctaggaactccccagattcagttaagaacaaagtcattacctggc


3121ctcagatgcaaggcaggggctggggggtgtgagtggcagggaggcagcgtgatcaataca


3181aacacttttcttagcctgagctgccctgacatggtctgacggctcacaaggtggtgagtg


3241cagccgggctgcagtgttcaaggagggcgccggctggccgcccacctgtcagaggctgcg


3301ccagaaggatgcggaagaagagatttctgccttggctgaggtcacttcccacccccagat


3361tccctgcccacacaaccctgcaattttctgacgctgacgactcggatcctattatttccc


3421gattttcaaggtcccatgatgctgacagccccaaatgctaagtcgtcagtccgcccacgc


3481cctggacccgaaagcaataaaggcgaggtcagcaagggtcctaccacccactgcctcgaa


3541aggcctctgggggtggtcggcgcgcccctccccacctcgcgggggccgtgtgggcgtcgc


3601tcggtcgttggggtgccggggacgtcgtgatgagaacggcgtcccagagacggcggtgac


3661agagccgggacacgtgacagtcacagggtcacattctgcggtccacgagtttgggaccgg


3721gctggtcacgtgacgcggtgggggcaccatggggtgatgtgagatgcgggtgtctcggat


3781tacgtacaaatgacgtattcctaccccttttggcaaccagatttccgttggaagatgcaa


3841cggttccggtgacggtagcaagttctcgcgtccaggcatctccgcttccgctcggggcgc


3901aacaacttccgactccaccttcccagcctcgggcaaggaagagacgcgaccatgtgcgca


3961tgccccgaatttatcacggaggggcggggctgaggctgcgggagctggagcggggaagaa


4021aagggaattccaacctgtggaaccttggggggtccccggggtcggcgccttcccattgac


4081tgtgggcggtgcaagggacggagcctctggcggctcgtgggggtgttggggtccgcaggg


4141ggagggaggggagtgtcagagtgtgagcggggtacgggaattccaaatttgagggcctcc


4201cggctctggcgccggggagggagagctcaggccgccatgcgggacaggacccacgagctg


4261agacaggtgagacgccagggcagcggggatggggacgggcggacgaactggaacgcagga


4321cttctggtcttcgggatagggaggggtggctgatggccaggaaggaaagtcccggaagcc


4381tgtgggtcctgcggggtaagagccgcagcgaaacggtggtgccaatgactccgggcctgg


4441cagggggatgacagctcggacgaagaggacaaggagcgggtcgcgctggtggtgcacccg


4501ggcacggcacggctggggagcccggacgaggagttcttccacaaggtaaggggctggggt


4561ctccgcctggattcgcgagggtgtaggaggacccgaggagtagcgtggtctggagtaccc


4621catatctctttcagccctctcggtcaccctccccaggtccggacaattcggcagactatt


4681gtcaaactggggaataaagtccaggagttggagaaacagcaggtcaccatcctggccacg


4741ccccttcccgaggagagtgagtgaaaccccggctgcagggcgcatgctccgccccaggga


4801ttgtgggggttgtagttccacgcaggtggtggccagagtggtttgttgaggtgggggctg


4861ctgtttgggagtcttggccttctcttattcaggcatgaagcaggagctgcagaacctgcg


4921cgatgagatcaaacagctggggagggagatccgcctgcagctgaagggtgagctcctggg


4981acctcagacagatccttccctctgatcctgccctgttgttggtatatctggggagtgtgt


5041ggcccagagaagccagtgatatatccaggtcacacagcaggcctgggtctagcatctgtc


5101tcctggcctccaggccattgtactctccacagcacaagtccgcctctcaggttcttttat


5161ttacaatgaaaccatttacttacacagttatcgctgcccactgggcattctttgggcagg


5221gagatggagttttgttaggtggcctctgcatacctatgggaactcagtgatgtaatgcaa


5281agaaaaataaacttactttctcctcttagaggctcagccttagtcattttatgataaatt


5341atatttccctaaaaatcctatggagacaagtacccccaatacccctgtgtcttcccacag


5401ccatagagccccagaaggaggaagctgatgagaactataactccgtcaacacaagaatga


5461gaaaaacccaggtgggttttttttctcagaaatgaggacatttcagcaaatgtttcatga


5521agtattagatgacaggtgtatgaaggaagggcctgcagagatcatggagtccaattggat


5581gacttttccaaatggggaaactgagctcagagagagaaagaacttgctcaaggtcaggaa


5641gccaggtctcctgatgctcagtccggttataacaccctgctttattttcttccattcaat


5701aggaagttactgtgaccccagacaagacctagtcttggctgtgggacacatgttttcttt


5761tctttttttgcctcagcctcctgaatagctgggattacaggcggacacccccatgcccag


5821ctaatttttgtagttttagtagagactgggcttcaccatgttggccaggctggtttcgaa


5881ctcctgacctcaggtgaccctcctgcctcggcctcccaaagtgctgaattacaggcgtga


5941gccaccatgcccagctgggacacatgttttctgggagtcaagatgaggagttagggttca


6001ataggggataaagacattactcacgtgggacctggtggctaacggcgctgcccagggaag


6061gagagtgagaagtcataaatgactggcaggtttcctatctatgtgacagggacatcctta


6121gtcccacaggtggaattcaagaagtcaggaagaggaacttccttggggcaacactgaaga


6181ggaactcccctggtgtgatatcttatttttttaattattattatttttttgagatggagt


6241ctcactctgtccctcaggctggagtacagtggcacaatcttggctcactgcaacctccac


6301ctccttcaagcgattctcctgcctcagcctcacgagtagctgggattacaggtgtgcacc


6361accacacctggctaattttttatatttttggtagaaatgaggtttcaccttgttggccag


1fR


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
6421 gctggtctcg aactcctgaY ctcaactgat ccacctgctt tggcctcgca aagtgctatg
6481 attataggca tgagccaccg cgcgcggccc ctggggtgat atcttagtaa ggagatttgc
6541 agtgatctga ctggccctct ctgggtcccc agtgaggagg ataccaggag gtcagggttg
6601 gagtagttgg gcccagggct cagcagggac cccagattga agatggagca gcttgggcat
6661 cttggaaggg tgaagctgga accaggaaag cagatgtatc tctggaaaag gaactccaag
6721 gaatgagcat atttaaggcc tcagaagaag gggcaaggca gagcagatgc cccagaacca
6781 gtgtttctgg ggaagcctgt ggtggtgatt ggcatgagtg gttgagggtc catgtgggcc
6841 tgttgcacct gtttcgccca ggcaacatgt tcatctctag gcgtaggagc tgtggtgtag
6901 gcagcgaggt tggcattcag caagcattca gcagttacat attgggtgcc tactgtgtgc
6961 cagacctttt tggaactgtt taggatacag cagtgaacca gtgatccctg tcctcatgga
7021 acttcccttc tggtgtagac aatcaccata ataaataagt gaattattta gaacataata
7081 agcattaagg aaaaaagagc aggggaagag ggactaagca tgctggagga ggtagagttg
7141 cagttgaaag caggtggagg aagcttcatt cagaaggtaa catctgaaca agagacttaa
7201 aggtgtttgc tgggaatgag cattctaggt agaaggaaaa gtgaatgcaa aggcttaagc
7261 tgagagtgtg ctttgtctag ggaggggtaa ggagaccagt gtggatgggc agaggaaggg
7321 aacagtaaga ggaagtaaga tcagagaggt catgggagaa ggagagatca tagagggcta
7381 gccaggcacc gtggctcacg cctgtaatcc cagcactttg gaggctgagg tgggaggatt
7441 ggttgagccc aggagtttga gaccagcctg ggcaatatag tgagaccccc cccccttttt
7501 tttttttcct ttgagacagg gtctcactct gttgcccagg ctggagtaca gtggtgccat
7561 ctctgctcac tgcaacctcc gcctcctggg ttcaagccat tctcttgctt cagcctccca
7621 agtagctggg actacaggcg cccaccactg caccaagcta atttctgtac ttttagtaga
7681 gatggggttt caccacgttg gccaggctgg tcttgacctc ctgacctcag gtgatccacc
7741 tgcctcagcc tcccaaagtg ctgggatcac aggcatgagc caccgtgccc ggccaaccct
7801 gtctctatta aaaataaaaa taggccaggt gcagtggctc acgcctgtaa tggaggccga
7861 ggcaggtgga tcacaaggtc aagagatcaa gaccatcctg gccaacatgg tgaaacccca
7921 tctctactaa aaatacaaaa attagccgtg cgtggtggcg cgtgcctgta gtcccagcta
7981 ctcgggaggc tgaggcaaga gaattgcttg aacccgggag gccaaggttg cagtgagccg
8041 agattgtgcc actgcactcc agcctgggca acaagagtga aactctgtct caaaaaacaa
8101 ataataaata aataaataaa taaataaata aataaataaa taaaaaagat catggaggac
8161 cacataggcc tgataagggc tttggctttt agtctaagag aaatggggga gcctgtcaag
8221 gtcatcacaa ggtggttaag gtggcagatc ccgcataaga gctcatgcta tttgctcact
8281 gtactatggg gttgccgagg caccgaccgg gcagggatcc tcccaggggc actcagccta
8341 tattcttcat ctttagcatg gggtcctgtc ccagcaattc gtggagctca tcaacaagtg
8401 caattcaatg cagtccgaat accgggagaa gaacgtggag cggattcgga ggcagctgaa
8461 gatcagtgag ttgtgcatgc ccagcctggc ccgcaggggc aggtaatccc aacccaaccc
8521 tgagcctggc cttttccttc acagccaatg ctgggatggt gtctgatgag gagttggagc
8581 agatgctgga cagtgggcaa agcgaggtgt ttgtgtccaa tgtgagtggc cacagccagc
8641 ccctctctgc tgtgcctccc atcccctctg agtcctgtcc gtttctcgac ctcctgggct
8701 caggtgatcc tcctgcctca gcctcccgag tagctgggac tataggtgca agccactgca
8761 ccccgcttgc tgtggccctt tctgattaag ggcaccctga ggcctctaag ggaattaatt
8821 agcctgcctg gagtcaccca tcagattcca ggctgagggc tccccagaag ctcaacagga
8881 gtttctgacc tgctgtcggt ctccctgtga acagttgccc cactcctgtc caccccccag
8941 atcctgaagg acacgcaggt gactcgacag gccttaaatg agatctcggc ccggcacagt
9001 gagatccagc agcttgaacg cagtattcgt gagctgcacg acatattcac ttttctggct
9061 accgaagtgg agatgcaggt gggtgccccg cgcagcccca gacgtgagac caggctcagt
9121 ccaaactgcc agMctcccgc caYccttaga ttctctccct gaggcttttg tgtcttccag
9181 gtttggccat gcccccagat tggtgcttat tcctatcctt agctgtaccc cgagaatggc
9241 acctgcctct gctgctacac agatgcccac tcccttctgc atagcaccct gccccctctc
9301 caaaacttga gcctgcccag gtctggcccc agccctcact ccccctccac taacagcatc
9361 cacccttata cctctcagag gtccagtcag agttgcccta gaggggctgc ctcctaacat
9421 ctgtacaagg ctggggtggg ggcggcgttc ccctggccct ggttgtgagt Wgagttgagc
9481 ttccagccct gtcctggagg agctggcctc agtcatgcta cagccaatgc ccttttgcag
9541 ctgagactta caggaaagag atctcattca gtaggagtac tgagacctga ggctggtggt
9601 gccaggagga ggcagggata gggagggctt tgcagcagct gtagataggc ctggaagaat
9661 gggtaaattc agacagattt gtgaaggcac agttcaccat ctgtgaaagg tatgagccat
9721 ttgaggccct tagctccaag ctaccactgc agatagaggt tgtatgggat aagtgagcag
9781 gggacaaggg actacatgat agaaggggcc tggaagccat ccccaaggag tctgaacttt
9841 tgtcagatca agtcttgccc ttgtctttgt tagtgcaatt tttttttcct gccaggaatg
9901 ttcttcagtc atctggggtg gggtgggcaa aggcatcctt acctccctga accaccccat
9961 cctctgagca gggggagatg atcaatcgga ttgagaagaa catcctgagc tcagcggact
10021 acgtggaacg tgggcaggag cacgtcaaga cggccctgga gaaccagaag aaggcgagga
10081 aggtgagcct cccaggcccg gccactgccc caggcaccct gtgtgacttc cctgaccccc
10141 tcctctccca cagaagaaag tcttgattgc catctgtgtg tccatcaccg tcgtcctcct
10201 agcagtcatc attggcgtca cagtggttgg ataatgtcgc acattgttgg tgagatgttg
10261 tgggctgccc cctggcctgc cccagccctg gccccagccc tccctcctcc ctcagaccct
10321 gttctccctc ctttccttac aggcactagg agcaccagga acccagggcc tggccttctc
10381 tcccagcagc ctggggggca gggcagagcc tccagtcgga ccccttcctc acactggccc

10441 ctatgcagaa gggcagacag ttcttctggg gttggcagct gctcattcat gatggcctcc
10501 tccttcaggc ctcaatgcct gggggaggcc tgcactgtcc tgattggccg ggacacacgg
10561 ttttgtaaaa aattaaaaaa caaaaaaaga gcatagaaag ccctgtgcac gtgtgttcct
10621 ggaagggctg gcccaaggct tccgggcatc caacctcctt acctcctgga cgtccccagg
1H9


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
10681 gccaggtctg gccctggctg ctcaggtcaa actgccaggg gtgctgtgcc cacagcaggc
10741 tggttctgcc tttctgcacc cccataggaa tgggtgggca gggaggggta acaccggcat
10801 ctagctcctg gctcagtact gtccccggga aaggaccact gtgagtatct gtcttggaaa
10861 tgatgaggct gaccaggcca ggctgggacg caggtgagat gggggtttgg gtggcatcag
10921 tgggccttct tgtggcccag aggaagaggc accatgaaaa aatgcctaat tgaggctgtc
10981 actttggatg cagtggatag ggatggtctg gtttcagcag ggatgacatt ggagtgggat
11041 gttaagctgg ggaagaggtt gccagtcaga aagcacagga ggccgggccc tgtgaccaac
11101 aaaagcatca tcttttacat aagcgtttag gcagggtgtg gtggctcgca ccagtaatcc
11161 cagcactttg ggaggcccag gcaggaggat ctcttgagcc caggagcttg agaccagcct
11221 aggcaggatg gggcaacctc ttctctttag agaataataa ttttacaaat tagccaggcg
11281 tgatggcaag tgtctgtcgt cccagctact ccagaggctg aggtgggagg atcgcttgag
11341 cccaggagat taaggctgca gtgagccatg gtcatcccac tgcactccat cctgggtgac
11401 agagcgagac cctgtctcaa aaataatagc aatcatcatc agtagcagca gcagcagcag
11461 cagcagcata gagagccagt gatcctggat cagtgcacct ggttgctgag ggttacctgg
11521 ctgaagcagg tggtggcagc agaaaagcct gacctctgat ttcttccata aggtacctga
11581 aatccaagcc ctgactaaat ttcttttttt cttttttttt gagacagagt cttgttcttt
11641 tgcceaggct ggagtgcagt ggcactatct cagctcactg caagctccgt ctcccaggtt
11701 cacgccattc tcctgcctca gcctcccgag tagctgggac tgcaggcacc cgccaccaca
11761 cccggctaat tttttgtatt tttagtagag acggggtttc accgtgttag gatggtctcg
11821 atctactgac atcgtgatct gccctcctcg gcctcccaaa gtgttgggat tacaggcgtg
11881 agccaccgcc taaatttcta agggctccta gtcctgatgc ctaatttctg gagtggacgt
11941 ggctcctgtt ccccgacacc tagagttttt gtttgtttgt ttgtttgttt tgagacagag
12001 tctcgctctg tcgcccagcc tggggtgcag tggcgcaatc tcggctcact gcaagctccg
12061 cctcccgggt tcacgccatt ctcctgcctc agcctccaga gtagctggga ctacaggcgc
12121 ccgccaccat gcccggctaa tttttttttt ttttttgaga cggagtcttg ctctatcgcc
12181 cagactggag tgcagtggtg cgatctccgc tcactgcaaa cttcgcctcc cgggttcacg
12241 ccattctcct gcctcaggct cctgagtagc tgggactaca ggcacccgcc accgcgcccg
12301 gctaattttt tgtattttta gtagagacgg ggtttcatcg tgttagccag gatggtctcg
12361 atctcctgac ctcgtgatcc gcccgcctca gcttcccaaa gtgctgggat tacaggcatg
12421 agccaccgcg cccggccccc gacacctagt tttaaagggt aagccggctc ctggcacctg
12481 cctacttgca gtagggcggc gcctagctct gacctccaag gtctggggac tgcgtcgcag
12541 ccgcccagtc catcccactt tcaatcttac aggcccctgc tgttgctgcc gctgccgccg
12601 ctcccagctg cccagtctgg cgggctcagt cccgcgttgc catgtgtggg agaccgcgtc
12661 gcgtaagcgc tggatgtggc ttcgctgatg cacattggac cgggctctgg actgggctag
12721 gggaagggca ggagggcgga attgggcccg agggccaggc ctcgccgacc cccgactgcg
12781 cctcccggtg gccccgcagc gcctcccggt ggccctggag tgcaggtctt accgtccgag
12841 atcgtccgca actgggcgag ctgtgcatgg ggcgtggcta aggccgtggt ttggttacga
12901 ttggccagcg ggacttaagt gttgtctctg aagagcatgg acattagtct ggagggtcct
12961 ggaagagtga tccccgcccc accatcaaat ggcgcttagg tctaggaagc gggtgtgggt
13021 ggggccttag ggcgaggcgc agacataccc cgaagtggtt ggattgtata ccgcaagggg
13081 ctggatcgaa ccccccaaag acactggaag gctgtgtggc tgaggagggc ccggcagatc
13141 cagtgtgtcS tgggctttac aggaaagagc tccaccttct ctggagtgtg cagatgcgat
13201 ctaggtgtgt ccacccgatg ggagctgcgg gccgggcaga tgctgcccca gtacaaagct
13261 gatttggacc tggggcctct ggacttccct gattctctgc ttgcatctcc agcaaagtcc
13321 tgtcccgttg gctgccttca tccactctct cacttctctg ccttcagagt aaaattgcaa
13381 gatctgtggt gcttactggg atctgataga gtctctcggc atccactgtc tatgcagcgg
13441 gtgtccacct gcagcggggg ccatgtgcag cggggggcca cgtgcagtgt gtgcctcttc
13501 ttagccatgc tggacagcgc cgcccctgaa aagcagctcc ccggtttcac ccagaaagcc
13561 atccagaacc tcctggaaaa ggtggcctga tggccaagtg gcctcggatg ccaggctcaa
13621 tcctttgaac ttttcctgtg ggctgtcagg acccatagaa ggtctttgag caggtgagtt
13681 tggagcagat ctggtaggca agcgaacaga tggatgYgtg cactggagat tccgtgggtt
13741 cccctgtgta catctcttcc ctttgggaaa ctgccctgag tgaggggcta agggcaggat
13801 ttgcattgaa atcctagctt tgctgctgtc agcccaactt ttaggcaaca gggtcttggt
13861 ttgatgtgac atttccaagt ccatcttgta tcacaacctg tcagctgcag ctcacttatt
13921 caatctattg tggttcaagt tcccaagaaa atgaatcagt ctggtctgct ctccagatca
13981 gattacgttt acttgcctag gaattgtctg ccctttaact caagactttg cactgttgtt
14041 cacatttgta atcccagcac tttgggaggc caaagcagga gtattgcttg agcccaggag
14101 ttcaagacca gccagggaaa tataacaaga ccctatctct acaaaaatta aaattaggtt
14161 gggcactgtg gctcatgcct gtaatcccag cactttggga ggccctggca ggtggatcac
14221 ctgatgtcag gcgttcgaga ccagcctgac caacatggtg aaaccccgtc tctactaaat
14281 acaaaaagtt agctggatat ggtggtgcag gcctgtaatc ctacttggga ggctgaggca
14341 gaagaatcac ttgaacccgg gaggtggagg ttgcagtgag ccgagattgt cccattgcac
14401 tccaacttgg gcaacaagag caaaactccc tctcaaaaaa aaaaaaaaaa aaaaaaaagc
14461 caggtRcatg tcagtggtac gtgcctgtgg tcccagctac ttgggaggct gaggtgggag
14521 gattgcttgg gcctggggtt gagaccacag tgagccaata ttgcaccact gcactccagc
14581 ctggacaaca gaataatacc ctgtctcaaa aaaaaaaaaa aaaaaaaaga aaaaaaagaa
14641 aagaaaaaga ctttgccctt gagtcaagac tttacccttt tacccttggc taagatggat

14701 gtaggaagtg acatggtaca aaatgctgca gcagagcgtg tgtatgtgct ggaagaggag
14761 ttgactaggg cagtgattga catctctgtt ccagatattt gcttaccttc cctgctgggc
14821 ccctccctat aggagcatta tatgctcatt ccctacttac aataggtttg gctataggac
14881 ttgctttggc cagtggaata tgggtaggaa ggcaaaatat cggccgggcg caatggctca
~~n


