Language selection

Search

Patent 2692650 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent Application: (11) CA 2692650
(54) English Title: TRANSGENIC PLANTS WITH INCREASED STRESS TOLERANCE AND YIELD
(54) French Title: PLANTES TRANSGENIQUES PRESENTANT UNE TOLERANCE AU STRESS ACCRUE ET UN RENDEMENT ACCRU
Status: Dead
Bibliographic Data
(51) International Patent Classification (IPC):
  • C12N 15/82 (2006.01)
  • C07K 14/415 (2006.01)
(72) Inventors :
  • SHIRLEY, AMBER (United States of America)
  • SARRIA-MILLAN, RODRIGO (United States of America)
  • PUZIO, PIOTR (Belgium)
  • CHARDONNENS, AGNES (Netherlands (Kingdom of the))
  • CHEN, RUOYING (United States of America)
(73) Owners :
  • BASF PLANT SCIENCE GMBH (Germany)
(71) Applicants :
  • BASF PLANT SCIENCE GMBH (Germany)
(74) Agent: ROBIC
(74) Associate agent:
(45) Issued:
(86) PCT Filing Date: 2008-07-11
(87) Open to Public Inspection: 2009-01-22
Examination requested: 2013-07-09
Availability of licence: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): Yes
(86) PCT Filing Number: PCT/EP2008/059070
(87) International Publication Number: WO2009/010460
(85) National Entry: 2010-01-05

(30) Application Priority Data:
Application No. Country/Territory Date
60/959,346 United States of America 2007-07-13

Abstracts

English Abstract



Polynucleotides are disclosed which are capable of enhancing a growth, yield
under water-limited conditions, and/or
increased tolerance to an environmental stress of a plant transformed to
contain such polynucleotides. Also provided are methods
of using such polynucleotides and transgenic plants and agricultural products,
including seeds, containing such polynucleotides as
transgenes.


French Abstract

L'invention porte sur des polynucléotides capables d'améliorer une croissance, un rendement dans des conditions limitées en eau, et/ou une tolérance accrue à un stress environnemental d'une plante transformée pour contenir de tels polynucléotides. L'invention porte également sur des procédés d'utilisation de tels polynucléotides et sur des plantes transgéniques et produits agricoles, comprenant des semences, contenant de tels polynucléotides comme transgènes.

Claims

Note: Claims are shown in the official language in which they were submitted.



86
CLAIMS

1. A transgenic plant transformed with an expression cassette comprising an
isolated
polynucleotide encoding a full-length polypeptide having a sequence as set
forth in
any one of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
32, 34,
36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72,
74, 76, 78, 80,
82, 84, 86, 88, 90, 92, 94, 96, 98, and 100.

2. An isolated polynucleotide having a sequence selected from the group
consisting of
the polynucleotide sequences set forth in Table 1.

3. An isolated polypeptide having a sequence selected from the group
consisting of the
polypeptide sequences set forth in Table 1.

4. A method of producing a transgenic plant comprising at least one
polynucleotide
listed in Table 1, wherein expression of the polynucleotide in the plant
results in the
plant's increased growth and/or yield under normal or water-limited conditions
and/or
increased tolerance to an environmental stress as compared to a wild type
variety of
the plant comprising the steps of:
(a) introducing into a plant cell an expression vector comprising at least one
polynu-
cleotide listed in Table 1, and
(b) generating from the plant cell a transgenic plant that expresses the
polynucleo-
tide,
wherein expression of the polynucleotide in the transgenic plant results in
the plant's
increased growth and/or yield under normal or water-limited conditions and/or
in-
creased tolerance to environmental stress as compared to a wild type variety
of the
plant.

5. A method of increasing a plant's growth and/or yield under normal or water-
limited
conditions and/or increasing a plant's tolerance to an environmental stress
comprising
the steps of increasing the expression of at least one polynucleotide listed
in Table 1
in the plant.

Description

Note: Descriptions are shown in the official language in which they were submitted.