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
14941cacctgtaatcccagcactttgggaggatgaggcgggtggatcagctgaggtcaagagtt


15001cgagaccagtctggccaacgtggtgaaaccctgtctctactaaaagtacaaaattagcca


15061ggcatggtggcacgggcctgtaatcccagctgctaggaaggctgaggcaggagaatcact


15121tgaacccgggaaggaggaggttgcaatgagcccagatcatgccattgcactccagcctgg


15181acaaaaagtgaaactccgtctcaaaaaaaaaaaaaaaaggtaaagtatcacttctgcata


15241gaagctttagggcaccattgagtactctagcagcttccagtctcttctccctctgctcag


15301gctcataaacctggcagtttccagatctagacttctctttcagcctgcaacccagaatga


15361caatgacatgaagctgggctacagcctacctataaaatgatgcagaatttaagaaataaa


15421tctctcttgctgtgagccattgatatatggaggttgtttgttagcacatccaaatgttta


15481aacaaactgttacagaattaatacccagaagtggtgtgctgcaacaataaaaattgagcc


15541tcagccgggcacggtggctcacacctgtaatcccagcattttgggaggccaaggtaagtg


15601ggtcacctaaggttaggagtttgaaaccagcctggccaacatgacaaaaccctgtctcta


15661ctaaaaatacaaaaaaaattagccaggcatggtggtaggtgcctgtaatcccagctagag


15721gctgaggcaggagaatcgcttggacccaggaggcagaggttggcagtgMgtcaagattgc


15781gccactgcactccagcctgggcgatggagtgagactccatctcaaaaaattaaaaaataa


15841aaataaaaatattattaaaaattagccaggtgtgatggcatgtgcctgtagtcccagcta


15901cttgggaggctgagatgggaggatcacttgagcccaggaagcagaggttgcagtgagcca


15961agattgcaccactgcactccagcctgggtccaaaaaaaaaaaaatceccagccaggcatg


16021gtggctcatgcctgtaatcccagcactttgggaggctgaggtgggtgctgaggtcaggag


16081tttgatactagcctggcaaacatggtgaaaccctgtctccactaaaaatacaaaaattat


16141ccaggcatggtggtgggcacctgtaatcccagctactcaggaggctgaggctggagaatc


16201gcttgaaccttggatgcggaggttgcagtgagccaagatcaagccactgcactccagcct


16261gggcgacagagcaagactatctcaaaaaaaaaaaaaaaagcctaaactatgtaaactata


16321tgacattgacgttgagctggacagtggctggtaagggaactgtcattggaagttggaaag


16381atggtgacgtgtgttatgcaatggtgaatcgtttggttaaactgtaagcttatgaccaaa


16441tgagctttaggctttaggtaaagaactggggaaagggagtattggtagcatgctgtcact


16501actattgcatgcatttgaggagttactagaagaaagagatgactcagaaattaaatggtc


16561agtttataagcagaaatggaagagaatatagaaattcgaggcaagtgatccacattttca


16621gtaaaagatacaactgagaaagtccttgagccacaaggttttcgtttttgtttttgagac


16681agtcttgctcttgtttccaaggccaccttctgggttcaagcctttctcctgactcagcct


16741cccaagtagctgggattacaggcgtgcaccaccacgctcagctaatttttgtattttcag


16801tagagacaggtttcaccatgttggccaagctggtcttgaacttctgacctcaaatgatcc


16861tcccacctcRgcctcccaaagtgctgggattacaggtgtgagccactgcgaccggctgag


16921ctacaagttttgattaaaagtcatctttgtggcaagggccatatcaagtatatggctatt


16981atgccctttgtaaaaatctccaaactgatcaaagtggttcctaataaatcctctcagcta


17041gtcaagatgattcaaaggaaagaggttaagagtgtaactcaccttggctgggcgtggtgg


17101ctcacgcctgtaattccagcactttgggaggctgaggtgggcggatcacctgaggtcagg


17161agtttgagactagcctaaccaacatggagaaaccccgtctctactaaaaatacaaaatta


17221gccaggcatggtggtgcatgcctgtaatcccaactacttgggaggctgaggcaggagaat


17281tgcttgaacctgggaggcggaggttgcagtgagccaagatcacccatggcactccagcct


17341gggcaacaagagtgaaactccatctcaaaaaaaaaaaaaaatgtagcttacctgagggag


17401tcagtaggctcaactacagttaagtctaacgtcatggttatgtctgaaaagaattatggg


17461tatgctgttgacccatggatctgaatggagtaaaatacgtaagttcagttttggagggaa


17521ttgccctgcttcccctgcctaacaccccctcaccctgacaaaaagccaccaggttaaatc


17581ttgaccatgagtgttcaatacttagtatgatttttaggtccccaagtttctttctttttt


17641tttatttcggagaccgggtctcactctgtcacccagcctggagtgcagtgatgcaaccac


17701agctctctataacctcgaacttctgggctcacacgatcctcctgcctcagcctcccaagt


17761agctgggactacaggcccatgccaccccagcaggctaatttttgtttttcaaattttttt


17821gaaacaaaatctcactctgccacccaggctgaagtgcagtggcacgatcttggctcactg


17881caacctccgcttcctgggcttgagtgatccacttacctcagcctcccaagtagctgggac


17941tacaggtgtgcgctaccatgcccggctaatttttgtatttttttggtagagacagggtct


18001tgctatattgcccaggctggtctcgaactcctgaactcaagcgattcacctgtcttggcc


18061tcccaaagtgctggcattataggcgtgcagtgtaccaccatgcccagcctatttttgttt


18121tgttttgctttgttttgttttgagatgaagtcttgctctgtcactccagctggagtgcag


18181tggcacaatcaagcctcactgcagcctctacctctagggctccagtgatccccccacctc


18241agccttctgagtagctgggactacaggcatgcgccaccacacctggctaatttttctatt


18301tttttctggagaggatttcagcctgttgcccaagctggtcttgaacttctggtcttaagg


18361agttctccctcgttggcttcccaaagtgatgggattacaggtgtgagccaccatgcccag


18421cctaatttttgtatttcaggtttttttttgttttgttttgttttgtttttagtagagatg


18481ggggtctctgtatgttgcccaggctggcctcaagcaatccttgcctcaagtgatcctcct


18541gcctYagcctctcaaaatactgtgattgcagatgtgaaccaccatgcccggcctgggtct


18601ccaaatttcttttttttttttagagacggagtctcgttctgtcacccaggctggagtgca


18661gtggtgtgatctcggctcactgcaagctctgcctcccaggttcacgccgttctcccgcct


18721cagcctcccgagtagctgggactacaggYgcccgccaccatgcccggctaattttttttt


18781gtatttttagtagagacagggtttcactgtgttcgccaggatggtttcgatctcctgacc


18841tcgtgatctgcccgcctcggcctcccaaagtgttggggttataggcgtgagccaccgcac


18901ctggccatgggtctccaaatttctatgggcatgaaggagactgagaaagctactctactt


18961cagaaagacataaccaccagtgtcctctcaattgtggccaaggagaataagtggaaaagg


19021gtggtttactctaagggcagagccaagaacatggtgaagaatgaactagggaactcttcc


19081cactcccagggaaaagtgggggttcttctcaacatctgcccaKcagcactttagacttag


19141tggggcccagagcctgctgtgtgtctcctgtccttccttccttttttttttttttttttt


171


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
19201 tttttgagac agagtttcac ttttgtcacc catgttgtag tgcaatggca ctatctcggc
19261 tcactgcaac ctctgcctcc tgggttcaag cgattctctt gcctcagcct cccgagtagc
19321 tgggactaca ggtgcatgcc accacgcctg gctaattttt ggttttgggg ttttttgttt
19381 ttgtttttga gacggagtct tgcactgtcg cccaggctgg agtggaatgg cacgatctcg
19441 gctcactgca acctctgcct cctgggttca agcgattctc ctgtctcagc ctcctgagta
19501 gctgggacta caggggcccg ccaccacgcc cggctaactt tttgtatttt tagtagagac
19561 cgggtttcac tatgttggcc tggctggtct tgaactcctg accttgtgat ctgcccccct
19621 cggcctccca aagtgctgga attacagacg tgagccactg cgcctggcta atttttgtat
19681 ttttagtaga gacaggtttt caccgtgttg gccagggtgg tctcaaactc ctgacctcag
19741 gtgatccacc ggcctcggcc tcccaaagtg ctgggattac aggcatgagc caccgcaccg
19801 ggccctgtcc ttccttctga acgggagtgt gctctgctgt tctcctgtcc ttgttctgct
19861 ttatatgttg gatgtgttcg tgtgtgtgtg tgtgtagaaa tggggcacag gtaacttgtc
19921 tctgtctctc tcttattttg tagctcatag gtctctgaat caagagaagc cacatctgga
19981 cctgatatag aagagactat tagagatcct gggcttgagg ctgattccat gtcagatggg
20041 tcacttaggt ggtctccctt gggaagggga tgcatttatt ttgcatatgg aagaaaatgc
20101 aaaggcagta tttgtaagga agagggcaga cgggggaaga ttttataatt gttcaaaaac
20161 attcactggg atgtgtgtgg tggctcacgc ctataatccc agtgctttgg gagggtgaag
20221 caggaggatc acttgaggcc aggagtttga gaccagcatg ggcaacatag tgagacccta
20281 tctctacaaa aaataaaaca ataaaaaaaa attagctggg cgtggtggtg cttgcctgta
20341 gtcctagcta cttaggaggc tgaggtggga ggatcactta agctcaggag gtagaggctg
20401 cagtgagtta tgattgcacc atgcacctat gcactccagc ctgggcaaca caacaaaaca
20461 ctgactctaa aaaaacaacc aacaaaaaaa aatcacatgt attcactggc cctctctttg
20521 gggacctgct acatagaatg gttttttgtc cccagttcac tgacatcagg tatggctatg
20581 tggcttgctt tagaccatgg actttgagtg gaaatgacat gtgccacttc cacgaggaag
20641 ctttaaaagc cgtcatgggg tctgccacct ttcctctctt cggtgtctgg agacggaaag
20701 ttccagcttg agacttttcc ttcagacagg gctctRgaat gaagatagca tagaacagag
20761 tggtcccatg gaggacatgg atatgagtga gaaatcaaca tggtgttgtg agcccctaag
20821 atttgggggc tgctattact gcagcgtaac tggatcccag ctgatagatg cagcctccct
20881 gtgggatacc ctgctcaggt atcctttccc atcaccatga caactgacac accataatga
20941 gctatgctga tgttaggaag tctccgcctt tgctcctctt cagagctgtt caccctcagg
21001 tcctaaccag tgagcctatt tctttttttc tttctttYtt tttttYtttY tgagaWggag
21061 tcttgctctg tcaccaggct ggagtgcagt ggtgcgatct cggatcaatg caacctctgc
21121 cttctggatt taagcaaata ttgtgcttca gcctcctgag taggtctgga actcctgacc
21181 tcaggccatc cgccagcttt ggccttctaa agtgctggga ttacaggcat gaaccaccgt
21241 gcccagccaa gccgagtctt cttgattctt gctggcattt ggcaactagt agcagctgct
21301 cacaggaact gtaaaaacat ctggtggggc ccagaccttc tagcatcaac atggtgccta
21361 gtaaatatca atctcacatg catcctgaga tgcattaaaa agaagctgtc caggccgggc
21421 acgggggctc acgcctgtaa tcccagcact ttgggaggca gaggcgggtg gattgcttga
21481 gcccaggagt ttgagaccag tctaggaaac atggcaaaat cctagctcta tttttaaaaa
21541 gggggggaaa aagaaataaa aaagctgggc atggtggttc acacctgtaa tcccaacact
21601 ttgggtggct gaggcaggtg gatcacttga gagaccagcc tggtcaacac catgaaaccc
21661 catctctact aaaaatacaa aaattagcta cacctcatgg tgcacNcctg tagtcccacc
21721 tactcgggag gctgaggcag gagaatcgct tgaacctggg aggtggaggt tgcagtgagc
21781 ccagatcacg ccactgcact ctaacctggg ctagagagtg agactctgaa aaaaaaaaaa
21841 aaaaaaaaaa gagaaaagaa cataatgttt ggccaggcat ggtgccttac acctgtaatc
21901 ccagcagttt gggaagccga gggggcggat cacctgaggt tagttcaaga ccaacctaat
21961 caacatggtg aaacccatat ctactaaaaa aaaaaaaaaa attagccagg cgtggtggtg
22021 gatgcctgaa atcccagcta cttgggaggc tgaggcagaa gaattgtttg aaccctggag
22081 gcagaggttg cagtgaaccg agattgtgtc actgcactcc agcctgggcg acaagagtaa
22141 aactccgtct caaaaacaaa acaaaacaaa aaagaatcat aatggttagt aagtgaaaat
22201 tctgaattag tttgtgtatg tgtattgttg catataatag agacccaaat taactgtggc
22261 ttaaataaga tagaagttta tttctctctt ctataaaagt ccaagttagt atgatggatc
22321 tttccatgaa atcattagga gccagatttt ttgtatcatt cattcattca ttgattcatt
22381 actaccatta atagagacaa ttttctgcac cattcaggct ggagtgcagt ggtgcaatca
22441 taattcactg taacctcaaa atcctgggct ccagcgattc tcctgcctta gccccaacaa
22501 agtagcaggg actacaagca catgccacca cgcctggcta atttttcttt ttcttttttg
22561 tagaggtggg gtgttactat gttgcccagg ctggtctcaa actcctggcc tcaagtgatc
22621 ctcctgcttc accctcccaa agctctggga tgacaggcat gagccactct gcccctccag
22681 gtctttttta tcttgttgct gttccatccc tagggcgttg ccctcaccca catgatccaa
22741 tatgattcac caccacttcc acagtctggc ccttctgagg ggtgatggtt tgccctttgc
22801 cctaaagagc atgattcaga agtacagatc atttttgctc taatccccat agccaggatg
22861 tagtcatatg gctacatccc gatgaaagtg ttgctgagaa atagaatctc taccctgagc
22921 agctttttgc ccagataaaa gttcagttac tctgggagaa gggtagaatg gatactgggg
22981 gaccataagc tgttgccacc acacacattg aatgttaacc catcccaact gtatcaattt
23041 ttCCttCCtt tCCttCCttC CtCCCtCCCt CCCtCCCtCC CtCCCtCCtt CCttCCttCC
23101 ttCCttCatt CCttCCttCC tttgttCCtt tCtttCgaCa gtCtCCCtCt atCCCCtagg
23161 ctggagtgcR gtgttgccat ctcggctcac tgcaacctct gcctcccagg ttcaagcaat

23221 tctcctgcct cagcctcctg agtagctggg attacaggcg tgctccacca tgcccagcta
23281 atttttgtat ttttagtaga gacaggattt ccccatgttg gccaggctgg tcttgaactc
23341 ctgccctcag gtgatccacc cacctcagcc tccaaaagtg ctgggattat aggcgtgagc
23401 cactgccttg gcctcaaacg gtatcaattt tctgttactg atttaaccaa ttatcataca
177


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
23461 ctcagtggtt taaaaccaca cacatttact ttcttacagt tctggaagtc agaagttcaa
23521 aatcagtttc attgagccaa tgtctggtgt cagcagggct ggtttttgtt ggtggctctg
23581 gtggacaatg tttccttgcc ttcttcagct cttttttttt tttttttttt tgagacaggg
23641 tctcgctctg ttacccaggc tggggtgcag tggtgcaatc atagctcact gcagcctcca
23701 tctcccaggc tcaggcgatc ctcccgtgtt agccttctca gtagctggga ccacaggctc
23761 acgccaccac gccctgctaa ttttgtttat tttttgtaga gatgaggtct cactccattg
23821 cccagactgg tctcaaagtc ctggattcag gagatcctcc tgcctcagcc tcccaaaggt
23881 ctgggattac aggtgtgagc cgttgcaccc caccctcttt cagtttagaa aggctacctg
23941 tattccttgg ctggtgggtc catcctccat tggaaagcac atgaatccat ctctgccttc
24001 atcatcactc cactttctcc tctgagactt attcctcctg tgtgcctctt aggaggatgt
24061 tcatgattac ataccgccct cttggataat cctgaataat ctctccatct caggatcctt
24121 cacattttca aaatcccttt caccatataa cgtgacattc acagattcca ggaataggac
24181 gtagacatat ttaggggggt tctctattca gcctactgta ccatgccatt ccacacttaa
24241 ctccttcact catttattca taaaatatgt attgagcaag acctgtgtgc caggcattgt
24301 gttaggtgct agagaaatag aggtgaaaat acagacaagg cctctgcttt catggagttt
24361 atattctagt gaagaggaca agtaaatagc taagctattc tttttttttt tttttttttt
24421 tttgagacgg agtctccctc tgtcgcccag gctggagtgc agtggcgcaa tctcggttca
24481 ctgcaagccc cacctcctgg gttcacgcca ttctcctgcc tcagcctcct gagtagctgg
24541 gactacaggc gcccgccacc acgcccagct aattttttgt atttttagta gagacggggt
24601 ttcaccgtgt tagccaggat ggtctcgatc tcctgacctc atgatccacc cgcctcggcc
24661 tcccaaagtg ctgggattat aggcgtgagc caccatgccc ggccaagagc taagctattc
24721 taagctataa cgtgtattat caaaacaatt aaggccaggc acagttgctc acacctgtaa
24781 tcacaacact ttgggaggct gaggcgggtg gatcatttga ggtcaggagt ttgagaccag
24841 cctggccaac atggtaaaac cctgtctcta ctaaaaatac aaaaaaatta tccaggtgtg
24901 gtggtgcatg cctgcagtcc cggctactcg ggaggctgag gcacaagaat aagaattgct
24961 tgagtgggga ggtggaggtt gcagtgagcc aagatcatgc cactgcacta caggctagga
25021 gacagagWga gaccctgtct taaaaaaaaa gcaattaggc caagtgcagt ggctcatgcc
25081 tgtaatccca gcactttggg aggccaagga gggcagatca cgaggtcaag aaatcgagac
25141 cagcctggcc aacatggtga aaccctgtct ctactaaaaa tacgaaaatt agctgggtgt
25201 ggtggcgcgt gcctgtagtc ccagctactc gggaggctga ggcaggagaa tgccttgaac
25261 ccgggaggtg gaggttgcag tgagccgaga tcacgccact gcactccagc ctgacgacag
25321 agtgggaatc catctaaaaa aagaaagaaa gaaattggct ggagaatcgc ttggacccag
25381 gggtggaggt tgccatgagc tgagattgtg ccactgcact ccagcctagg caacaagagc
25441 aaaactccgt ctcaaaaaaa aaaaaaaaaa tcccagcact ttgggaggcc aaggagggca
25501 gatcacgagg tcaagaaatc gagaccagcc tggccaacat ggtgaaaccc tgtctctact
25561 aaaaatacaa aaaattagct gggtgtggtg gcgggtgcct gtagtcccag ctacttggga
25621 ggctgaggca ggagaatggc atgaacctgg gaggcggagc ttgcagtgag ccgagatcac
25681 accactgcac tccagcctgg gcaacagagc aagactctgt ctcaaaaaaa aaaaaaaaaa
25741 gaaaagaaaa gaaattaaac agtgtgatgt gacaaaaagt gatagggggt tggagacagc
25801 ttttctgttg gatggttagg aatggcttct tagaaaagat gactgacaca tgggaggctg
25861 atgtggcaga tcacgaggtc aggagatcaa gaccatcctg gctaacacgg tgaaaccccg
25921 tctctactaa aaaatagaaa aaattagccg ggtgtggtgg cgggcgcctg cagtcccagc
25981 tactaaggag gctgaggcag gagaatggcg tgaacccggg aggcagagct tgcagtgagc
26041 tgagatcacg ccactgcact ccagcctgga cgacagagcg agactccatc tcaaaaaaaa
26101 aaaaagaaag aaaagatggc tgacacagag ggcagagctg agagccaaga gggcagaaaa
26161 gagccataga aaaccatttc caggcctgga agcctaaagg aatttcccag ctggatttgc
26221 agttgctttg gattggtgac tcctttttac ctttcattgt taggggacct gcaggttcct
26281 ttgcctgctg tgcagctaca gctccattac accaagacaa tagggatgca gcagagagag
26341 ttactggtgc agggcaccta gtgcagagat gggaagaggc cctcaaatct atctccccga
26401 gcaattctgg gagagggttt ctaaggggac tgtggagggt aggggattgt ggagggtaag
26461 gttttgggca actgggtcat tgattgattg ggggaaggat gtagaagctg cgtttttggg
26521 ggaattagct ccttgtgggg tccttcaggt cagctgagtc agtagttcca tgaggacctg
26581 aaggaatctc ttttcttttc ttcttcttct tctttttttt tttttttttt gagatggagt
26641 ctctctctgt cgccaggcta gaggtgcagg gggtcgcagg ctagaggtgc agtggcatga
26701 tcttggctca ctgcaacctc cacctcccgg gttcaagcaa ttctcctgcc tcagcctccc
26761 aagtagctgg gactagaggt gcgtgccacc acacccagct aatttttgta tttttagtag
26821 agacagggtt tcaccatgtt ggccagggtg gtctcgatct cttgacttcg tgatcggccc
26881 ccgccccacc ctcggcctcc caaagtgctg ggatcacagg agtgagccac ggtgcccagc
26941 cttaattttt gtattttcag tggagacggg gtttcaccat gttgatcagg ctggagtgca
27001 atggtgcaat cttggctcac tgcaacattc gcctcctgga tttgaatgat tctcctgcct
27061 cagcctccca agtaactggg attacaggaa tgcgtcacca cgcccggcta attttgtatt
27121 tttttagtag agacggggtt tcaccatgtt ggtcaggctg tcttgaactt ctgacctcaa
27181 gtgatccacc tgctttggcc tcccagagtc tgaaggaata tctcaaaggg aacacttaat
27241 gttgtgtaat gtccaggttg tgatccatag agcagttaaa ggtaaaggta actataattt
27301 tttttttttt tttttagaca gagtctccct ctctgtcacc caggctggag tgcagtttca
27361 cgatctcggc gcactgcaac ctccgcctcc ctggttcaac caattctcct gcctcagcct
27421 ctcaagtgtg tgctgccatg ccaggctaat tttttttttt agacggagtc ttgctctgtc

27481 acccaggctg gagtgcagtg gcacaatctc ggctcactgc aacctccggc tcctgggctc
27541 aaacaatgtg ttttttcccc tagtactttg gtgtttgatt atcttttttt tttttttttt
27601 tttttttttg agatagagtc tcgctctgtc acccaggctg gagtgcagtg gtgcaatctt
27661 agctcactgc aagctctgcc tcctgggttc atcccattct cctgcctcag cctcccaagt
17'~


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
27721 agctgggact acaggcaccc accaccacgc ccggctaatt ttttgtattt ttagtagaga
27781 cggggtttca ccatgttagc caggatggtc tcgatctcct gacctcatga tctgcccgcc
27841 tcagcctccc aaagtgctgg gattacaggc Rtgagccact gcacccagcc tggtgtttga
27901 ttatctatta tgtcaaacag gctgggttta gtggctcacg cctgtaatcc cagcactttg
27961 ggagactgag gtgggaggat cacttgagcc caggagctga agaccagcgt agcaatgtag
28021 caactccctg cctctacaaa aagttaaaaa atttagctgg gtgcaccagY agaccagctc
28081 ctcaggaggc tgaggaggga ggatcactcg agcccaggag ttcaaggctg cagtgagctg
28141 tgatcatgcc actgtactcc agcccaggca atggagcgag accctgtctc aaaataaata
28201 aaacatgaag aatgtcgaac acattatctg gtttttgttt ttgttttctt tttttgagat
28261 gttgtctcgc tctgtcaccc tggctggagt gtagtggtgc gatctcggct cactgcaacc
28321 tctgcctccc gggttcaagc gattctcccg cctcagcctc ccgagtagct gggactacag
28381 gtacgtgcca ccatgcctgg ctaatttttg ttattttttt tttttcagta gggacagggt
28441 ttcgccatgt tggccaggct gttctgaaac tcctgacctc agatgatcca cccacctcgg
28501 cctcccaaag tgctgggatt acaggtgtga gccatcgtgc ccggcctgtt ttaaaaaacc
28561 atattggccc aactcggtgg ctcatgcctg taatcccagc actttgggaa gccaaagcag
28621 gaggattggt tgagcttagg agtttgagac cattctgggc aacatggtga aaccctgtct
28681 ctgcacaaaa atagaaaaat ttgccacctg tgctggtgtg tgcctgtagt cccagctact
28741 ctcaaggctg agggaggagg attgcttgta gagcctggga agtcggagct gcagtgagcc
28801 atgatcacac caccacactc tagcctgaca gaatgagacc ttatcccaaa agaaaaaata
28861 aatgatattg tattatatgt gaactttgaa ttatattgtg ttgtatctga agtttgaatt
28921 ttcacgttat gtttaaaaat cttggctggg cgtggtgggt cacgcctgta atcccagcac
28981 tttcggaggc caaggcgggt ggatcacctg aggtcaggag ttcgagacaa gcctggccaa
29041 catggtgaaa ccccgtctct actaaaaata caaaacttag ccgggcatag tgacatgcac
29101 ctgtagttcc agctactcgg gaggctgagg caggagaatc gcttgaaccc aggaggcaga
2916T ggttgcagtg agctgagatc gtggcattgt actccagtct gggcaacaag agtgaaactc
29221 catctaaaaa ataaaaaaga aaaagaaaaa ataatacaag aaattagccg ggcgtggtga
29281 caggcacttg tagtccctcc cagctactca ggaggctgac gcaagagaat tgcttgaact
29341 tgggaggtgg aggttgcagt gagctgagat cgtgccattg cactctagcc tgggaaacaa
29401 gagcaaaact cagtctcaaa aataaatagc ttgaacccgg gaggcagagg ttgcagtgag
29461 ctgagattgc accacttcat tccagcctgg gtgatagagc aagactctat ctctaaataa
29521 ataaataaat aatcctttag gatggcaatg aatttaagga ctaaactagg gagaatcgac
29581 tttttttttt aaaatggagt cttggtctgt cgcccagact agggtgcagt gggcgccatc
29641 tcggctcact gcaacctcca ccttccaggt tcaagggatt cttgtccctc agcctcccaa
29701 gtagctggga ttacaggcac ccgccaccat gcctggctaa tttttgtatt tttagtagag
29761 atggggtttc accatgttgg ctatggttgg ccaggctggt cttgaactcc tgacctgagg
29821 tgatctgcct gcctcggcct cccaaagtgc tgggattaca ggcatgagcc actgtaccca
29881 gcccattcga cattatttat ttatttattt atttatttat tttttgaggt ggagtctcac
29941 tctgtcgccc aggctggagt gcagtggcac aatctcggct cactgaaacc tccgcctccc
30001 gggttcaagc cgattctcct gcctcagtct cccgagtagc tgagattaga ggcaaccacc
30061 actatacccg actaattttt gtatttttca gtagagatag ggcttcacca tgttggccag
30121 gctggtctcg aactcctgac gtcagttgat cctcccacct cagcctccca aaatgctgga
30181 attaaagctg taagccagcg ggcctggtgg acatctttta ataatcagtc tttccattca
30241 ggtatatggt atatgtctcc atttacttag gtcttatttc atatccttca ggttggagct
30301 atcatttctt ttcatacagg ttttgcacat ttcttgtgag gtttattcct tcatggtcca
30361 tggattttgt tgtgaattgg gaatcctttt tccaccaagt atattttcta atttgttact
30421 ttagtataca ggaaagataa ctaattttta tctgcagttt attatctatg aaaggataaa
30481 agtagaacta ctcagtaaaa ggtttccata atcaaataag tatgggctaa acaaagctaa
30541 acagatgtgt tcactgctgg acttatcaat gcttgtgata attttttttt ttttttttga
30601 ggcagagttt tgctctgtag cccaggctgg agtgcagtgg cgggatcttg gctcactgca
30661 acctccacct cccgggttca agtgattctc ctgcctcagc ctcccgagta gctgggacta
30721 tggcatgcac caccacatct ggctaatttt tgtaatttta atagagacag ggtttcacca
30781 tgttgactag gctggtctca gaactgttga cctcaggtga tctgcctgcc tcagcctccc
30841 aaagtgctgg gattacaggt gtgagccacc accaccaggc aattgaagac gtatattcta
30901 tgaagaaatg ggtagatttt aatgaacaat accccttttg tgggcagatt cctaagtccc
30961 aggccctcac aacaaagggg cagtgggcct ggagatgcca gcttcagctg ccagagggac
31021 tgctcctcca gggccacccc agcccacttt tgatcaccaa gttttgatca ccaagaatcc
31081 caagaagggc acagggaatt tcctttctta cctgcccatg aaaccttttg tcactagaca
31141 tcctgaaaca tactttggga aactgcatcc aaagaccctt ctagtttcaa atctgtggat
31201 ccaggggtct ccactgaacc ttacctgatg cccaaactcc cacccattca ctcccaacca
31261 gaacacagaa gatgacctgg tgccaaaatg aaagctttaa tgagtgttac tcctagacag
31321 tcacgtctca gcttctgcca gcctccactg tcccagctct cttagctggc cgacagggga
31381 gctagttgct gaggggtagg gatctggagt ctaaagagca gagccaggca aaaggaggta
31441 caggaagccc ccgatggggg ctgggctccc ggagtgtggt gctggggggt catgggcttc
31501 aggccggccc ctcttcaggc attcctagca aagccaccag gggctccagg ggtgtggggg
31561 tccccatggg cacagggtgg gtgcgttcat gcttgcgcaa gtcgctggca ctcaagaagg
31621 ccttgggaca atgggggcag gtgtaggggc gcactgagct gtgagtgcgg ctgtgtttgc
31681 gcagcccagc ccggtcagag aagctcttgc cgcactRggt gcaggggaag ggccggagct

31741 ccgggtgtga gcgctcgtgc cgacgcagca gcgtcattgt ggagaaggtc tccttgcact
31801 ctcggcacac aaactggggg ggcttctcgt cagcctcctc accccccgcc tcgcctgccc
31861 cttccaaggg accaggagcc tcccggacac cagcatcttg gcattccaca tgctccaccg
31921 tcatgcccac cacctgccac tgtgtggcca tcacaccacc tgactccggg ggcagcccta
174


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
31981 gcagccctgc tggagggtcc cccagccccg cccctgctRc cggggcggct gaactctcac
32041 ctgccacgcc cacaggcagc gccaacccca ccaccagctc ctgtgcaggg ggcacacccg
32101 cggcctcact gcttcgatgg gtccgctcgt gcttcctcag gctcgacgac accacaaagg
32161 atttcccaca tgcgttacag tggaaggggc gctcccccga gtgcacccgg ctatgcttcg
32221 tgaggctggc acgctcggcg aaggctcgcc cgcactcctc acagcggaag ggccgctggc
32281 cagagtgcac cagcgcgtgc cgcttgaggt cccaggaYgc cacgaacgtc ttgtcacatt
32341 gcaggcactt gaacggccgg tcgcctgtgt gcacacgccg gtgcatggcc aggtccgccg
32401 gctgccggaa gtccttgccg cacttctcgc agtggtatgg cttcacccct tcatgggcgc
32461 gctggtggcg acggaagctc gaggggtcgg agaacatgcg gccgcagcgc gggcacagga
32521 agggcttctc ccccgagtgc gtgcgctcgt ggctctggta ggaactgagc tgcgtgaagc
32581 ccttgccgca ggccgggcag cggtagggct tctgtgccgc gtggatgcgc tggtggcacg
32641 tgagcgagga tgagcgggag aagctcttcc cgcactcgga gcagaggaag gggcgctcgc
32701 cggtgtggga cctgcggggg tgtggaggac ttggcatgaa ggcgacagac ccataacgtg
32761 accccactgc ctgtctgggc tgtactttag gggctcccca aacgttcgtg ggggcctagg
32821 cttaatcccc taagagccac atggctgcac cccagaggaa gaagccttca ggctggctgg
32881 gtgtctctat tccaaagacc tgtctctgca cattaaagac caagatatgg gccgggcgcg
32941 gtggetcacg cctgtaattc cagcactttg ggaggccgag gtcaggagat cgagaccatc
33001 ccggctaaca cggtgaaacc ccgtctctac taaaactata aaaaattagc caggcgtggt
33061 ggtgggtgca tgtagtcccR gctactcggg aggctgaggc Rggagaatgg cgtgaacccg
33121 ggaggcggag cttgcagtga gccgagatct tgccactgca ctccagcctg ggcggcagag
33181 cgagactccg tctcaaaaaa aaaaaaaaaa aaagaaaaag aaaaaaaaaa aagaccaaga
33241 catggccagg cgcggtggct cacgcctgta atcccagcac tttgggaggc cgaggcgggc
33301 ggatcacctg aggtcaggag ttcaagacca gtgtgaccaa aacggagaaa ccccgtctct
33361 actaaaaata caaaattagc cgggcatggt ggcgcatgcc tgtaatccca gctactcgga
33421 aggctgaggc aggagaatcg cttgaacccg ggaggcggag gttgcggtga gccgagatcg
33481 cgccattgca ctctagcctg ggcaacaaga tcaaaactcc gtctcaaaaa acaaacaaac
33541 aaaaacaaaa caaaacaaaa cagaaaacca agatacgtgt cctccgcctt ttttttcctg
33601 ttccccaggc tggaatgcag tggcctgacc atagctcact gcagcctcga cctcccaggc
33661 tcaggccatc ctcccacctt atcctcccaa gtacccggga ctagaagtgt acatccccac
33721 gctcgggtaa tttttttatt tttatagaga cgaggcttgc tgtgttgccc aggctggtct
33781 tgaactcttg ggctcaagca atcctcctgc ctcagcctcc caaagtgctg gaattatagg
33841 cgtgagctat tgtgcccagc ctagaaacat gtcattaatg tagaggctga gaaaaagaaa
33901 aaaaaaaatg acctagacaa accaggcccc actcacacct cctggtctcc acaaaagacc
33961 ctcagaactg cccaactcca aaccccgccc cctttccagc tggcctacaa cggaggccaa
34021 tctgacccaa tcccattctc agagatcaac ctcaaggtgg ttgccacctc tgcccaatca
34081 ggggcaccaa tttctcccac atgcctagcc cctccccttg gatctgccat gcccaccttc
34141 ccattggctc actttaccct gagactcaaa cccaggcccc attggctgca gcaacgctgt
34201 cgccctgccc cggaaggcgc cctgccccgg aaggcRCCCt caccgctcat ggttgcggag
34261 gtccttgagc tccgcatagg ctttRccgca acgctcacag ctgtagggcc gcaggccagc
34321 gtgagtacgc cggtgcttgc ggaacactga agggtcagca aagctcttgc cgcagtcggc
34381 gcaggcgtaa ggccgctcgc ctgtgtggcc acgctggtgg atcttgagct tggagagcgc
34441 gccataggcc ttcgggcagt gcgcacagcg gaagggcagt tcgccagcgt gcgaggccag
34501 gtgcacgcgc aggcacacgg gctgcatgaa gcggcggccg cactcggggc acggaaaggg
34561 cttctccccc gtgtggctgc gcccgtggct gcgcagctcg ggtgccgtct tgtaggcctt
34621 ggggcatagc ggacacgcat agggcctagg cttggccgcg gagcctgaca ccttctcccc
34681 actggcttcc tctgccttag cttctgtctc tggctttggc ttcacctcgg CCaCCtCttC
34741 agagcagtct gccggcccat gtgtggcagc gtggcgcgct gccctgggcg cgtttggaaa
34801 tgtcttggta caggacaSgc acttgtagcg gcggcccgag cgcttgtagc cgggggctgg
34861 ggaccgggcc tctgcagcct ccacttccat ggccttggtg aacggggttt ctctgcaaga
34921 gaagcaaagt tagaccaaag ccacatacct tcgccactcc tgaaagcctc agagagaacc
34981 ctatctcatc tgcatttctc acctcggaac ccacacatcc ttcctgccca gcattcctgg
35041 ctctgacatc ctgcgttcgt ttcctccctg atctgctcat tgaagaaagg agttggacca
35101 agtgtccgca gagccactaa gaaaggaggc tgagggtcac aaaagattca cctacacgtc
35161 cccccccScc cccaacgggc ttttccaaac actgtggcat tcccagaggc ccaggttcca
35221 tctgtctcac catcttcctt cttcagctca gtgtccaaga actatgccag gataaagagt
35281 gtacccagac gtgggcctgg cctgaaggtc tccaagcgcc cagaaaagac agacctggga
35341 ccagaaaagg gctgagccaa tgggctaaat ctggtagctg gcactgtctg gaagtgacag
35401 gtccccagca tttgtgtttt ctttcctcct ctggatggtt agtcctcaga gacagcaact
35461 gttcacacag aattctggcc ttgcacagct gtacgggcct ccgccccaga ctggaatctg
35521 tccactctct gctctggaat cttgttggcc tgttcccaca actctggtaa tggagaatca
35581 ctcaaggcag cctgagccat tgctagcagc tggaagcctc tttctgagtc ataactgatg
35641 tatctgatct aacatggcct cctgggatac cagctctagc tgagatccct actttctggt
35701 ccagaaccca gacgccctcc acccagctgc tcctggggat catggttggg aggaaacagg
35761 attaatggct gtattagtct taacaccagc tcatcctccc tgggggatga agggaagagg
35821 attatggcag atccacttaa ggagtgctca gcagctgctg ctgggggaag gggtctgagg
35881 agtgggggct gcagggagcc aggtgtgccc agaggctagg gggcctacgt tctacttgca
35941 gccctgtgga ttactatgag acctcagtga aatgagtgtt gtttataaga ctatttccgc

36001 ccggctgggc gtggtggctc acgcctgtaa tcccagcact ttgggaggcc gaggggggcg
36061 gatcacgagg tcaggagacc gagaccatcc tggctaacac agtgaaaccc cgtctctact
36121 gaaaatacaa aaaaattagc cgggcgtggt ggcgggcgcc tgtagtccca gctactcggg
36181 aggctgaggc aggagaatgg tgtgaacctg ggaggcggag cttgcagtga gccaagatcg
178


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
36241 tgccaccgca ctccagcctg ggcgacagag caagactccg tctcaaaaaa aaaaaaataa
36301 aaagactatt tcctcatctg gacacgttag gggttggtgg cttctaagtt atgacactgg
36361 ggttcaggag gaggaaactg agctgagcca cgagggtgct aggggaaata cagagactca
36421 gggcccctta tgccaggaaa gggcgggaga agcagcttac ctggttgacc cagggaggac
36481 acaggagccc ctgacgcgtg gcaagggcca catccttaaa gtcagcaccc ttctgcctga
36541 aatcccggcc tcaggcctgc acgctgccct ccctccccaa ccccatgcag ccggtcttct
36601 cccaaaagta atgaatgatg tttcctgttc cctgctcaag aactttccat ggcttccacc
36661 acaccatgca aatccccagg tccttcctgc ttgttccaaa tctgacaagt ccttcactgg
36721 agccccactt ccaccaggag gatcctcaag catctcccct ttgggtttgg ccccaatccc
36781 acaaaactcc atcttattct cacttggtta tttcactttt cccactaaat cctagggctt
36841 agccaggtgt ggtggcatgc gccttaagtc ccagctacgt gggaggctga ggcgggagga
36901 tcctgtgaac ccaggggttc gaggctgcag ggaactatga tcgtaccact gcgctccagc
36961 ctgggcaacc tggtgagacc ccatctctac taaaaataaa aattagcaga tgtggtggca
37021 tgtgcctgta gtactgccta cttgagaggc tggggtggga ggactgcttg agcccaggag
37081 ttcaaggctg taccactgca ctccagcctg ggagacaggg caagacactg tctcaatcaa
37141 tcaatcaatc aataatcaat cctggggctt gaagataagt taaagggact gaattctaac
37201 ctttctgatg acttgaattc ttcctacagt ttccaaggga tccctcccta tttctggatg
37261 aggtactcac tacctcttcc agacggtttc tggagagtct gcctgataat gttcctcctt
37321 aataaaaatg atagcttggg ccaggttcag tggctcacac tagcactttg ggagaccaag
37381 gcgggtggat cgcttgagcc caggagttca agacaaggcg ggtggatccc ttgagcccag
37447. gagttcaaga ccagcctggg cgatatagca aaatcccatt tctacaaaaa atacaaaaat
37501 tagccaggca tggtggagca tgcctgtact cccagctact ccagaaggct gaggtaggag
37561 aaatgcttga gcctaaggag actgaggttg cagtaagcca agatggtgcc actgcactcc
37621 agcctggcaa cagagtgaga ccccatctca aaaataaata aataaataaa tgataaaaaa
37681 gatagttcac atttactgag cactcgccaa ataccaggca gtatcctaaa ctccttatgt
37741 gtattagctc agttaccctt catggcaacc ccatgaggaa agttctatta ttccattttc
37801 acagataagg gaaccaaggt ccagagaaat ggttcagtat tttgttaagt gcccagtccc
37861 tgaagccaaa ctgtctggct tcagattttg cctccatcac ttcccagctg atgtgaccgt
37921 gtgtaatgta ctgcatgtct tagaacctca gttttctaat ctgaaaaatg gagataatga
37981 Yagtacttac ctgacagagt tgggtgagga atgaatgagt caaaaataat tactgtcctc
38041 aattatcaaa gcgtcttctt agagccagac acattgctgg gtgtgctggt ttatttaatt
38101 taatgtctta taScttYctg agatagggat tcttgtccct actttacaga ggaataaatc
38161 gaggttccaa gagttaagtg acttgcccat ggtcccacaa tgggtaacct aagcagctgg
38221 gacttcagtc caggtgttta atttgcctta agttgctggg gtcttgctca gtggtctggg
38281 gcctcttacg cttgtctgct gcctccgcca gccccacagt gaccagaacc ctgagctcag
38341 gtcatacctg tgtcttctct catccttgca gaactgccct gagaccctgg ccggcaccct
38401 ttatgtctct gcttccctct cagagggctt gacccagtgg ttctgagctc tggcccttct
38461 actgcctctt gccagctctg ICgtctcagcc ttcctatctg tgagttagac accaggtagc
38521 tggaggggaa atccctcctc ccatggcact tcccagggga aaaggtaggg gagtgccagg
38581 ttggtctcag catgcgccca gctacacaaa gaggScaggt aggctaggtc tctgtctaac
38641 atcccaccat taaaaaaaaa aaaaaaaaaa atatatatat atatatatat atatataatt
38701 tttgagatgg agtcttactc tgttgcccag gctggagtgc agtggcgcga tcttggttca
38761 ctgcaacctc cgcctcctga gtagctggga ctacaggcac ctgccaccac acctggctag
38821 ttttttgtat ttttagtaga gacggggttt cactgtgtta gccaggatgg tctcaatctc
38881 ctgacctcgt gatccgaccg cctcggcctc ccaaagtgct gggattacag gcgagagcca
38941 ccaMgcccag actttttttt ttttttttat taaagagctt gaggtaggcc tcaggaatct
39001 gtattttaaa tacactctgg atcattccag ccaatacttt tgtttgtttg gttttgaaac
39061 aagatctcac tctgtcgctc aggctggagt gcagtggtgc agtcatggct tactgcagcc
39121 ttgacttccc agactcaagc aatcctccca cttcagcctc ccaagtagct gggactacag
39181 gcatgcacca tcatgcctgg ctaattttta ttttattttt agtagagatg aagtcttgct
39241 atgttgcctg ggctggtcta gaactcctgg gctcaagtga tcctcccMcc gcagcctccc
39301 aaagtgctgg gattacaggc gtgagccacc gtgcctgccc aaccaatact taagaaccaa
39361 acacacatcc ttaggtctcc acgagctctc aggagaggag cattttaagt gttcactaca
39421 cctctttttc agatattgag attaaggtcc ccacaaagga aaaactgtac acaaggacac
39481 acagctggtc aaggagccag actcgaaccc aagtctccat tctctccccc aggttgaatc
39541 atgagacttc ccactgctcc caggaaaaag accaatatct tttccatggc cagcatagcc
39601 ccaaaccatc taaatcctgc ctacctgggc agatcacttg aggccaggag tttgagacca
39661 gcctggccaa catggtgaaa ccccatctct actaaaaata cacacacaca cacacacaca
39721 cacacacaca cacacacctg cctacctcac ctcccactcc tctccctggc ccactgggct
39781 ctacccacag aggcctcctt tcttctcctc aaagagctaa attccttccc acctcagggc
39841 agtggcacta gcagttccct ctgtctgagc cactcttctc ccacgatctt tgtgtagctg
39901 tcttttttgg tgttatttgg atctcagctc ccagtcacct cctcaaaaag agctttcttg
39961 accacctttc cttttcttcc ccccttttaa tattccaaat tttttccttt tttaaccaac
40021 caaggagcac tgaatgacta cctttctcaa tgctatcttt acccctgata atcattctct
40081 atctactctt tattattatt attatttttt gacggaatct catgattatc tatcaagcag
40141 ttctcctgcc tcagcctcct aagtagctgg gactacaggt gcccgccacc acgcccggct
40201 attttttttt tttttttttt tttgagacgg agtctcactc cgtcacccag gctggagtgc