CA 02692650 2010-01-05
WO 2009/010460 PCT/EP2008/059070
TRANSGENIC PLANTS WITH INCREASED STRESS TOLERANCE AND YIELD

This application claims priority benefit of U.S. provisional patent
application Serial Number
60/959346, filed July 13, 2007, the contents of which are hereby incorporated
by reference.
FIELD OF THE INVENTION
[0001] This invention relates generally to transgenic plants which overexpress
nu-
cleic acid sequences encoding polypeptides capable of conferring increased
stress toler-
ance and consequently, increased plant growth and crop yield, under normal or
abiotic
stress conditions. Additionally, the invention relates to novel isolated
nucleic acid se-
quences encoding polypeptides that confer upon a plant increased tolerance
under abiotic
stress conditions, and/or increased plant growth and/or increased yield under
normal or
abiotic stress conditions.
BACKGROUND OF THE INVENTION
[0002] Abiotic environmental stresses, such as drought, salinity, heat, and
cold, are
major limiting factors of plant growth and crop yield. Crop yield is defined
herein as the
number of bushels of relevant agricultural product (such as grain, forage, or
seed) har-
vested per acre. Crop losses and crop yield losses of major crops such as
soybean, rice,
maize (corn), cotton, and wheat caused by these stresses represent a
significant economic
and political factor and contribute to food shortages in many underdeveloped
countries.
[0003] Water availability is an important aspect of the abiotic stresses and
their ef-
fects on plant growth. Continuous exposure to drought conditions causes major
alterations
in the plant metabolism which ultimately lead to cell death and consequently
to yield losses.
Because high salt content in some soils results in less water being available
for cell intake,
high salt concentration has an effect on plants similar to the effect of
drought on plants.
Additionally, under freezing temperatures, plant cells lose water as a result
of ice formation
within the plant. Accordingly, crop damage from drought, heat, salinity, and
cold stress, is
predominantly due to dehydration.
[0004] Because plants are typically exposed to conditions of reduced water
availabil-
ity during their life cycle, most plants have evolved protective mechanisms
against desicca-
tion caused by abiotic stresses. However, if the severity and duration of
desiccation condi-
tions are too great, the effects on development, growth, plant size, and yield
of most crop
plants are profound. Developing plants efficient in water use is therefore a
strategy that has
the potential to significantly improve human life on a worldwide scale.
[0005] Traditional plant breeding strategies are relatively slow and require
abiotic
stress-tolerant founder lines for crossing with other germplasm to develop new
abiotic
stress-resistant lines. Limited germplasm resources for such founder lines and
incompati-
bility in crosses between distantly related plant species represent
significant problems en-
countered in conventional breeding. Breeding for tolerance has been largely
unsuccessful.
[0006] Many agricultural biotechnology companies have attempted to identify
genes
that could confer tolerance to abiotic stress responses, in an effort to
develop transgenic
abiotic stress-tolerant crop plants. Although some genes that are involved in
stress re-
sponses or water use efficiency in plants have been characterized, the
characterization and