40261 agtggcacaa tcctggctca ctgcaagctc cgcctcccgg gttcatgcca ttctcctgcc
40321 ttagcctcct gagtagctgg gactacaggt gcccgccacc acgcccggct aattttttgt
40381 atttttagta gagacagggt ctcactgtgt tagccaggat ggtctcaatc tcctgacctc
40441 gtgatccacc tgcctcggcc tcccagagtg ctgggattac aggcgtgagc cactgcaccc
17~


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
40501 ggcccaatcc cggctaattt ttgtattttt agtagagatg gggtttcacc atgttggcca
40561 ggatggtctc gatctattga cctcgtgatc cgcccgcctc ggcctcccag agtgctggga
40621 ttacaggtgt gagccaccgc gcccggccct ttttttgaga cggagtctta ctctgtcccc
40681 caggctggag tgcaatggca caatatctgc tcactgcaac ctccgcctcc cgggttcaag
40741 cggttctcct gcctcagctt cccgagtagc tggaattata ggcgcccgcc actacatctg
40801 gctcattttt gtatttttag tagagagagg atttcaccat gttggccagg ctggtcttga
40861 actcctgacc tcaagtgatc cacccacctt ggcttcccaa agtgcttgga ttacaggcat
40921 gagccaccgc acccagccct ctttactttt taaaaaatgt ttttattttt atttatatat
40981 ttatttttga gacagagttt cactcttgtt gccaaggctg gagtgcaatg gcaccatctc
41041 tgctcactcc aacctccgcc tccccggttc acgagatttt cctgcctcag cctcccgagt
41101 agctggaatt acaggcatcc accaccacgc ctggttaatt ttttgtattt ttagtagaga
41161 tggagtttca ccatgttggc caggctggtc tcgaactcct gacctcagat gatccactgc
41221 ctcggcttcc cagagtgctg ggattacagg catgagccac cgtgcctggc ttatttttat
41281 ttattttatt atttattgtt attattattt gagacagagt ctccctctgt tgcccaggct
41341 ggagtgcaat ggtgtgatgt cagttcactg cgacctctgc ctccYgggtt caagcaattc
41401 ttctgcctca gcctcccaag tatttgggat tacaggtgcc tgccaccaca gccagctaat
41461 tttttgtatt tttagtagag atggccatgt tggctaggct ggtctggaac tcctgacctc
41521 aggtgatcca cccaccttgg cctcccaaag tgctgggatt acaggcttga gccaccatgc
41581 ccggcctatt tatttcattt ttatttattt attttctttg agagaaagtc tttgttgccc
41641 aggctggagt gcagtggctg catctcagct cactgcagcc tccacctccc ggattcaagt
41701 gattctccag cctcagcctc ccgagtagct gggactacag gcgaaagcca tcacacctgg
41761 caaacttttg tatttttagt agagacaggg tttcaccaca ttggccacgc tggtctcgaa
41821 ctcctgacct caagtgatcc gaccgcctca gcctcccaaa gtgctgggat tacaggcgtg
41881 agccaccgtg cctggccttt atttttattt agagattggg tctcactctg tcaccctgga
41941 gtgcagtggc tcaatcatag ctcacttcag cctcaaactc ctgcactcaa gcaatcctcc
42001 tgagtagcta ggactatagg cacccaccac cacacctcgc taatttatta aaaattcttt
42061 gtatatagag atggaggtct cactacgctg ccgacagtgg tctcaagaac tcctggcttc
42121 agatgctcct ccactWtggc ttcctaaagt gctgtgatta caggcatgag ccacagtgac
42181 cagcMcccct cctctctaat ttcctttatg gtgtcatctg gacaatactc cttgcaagct
42241 taccatgggc aaggtatcat tctaagcatt ttgtgcataa tactcaacta ctcaagccaa
42301 ctgcacagct gcctagcagt tcattatgag tgaatgtttg tgttccctgt ccRttcatat
42361 attgaaattc taactctcat tgtgactgta tttggagaca aggcctttat ggaagtaatt
42421 aaggctgaat gacRtcataa gggtatggcc ctggtccagt aggattagcg ttcttatgag
42481 aagtgacacc acaaagaaac aagcttacta gtcacggtcc cagccagtgt tcaaatccca
42541 aacacctgct ctctgagccc tgactattgc tttgctagca ttacacatct tatggtttgg
42601 ctgttaattc ttcatcacca gcaccagagt ccaggctggc aaagggctag gaaaccgatc
42661 atctgcctcc tctacaccca gaaccctgtg tggtgaccca aaacaaatgg aaagaaccaa
42721 cctcagatga aatttgaacc caggtctgta gcctctgcct cctccacagt aggagtttgt
42781 gagaatgtcc accaataact gtttattaac taaattcctc cacctttcca actccacaag
42841 gctcaactat tgccccaata tcccacagtg ggctccctgt cgtggcgatg aagccttgct
42901 ttgcctcact actggcttag gaaggggatg aagttctgct gtctcactag gcaagcaaag
42961 attcaatttc caaaaatcct aggctaggac cctggggcag ggatgaggag aaaaaggagg
43021 cacctcaatc ttcccatctc taaacaagca gtcaccacac aggcctcacg gccaggagtg
43081 acgtagtgag cggatgaacc ctgcagaagt gagcgctaat catatcctag gcctcctacc
43141 gggccagttc acaacctgat cccaacctac ttttccagcc tcagctccag cgacagagtc
43201 ctcctcccgg cagcgaccga acctccagcc acaattctca atcctccacc tctagatgca
43261 gtttcctggg ctcggggagc ccttgcctgc cttctccaac gggaaagccc ctttacatcc
43321 ttcaagaacc cccttcccta gtgccctcag gaatacttta tggcagtaga gaggtaaggg
43381 ccccacgccg ctctggacct cagtttcctc atcagtaaaa tggggtccct taagtttgtg
43441 ggagtttgaa gggcggtggg gcctacgaag cgcgccgagg agccgagagt tgcagaaacc
43501 cggagctcct cgctcctcgc aaccgtctgt acgcggcgcc cccgccagcc aggcagcccc
43561 tggagggcag gaccccggtt ataagcctca gaaaacgtgg cttcggagga cgtggcaagg
43621 aggactgaac gaaggatgag gagatgaaca aatgaatgga cggaaggccg aatgagggac
43681 aaaggcttgc aagatggcgt tctctaggac cgcgggagtg gtggccgggc ctcagcaggg
43741 gagggggccg ccggcgcctg ggatcttgca gcgcgggcca cgcgaccggg acaaaaaccc
43801 aaaacatggc gggctctagg acccccggga ccacaccgcg ccgggccagc agccgcgcgg
43861 gccgagcctg ggtgtccgca gcccagaacc gcggagacag ccggcgggtt ctaggacctg
43921 ctgggcccgc aatgcgcccg gggccgctca cagcccgccc cgcccgcgct gctcgcgctg
43981 ggccaacccg gcccgccctc ggcgcccgca gggaaactga ggccagctcg gatcgtggcc
44041 gcgtgggagc tgcccggggc cctcgcggct tcccgccgac gtttcctacc tgatgagact
44101 tgtgctgact ccgtggcgtc ggcgtcggct cctcgcaccg acggagcccg gaccctgcca
44161 aacaggggcc ggcgctagga cccagcgggg ggcggggagg tgggaccggt ggcgcggcga
44221 gcggaagtga gggatcttcc tcagctagga aggaagggaa agttcccggg gaacctccag
44281 cctatggcgg cagagaagca tcttgcaaga ggtctctgtg tgtgctgagg caaggggacg
44341 ccaggcaggc tgacggtata cgcccgcctt gtgttagtct ggggccaggt caccggcaat
44401 gtcttcaaga accagaaggt gggaggacaa aaaggccatg ctcaagctct gcaaaaccta
44461 agtccaatta tattccacaa catttccttt aatagcaagg agtgggtttc acgaagtttt

44521 ctccatctgc cttgggaaaa gtcctccaga gagccccacg aaaagtgtca ccaaagtacY
44581 gtggccaggg ctgtagaatc tttttctccc tttctgcgcc tattcaatat gcaccggaac
44641 gattctagct gctcttgccg gaagtgtggc tagcWtagcg tgcaaagacg ccgcgttgtg
44701 acctacgtgg gcggagtcag ccgtgcagac ctagaactta gcgccggaag tgtgtctgcg
177


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
44761 taaaactgcg gctcggaggc gggacaggca gtgctcccga agcggaagtt tcgcggggaa
44821 gcttttgcac ctaaggacac ttcctgtttc ctagtaacaa taggaagtgt ccgtagagct
44881 gggagtagac tcctggctca tgccagctgc gccctctttt ctctacctcc ttcctcttcc
44941 ccccttctcc tttccctctt tcccttccct cccacctccc gggaaccctg gctgagtgtg
45001 cgtgtgtggg agcgcgagag ccccccgaca gccacccctt ggggcgcgcg gctgcagtta
45061 gggtaagggt cccagtgcgc aggcgcgctc ttgttcgcgg tccccaactg acgcgcccgc
45121 ggcgggaagg agagggggcc gccggtgcga ggtaggcgtc ctgagaggaa attggcagac
45181 gagatgagtg aggtcagagg acttcattgg tggttgacta ggggagggga cttttgatca
45241 aaggggcttt gtgaggtgag aattccgggg gcaggttcag tgaaggggtt tacggtcgga
45301 gacagttgta ctggggtccc atgggaagaa gagtcagagt tggagaagga caagacgatg
45361 tagggggcat gagagagcaa gggctttggg atgaagaccg cctcagtcag ggggtttgct
45421 gttacgtgaa ctagaataac aggcattgcc gtgtgttctg aggattgagt aacacaatga
45481 atatagttag cacagtgcct ggcacatggt aatataatac tcttcatgag ttgctgtcat
45541 catcagtatt aagagaggag gcagaagaaa aaaatgagaa agactggtga gggtaagatc
45601 aggaggcatg ggagagaaaa ggtaggcaat gaagtgacat tacaacctgg tattgatgtt
45661 attcccaaga tggaagatag tttgagttca agggaagtag ataaaagaag tcgctaagag
45721 agtcttttgg ggttttttKt ttttttgaga tggagtctcg ctctgtcacc caggctggag
45781 tgctgtggtg ggatctcagc tcactgcaac ctccacctcc caggttcaag cagttcttca
45841 gcctcagcct cctgagtagc tagaattaca ggtgcccacc accacgcccg gctaattttt
45901 gtatttttag tagagacagg gtttcaccat gttgtccagg ctggtcttga actcctgaac
45961 tcaggtgatc caccagcctc ggcctcccaa agtgctggga ttacaggcgt gagccaccac
46021 acctggccca gttaagagag tcttaactct cttaactctc ttgtcacaag gaaaagagac
46081 cttgtgacac tgaaatgact cggggtggtg ggggaacaag ccagcccttt ccctgaagga
46141 ggcctctaac ctctcctctc aggtcctcag ctattaactg gaggaaacag ctgctttttc
46201 agtgcttctc agctactctg tttagctgag agatgaagta ggaagatttg gacttctctt
46261 attgaaaggc ctagagaagg ttttggtgtc cttttaagat gtcacagaaa atttttgttt
46321 caggattgta gggagcagat tcctactgtt cttaaaggac agtaatgcct tttgagtctg
46381 gtctgaagaa cataacaggt ctgtgatcag aagtaggttg catctctctc aactttaaYt
46441 tccttagcta tacctgtagg gatgacttaa gcctagggga gctcctatat ttgggaagct
46501 tgtgcacagg gaagccttaa atgatggtgc ctgcagattg gatctagtag aaattaggtc
46561 cttgggcatg gatgcttggg gaacctctca gtgacctcag gtgaacttgt tgctcgtaga
46621 gccaagaggc gaagttaatt caggccttcc ttttgaccac tgccccctct tcctaggcct
46681 tggcccctcc accagaggaa ggtgctgcca cgtgtctgct ccttctgaac ctccaggttt
46741 ctgctacgtt gccccatgga ggacacaccc ccctcactca gctgctccga ctgtcagcgc
46801 cactttccca gcctcccaga gctctctcgg caccgagaac tgctccatcc atctcccaac
46861 caggacagtg aggaggctga cagcatccct cggccctacc gttgtcagca gtgtgggcgg
46921 ggctaccgtc accccgggag cctggttaac catcgtcgga cccacgagac tggccttttc
46981 ccctgtacca cctgtggcaa ggacttctcc aatcccatgg ctctcaagag ccatatgagg
47041 acacatgctc ctgagggccg ccgcaggcac aggcccccac gccccaagga agccactcca
47101 cacctccagg gtgagacggt gtccactgac tcctggggcc aaaggcttgg ctctagtgaa
47161 ggctgggaaa accagacaaa acatacagaa gagacacctg actgtgaatc tgtacctgac
47221 cccagggcag cttcgggtac gtgggaagat ctgcccacca gacaaagaga aggcttggca
47281 agccacccag gtcctgagga tggtgcagac ggctggggac cctccactaa ctctgccaga
47341 gcccctcctc tccccatccc agccagcagc cttcttagca acttggaaca gtatctggct
47401 gaatcagtag tgaacttcac agggggccag gagcccaccc agtcccctcc tgctgaRgag
47461 gagcggcggt acaaatgtag tcagtgtggc aagacctaca agcacgccgg gagcctcacc
47521 aaccaccgcc agagccacac gctgggcatc tacccctgtg ccatctgttt caaggagttc
47581 tctaacctca tggctctgaa gaaccactct cgactgcatg cccagtatcg gccttaccac
47641 tgtccccact gcccccgtgt cttccggctc ccccgggagc tgctggaaca ccagcagtcc
47701 catgagggtg aaaggcagga gccacgctgg gaggRgaaag ggatgcccac caccaatggg
47761 cacacagatg agagcagcca ggaccagctc cccagtgcac agatgctgaa tggctctgcg
47821 gagctcagca cctctgggga gctggaggac agtggcctgg aggaataccg gcctttccgc
47881 tgtggggact gtggccgtac ttaccgccat gctgggagcc tcatcaacca tcgaaagagc
47941 caccagacag gtgtctaccc ctgctcactc tgttctaagc agctgttcaa tgcggctgcc
48001 ctcaaaaacc atgtgcgggc tcatcacagg cccaggcaag gagttgggga aaatgggcag
48061 ccatcagtcc caccagctcc cctgctgctg gctgagacca cccacaaaga ggaagaggac
48121 cccaccacca ccctggacca tcggccctat aagtgcagtg agtgtggtcg tgcttaccgc
48181 caccggggga gcctggtgaa ccatcgccac agccatcgga ctggagagta ccagtgctca
48241 ctctgtcccc gcaagtaccc caatctcatg gccctgcgca accacgtgcg ggtacattgc
48301 aaggctgctc gccgaagtgc agacatcggg gctgagggtg cccccagcca cctcaaggta
48361 gaactcccgc ctgacccagt ggaggcagag gcagccccgc acacagatca ggaccatgtg
48421 tgcaaacatg aagaagaggc cacggacatc accccagcag cagacaagac agcagcacat
48481 atctgtagca tctgtgggct gctctttgaa gacgctgaga gccttgaacg tcatggcctg
48541 actcatgggg caggggaaaa ggaaaatagc agaacagaga ccacaatgtc acctcctagg
48601 gcctttgcct gccgagactg tggaaagagc tatcgccact caggcagcct tatcaaccac
48661 aggcagaccc accagacagg agacttcagt tgtggggcct gtgccaagca cttccacacc
48721 atggctgcca tgaagaacca cttgcgccgg cacagtcggc ggcggagcag gcggcatcgg

48781 aagcgggctg gcggtgccag cggtgggaga gaagccaaac tcctggcagc ggagagctgg
48841 acccgggagc tagaagacaa tgaaggcctg gagtctcccc aagacccttc aggggaaagt
48901 cctcatgggg ctgaaggcaa cctggaaagt gatggggact gtttgcaggc tgaatctgaa
48961 ggggacaaat gtgggcttga gagggatgag acccatttcc agggtgataa agagagcgga
17R


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
49021 ggcactgggg aaggactgga aaggaaggat gccagtttac ttgacaactt ggacatccca
49081 ggtgaggaag gtggtggcac tcacttctgc gatagcctca ctggggtgga tgaagaccag
49141 aagccagcca ctggccaacc caactcctct tcccactctg ccaatgctgt cactggctgg
49201 caggctgggg ccgctcacac atgctctgac tgtgggcatt ctttccccca tgccactggc
49261 ctgctgagcc acaggccctg ccacccacca ggcatctatc agtgctccct ctgcccgaag
49321 gagtttgact ctctgcctgc cctccgcagc cacttccaga accataggcc tggggaggcg
49381 acctcagcac agcctttcct ctgctgcctc tgtggcatga tcttccctgg gcgggctggc
49441 tacaggcttc accggcgcca ggcccacagc tcctctggca tgactgaggg ctcagaggag
49501 gagggggaag aggaaggagt ggcagaggca gcccctgcac gcagtccacc actgcagctc
49561 tcggaagcag agctgctgaa tcagctgcag cgggaggtgg aagcgctgga cagtgcaggg
49621 tatgggcaca tctgtggctg ctgtggtcag acctacgatg acctggggag cctggagcgt
49681 caccaccaaa gtcagagttc tgggactact gcagacaagg ctcccagccc cttgggagtg
49741 gcaggtgatg ccatggagat ggtcgtggac agtgtcttgg aggacatagt gaattctgtc
49801 tctggagagg gtggagatgc caagtctcaa gagggagcag gcaccccctt gggagacagc
49861 ctctgcatcc agggtgggga aagtttgttg gaggctcagc cccgcccctt ccgctgcaac
49921 cagtgtggca agacctatcg ccatgggggc agcctggtga accaccgcaa gatccaccag
49981 actggagact ttctctgccc tgtctgctcc cgctgctacc ccaacctggc tgcctaccgt
50041 aatcatctgc ggaaccaccc tcgctgcaaa ggctctgagc cccaggttgg gcccatccca
50101 gaggcagcag gtagcagtga gctgcaggtt gggcccatcc cagaaggagg cagcaacaag
50161 ccccagcaca tggcagagga ggggccgggg caagcagaag tcgagaagct ccaggaagaa
50221 cttaaagtgg agcccctgga ggaagtggcc agggtgaaag aagaggtgtg ggaggagacc
50281 actgtgaagg gggaggagat agagcccagg ctggagacYg ccgagaaggg ctgccagact
50341 gaagccagct ctgagcggcc cttcagctgc gaggtgtgtg gccgatccta caagcacgcc
50401 ggcagcctca tcaaccaccg gcagagccac cagaccggcc actttggctg tcaggcctgc
50461 tccaagggct tctcaaacct catgtccctc aagaaccacc ggcgcatcca tgcagatccc
50521 cgacgtttcc gctgcagcga gtgtgggaag gccttccgcc tgcggaaaca gctggccagc
50581 caccagcggg tccacatgga acggcgtggg ggtgggggca cccgaaaggc gactcgggaa
50641 gatcggccct tccgctgtgg gcagtgcggg cggacctatc gccacgccgg cagcctcctg
50701 aaccaccRgc gcagccacga gacgggccag tacagctgcc ccacctgccc caagacctac
50761 tccaaccgca tggccctgaa ggaccaccag aggctgcact cagagaatcg gcggcgacgg
50821 gctggacggt ccaggcgcac agctgtgcgt tgcgccctct gtggccgcag cttccctggc
50881 cggggatctt tggagcggca cctgcgggag catgaggaga cagaaaggga gccagccaat
50941 ggccagggag gcctggatgg cacagcggcc agtgaggcga acctgactgg cagccaggga
51001 ctagagaccc aattgggtgg tgctgagcca gtaccccact tggaggatgg agtcecaagg
51061 ccaggggagc gcagtcagag ccccatcagg gcagcaagct cagaagcccc agagccactg
51121 tcctggggtg cagggaaggc aggtgggtgg ccggtaggtg ggggactggg gaatcatagt
51181 ggagRctggg ttcctcagtt cctaactagg tcagaggagc cagaggacag tgtccacagg
51241 agtccttgcc acgctggtga ctgccagctc aatggaccta ctctgagtca catggatagc
51301 tgggacaaca gagacaacag ctctcagctg cagccaggga gccactcctc ttgcagccag
51361 tgtggcaaga cttactgcca gtcaggcagc ctcttgaacc acaacaccaa caagacagac
51421 cgacactatt gcctgctctg ctccaaggag ttcttaaatc ctgtggccac aaagagccac
51481 agccacaacc acatagacgc ccagaccttt gcctgtcctg actgtggcaa agcctttgag
51541 tcccaccagg aactggccag ccacctgcag gctcatgccc ggggccacag ccaggtgcca
51601 gcccagatgg aggaggccag agatcccaaa gccgggactg gggaggacca ggtggttctc
51661 cctggtcaag ggaaagccca ggaggcccca tcagaaaccc ccagaggccc aggagagagt
51721 gtggagagag ccaggggagg acaagcggtg acgtccatgg cggctgagga caaggagcgg
51781 cccttccgct gcacccagtg cgggcgctcc taccgccatg ctggcagcct gctgaaccac
51841 cagaaggccc acaccacagg gttgtacccg tgctccctct gtcccaaact tctccctaac
51901 ctgctgtctc ttaagaacca cagcaggacc cacacggacc ccaagcgcca ctgctgcagc
51961 atctgtggca aggcctttcg gacagctgcc cggctggagg gccacgggcg ggtccatgca
52021 ccccgggagg ggcctttcac ctgcccccat tgtccccgcc acttccgccg ccgaatcagc
52081 ttcgtgcagc accagcagca gcaccaggag gagtggacgg tggccggctc cggtaggggg
52141 catgaagggt cccaggagga ggtgggcaca cagtggaggg ggaagtccag ccccaaagtc
52201 ggtgggggag caaggagtga gaggagagag ccccggggat tctaagaggt gggtgggggc
52261 ttggctatgg ggtgagagaa gtagcttgag gatgtgctga gctgagcacc cgcaagtcag
52321 gtataacaaa tagcagggtg ggttgggcag cacgtggggg cgtggtcagg ccgaggctgc
52381 tacctgggct cctccattac actgtagcca gaatggaatg gtctttctgt tcaggggaag
52441 gtcactgggt accccctggc tgctgtgtct ggaaaccctc ctgagtcagc cagtaaagta
52501 atgacttcca gagaaaaaga ggaagccatt ggtttggtct aggttccatt ctttcctgga
52561 gcaggccggg tgccagggaa caagggatgg ggcatgggct ccacggcttc cctgctgact
52621 tggccacgga aactggttca ctggttggca ccctactccc tgtccctctt tccctgcgcc
52681 ttgtctctgc tgctcctctc cttggaaact agacctctgg tccttccctg tcagtgttgc
52741 tcccatctct tctctaacct ttattcagcc ccttttccct ctgctgccaa cggccttttt
52801 aggatccaac caaaccaccc tttctacctg cgcaccctgc caccctctgc acacctttaa
52861 ctggaggact gagtcacaga taattgtttc cttgaagtcc aggcccagct gcagcaacaa
52921 cagtcattag cccgtgtcac atccctgatc agagggcatc tccgtgggga atcgcctcca
52981 cccagcactg ctggaagccg cRgctgccag ggagtggggc ggccggttcc ctcagcagga

53041 cctgggctgg cctctccacc tccYctagta gaggcggacc cattccatct agtggccacc
53101 gagggtgggt ggccctgaga tggtgggccc ttgacaggcc ttgtcagagc agagggcagg
53161 tgggagtcac ctgaaagctg aaggaatggc tttaaggata gaagatttct catgacctca
53221 agggatatga gggaggagcc agtttgccag ggctgggaaa ataattagga ggcctagaat
179


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
53281 ccctgttctc atctgggcct ccggggccag gggcagggga atggcctgca gggctgggag
53341 ggggtacacg ctgtgcgggg tctgcccctc agttggtgac ctcctctctc tctcccccca
53401 ggagccccag tggcaccagt gacgggcaga ggggacttgc cattgccccc tccacccacc
53461 cccacgaccc cactcctgga tccttcaccc cagtggcctg cagacctcag cttctccctc
53521 tgaacttcaa gtctccaaag atcagaatct gggggaggga gcgcgtgcag ggaggggctt
53581 gatctccaca ttttctcagg agtagttcgg gcatccccat atcttctcct ctccccYtgt
53641 gaagaggacc cagatctggc ttctttccca aggagggggt ggggtgttcc tcgcgtccct
53701 gtccttgaag gacctccttc ccccagcctc atcaccgtgc tcttctcagc gccaccctca
53761 gcagccagat tgcaacacca gggagaggcg gatgcagagc cccaccggtg ggaaagttgc
53821 ctgtggaagg gagccttttg ctacaatttg taacttattt tctaaagtct attttgtaac
53881 aatttattta agtttaaaaa aaggaaaact gctgcccccc aaaaaaagaa attttcaaaa
53941 caacgtggct ggcgtgattg tatctgaaag ggtaaaggag gaggaaagct gagacgcctg
54001 cttggtagca gagttgggtg tgggagtgtc cacagacacc cctgtcctgc agggtgggga
54061 gtgggcacct gtggccccag gcaggttcct tcccacagct gctgggcttc tgggcctgcc
54121 ctggtgcctg gaatcacaca tgacagggtg gggaggacag gggcagtaat gccatttgcc
54181 tgcctgcatt ctcttgtcct gagaatggcc aggtcccctg tcagcagctg gttggttggc
54241 ctgtggggaa ggaaggaggg tggagttgtc ctcatcctca cggctttggt ccctccctcc
54301 ctccccattc ctcgaaggaa cagggtctgt cttggccgcc atgacagatg agaatactga
54361 ggctcaaagc ggttgagcag cctgctccaa gtcacacgat gacaaagaac cagaatctga
54421 atcaaatggg tctgcctgtt gctccaccct acccaaggca gctggagtgg gttagaacgg
54481 cacgttctca ctggagagag aagggtcctg gagaggcagg gtttggcagg aggccccggg
54541 gccacatact tatgttggcc aggcagcttc caggctcagc ctcgggctct ggttcctcgg
54601 cgaagtagac ctgccagtcc aaactgctga cccagtcctc ataggcaggg agcgcggtga
54661 agaccgccgg cctggcgggg ccttggcaag catctccgaa gctgtgcagc ccggccagga
54721 accatgtgcc cctcacctca tgcaccagtg gtgccccaga caggccctgt caggggtcag
54781 gtgacactgg gtgacttttt ataggcagct gtgcaggacg gtagagcagg ctagggaacc
54841 tctggctgtt tgggggctaa ttggcaaaaa ggcttagttt caggtgggag gtgggtccag
54901 aggccaagcc tggaaggtcc gttcttgagc tattgggtga ggggatgcca ggggcctgtt
54961 aggtaaggtg tgggggcctg gggctcacct cacagctggg cagctcaccc acagcactgg
55021 tacacaccat ccccggcaga atagggctgc catcaccccc aggagctgca tgcagccggc
55081 tgcaggccct aggccccagg agggtcacgg gcactgtctg gagggagctg atgcctgtgg
55141 agcaagggaa agctggctgc cccggcctgc aggttggatg gacagcagcc ctggccctgt
55201 gcccacctac ctgctcctgg gcgggcccgt cccagaaccc agccacgctc cccatcaggc
55261 aggtggtggt cagSataggg caggcagagg ggccgcaggc tggctcccag tgtcacaggc
55321 tgggccagca gcaggagggc catgtcgtag cccccctcag ggtgggtgta ggctccatgc
55381 aggatgagct gcttcaggcc ccactcctcc ggtctggtcc ccagccctac gctccattcc
55441 tctggggcct ggcgcctgtg cagaggcagt gtggacggca ccaggtgaca gggctgccgg
55501 caggggcagg gggcacagca gagagggatc caagactcac ccaatgaagc agtgggcagc
55561 agttagcacc gcctcctctg acaccagggc tccgccacag gccagctgtc cctggtgcat
55621 cagcctggcc tcccagggcc atggggaggg tgctcctgcc tggggacctg ctgtcctcaa
55681 ggatccacag gctgaaacag ataagtgcct catctgactt cttgctaagc acttcccact
55741 tcccatcaaa tcctcacagt agcttttgaa attgaatttt gttcccctca ttactgaagg
55801 taaccaaagt tccagagagg ttaaRagact tccttgctct gtaactacag gcaagtggca
55861 gacttgcgat tcgcaagcca gggcctgagc ttttagccct gttggtctga tgggacccct
55921 gtcccagcct cgtgggaatg cccctacttg tcactcccct gctccacccg tctgcaccct
55981 ccaggMtggg cctgcctccc gtattcctga ctcattagtg catctcttat catcaagaca
56041 taatatccgt cccaggaatt actttgcatt caatttgcat gccagtcact taatgccgga
56101 attctgactg ggagccctac cctgtgcagg ctcgctgggt ccctgctgga agcctgccac
56161 ttccccagaa acccaagtca ggtctcagag attcctcttc tcacctaaac tccaaacctg
56221 tagagttcca aagtgcctgt gcctctcagc cctaacaggg ctgttcccat cccagggggt
56281 gaaagagccc cctaattagg ctcggcggtg tggatgccta tgccagttct ctagtcctaa
56341 ctgaggtttg cttcacagtg gcttctgccc actcccagca tgccccactc gtacctacac
56401 agctgtcctc atcactcatc tccggggtct ctgggctctg ggccaggaaa gctgccccct
56461 gaactcgagc ctgcagccag gaactgtgag cagctgtgtt ggtcagcagc acaggagcgt
56521 cctcctgggc acagcttgat gcaaagctga tgatgccagc ctgaacccag tgtccgtcag
56581 gctcgaggca cagcacaggg cccccggaat ctccctggag ccaggcaaca aagccaagga
56641 cagatgcctg agcccagcta tggcagacac cctctgattg cagStctttc ccccagtcct
56701 gtgagtccaa cccccagccc agggttaggc ccctcccctt ctgctccttc tcttctccct
56761 atcagacctg acaggggccc tgcaccccag gctgggggcc cccacatagc atcccaggcc
56821 gggccgggtt ggacaggtgt cgctggtgca gctggttgta gatacagtta catgtggggc
56881 gactgatgag acgcaggcgc agattgcgta gggtcccagg agctggtgaa agagacgggg
56941 ctggggctag agtctgggat ctgggaagca agggagactg gaagccagga cagttgggag
57001 ctgagactgt gacgctgggc aagcagagtg cctctccgag cttcagtctg ggccagcact
57061 taccatcact ggtgtcctga tcccagccag tggcccagca ggaggctcca aaggggaagc
57121 gatgggcggg ctggggcagg cagaggggtg tgtgggtcgt ggggtgggcg agctgcagca
57181 gggccaggtc tgagccctgg ctgtagtggt tataggccct gggcaactgc agggcagcca
57241 cccccacctc ttcggcccca gggctgagtc cctcacgctg cagagaaccc aggaccactg

57301 accaggaatt cagttctgtt gctgctgccc tggaagggga aggacaaggt ccaggctgct
57361 gagtgcaagg gtagacagtg acaccatggg agaccccaca ggtaggtgga agatagcaga
57421 gagcactcca cggctttttc tttttgaggt agggtctcgt cctgtcgccc aggctgcagt
57481 gcagtggcat gaccatgact cactacaagc cttgacctcc caggctcaag cgatcctccc
~Rn


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
57541 acctcagcct cgtgagtagc tgggactaca ggcgtgcacc accatgcctg gctaatttta
57601 cagtttttgt agagacatgg tcttgctatg ttgcacaggc tagtcttgaa ctYttgggst
57661 caagcgatcc tccctccgtg gcctcccaaa gKgctgggat tacaagcgtg agctactgtg
57721 cccggcctca gtctgtgact ttaagcgagg tcattccctt gcaacctgag ttttYtgatt
57781 tgtaaatctt ctaccatgaa aggtggttgt tacaattaac ttgacaatat gtacccagta
57841 catggcagat tctcagtaaa tggttcttta ttattactct agaggcaggg actagccttg
57901 tggggcttga gacaaattgt ccactcccca gagccggaga ccctgcctga ccccagccat
57961 gacttacttt tcaaagcagt gggcagcagt gaggacccag gtgtctgcca ccagggagcc
58021 gctgcagatg tgggctcctt gcctcctcac actggcctgc cagggccact cgccagggac
58081 tgtgttgccc tcctgaggct tgggggggcc ggggccacgc tgtccacagg ctgtggaaag
58141 gagttagtca cactgacagc agatacctgt cctgacctca ccccagtccc aacccagacc
58201 caagtaagac ctaggccccg tgtccccaga ccttaccacg ctgagcggct tgaagacctg
58261 ggaagagaga gacacaggta agatgcaggg actccaggcc tgcctagctt tggggaggag
58321 aggggatggg ctggggggcg ggcccagggt ccttgcctgt gactctgatt accttaccag
58381 cccctcccag aatgaaaata tttatatgag gccgagacag cttttattgg aacctattca
58441 gtgtgcacac tcagtaatta attctccttc agctgtgctc agcactctgg ggcttggggt
58501 tcagcttggg agtaggccag ccctcctcca ggcttcagaa cccccaactc ctgcccccgc
58561 cactgagtca gccaggcggc ctgtgtgtgt agagagcatt agcttaattg tcctcttagc
58621 agcagaggcc taagaggaag gattagaggc ctgcatcatt tccaagtggg gagggcccca
58681 agaaatggag acttacctca ccctggtcta gagactcagt cttccccacc ttcccagaaa
58741 ctgtctgaga gcccgccaga gagagggccc ctgcccaccg cccctcacag gcacacaggc
58801 accccatgag acagctgagc caggctgccc agaggatgga tgaaaagaaa gggaaactga
58861 ggccagagga gcccagagtt tgcctgacgt cattgtggaa gtcgaggggg aggcaggcac
58921 aggacacacg caggcagcac ctcacacaca cacaagacca caggccccgc caacgcaaac
58981 tgcagctggc ccgagaaaat ctcatccatg ttgacacagg tggccacata taccacccca
59041 cagagtccta cggagttaca tccccactgg tggactgtcg cccacaggcg gtccccccac
59101 caagaagcag ggactgctgg ggcagagatg gcccctgagc ccccaccagg ccacacccat
59161 accccagcac atggcggctt accctccatg aggactgtgg cacccgcgat gagcagcact
59221 gggccccagc accacttcat gctgccccgg gccactctgc cacctgtgct ccactctgag
59281 agaggccacc tgggtctccc tggctccacc tctgctccac ctccagttgg ctaggattca
59341 gctgtctgct tgccctagcc agcagttcct agctctgggg ctgtggctgt gtgaccctag
59401 gcttgtcacc acccctctct gggccttagc cgtggagcca aattgtctgg gtttaaatct
59461 gtttccttac tacttgagtg gcctgggaga gctaacctgc ctgtgccttg tctgagaaac
59521 agttgttgaa tggaaaacgt ctcaatgaca gcctggcaca gggcaagctc actcccagca
59581 tgaaagtgcc atcctggaac catggagggc acgtgggcag ctcctcccag tccccacttt
59641 tcatttccac tcccccactt ctcttccagc cagggctagg tgggtttcac atgccttctc
59701 ccaggtctgc tcagagacag tgtgtgccag gctgagtggt gaggagccag cacccactgc
59761 tgcttgctcg ctgtgagcct ttggcaaatc ccagtatctc cctgggcctg ctggcttcct
59821 gggaaacagg gtgacagcgg tgcccacctt cctcataggc gcagaggact cggtcaggcg
59881 ggaagaacac tttggcgcgt gcctcctctt cctcttccca ctcctaactc aggctggccc
59941 agaccattca agaaccctga ccccaagaca gaggcagctg tgggtaaggt ttagcatata
60001 ttatagatgc tggccgggca tggtggctca cgcctgtaat cccagcactt tgggaggcca
60061 aagcaggcag atcacctgag gtcgggagtg cgagaccagc ctgaccaaca tagagaaaca
60121 ctgtctctac taaaaataca aaattagcca ggcctggtgg cgcatgcctg taatcccagc
60181 tactcgggag gctgaggcag gagaatcact tgaacctggg aggtggaggt tgtggtgagc
60241 cgaaattgtg ccattgcact ccagcctgga caacaagagc gaaagtccgt ctcaaaaaca
60301 aaccaacaaa aaaaaaagca tatagatgct ggagccagat ggaccaggtg gattcaaatc
60361 ctgagagcct cctgcagtag ctgtgtgatc tcaggcatac taattagcca ctctgtccct
60421 atcatcaaga tagggataat aatagtaccc acctcataaa tcactgtaaa gattaaacga
60481 gtttaacacg ttaacacaag tttttttttg ttttttgttt ttttttggag acggtcttgc
60541 tctgttgctc aggctggagt gcagtgatca tggctcactg cagcctcaac cttctgggct
60601 caagcagtct tcccgccagc ttcccgatta gttgggacta taggtacata caccaccatg
60661 cctggctaat tttttttttt tttttttttt gtagagacag gggtctcact attttgccca
60721 ggctggtctg gaactcctgg cctcaagtga tcctcctgcc ttggcctccc aaagtacagg
60781 gattacaggt gtgagccact gcaccctgcc aacacaagtt cttaaacagt gcttggcatg
60841 taggtaagtg gtcagggcat aataggcaaa acaaaaacct tcacaacctg gccctgaccc
60901 tccaaggcta ccaatactgg cttggaatgg tcgataaggc aactggaggg gttaaagtta
60961 aactcaagga agaacttccc agcaagcatt tacagaacca gaagggcagc ctgcccttcc
61021 aggtgtgtgc tcagccttcc caggagagga ggcctggctc ctgtgggcag caggagcgag
61081 ctgccagcct gtttcctggg ggtgggggcc aatggtgccc caggccttgc tgactccaca
61141 cactggagat gagactaccc ataaccaccc ttcccagcag gccctccact ctccctctga
61201 ctcacccttc ccagctccag agaaggcaac accgagggag gcccagcacc acagtccatg
61261 gcagacacat ggttcagact tggctgattg atctaagaaa ctttattgct caRaaccttc
61321 cctccctggg caatggaaag agctttggag accagcccat ggggacagag tcagaggcac
61381 tgggtgtaaa aaagagcgag cgtgtggcac atttggtcca ttgtcatgtg Ygggtatggc
61441 aggaggaggg ggtaatctag aagccccaca tctagggcct tctagggacc cagatatgcc
61501 cccttaggca aggctcacat gccaaagcaa agcagatgag gtcagcctgg cttgggttga

61561 gggctcagtg cctcttagcc ttgccctggg gttcttggac cttccggaaa ctgagccaca
61621 tcaggctcac gttgatagca taggtggtga tacaaacaat gcagaaatca tagagcacga
61681 agaacaggat ccaggccaRg tagacagaac cagcgagaga caccagggag ctcagcagca
61741 tcaggacaga ggcccagcgt gtccgcaggc aacctgcaag gcagaagagg gtccggtgtg
1R1