CA 02692650 2010-01-05
WO 2009/010460 2 PCT/EP2008/059070
cloning of plant genes that confer stress tolerance and/or water use
efficiency remains
largely incomplete and fragmented. To date, success at developing transgenic
abiotic
stress-tolerant crop plants has been limited, and no such plants have been
commercialized.
[0007] In order to develop transgenic abiotic stress-tolerant crop plants, it
is neces-
sary to assay a number of parameters in model plant systems, greenhouse
studies of crop
plants, and in field trials. For example, water use efficiency (WUE), is a
parameter often
correlated with drought tolerance. Studies of a plant's response to
desiccation, osmotic
shock, and temperature extremes are also employed to determine the plant's
tolerance or
resistance to abiotic stresses. When testing for the impact of the presence of
a transgene
on a plant's stress tolerance, the ability to standardize soil properties,
temperature, water
and nutrient availability and light intensity is an intrinsic advantage of
greenhouse or plant
growth chamber environments compared to the field.
[0008] WUE has been defined and measured in multiple ways. One approach is to
calculate the ratio of whole plant dry weight, to the weight of water consumed
by the plant
throughout its life. Another variation is to use a shorter time interval when
biomass accu-
mulation and water use are measured. Yet another approach is to use
measurements from
restricted parts of the plant, for example, measuring only aerial growth and
water use.
WUE also has been defined as the ratio of CO2 uptake to water vapor loss from
a leaf or
portion of a leaf, often measured over a very short time period (e.g.
seconds/minutes). The
ratio of 13C/12C fixed in plant tissue, and measured with an isotope ratio
mass-spectrometer,
also has been used to estimate WUE in plants using Cs photosynthesis.
[0009] An increase in WUE is informative about the relatively improved
efficiency of
growth and water consumption, but this information taken alone does not
indicate whether
one of these two processes has changed or both have changed. In selecting
traits for im-
proving crops, an increase in WUE due to a decrease in water use, without a
change in
growth would have particular merit in an irrigated agricultural system where
the water input
costs were high. An increase in WUE driven mainly by an increase in growth
without a cor-
responding jump in water use would have applicability to all agricultural
systems. In many
agricultural systems where water supply is not limiting, an increase in
growth, even if it
came at the expense of an increase in water use (i.e. no change in WUE), could
also in-
crease yield. Therefore, new methods to increase both WUE and biomass
accumulation
are required to improve agricultural productivity.
[0010] Concomitant with measurements of parameters that correlate with abiotic
stress tolerance are measurements of parameters that indicate the potential
impact of a
transgene on crop yield. For forage crops like alfalfa, silage corn, and hay,
the plant bio-
mass correlates with the total yield. For grain crops, however, other
parameters have been
used to estimate yield, such as plant size, as measured by total plant dry
weight, above-
ground dry weight, above-ground fresh weight, leaf area, stem volume, plant
height, rosette
diameter, leaf length, root length, root mass, tiller number, and leaf number.
Plant size at
an early developmental stage will typically correlate with plant size later in
development. A
larger plant with a greater leaf area can typically absorb more light and
carbon dioxide than
a smaller plant and therefore will likely gain a greater weight during the
same period. This


CA 02692650 2010-01-05
WO 2009/010460 3 PCT/EP2008/059070

is in addition to the potential continuation of the micro-environmental or
genetic advantage
that the plant had to achieve the larger size initially. There is a strong
genetic component to
plant size and growth rate, and so for a range of diverse genotypes plant size
under one
environmental condition is likely to correlate with size under another. In
this way a standard
environment is used to approximate the diverse and dynamic environments
encountered at
different locations and times by crops in the field.
[0011] Harvest index, the ratio of seed yield to above-ground dry weight, is
relatively
stable under many environmental conditions and so a robust correlation between
plant size
and grain yield is possible. Plant size and grain yield are intrinsically
linked, because the
majority of grain biomass is dependent on current or stored photosynthetic
productivity by
the leaves and stem of the plant. Therefore, selecting for plant size, even at
early stages of
development, has been used as to screen for for plants that may demonstrate
increased
yield when exposed to field testing. As with abiotic stress tolerance,
measurements of plant
size in early development, under standardized conditions in a growth chamber
or green-
house, are standard practices to measure potential yield advantages conferred
by the pres-
ence of a transgene.
[0012] There is a need, therefore, to identify additional genes expressed in
stress
tolerant plants and/or plants that are efficient in water use that have the
capacity to confer
stress tolerance and/or increased water use efficiency to the host plant and
to other plant
species. Newly generated stress tolerant plants and/or plants with increased
water use
efficiency will have many advantages, such as an increased range in which the
crop plants
can be cultivated, by for example, decreasing the water requirements of a
plant species.
Other desirable advantages include increased resistance to lodging, the
bending of shoots
or stems in response to wind, rain, pests, or disease.
SUMMARY OF THE INVENTION
[0013] The present inventors have discovered that transforming a plant with
certain
polynucleotides results in enhancement of the plant's growth and response to
environ-
mental stress, and accordingly the yield of the agricultural products of the
plant is in-
creased, when the polynucleotides are present in the plant as transgenes. The
polynucleo-
tides capable of mediating such enhancements have been isolated from
Arabidopsis
thaliana, Capsicum annuum, Escherichia coli, Physcomitrella patens,
Saccharomyces cere-
visiae, Triticum aestivum, Zea mays, Glycine max, Linum usitatissimum,
Triticum aestivum,
Oryza sativa, Helianthus annuus, and Brassica napus and the sequences thereof
are set
forth in the Sequence Listing as indicated in Table 1.


CA 02692650 2010-01-05
WO 2009/010460 4 PCT/EP2008/059070
Table 1

Polynucleotide Amino acid
Gene Name Organism SEQ ID NO SEQ ID NO
At2g20725 A. thaliana 1 2
At3g26085 A. thaliana 3 4
AtFACE-2 A. thaliana 5 6
ZM57353913 Z. mays 7 8
Z. mays 9 10
ZM59252659
CASAR82A C.annuum 11 12
b3358 E. coli 13 14
EST564 P. patens 15 16
BN49502266 B. napus 17 18
GM49788080 G. max 19 20
GM53049821 G. max 21 22
ZM58462719 Z. mays 23 24
ZM61092633 Z. mays 25 26
ZM62016485 Z. mays 27 28
ZM62051019 Z. mays 29 30
ZM65086957 Z. mays 31 32
ZM68587657 Z. mays 33 34
EST390 P. patens 35 36
BN51363030 B. napus 37 38
BN42986056 B. napus 39 40
BN49389066 B. napus 41 42
BN51339479 B. napus 43 44
ZM57651070 Z. mays 45 46
ZM62073276 Z. mays 47 48
EST257 P. patens 49 50
LU61665952 L. usitatissimum 51 52
TA56863186 T. aestivum 53 54
ZM62026837 Z. mays 55 56
ZM65457595 Z. mays 57 58
ZM67230154 Z. mays 59 60
EST465 P. patens 61 62
YBL109w S. cerevisiae 63 64
YBL100c S. cerevisiae 65 66
YKL184w S. cerevisiae 67 68
YPL091w S. cerevisiae 69 70
TA54587433 T. aestivum 71 72


CA 02692650 2010-01-05
WO 2009/010460 5 PCT/EP2008/059070
Polynucleotide Amino acid
Gene Name Organism SEQ ID NO SEQ ID NO
ZM68532504 Z. mays 73 74
BN42856089 B. napus 75 76
BN43206527 B. napus 77 78
HA66872964 H.annuus 79 80
LU61662612 L. usitatissimum 81 82
OS32806943 0. sativa 83 84
OS34738749 0. sativa 85 86
ZM59400933 Z. mays 87 88
ZM62132060 Z. mays 89 90
ZM59202533 Z. mays 91 92
BN41901422 B. napus 93 94
BN47868329 B. napus 95 96
BN42671700 B. napus 97 98
ZM68416988 Z. mays 99 100

[0014] In one embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
CAAX amino
terminal protease family protein.
[0015] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
prenyl-
dependent CAAX protease.
[0016] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
SAR8.2 pro-
tein precursor.
[0017] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
putative
membrane protein.
[0018] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
protein
phosphatase 2C protein.
[0019] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
mitochondrial
carrier protein.
[0020] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
protein
kinase.
[0021] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
peptidyl pro-
lyl isomerase.