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
61801 ggcttcaggc actggccacc tcccgaacac tccatgatgt cactgcacta cctagatgcc
61861 aggagctgct gggaagggtc tctaaaacaa gaggctccag ggcagatgtg gtggcttacg
61921 cacgtattcc aaacactctg ggaggccgag gtgggaagac tgctttaggc taggagttca
61981 agaccagctt gggcaacata gaaagacccg atctctatca aaaatttaga aattcagctg
62041 ggcacggtgg ctcatgcctg taatcccagt attttgggag gccaatgggg gtggatcacc
62101 tgaggttagg agttegagag cagcctggcc aacatggcaa aaccccatct ctaataaaaa
62161 tacaaaaatt agccgggtgt gttgatgggc acctgtaatc ccagctgctg gggaggctaa
62221 ggtggagaat cgcttgaacc taggaggtgg aggttgcagt gagccgagat catgccacca
62281 cattccagct tgggcagcaa gagcaagact tcgtctcaaa aaaaaaatgc ccggtgaggt
62341 tgactcacgc ctgtaatcct agcactttgg gaggccaagg cggatggatc accaggtcaa
62401 gagattgaga ccatcctagc caacatggtg aaaccctgtc tccactaaaa atacaaaaat
62461 tagctgggcg tggtgacacg cgcctgtagt cccagctact caggaggctg aggcaggaaa
62521 attgcttgaa cccgggaggc agaggttgca gtgagccaag atcgtgccac tgcactccag
62581 cctggtgaca gagcgagact atgtcgcaaa aaaaaaaaaa aaaaaaaaaa aaaaattagc
62641 tgggtgcagt gacatgccta tagtcctagc tactcaggag gatcgcttga gccaggttac
62701 agtgagctat gattgtgcca ctgcactcca gcctgggcaa cagagcaaga ttatttctta
62761 aaaaaaaaaa aaaagaaggc ttcaacaggt cccctccaag ggactggtct ctgaagctct
62821 tgccattgcc cagggaggga aagttctgag caataaaatt tcttaaataa atcggccaag
62881 tctgaaccat gtgtcagcca ggaccRtggt gctgggcctc cctcagtgat gccttctctg
62941 gagctgggaa gggtgactca aagggagcgt gggagcctgc tgggaagggt ggtaatggat
63001 agtctcatct ccggcatatg gcatcagcaa ggcctggggc gccatcgtct tccactccct
63061 tggttcctct ctctgttctt atgggactag atacaaattt tcctgctgag cactaaatga
63121 gacaaaagat agctcatgct cagcttctcc ttaaaaagga atttcggcat cttttccaca
63181 aaactggggt gttggtgggg catggtagct cacgcctgta atccccccag cactttggga
63241 ggctgaggca gacagattgc ttgagaccag cctgggcaac atggcgagac accatctcta
63301 ccaaaaaaaa acaaaaacaa aaattagctg ggcatagtgg tgcacgcctg tgattccagc
63361 tgcttgggag gctaaggtgg gaggatccct tgggcaggga ggcagaggtt gccatgaact
63421 gagatcacgc cagtgcacac taagggcatc ctagacctca ctttgggcaa cagagccaga
63481 ccctgtctca aaacaacaac aaacaaaaaa cctggggacc taggatgtct ttaagggccc
63541 ttcagcctct aacagtactt aaaccaatta aaagactcct gttagttacc tccccacatc
63601 cccacccgca ggacgctcSg tgatgagcag ctagctggct gtcagctgtg tggatcacca
63661 agattgcatg gagtggggct gagctgacca agggggatga ggggcggggc ggggcgggca
63721 gggagggggc ggagccactc acctaacaat agctgtagtg tgtagaagat gcaaccgaat
63781 atgctgttgg attgattgag gatgctgtcc tgtcccagca catgctccac cagcccgaaa
63841 cccctgcccc acctggcaga ggggtggggt ggggtggaac caggttagga ctgtcaaccc
63901 agtgccttgg accctgcccg agaaaggtga tttccaagaa gccacctggg ctatcctctg
63961 ttccccgacc tcccatccta gtccaagggt cgatgatctc ctggcaccgg gcacctttgg
64021 ccacgtcagg attccatgtc actgacccta tcctcccctc tccccagacc aggcccggac
64081 gtggctactc cgtaggccct gcttttcatc ttagacctta agtaagtctc tttttttttt
64141 tttttttttt tttttttgag acggagtctc actctggccc aggctggagt gcagtggcgc
64201 gatctcggct cactgaaacc tccgcctccc gggttcaagc gattctcctg ccttagcccc
64261 cccgagtagc tgggattaag gcacccgcca tagcgcccga ttaatttttc tatttttggt
64321 agagacaggc tttcaccatg ttggccaggc tggtcaactc ctgacttcaa gtgatccatc
64381 cgcctcggcc tcccaaagtg ctgggattac aggagtgggc caccgcgccc ggcccttaag
64441 taattcttaa aatggcaagg ctggtataac ggttcactcg gttttgcatc agagactggg
64501 agtcgggggc agattatctt tgccctggac cccagaatct ccagctccct ggccactcac
64561 tcgcctcctc tgtattccgt cattatgcta acgcctggcc atcacgcaca gccagaccgg
64621 gccaccttgt tcctgggcgc agccatcgcc aacacccccc ttcMcctgcg cgccgtcctt
64681 gagaccatcg tcaatctcta ccgccatcct gcctccccgc ctttcctggt caccgttatt
64741 ccttggcatc caattcacgt gcgagtcccc ggaataatcc cagtccccag cactgtctgg
64801 tcccttgcct cgcactctta tttcgaacac cagtatcgct gggtagctca gcccctgtgc
64861 aacgaccccg cgagcagtcc agccccgtgt ccgttccccg ggcacaccga tcccagactc
64921 cagaataatc atctggcatc ctggccgccc tgctccgagg ccccacgcct cccactcccg
64981 tgcacacctg gaggagaaga cgcgcgaaca gctgatggcg gtgcccacgt cgcagagcgc
65041 gcggtaatcc cggtcccggg cgcgcgccgc cttcacgtgc agcgcgtaga gcgagagcac
65101 taagcccgtc aggcaaagag cgagccgcac ccagccaggg ctcccccagg tgctgcccat
65161 tatctccagg ttccgcccga ggcgcccgcg gagaaaacca gccacggagc aggggccggg
65221 cggcgaatgg ccgcgcccct cctggccctc tgactcggcg attggccggc cgtgctcgca
65281 ctccacgacc caaatggctg ttccagggcg ctagtcaagc gggcgagtta ggaaaacagc
65341 gaagaatgcc gggactagtg aagcgggtaa gggacgtgcg gaatcgcggc cccagcggct
65401 gccaggcatg atgggagttg tagtcggcgc ggctgcaagg catcaaggga aatgaagtct
65461 ccacagattt aaaaactgtt ggccgggcac ggtggctcac gcttgtaatc ccagcacttt
65521 gggaggccga ggctggcgga ttacctgagg tcaggagttc aagaccagcc tcgccaacat
65581 ggtgaaaccc catctcaact aaaaatacaa aaattagccg ggcgtggtgg cacatgcctg
65641 taatcccagc tactcgggag gctgaggcag gagaattgct tgagccgggg agccggaggt
65701 tgcagtgagc cgagatcgtg ccactgcact ccagccaggc cgacagagtg agactctgtc
65761 tcaaaaaaaa aaaagaaaaa aaaaagtgtg ttagtgtggt taacagcatt tgcgcttacc

65821 ctatgccaag tcctgttgta agaattgcag catccgggac ctagagacca gcggatcagg
65881 ggatccagcg aatacggcga tccgattcgg gaaccaagca tttcccctga aactatttca
65941 ggcaccattc gggctgcagc ctcccatcct cccgggtcct gcctcaccag tgcttcctgg
66001 tggtcggtct ccctttctcc catacattca cagaaccact cctttggcca cacacaccct
1R7


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
1261gaaggaaaagctggaatactgtgagagacttaccagtggcctgtctgcgtgtaactaact


1321cctcatcccgacttggtcacgcaaaggacaggtgaccatacctccaggaaggtggaaagg


1381ggccctacatgagtgagaggctcaagtcctgcccaagtggaatctgtgattctgtgatct


1441aaagaaagtttgtggctatttttagaaactaaagtttatctcatattgacacaaactcaa


1501aaatcaatgatactttgagatatgtcatatcacaaaaaagatttctcctctagtacatta


1561tcatttaaccaatacaaacaggtctgggccaggtgctgtggttcatgcctataaacccag


1621cactttgagaggctgaggggggtggatccctagagcccaggagtttcaggccagcctggg


1681caacatggtgaaactctgtctctaccaaaagtacaaaaattagccaggtatagtggcaca


1741cacctgtagttccagctactaaggaggctaaggtgagaggaccactgagcccagggacgt


1801agagactacggtgagacatgattataccactgcactccagcctgggcaacagagggagac


1861cttctctcaaaaagaaaagaaaagaaaaagaaacaggtctaatttgttcatctaagcaat


1921gataagatttatatgaacataagttgctttattgatgaaaaattgaacataatctaatca


1981agcctctaaatttaactgccaatttataggaaaagacaggacagaacctacaggaatgca


2041atcatttatatctagaatgtggaagattctgcatgacaaacgacttggattcttcaacat


2101gtaaatttcaaggaaagagagagagagagagataaaaaggcttgtttccagatttgaatg


2161acatgttaatagacatttatgagacaatcaaggaaatttgaacatggactgcatattgaa


2221tgttgagggattatagttaatttttaaaggtacaattgtgatactgtgattatattttta


2281aatgcgatcattatcttttaggagcactaaaatatttactaataaaattataggatttac


2341ttcaaaataaacaacgataataagattaccatgaatagtggtgggtgaaatatacaaggg


2401gcttatttgacatttccataataaaaaacacgaatgaataacaaagcattatagaaattc


2461aagtaaaaaatagctcgtgcttagtaataaatcaaagcgtgctggacactttaaataata


2521aacaaagataagatcttgccctctagaaaacagctctaattcaggacagacttgctcaca


2581tcagatggaagagtcagaatgagatgtgctgagtagaaggtagaacggtcgctagcagag


2641ggtgggaaggtggtatgtgtgggggagaggagaaagagaggttgattaatgggtacaaac


2701agacagttagatggaaggagtgagatctgttgttcgacagtagagtagggtgactacagt


2761taacaacaatatttgcatatttcaaaatagctagaagacaggacttggaatgttcccaac


2821acatagaaaggtgatgaactcaaggtgctgaacaccccaaataccctgacttgatcatta


2881tgcaataacaaaatatcacatgtaccctgtaaatatgtacaaatactacatatcaattta


2941aaaattttcacacaagaatgagatgtgctgatgcatgtggaggccctagctccagactgg


3001gtgtaaacttcaagccactgaagatcttatttccaaggtttttctactttgaaattccaa


3061acttatttttctagcagatttataagggacacgggacaacataaacttgttaaagtgaca


3121agagaaagtaaatatgcccttaaatttataccaaatcttctgacaagtcttgactgataa


3181ttgtttccttcaaatttgtgaaaaacatgagagaaaacgtgtttgtat~ctcatttttaag
.


3241tgtggacacttggcattgctcacggcttccaacggaataaaatagggcttagttgttttc


3301cattagctttttcctttgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgttgtgtgt


3361acatattggctctaagcatttattagcccaataatttttagtgaaactctccacttctca


3421atatcttttgccgtattagatttttgtaacatgtgctaaaggttaaaacaccttttcccc
,


3481ttcatgaagcctgagagaagtcggttttctgggttttctcaagacaacccagaggttttg


3541tatacgtctgtctaaaaagtctcagatttttcttgctaattgtgcaccttcataatcaag


3601cagacaaatcagaatattattttggtgaggccatcatctaaactaacagtctttatgtac


3661agaagcagcactgaccgggttcatactcctcagttagcaagtcaacatcttcctcctgcc


3721agcaacccatcccagaatatctgtggcttattaatacttatgaaaacaacagtcttcatt


3781atttactaattaggagatgatcagatgtatctattgatagcaacaggctatttaaaagtg


3841aaataatctatcaaacagattttttatcaactcaaagtttccagttagatatttttcatt


3901aaattgattgctagattgcagccacaatcaaacttaagtattataagaagtttggttggt


3961cttttaaaatcatgcaaaaattcaaggggtgctattaaatatagaattccaaatgtataa


4021agtcttgtcctaaaatggtcaataaaatgaaccagtccactggttcatttatagggggcc


4081agtccactacattaatttggatgttcttcgtctgcattttcatgttttcacacacctgca


4141gtcattgtgtacaattctggactcttgattttcatttagcattctgcgttaatattctga


4201catgttgctgccaggtcttcatggccaccacttttaatggccagaaaatatttcatgtag


4261tgaacatttcataaattacttaaccatgtcccaattattggttatttaaggaatttaaaa


4321ctaaaacaccactcttgtgacaaagttctgatgtatccagatgtactcatgccaagtcgt


4381ccatcaatagttctgctaaaccctgtcagagcccttttctgaagggaaccaggaaacatc


4441tcacaacaagaagcttaaggcctctacaaaatgacttcagggttaggatttcaatttcac


4501tctgaggcacatacaggaaccactaggttatttggcttagaatggagggaagtgtcattt


4561tgtttctgttcggcctgcaggaagctccttcccaggccctgcattgccaattgaacaatt


4621gaacaattctcattgttcaattcccacctatgagtgagaacatgcattgtttggtttcct


4681gtccttgcgatagtttactgagaatgatggtttccagcttcatccatgtccctacgaagg


4741acatgaactcatcattttttatggctgcatagtattccatggtgtatatgtgccacattt


4801tcttaatccagtctatcactgatggacatttgggttggttccaagtctttgctattgtga


4861atagtaccgcaataaacatacgtgtgcatgtgtctttatagtgcctagaacataatagga


4921gctccagaaatactgttgaaaaaatgaataaattgagcacactaagtgtctgaataaaat


4981accctgaccatacccctaaataaacaacataaataagcaaatttcaatttctcggaaaag


5041ttatattttagtgtccaatgctcttgttatgcagtaatggcatctttgattattcatatt


5101cgttagagcttccagaaaggagtattgcaaatcacacgggcctctgactctcatgaccaa


5161atccccctgtcactgtccttgttctctgatccttcctctgggccctcggaaatgctggtc


5221tccatcaaattgctgtaaacagttttcagaaaaagttctctttgggaagtttcaagagaa


5281aaccacaaatttcctggaaatgcttcatgcttcatgacatttaaggctttcagagccttg


5341aacttcaggagcaagatagctggtaggtcttctggaggtcttgcctaacctgagaaggtc


5401ccagagaatttgtgcatagaacctcccaggaagcagtaagacaggctggtgcagtcccac


5461aggatgagaaaggtaagagcttaccaatgtctccagttttgtaaatgaatgttcttagca


?.14.


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
5521 tttttggtgaggagaaaaaaatatcaaacccatcacagacagatcagcagtctcttgacc


5581 taggtcactcaaggggttctcaacaatcaattctaaaatgcaagtgaaaaatgtcaatat


5641 aaggctagacacaggggctcatgcctgtaattccaacactttggaaggccaaggcagacc


5701 tagaactttgtaaatctgagattttgctccatgactttgtggatactttctactaatacc


5761 acctacacaaaatcttcaaccaagaatcttaattgcatttatcaacttgtgtccttagat


5821 cataacatttagattcatttgaaagaaatttattgaagtaaaagaaataagaagaacttg


5881 atagcacaaaacaaagaaaacccagaaagagagagagagagagaagcagaaaaactaaac


5941 actgaaacccagagagagagagagaagtagaaaaactaaacactgagtcttaatctgttc


6001 tgccactagtcagcagcctgcacagagcactttaatgtattctctgtccattagtttcct


6061 tgtttatgaaagtatatagctccaaaaaaattctgtgttctgatttttgtctctccaaac


6121 cacaaccagtcccctgctcccttctctcctcctcctcctccttcttcttctttctctctc


6181 tctccctgtctetctctctctctctctctctccccctttccctctcccccacccacccac


6241 ctcccaacccctgcatacacctaggacacctccagcataggttactaccaattttgcaca


6301 cctccagcaYaggttactaccaattttgctgggtttatctccttctgtcctttccgcttt


6361 gatctgaggaatagctgagatttaggacagcaacaaggtgtacctccttccaggttataa


6421 aacaggattaatgattaggctcaaggccccttcctagtcactcagtaaagtctgtgcact


6481 ggaaaactgtggtagcagttttctgagcattagaaaactgtggttctcacagaggctgga


6541 tgagtcaacactgccatctggcggcctcttggagggtgatgtggagcctggctttcattg


6601 aagaatgaaggtcccttgatttcctgaccctcagccaactctccagcagcttctcactgc


6661 agaagaggtcaggccattggtcagcttgaggacaaagtgggaggatcacactttcgatca


6721 cctatactttctaacaatcagccctgtggacatctgctcacgccccatgctgtttttaaa


6781 atattttcccattatagaaatatttttcaaagatgattcacaagctccaggagccattca


6841 gacaagggagagcaaattggcagctaaactcattcaagagtggagcagatgcacatgaag


6901 ctctgtctggcggaggaggcacaagacaccgagcctggctgggagggtgctcatgacaag


6961 agtggggccacaggcctctcctttcattggacatagtggccatacaaagtggctgccttg


7021 aaatgcacccacatacactatcggtcctcccggtctagggagaaaactagcacagtatgt


7081 caacagataaatcagcgcaatcctgtgggtgaagcagtgcacccatactcttcattctgc


7141 tgagcggaactcaagggtgagacacttgtattcctaactccacttgccttcaggctcctc


7201 caacattccaaattgcccatggacagagctactacccctccatagaagtgacaacttgaa


7261 ataaaagatttgaagctccttcccacgtttagacccaggcctgctgctaggaactccaga


7321 ggagggatggaaagaagtttgcactgctcacagatttaatgtttctctcacaaccagaag


7381 taggcagcaggatggattttcaatcaacactaacaaacggatcactcctgggtcctttaa


7441 acaagttccatgtctctttataggttttaggtgcctcctatgtgttcagacttCgtataa


7501 tggatatataagaaaagtaaatgggaggggcaatatttaagaaataacagcaaacaattg


7561 cattcatatttaatataaactacaagtatcaagttaatagacgctcagaagaaattcata


7621 aaatctagaaaagttgggaaaatctcaatagagaaaataaaacttgatctggactttaag


7681 agtatgatttataaagttcaaggggacagtacacaaagtcagacaatgttagctgaatca


7741 ctgaagaatgagaatatcacacccacttaacaaagcagcccagctagttaaagaagtatg


7801 ttgaagaggtagggagttgggtgggggaggcgaggatggcgtggagggatctgaaaacta


7861 tcaaccttaaataatgagatttagaaaatatgattaagtagagggttaattcgagtgcag


7921 agcttgagaatggccacctggaaacactgactctaaaccagtaaggttaatgtttcaaag


7981 tggagaagttaaggtttcacttagaaattttagcaggatcacattttccatacaagacca


8041 gtgcattcgccacagcaatttgattggttatagattgctgctcattccaagattacttta


8101 ttactctgtgcggaggagtagtgatttgaggggtcttatgtctggtgcctttttgtcttg


8161 tttacaggggaaaaggcagaagttgcgcctgcatgccgcataactcaggctctgcatagc


8221 cacatgtctttcaaggctcagaataatttgaagttccaacagctttaagtttgaattaat


8281 ttcacaaagcggagaaagacttggacttcgtgcagtaatgaagaccaccgatgggtactg


8341 aacagctctggtgggtttgcactcagagaaaggagcctaagatgcagaaggtgcagtgag


8401 gcagcagccatctgctcttgtgctgctgagcagagcatgatgggctgtcaccgctcacgc


8461 gtgttctttacctgctgactcacctggcggcatgggctgcatatggggtcccagctcctt


8521 aagctcctgtcaggcccttctgcaacttctcccaagctcttgggccaggtgcatgtctag


8581 ccatgaaaaaggaggccagtacctgatcactaagtgaaagttctaaggtagtgggactgc


8641 cacaggtgtcccccatggtcccaggtcacaatccagtctgttgaccctcctccttttgca


8701 ccatcgcccctttgacagcctgtgctatgggttttaggctcctagcaccaaacagaaaca


8761 ggcttatatagatcatctaatcagctcttcttatgtgaggccgaactctgtaataaatct


8821 ttttatgtctcctagggcttctctgattgaacctgtctgatgaggagttaaagaagttct


8881 caaattgtgtatgcataagaatcacctgggatttctagctcagagactgggacaataggt


8941 ctattgaacctaggagttcattttgaacaagtgctctacgtaattctgatacagggaatc


9001 ttccagttacagtttgaaattcacaaatacaaggaatgagagacctagaatcagaaagca


9061 tgttaatacacttttgggccattaagtgctcacccaggtaacaggtacagaaaggcagaa


9121 aaaggaaacctatcagggtaataattatgcctttttttttttttttttttgagacagggt


9181 cttgctctatcacccaggctggagtgcagtggcacaaccacagctcactgcagccttgac


9241 ctcctgggctcaagtgattcttccagttcagcctcttgagtaactacgactacaggcatg


9301 tgccaccatccctggctcattttttgtagagagggggtttggccatgctgcacaggctgg


9361 tctcaaattcctgggctcatgtgatttccccacctcagcctcctaaagtattaggattac


9421 aggcgtaagccactgtgcttggccaagacattttggtaagaaatattattttcctactaa


9481 attgtctacattccccttgggtaggcttgcaaagtcactgtgactacagcaggagctatt


9541 gctgcatgggaaatatggagacacgagtggtacctggcagtcacgggctcagtttgtttc


9601 taacctcccaagtcagcacagccccactgagcagactgccggaaagtatttatgccatct


9661 gtcggataattaagacaaatccaaacatctacgtgcattctgtgtgtataaatggagtca


9721 tggccaacctctcaagcagttttccatcaatcacttgtaatattaccagatacttccaat


?.1 S


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
66061 tgacagtatc ctaacctctc tactatcatg gcgcccgcct ggcaacacct gagcttgcat
66121 caactcaaca gtcagtctct cctttccaag ctgtgggcca gatgaggtct ctccttcaca
66181 gacgtcccat ctgatggtga cccatctctc ctacaccttc aacctctcca tcctccccat
66241 ctacactgca acttgtttct ctttcccatc tcagaaacag caacaaatct cccttcacta
66301 agaggtcctt caccagcctc ctctcccggc attatcccat ctacccctcc acattcaagt
66361 ttttggaaag attctacact cccagtctct acttcctcac ttcttccttg ctgcccacgc
66421 cataaactag ctgctgcctc cagcattgcc ctgacaccta gtggctggtg tcaccaagac
66481 gctagaccca atggttattt atttatttat ttacttattt tgagacggag tctcactctg
66541 tcgcccaggc tggagtgcag cggtgccatc tcggctcact gcaacttccg cctccagggt
66601 tcaagtggtt ctcgtgcctc agcctcccaa gtagtttgga ctacaggtgc ctgccaccat
66661 gtctggctaa tttttgtatt tttagtagag acagggtttc accatgttgg ccaggcttgt
66721 cttaaactcc tgacctcaag tgatccaccc acctcggcct cccaaaatgc taggattata
66781 ggcgtgagcc accgcacccg gccaatggtt gtttttcagg tcttctcttg cttgacttcc
66841 cagagggatc ccttactgtt gcacctaccc ttctgggaac tctcttcctc tggcgtctgt
66901 gatatttccc tctcctgctg gctcctccct ctccagatgc tgtttctcac atctactctc
66961 ttctagagag tgtggtagac agaataatgg tcaccaaaga tgtccctgca tgaatccctg
67021 gaacttgtga atatgatagg ttaaatggcc aaaagggaat taaggttgca gatggaatta
67081 agctgaccaa tctcctgatt ttattttatt ttattttgtt tttgaggtgg agtttcgctc
67141 ttgttgccca actggagtgc aatggtgtga tctcggctca ctgcaacctc cgcctgccag
67201 gttcgagaga ttctcctgcc tcagcctccc gagtagctgg gattacaggc acccgccatc
67261 atgcctggct aattttttaa atttttagta gagacagggt ttcgctatat tggccaggct
67321 ggtcttgaac tcctgacctc aggtgatccg cccacctcgg cctcccaaag tgctgggatt
67381 acaggcgtga gccaccgtgc ccagcctatc tatctattta tttatttatt tttgagatgg
67441 agttttgctc ttgttgccca ggctagaatg caatggtgct atctcgactc accgcaacct
67501 ccacctcccc ggttaaagcg attctcctgc ctcaggctcc tgagtagctg ggattatagg
67561 catgtgccac cacgcctggc taattttttg tatttttagt agagatgggg tttctccatg
67621 ttggtcaggc tggtctcaaa ctcctgacct cagatgatcc acccacctgg gcctcccaaa
67681 gtgctgggat tataggcgtg agccatcata ccaggctcta ttgatttatt tttattttta
67741 tttttgagac ggagtctcgc tctgttgcct aggctggagt gcagtggcac aatcttggct
67801 cattataact tccgcccccc cccaggttca agccattctc ctgcctcagc ctcccgagca
67861 gttgggacta caggcgcgtg caaccatgcc tggctaattt ttgtattttt agtagagacg
67921 gggtttcact gtgttggcca ggctggtctc gaactcctga ctttgtgatc tgcctgcctc
67981 agcctcccaa agtgctggga ttacaagtgt aagccaccac gcccagccta ttttgtttat
68041 tttttcaaag acccttgaca cccaggctgg agtgtagtgg cactgtcata actcactgca
68101 acctccgtct cccaggttca agcgattctt gcacctcagc ctccctagta gctaggagta
68161 caagtacgtc ccaccacacc tggctaattt atttttattt ttgtagagat ggggtctcac
68221 tttgtttccc aggctggtct aaacttctgg tttcaagcaa cctteccacc tcaaagtgct
68281 gggagtacag gcatgagcca ccaccacacc tggcctaatt tgctgatttt tatttatttt
68341 ttattattta tcttaatttt tattttgaga cagagtcttg ctctgtcatc caggctggag
68401 tacggtggtg caatctcagc tcactgcaac ctccccctct cgggttcaag cMattcttgt
68461 gcctcaacct cccaagtagc tgggattata ggtgctggcc accacgcctg actaattatt
68521 gtaatttttt ttttttttag tagagacggg atttcaccat gttggccagg ctggtcttga
68581 actcctgacc tcaagtgatc cacctgcctc agcctctcaa agtatgggga ttacgggtgt
68641 gagccgccgt gcctggccca atttttgtat tttcagtgga gatggggttt tgccatgttg
68701 gccaggctgg tctggaactc ctgacctcag gtgacccgcc tgcctccgcc tctcaaagtg
68761 ctgggattac aggcataagc caccatgcct ggcccacagg ggtccttaaa aaatgaagga
68821 ggatggcaga agaaagtcag agggagatgt gagtaaagaa aaaagacaca gagagctgca
68881 atgtttctgg tttgaagatg gaggaagggg attgtgagct aataaatacg ggtggcctct
68941 aaaggcaaga aagggtaaag aactggattc tcactctaga gtcaccggga aggaactatc
69001 aacatcttga tttcagccca gtgagactct gtcagacttc taagctacag aactgtaaga
69061 taaatttgtg ttgttttaca tcattaaatg tgcagtaact tgttacagca gcaattagaa
69121 atgaatacag aggactgggc attaggcctg tatctcagct ttctctgatc tcctggtgtg
69181 ttcctgttat ttattgttgg tttcccccag aatgagtgat ctaagaggaa gcaaaataga
69241 agccgcaatc tctttatgac ttagcctcag aagacacaca ctggggccag gtgcagtggc
69301 ttatgcctat aatcccagca ctttgggagg ctgaggcagg aggaccactt gagcccagga
69361 gtttgagaca ccctggacaa cacagggaga ccctcactct ataaaaaata aacaaaatta
69421 gccaggtgtg gtggtgcaca cctgtagtcc cagaactttg ggaggctgag acaagacaat
69481 gacttgagcc caggagtttg agacaggtct ggacaacgtg gtaagactct gtctttataa
69541 acatttttaa aattaggcgg ggcatggtgg ctcatgcctg taatcccagc aatttgggag
69601 gctgaggtgg gtggatcacc tgaggtcagg agtttaagac aagcttggcc aacatggcga
69661 aaccYcgtct ctactaaaaa Yacaaaaatt agccgggcat ggtggtgggt gcctgtaatc
69721 ccagctactc aggaggctga ggcaggagaa tcatttgaac ccgggaggtg gaagttgtag
69781 tgagccgaga ttgccttcct cactccaaga gttataaaag attttgacca tattttcttc
69841 tagcatttaa tcaattaatt aattaatgtg agacagtccc actctgctgc ccaggctgaa
69901 atgcagtggt gcaatctcgg ctcactgcaa cctctgcctc ccggattcaa gtgattctcc
69961 tgccttagcc tcctgagtag ctgtgattac aggcaccagc cactatgcgt ggctgatttt
70021 tgtgttttta gtagagacgg ggtttcacca tattggccag gctggtctca aactcctgac

70081 ctcatgatcc Rccctccttg gcttcctaaa gtgctgggat tacaggcgtg agccactgtg
70141 cctggccttt ttctttcttt tttttttttt ttcattagag atgagttgtt gttatgttgc
70201 ctctaactcc tgggctcaag cagttctccc accctggctt cccaaagtgc tgctgggatt
70261 acaggagtga gccactgccc ccagcctctg acagtttttg tgcactagga atttgggaag
1R~


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
70321 acaattttac ctggctattt ctggctcata caattgcagt cagatggtgg ctaaagctgg
70381 aacaataagc agctaaaaca gctgaaagat aacctagcat tctctctccc tttctctgag
70441 tagtctccga acctatctat gttgtcctct gcatgggcta gcttgggctt cctcacagca
70501 tggcagcctt aaggctttaa tagtcagctt ccaaaatggt cctcagtgat tcctgcttcc
70561 tggtattgat accattgtga agtctcttct cacattgaaa ggggctgaac tggcccattg
70621 ggataatgca gaaatgacag tgtgtgactt tagaggctaa atcatgaaga tattgtggct
70681 tccatcttgc tcctttgtag atcactcatt ctagacaaag ccagctacca tgatatgaaa
70741 gcactcaagt aaccctaggg agagaggtct ccttagtgag gaactgaggc cctgtaagaa
70801 acgtgggtgt gctgcagtca agtgggcata ggccaaagta aacatccaga gtgactcagt
70861 gagtttagag tgcaggcata tagctccact tgttatcaca gccgtgtagc cataacatgg
70921 gaaggctcat cacttggctc tgagccactg ttgtctgtaa aaggtataat tgccctgctg
70981 acactgtgca cagggctcgg cccaacatgg cttgacatgg gacatggctc ttgtgcaggt
71041 gcttgtaccc agagaaagag agaaagccag agctgtccat ctcggggaag ccaagacaca
71101 gctcagctag ctcatgccca gagggagaaa gagtaaggct gtggggtgtg gtggctcatg
71161 cccataatcc cagcactttg ggaggccaag gcaggtggat cacaaggtta ggagtttgag
71221 accagcctgg tcaacatggt gaaacccctt ctcaactaaa aatacaaaaa ttagctggcc
71281 atggtggtgc atgcctgtaa tcccagctac tcaggaggct gaggcaggag aattgcttga
71341 acccaggagg cagaggttgc agtgagccga gatcacacca ctgcactcca gcctgggcaa
71401 cagcgcgaga ctccatctca ggaaaaaaag aaaaaagaaa agaaaagaaa gagtgaagct
71461 gctgaccctg aagggagagc tggccacaca gctgtgtgtg tgtgggagct gccggagtaa
71521 gcagctgaga cagagcagac agtgcgagag taagatgttg atgatgagag agctgctgaa
71581 taaagccatg tctcatttac ctgctgtctc tcgagtgttc ttctagctcc ctgcctcacg
71641 tccactgctt cctctcacac ctcagctggg gctggacccc aaccctgagc atgacgggcc
71701 ttctgtcaac aaccagcagt aacctgctgg gcatgtgagg gagctacctt ggaatcagat
71761 tctgtaaaac agtcacgcct tcagatgacg gtagcattgg ccaacatttt gactgcactt
71821 catgagagac cctgagccag aaccccctag attectaacc caaggaaact gtgtgtgata
71881 agtgtttatt gttttttttt tttttttttt tttttgagaa agagtctcgc tctattgccc
71941 aggctggagc acagtggcac aatcttggct cactgcaagc tccgcctctc aggttcacac
72001 cattctcctg aatcagcctc ctgagtagct gggactacag gcacccacca ccacgcctag
72061 ttaatttttt tgtattttca gtagagacag ggtttcaccg tgttagccag gatggtctca
72121 atctcctgac ctcgtgatcc gCCCgCCtCC gcctcccaaa atgctgggat tacaggcgtg
72181 agtcaccaca cccggccagt gtttattgtt ttaagatatt ggctaggcgc agtggttcac
72241 acctgtaatc ccagcacttt ggaaggccga agtgggagga tcacttgagc tcaggagttc
72301 aagttcaaga acagcctggg caacatagtg agaccttgtc tctatttaaa aaaatgtttt
72361 taagatgtta tgtttgagct gggtatggtg tggctcacgc ctgtaatccc agcactttgg
72421 gaggctgagg tgggtggatc acctgtggtc aggagatgga gaccagcctg gccaacatag
72481 tgaaaccccg tctctactaa aaatacaaaa aattagctgg gcatggtggt gggcgcctgt
72541 aatcccagct actagggagg ctgaggcagg agaatcgctt gaacccggga ggcagaggtt
72601 gcagtgagcc aagatcgtgc cattgcactc cagcatggtg ctatgttttg gaggtaattt
72661 gttacacagc aataaataat tcgtacaggg caccagcctg gccaacatgg agaaaccctt
72721 ctctagtaaa aattatccgg gtatggtggt gcatgcctgt aatcccagct acttgggagg
72781 ctgaagcagg agaatccctt gaacctggga ggtggaggct gcagtgagcc aagatcgcac
72841 cactgcactc cagcctgggt cacagagcaa gactctgtct caatttaaaa ataaaataat
72901 aataatatag ggcagtcaga ctgcccacct ggcagctcag gactagcaca tgtgctccag
72961 aaagccaggt ggaagctaca tattttatga tctaaactca gaagtcatat agcatctgtt
73021 ccactgtaat cacaagcctt cccagttcca aggggaggga acatagactc cctcacctct
73081 tgatacaaga agtgtcaaag ttatatggta agaagttggc caggccctgc ttgtctctgt
73141 tgttcatgcc tgtaatccca gcactttggg aagacgaggc agatggatca cctgaggtca
73201 ggagtttgaa gccagcctgg ccaacatggt gaaaccctat ctctacaaaa atacaaaaat
73261 tagctgggca tggtggtatg cacctgtaat cccagctact tgggaggcca aggcacgaga
73321 attgcttgaa gctgggaggc agaagttgca gtgagccgag attgtgccac tacactctgg
73381 cctgggttac agtgcaagac tctgtctcaa aaaaaaaaaa aaaaaaaaag agagaagttg
73441 gttgggccca gtggctcacg cctgtaatcc caacactttg ggaagctgag atgggaggat
73501 cgcttcaggc cagaagatcc atcgttacca gcctgagcaa cacaaggaga tcccgtcctt
73561 acaaaatttt tttaaaaatc agctgggtgt ggtggcaggc acctgtggtc acagctactc
73621 gggatgctga ggtaggagga tcgcttgagt cagggaggtt gtggctgccg taagccatga
73681 acatgccatt gcattctagc ctgggtaaca gagtgagaca ctgtttcaga aaaaataata
73741 aaataaaata aataatgttg taggacaggc gtggggctca cgcttggaat ttcagtgctt
73801 tgggagactg aggcaggagg attgcttgag aacaggagtt cgaggctgca gtgagctgtg
73861 atcgcaccac tgcactccag ccttggtgac atgagcgata tcttgtctca ataaataaat
73921 acatacagtt ctcttttaca tcgagtatat gtaaattttt aaaaatacat tgaaagcgct
73981 tagaaagccg cctgactctc cctctccctc tccctctccc tctccctctc cgtctccgtc
74041 tccgtctccg tctccgtctc cgtctccgtc tccctccacg gtctccttcc acggtctccc
74101 tctgatgccg agccaaggct ggacggtgct gctgccatct cggctcactg cagcctccct
74161 gcctgattct cctgcctcag cctgctgagt gcctgcgatt gcaggcgcac gccgccacgc
74221 ctcactggtt ttcgtttttt tttttggtgg agacggggtt ttgctgtgtt ggccgggctg
74281 gtctccagct cctagccgcg agtgatccgc cagcctcggc ctcccggggt gccgggattg

74341 cggacggagt ctcgttcact cagtgctctg tggtgcccag gctggagtgc agtggcgtga
74401 tctcggctcg ctacagcctc cacctcccag ccgcctgcct tggcccccca aagtgccgag
74461 attgcagcct ctgcccagcc gccaccccgt ctgggaagtg aggagcgtct ctgcttggcc
74521 acccatcgtc tgggatatga ggagcctctc tgcctggctg cccagtctgg aaagtgagga
1R4


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
74581 gcgtctctgc ccggccgcca tcccatctag gaagcgagga gcgcctcttc cccgccRcct
74641 tcccatctag gaagtgagga gcgtctctgc ccggccgccc atcgtctgag atgtggggag
74701 cacctctgcc ccgccgccct gtctgggatg tgaggagcgc ctctgctggc cgcaaccctR
74761 tctgggaggt gaggagcgtc tctgcccggc cgccccgtct gagaagtgag gaaaccctct
74821 gcctggcaac cgccccgtct gagaagtgag gagcccctcc gtccggcagc caccccgtct
74881 gggaagtgag gagcgtctcc gcccggcagc caccccgtcc gggagggagg tggggggggt
74941 cagccccccg cccggccagc cgccccatcc gggaggtgag gggctcctct gcccggccgc
75001 ccctactggg aagtgaggag cccctctgcc tggccagtcg ccccgtccag gagggaggtg
75061 ggggggtcag ccccccgccc ggccagccgc ccagtccggg aggtgagggg cgcctctgcc
75121 cggccgcccc tactgggaag tgaggagccc ctctgcccgg ccagccgccc cgtccgggag
75181 gggggagggg gggtcagccc cctgcccggc cagccgcccc gtccgggagg gaggtggtgg
75241 gggtcagccc cccgcccggc cagccgcccc gtccgggagg tgaggggtgc ctctgcccgg
75301 ccgcccctac tgggaagtga ggagcccctc tgcccggcca gccgccccgt ccgggaggga
75361 ggtggggggg tcagcccccc gcccggccgg ccgccccgtc cgggaggtga ggggcgcctc
75421 tgccccgccg cccctactgg gaagtgagga cccctctgcc cagccagccg ccccgtccgg
75481 gagggaggtg ggggggtcag ccccccgccc ggccagccgc ccagtccggg agggaggtgg
75541 ggggatcagc cccccgcccg gccagccgcc cagtccggga gggaggtggg gggatcagcc
75601 ccccgcctgg ccagccgccc cgtccgggag gtgaggggcg cctctgcccg gccgccccta
75661 ctgggaagtg aggagcccct ctgcccggcc agccgccccg tccgggaggg aggtgggggg
75721 gtcagccccc cgcccggcca gccgccccgt ccgggaggga agtggggggg gtcagccccc
75781 cgcccgacca gccgccccgt ccgggaggga ggtgggggga tcagcccccc gcctggccag
75841 ccgccccgtc cgggaggtga ggggcgcctc tgcccggccg cccctactgg gaagtgagga
75901 gcccctctgc cctgcttgaa ggcagcatgc tcgttaagag tcatcaccac tccctaatct
75961 taagtaccca gggacacaaa cactgcggaa ggccgcaggg tcctctgcct aggaaaacca
76021 gagacctttg ttcacttgtt tatctgctga ccttccctcc actattgtcc tatgaccctg
76081 ccaaatcccc ctctgcgaga aacacccaag aatgatcaat aaaaaataaa aataaaaaaa
76141 aaaaaataaa aaaataaaaa aaaaaaaaaa gaaagccgcc tgacctgtat acagtattct
76201 gaaaaggggg tcgcgaggtg catgtccaac ctccgccgcc gggggcagca gcgagtccag
76261 gccgagccgg ggcctagcga gcggggtcaa atggggtgag gcctgtgcca gacctctcca
76321 cctcggtggc agccgcagcc tcctccgcct gcggctcctg tccacgccgc ggccacgtga
76381 gcgccagatt ctggcgcaca gaccactgcc agtcctttgc tgctttgcgc agcctgtcct
76441 ccccgccagg agcacccttc ccgctccctt ttaccacggg ctccagccgt ggctgccttg
76501 gggctgccgc cgcctggctg taYtccagga cgttgggaaa gaacgggtgg gaatggtgtg
76561 ggtgggggtc aaagaggaaa cccagagatg cagggcgccc ctttcccgtg gtctgccccc
76621 aattgctcag gcaggccagt cacggtgagg cgtcctccct ccaagtttat atttattatt
76681 atttattatt tatttttttc accttcaagt ttattattta ttatttattt atttattttt
76741 gagacggagc ctctctctgt cgcccaggct ggagtgcatt ggcacgatct tggctcactg
76801 caacctccgc ctcccgggtt caagcgattc ttctgcctca gcctcccgag tagcagggat
76861 tacaggtgca tgccaccaca tccggctaat ttttgtattt ttagtaaaga cagagtttca
76921 ccatattggc caggctggtc tcgaactcct gacctcaggt catctgcccg ccttggcctc
76981 ccaaagtgct gggattacaa gcatgagcca ctgcacctgg ctaacctcca agtttaaaga
77041 cagccgccag gcccagtggc tcactcctgt aaccccaaca actcaggagg ctgaggccag
77101 gaatttgaga ccagcctggg caacatagcg agaccccggc tctaagaaaa ataggccagg
77161 cacggtgggt tacgtctgta atcccagcac tttgggaggc tgtggcaaaa ggattgcctg
77221 agggggaaaa aatcaccctg ggggtagtgg tgcacactta cagtctcggc tacttgagag
77281 gctgaggtgg gaggatcatt taagtcggag gctgcagtga gctactatgg agcgactgta
77341 ttacagcttg agcaacagag cgagacccca tctccaaata aataaataaa gatagcctcc
77401 aaagatgtca cttgcttcac ttagcacttt ttattgaaca tatttaggaa atatataacc
77461 atggtaaaga aaattgcaat tagtacaaat acacactaca cacatatgca cgtgcacaca
77521 ctgaaacgtg tcccttccag cgcctcctgc ctggataatt tttttttttt ttgcaacgga
77581 gttttgctct tgttgcccag gatggagagc agtggcggga tatcggctca ctgcaacctc
77641 ctcctcccgg gttcgagcga ttctcctgcc tcagcctcgc gagtagctgg gattacaggc
77701 gccagccaca acacccggct gatttttgta tttttagtag agacggggtt ttgccaagtt
77761 ggccaggctg gtctggaact cctgagatcc gcccacctcg tcctctcaaa gtgctgggat
77821 tacaggcctg agccactgcg cctggcctaa agtaattgtc ttcttattgg tttctctgcc
77881 tttggtctca ccaaacgccc cactctaaat cactgcagac aaggggttct gtctaaggag
77941 gagagcccac cagttaaaac ccttcagtag ttcctaacta ccctaggaca aatgcagact
78001 tatccttcgc tctctgctgc cgcccctctc cttcccagat cccatatggc tccagccata
78061 tcctcagacc atctgggctg ttgtctgtcc tgccacacac ccttcccacc ccgctccctt
78121 gcaagtccta ctcaggctgc acctacacag ctgtctcagt ttctatctga ggctcccgca
78181 gcctcctctg aaagtcctca tcacagccaa tgatactgaa actgttttct tatgcagggc
78241 acggaaagat ctattcaact cactgcccaa tctcctctcc tggtgcagaa aagacaccca
78301 gtcagcgact tgcattatct gcaggcatga gtgaataata ataatgccta acccttatat
78361 agtgctaatt ccacgcctgg cactgttcta ggcactcata taaattcatg taatccacac
78421 aaccccaaaa ctgatgatat ctcttcatct taccaagcac tgagcagtta aataacttgc
78481 tccagatatt aaggggtcga gctggggttt gaagcctggt tacccataaa tgaaccaaga
78541 actggaagga ggacaagaSc tccgagaagg agtcaggtag ggcgtgatct gtgcgcttta