CA 02692650 2010-01-05
WO 2009/010460 6 PCT/EP2008/059070
[0022] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
unknown
protein 1.
[0023] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
unknown
protein 2.
[0024] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
ornithine de-
carboxylase.
[0025] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
glutathione
reductase.
[0026] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
unknown
protein 3.
[0027] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
protein
phosphatase 2A protein.
[0028] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
MEK1 pro-
tein kinase.
[0029] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
AP2 domain
containing transcription factor.
[0030] In a further embodiment, the invention concerns a seed produced by the
transgenic plant of the invention, wherein the seed is true breeding for a
transgene compris-
ing the polynucleotide described above. Plants derived from the seed of the
invention
demonstrate increased tolerance to an environmental stress, and/or increased
plant growth,
and/or increased yield, under normal or stress conditions as compared to a
wild type variety
of the plant.
[0031] In a still another aspect, the invention concerns products produced by
or from
the transgenic plants of the invention, their plant parts, or their seeds,
such as a foodstuff,
feedstuff, food supplement, feed supplement, cosmetic or pharmaceutical.
[0032] The invention further provides certain isolated polynucleotides
identified in
Table 1, and certain isolated polypeptides identified in Table 1. The
invention is also em-
bodied in recombinant vector comprising an isolated polynucleotide of the
invention.
[0033] In yet another embodiment, the invention concerns a method of producing
the
aforesaid transgenic plant, wherein the method comprises transforming a plant
cell with an
expression vector comprising an isolated polynucleotide of the invention, and
generating
from the plant cell a transgenic plant that expresses the polypeptide encoded
by the
polynucleotide. Expression of the polypeptide in the plant results in
increased tolerance to
an environmental stress, and/or growth, and/or yield under normal and/or
stress conditions


CA 02692650 2010-01-05
WO 2009/010460 7 PCT/EP2008/059070
as compared to a wild type variety of the plant.
[0034] In still another embodiment, the invention provides a method of
increasing a
plant's tolerance to an environmental stress, and/or growth, and/or yield. The
method com-
prises the steps of transforming a plant cell with an expression cassette
comprising an iso-
lated polynucleotide of the invention, and generating a transgenic plant from
the plant cell,
wherein the transgenic plant comprises the polynucleotide.

BRIEF DESCRIPTION OF THE DRAWINGS
[0035] Figure 1 shows an alignment of the disclosed amino acid sequences At-
FACE-2 (SEQ ID NO:6), ZM57353913 (SEQ ID NO:8), and ZM59252659 (SEQ ID NO:10).
The alignment was generated using Align X of Vector NTI .
[0036] Figure 2 shows an alignment of the disclosed amino acid sequences
EST564
(SEQ ID NO:16), BN49502266 (SEQ ID NO:18), GM49788080 (SEQ ID NO:20),
GM53049821 (SEQ ID NO:22), ZM58462719 (SEQ ID NO:24), ZM61092633 (SEQ ID
NO:26), ZM62016485 (SEQ ID NO:28), ZM62051019 (SEQ ID NO:30), ZM65086957 (SEQ
ID NO:32), and ZM68587657 (SEQ ID NO:34). The alignment was generated using
Align X
of Vector NTI.
[0037] Figure 3 shows an alignment of the disclosed amino acid sequences
EST390
(SEQ ID NO:36), BN51363030 (SEQ ID NO:38), BN42986056 (SEQ ID NO:40),
BN49389066 (SEQ ID NO:42), BN51339479 (SEQ ID NO:44), ZM57651070 (SEQ ID
NO:46), and ZM62073276 (SEQ ID NO:48). The alignment was generated using Align
X of
Vector NTI .
[0038] Figure 4 shows an alignment of the disclosed amino acid sequences
EST257
(SEQ ID NO:50), LU61665952 (SEQ ID NO:52), TA56863186 (SEQ ID NO:54),
ZM62026837 (SEQ ID NO:56), ZM65457595 (SEQ ID NO:58), ZM67230154 (SEQ ID
NO:60). The alignment was generated using Align X of Vector NTI .
[0039] Figure 5 shows an alignment of the disclosed amino acid sequences
ZM68532504 (SEQ ID NO:74), BN42856089 (SEQ ID NO:76), BN43206527 (SEQ ID
NO:78), HA66872964 (SEQ ID NO:80), LU61662612 (SEQ ID NO:82), OS32806943 (SEQ
ID NO:84), OS34738749 (SEQ ID NO:86), ZM59400933 (SEQ ID NO:88), and
ZM62132060 (SEQ ID NO:90). The alignment was generated using Align X of Vector
NTI .
[0040] Figure 6 shows an alignment of the disclosed amino acid sequences
ZM59202533 (SEQ ID NO:92), BN41901422 (SEQ ID NO:94), BN47868329 (SEQ ID
NO:96), and ZM68416988 (SEQ ID NO:100). The alignment was generated using
Align X
of Vector NTI .