78601 catctaagat cttccagctc ccagggagcc cgtttcatag agcaggagat agaggctggg
78661 agggacacgg agagcctcga gagccgtgtg gaggaagcgg tgctgtttgg ggtccgggag
78721 caagggcgtg gcctggatgc gcgggcgccc gggacggcac gtcctcagac caaactacaa
78781 ctcccaggac ccagcgggcg ctgccgccca cgcgacgtca cggcggcgga gggcgcaggc
1R5


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
78841 ggctgggcgc ctggcgagtg gactgttcga gcccttccgc tgggacccgg gccctggctc
78901 cggccccgcg gtaagtgggg cgaccccagc ctactcagtc cgcggaggcc ccgcggcgca
78961 cgtccgcagc ctccatcaca gcgcgggcgc gcagacgggg ctggcatcta ccatatgggg
79021 ggcatccggg ccgaaccaag tgacccgcgt ggggggtccc gctggggact ccgtgccgca
79081 ccctcccaag ccggccccag gggcccaggg ctggtgtcgc acgttcgctg gccgcgctcc
79141 cagggcccgg gtttgaaggc gctgggcagg caggggcagc cccgccccct gagaagggta
79201 cccgggaccc cggggcgctg gggcgaggtt ttcgggctgg aagggtctga ggggctcctc
79261 ccccgacagc cctcccaccg ccagtagagc ctcgggttgg ggaatagaag cccccgggag
79321 gctaggtcct ttgggcgcgg cctgtgtgca tctggggaga cggtgggagt ggtggggaga
79381 ggtcgcccgg gtctggggag accgatgcac aggtggagag atggtgcggg ttctgtggat
79441 tcggatcctt acaacttcct cttccccgcc ccggtagatg ggagctgctc tccgcgggct
79501 gagcctgtca gcatcctcga cgcaccctgg tccctgaagt cggagaagMg cccctaccca
79561 cccacacccc cttgccccat tttgggtcgc ctgggtcctc agtcctagcg gatcctcagt
79621 cctagcggcc accgggtctg aaaggagcaa gacgatgatc ctggcgtcgg tgctgaggag
79681 cggtcccggg ggcgggcttc cgctccggcc cctcctggga cccgcactcg cgctccgggc
79741 ccgctcgacg tcggccaccg acacacacca cgtggagatg gctcgggagc gctccaagac
79801 cgtcacctcc ttttacaacc agtcggccat cgacgcggca gcggagaagg tgcgcaaggg
79861 ggcagccagc ccagggtccg gRatgtaggc gggagggaga gtgttggggg ttctctgctc
79921 aaggcctctc tccctctcta gccctcagtc cgcctaacgc ccaccatgat gctctacgct
79981 ggccgctctc aggacggcag ccaccttctg gtaagattca cgccctctat tttcctcgtg
80041 gatcctggag ctctcccaga cactcaggct ccagccccgc cttcccttct cattttctcc
80101 cagaaaagtg ctcggtacct gcagcaagaa cttccagtga ggattgctca ccgcatcaag
80161 ggcttccgct gccttccttt catcattggc tgcaacccca ccatactgca cgtggtaagg
80221 tagagaggac cttaggtcag cgggccaccc tgccccgggg gcaagtgggg agtctggggc
80281 ccagagtggc agacgattgc ttgcctaaag gtgtcagggc cacacaggat tcaaccccag
80341 gccttcagaa gccaaaggtg tgtattcacg gagcctggaa gggtcgaagt gggggtttga
80401 tcacgtggtc gaccagctgg gtggtgatcc ccatgggtag gtgggggtgg ctgttctctg
80461 ctcagtgccc atgcggcttt gtgaattccc acacctcttc cttgcagcat gagctatata
80521 tccgtgcctt ccagaagctg acagacttcc ctccggtgag tgctgggcca gagcagggtg
80581 aggggctgag aggttgggct tggaccaccc ttcctcatga ctctgtgacc tgcagatcaa
80641 ggaccaggcg gacgaggccc agtactgcca gctggtgcga cagctgctgg atgaccacaa
80701 ggatgtggtg accctcttgg cagagggcct acgtgagagc cggaagcaca tagaggttgg
80761 ggcagcaaag gagaggccgg gcctgctggg ggtgggaagg gcacgggatt ctgagacctc
80821 actctttaca ggatgaaaag ctcgtccgct acttcttgga caagacgctg acttcgaggc
80881 ttggaatccg catgttggcc acgcatcacc tggcgctgca tgaggacaag gtggggctct
80941 gggacctgag acccacctgg gaacattaag tgagacagag gagactgggc tggggatccg
81001 ggtcaagggc ctgggggctg aggctgtggg gctggtgctt tggggcagtt ccgaagttgc
81061 cagcatcttg gggtggggct aggggcgtgg gtagtcctga cctcctttct ccggccagcc
81121 tgactttgtc ggcatcatct gtactcgtct ctcaccaaag aagattattg agaagtgggt
81181 ggactttgcc aggtgaggca agaatggctc agggggtggg cagacatctg gggcagggaa
81241 ggcttgggtc tgagcccttg cccggggcat gatctgcggg gagcagggtt tctcaaccat
81301 ggcactattg acatttccag ccagataatt ctttgtcaYa ggggctgccc cgtgcacgtt
81361 aggaagttca gcagcatccc tggcgccagc agtactgcct agttgtgaca aacaaaaatg
81421 tctctgcaca ttgccatatg ttacttaggg gggcagaatt gtttccagtt gcaaaccact
81481 ggtggagggg cccctgactg aaccctcgct cctatccgca gacgcctgtg tgagcacaag
81541 tatggcaatg cgccccgtgt ccgcatcaat ggccatgtgg ctgcccggtt ccccttcatc
81601 cctatgccac tggactacat cctgccggag ctgctcaaga atgccatgag gtggggtggc
81661 ttgatgtgct ggcttggggg Yggacaggaa ccgggNtgct tgtacctact ggtctttccc
81721 ctctgcatag agccacaatg gagagtcacc tagacactcc ctacaatgtc ccagatgtgg
81781 tcatcaccat cgccaacaat gatgtcgatc tgatcatcag gtttgccctg agtgggagtt
81841 gagctgaggt ggatgggatg ggggtctagg cactgtttct gacttgattt aggaccttga
81901 gccccttcct gccccattct gggacttggt ccctgaccag acaaactatt ctctgaatcc
81961 tgagatggcc atgagctgct tattaatgga tctggggcca gctgcaggcc taggtatcct
82021 gcctctgtca gcagctgagg agcttgaaat tgagaaatag tcaggagtcg gtctaggatg
82081 ctgggccgag gataaatgtc acatcctgtg agaaggtata agcagtcagt ggccctggca
82141 ggggtgagga tgatataaac aaggcccaag ggtctaggtg gaccacattc cagctctggg
82201 tggaaggaac aggaaggcag actttgcact gtctgcttgg ggggtggtga gtaccccatc
82261 aaagctgagc caagcccatt gttgttgcca tcttgctagg atctcagacc gtggtggagg
82321 aatcgctcac aaagatctgg accgggtcat ggactaccac ttcactactg ctgaggccag
82381 cacacaggac ccccggatca gccccctctt tggccatctg gacatgcata gtggcgccca
82441 gtcaggaccc atgcacgggt gagaccctgc caggccagga tggaggggtg ggggacccca
82501 ggagactcaa gCCtCtgaag CCtCCtgtCC tgtCCCCCtg CCCaCCCCCa gCtttggCtt
82561 cgggttgccc acgtcacggg cctacgcgga gtacctcggt gggtctctgc agctgcagtc
82621 cctgcagggc attggcacgg acgtctacct gcggctccgc cacatcgatg gccgggagga
82681 aagcttccgg atctgacccc acagcctttg gcctgctcac ccgaccagcc tgggccgcat
82741 tccctgcagg acctcccggg tcaggcaggg cggccccctg ctccacacac tgctgcatct
82801 tgggtctcag ggacccagac agatggactt acatggagct gggcactgcc ctgcctcaac

82861 agggtccatt gcctcctcgc ctccagaact tggagcaggg aagtgggcac cctgaggcct
82921 ccagcaccag ttccgtcatt ctcgttcctg gggaaccccc actctgacct gttattaaag
82981 ttcacatttt gaatgccctc tcgggccccg tgtgtgggga gggcaggtga acttttgttt
83041 ctgcccccat tcaggttcac tgagcccttg ggttgaactg gttcgtgtcc cagtctctta
1 St H


CA 02561669 2006-09-27
WO 2005/097421 PCT/US2005/010913
83101 cctgccctga gagcctggca ggccaggagt agaatgggtc ccaagtctgt tgcatgtttg
83161 atttggtggg agtgggatga ctgcagcacc ttatacaaag agctttcatt catcttgttg
83221 aacaaatgtt tccgggtccc agataatatt gaaggcccag actgacccag cttcgggcat
83281 cagttttgac tcttcctttc ctggcagtca cagtttctag aggtgaaggt caccagactg
83341 ggcaaactcc tgagccaact gcttcccaag cctgagtagg ttaaaaatac tgtgtctgct
83401 gctgccaagg aaaagaacat acaaggttgt gccttggcag gccctagcag ggactgggtg
83461 ccccactgca aggaaaggtg gggccctgat agaaaggacc aaggatttgg gcaaagRtat
83521 caggtaggct caaggttaga cctgaatcag aactccagat gacatcttag gtaggaacac
83581 cctacccacc ttgccaggga agaaaggcct aagggcggcc tggtggggct gggaggagaa
83641 ctggaaagtt ctcttgcctt cacatgtgag ctcccacagc aaacttcctg aggctggctc
83701 taggcctgta ccatctccta cccttcacgg ggatggaggg gaagttgtat gtggaagcca
83761 aatggcaggg gctaggaaac cacagtgact tgctagactg aaaaatcccg ccagctgcaa
83821 ggcagggtgc tgaggctgga gaggcaggca gcagtcagag gccagggccc tgaaacatgg
83881 gatttatctt gagccatagg gatccatggg tgagttttta tttatttaga aatggggtct
83941 tgctctgttg cccaggctgg aatatggtgg ctgcagagtt cactgcagcc ttgaactcct
84001 gggatcaaga gattctccca cctcagcctt ctgagtagct tggaccatca tgccaggcta
84061 aattttaaaa ttttttgtag aaacagggtt tctacaaagc cctatgttgc cccgggctgg
84121 acttgaactt ctgggctcaa atgatccttc caccccagcc tcccaaagtg gtggggttac
84181 aggcatgagc cactgcagct ggcccatgag tgggttttga gctgggaagg gatgtttctg
84241 gttggagtcc ctgagaggat tcatgtccac gtgatttctt aagaaagtgc tcccagaaca
84301 gagtagggga agtaggaagg ggaaggggag gaagccaagc aaggatgtga cctcaggcaa
84361 aagcccagaa ccagtcaatt atgcctcagg gttgaaggta agagagctaa acctcagagt
84421 tactgattaa tttctccact tggcagtcac tggttaaagt cagttgggaa agtgaacagc
84481 tctattaacc taaggatggt tttttaagaa gagcctcagg tgctggtgtg ggtctttgaa
84541 agcacatcaa aggtaatctg ggcacacaga aacagcaaga actcccagag gatctgggtg
84601 gagcacctac attgtttttt tgtttgtttt gtttcgtttt gtttttttaa acggagtctc
84661 aatctgttgc tcaggctgga gtgcagtggc tggatcttcg ctcactgcaa cctccgcccc
84721 accccccccc aaccccaggt tcaagcgatt ctcctgcctc agcctcccga gtagctggga
84781 ttacaggcgc gtgccaccac acccagctaa tttttctatt tttagtagag atggggtttc
84841 accacgttgg ccaggctggt ctcgaactcc caacctcgtg atccatccac ctcagcctcc
84901 caaagtgcca ggattacagg catgagccac catgcctgtc ggatgtttct tgatttgtaa
84961 cctctgagag acccatccgc aggccctgag cattccactc ctctcagaat tgtttccaag
85021 cccaataacc acattataaa tcaaacaaga ttcagagaat agccaaaggg aatgtttact
85081 gagtacctac ccggtctggc actttgcaat acacttgtat attgctaaga cggatagttc
85141 aaccgttaca tagttatatg attgatagtt atacatgctt aactgctggg gattggttcc
85201 aggaccgcct gtgaataccg aaatctgcag gcgctcaagt cctacagttg gccctgccaa
85261 acagcagata tgaagtcagc tcttcagatc tgtgggttct gcatccttac aatatttcct
85321 ttcctttcct tttcttttcc tcccttcctc cctctttttt ctttttcttt tttgagatgg
85381 agtcttgttg tgtcggccag gttggagtgc agtggcgcga tctcggctca Mtgcaacctc
85441 cacctcctgg gttcaagcag ttctcctgcc tcagcctccc aagtagctgg gattacaggc
85501 acacgccacc acccctgact gttttgtatt ttcagtagag acggggtttc acaatgtggg
85561 ccaagctggt tttgaactcc tgacctcaag taatccacct gcttcggcct cccaaagtgc
85621 tgggattaca ggtgtgagcc accgcgccca gtcttttttt tttttttttt gaggcagagt
85681 ttcactcttg ttgcccaggc tggagtgcaa tggcacaatc tcagctcacc acaacctctg
85741 cctcccaggt tcaagcggtt ctcctgcctc agcctcccga gtagctggga ttacaggcat
85801 gcggccacca cgcctggcta attttgtatt tttagtagag atggggtttc tccatgttgg
85861 tcaggctggt ctcgaactcc cgacctcagg tgatctgcct gcctcggcct cccaaagtgg
85921 tgggattaca ggagtgagcc actgcgccca gcctcctttt ctttcccccc tttttttttg
85981 agacagggtc tctgtcaccc aagctggagt gcagtggagg gattatagct cactcagcct
86041 cgacctcctg ggtttaagcg atccctctgc ctcagcctcc tgagtaggtg ggactacagg
86101 tgcgggcccc gaggcccagc taattttttt tttcccccaa atttttagta gaaaggaggt
86161 ctctatgctg cccaggctgg tcttgaactc ctggcctgaa gcgatcctcc tgcttggatt
86221 cctgaagtgc gagattacag gtgtgagcca ccatacctca acactgtatt ttcaacccgc
86281 tcttcgttca atctccaaag gtgggacatg cggatatgga gggccgattg tRtatggttg
86341 gaccatacac atataaatgg ctttaacctt tactgactct cacagaaccc tcagtgcagt
86401 ggcgtgatct cagctcactg caagctccac ctcccgggtt cacaccattc tcctgcctca
86461 gcctcccgag tagctgggac tacaggggcc cgccaccacg cccggctaat tgttttgtat
86521 ttttttttag tagagacgga gtttcatcgt gttagccaga atagtctcga tcttctgacc
86581 tcgtgatcca cccgcctagg cctcccaaag tgctgggatt acaggcgtga accaccgcac
86641 ccggcctttt tatttttttt gagatggagt ctggctcttg gtccccaggc tggagtgcaa
86701 tggcgggatc tcggctcact gcaacctccg cctcccgggt tcaagcgatt ctcctgcctc
86761 agcctcccga gtagctggga ctacaggtgc gtgccaccac gcccggctaa attttgtatt
86821 tttagtagag acggagtttc acggtgttag ccaggatggt ctcgatctcc gcccgcctcg
86881 gcctctcaaa gtgctgagat tacaggcgtg agccaccacg ccccgcccaa ctcgtccttt
86941 ctttagactt tatcctgtga gggtgaatta tggcctgtcc ctggacacac ccgttctgct
87001 ttccccgcac caactgtatc ccaaataggg gaagtagtct cttcaacctt caaaaatggg
87061 gcactggctg ggcacggtgg ctcacgcctg taaccctagc actttgggag gccgaggcgg

87121 gcggatcacc tgaggtcagg agttcgagac cagcctggcc aacagggtga agccctctct
87181 ctactaaaaa tacaaaaaat agccgggcgt ggtggcgcgc gattgtaatc ccagctattc
87241 aggaggctga ggcaggagaa tcgcttgaac ccgggaggcg gaggctgcag tgagccgaga
87301 tcgcgtcact gcactccagc ctgggcgaca gagcgagact ccatctcaaa aaaaaaaRag
1R7




DEMANDE OU BREVET VOLUMINEUX
LA PRESENTE PARTIE DE CETTE DEMANDE OU CE BREVET COMPREND
PLUS D'UN TOME.
CECI EST LE TOME 1 DE 3
CONTENANT LES PAGES 1 A 189
NOTE : Pour les tomes additionels, veuillez contacter 1e Bureau canadien des
brevets
JUMBO APPLICATIONS/PATENTS
THIS SECTION OF THE APPLICATION/PATENT CONTAINS MORE THAN ONE
VOLUME
THIS IS VOLUME 1 OF 3
CONTAINING PAGES 1 TO 189
NOTE: For additional volumes, please contact the Canadian Patent Office
NOM DU FICHIER / FILE NAME
NOTE POUR LE TOME / VOLUME NOTE:

Representative Drawing
A single figure which represents the drawing illustrating the invention.
Administrative Status

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Administrative Status , Maintenance Fee  and Payment History  should be consulted.

Administrative Status

Title Date
Forecasted Issue Date Unavailable
(86) PCT Filing Date 2005-03-31
(87) PCT Publication Date 2005-10-20
(85) National Entry 2006-09-27
Dead Application 2009-03-31

Abandonment History

Abandonment Date Reason Reinstatement Date
2008-03-31 FAILURE TO PAY APPLICATION MAINTENANCE FEE
2008-04-08 FAILURE TO RESPOND TO OFFICE LETTER

Payment History

Fee Type Anniversary Year Due Date Amount Paid Paid Date
Application Fee $400.00 2006-09-27
Maintenance Fee - Application - New Act 2 2007-04-02 $100.00 2007-04-02
Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
MAH, STEVEN
BRAUN, ANDREAS
KAMMERER, STEFAN M.
NELSON, MATTHEW ROBERTS
RENELAND, RIKARD HENRY
LANGDOWN, MARIA L.
Past Owners on Record
None
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Abstract 2006-09-27 2 81
Claims 2006-09-27 11 614
Drawings 2006-09-27 7 160
Description 2006-09-27 191 15,240
Description 2006-09-27 131 15,267
Description 2006-09-27 21 1,958
Representative Drawing 2006-11-24 1 17
Cover Page 2006-11-27 1 51
Assignment 2006-09-27 3 94
Correspondence 2006-11-24 1 27
Correspondence 2008-01-08 2 34