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0041] Throughout this application, various publications are referenced. The
disclo-
sures of all of these publications and those references cited within those
publications in
their entireties are hereby incorporated by reference into this application in
order to more
fully describe the state of the art to which this invention pertains. The
terminology used
herein is for the purpose of describing specific embodiments only and is not
intended to be


CA 02692650 2010-01-05
WO 2009/010460 8 PCT/EP2008/059070
limiting. As used herein, "a" or "an" can mean one or more, depending upon the
context in
which it is used. Thus, for example, reference to "a cell" can mean that at
least one cell can
be used.
[0042] In one embodiment, the invention provides a transgenic plant that
overex-
presses an isolated polynucleotide identified in Table 1, or a homolog
thereof. The trans-
genic plant of the invention demonstrates an increased tolerance to an
environmental stress
as compared to a wild type variety of the plant. The overexpression of such
isolated nucleic
acids in the plant may optionally result in an increase in plant growth or in
yield of associ-
ated agricultural products, under normal or stress conditions, as compared to
a wild type
variety of the plant.
[0043] As defined herein, a "transgenic plant" is a plant that has been
altered using
recombinant DNA technology to contain an isolated nucleic acid which would
otherwise not
be present in the plant. As used herein, the term "plant" includes a whole
plant, plant cells,
and plant parts. Plant parts include, but are not limited to, stems, roots,
ovules, stamens,
leaves, embryos, meristematic regions, callus tissue, gametophytes,
sporophytes, pollen,
microspores, and the like. The transgenic plant of the invention may be male
sterile or male
fertile, and may further include transgenes other than those that comprise the
isolated
polynucleotides described herein.
[0044] As used herein, the term "variety" refers to a group of plants within a
species
that share constant characteristics that separate them from the typical form
and from other
possible varieties within that species. While possessing at least one
distinctive trait, a vari-
ety is also characterized by some variation between individuals within the
variety, based
primarily on the Mendelian segregation of traits among the progeny of
succeeding genera-
tions. A variety is considered "true breeding" for a particular trait if it is
genetically homozy-
gous for that trait to the extent that, when the true-breeding variety is self-
pollinated, a sig-
nificant amount of independent segregation of the trait among the progeny is
not observed.
In the present invention, the trait arises from the transgenic expression of
one or more iso-
lated polynucleotides introduced into a plant variety. As also used herein,
the term "wild
type variety" refers to a group of plants that are analyzed for comparative
purposes as a
control plant, wherein the wild type variety plant is identical to the
transgenic plant (plant
transformed with an isolated polynucleotide in accordance with the invention)
with the ex-
ception that the wild type variety plant has not been transformed with an
isolated polynu-
cleotide of the invention.
[0045] As defined herein, the term "nucleic acid" and "polynucleotide" are
inter-
changeable and refer to RNA or DNA that is linear or branched, single or
double stranded,
or a hybrid thereof. The term also encompasses RNA/DNA hybrids. An "isolated"
nucleic
acid molecule is one that is substantially separated from other nucleic acid
molecules which
are present in the natural source of the nucleic acid (i.e., sequences
encoding other poly-
peptides). For example, a cloned nucleic acid is considered isolated. A
nucleic acid is also
considered isolated if it has been altered by human intervention, or placed in
a locus or lo-
cation that is not its natural site, or if it is introduced into a cell by
transformation. Moreover,
an isolated nucleic acid molecule, such as a cDNA molecule, can be free from
some of the


CA 02692650 2010-01-05
WO 2009/010460 9 PCT/EP2008/059070
other cellular material with which it is naturally associated, or culture
medium when pro-
duced by recombinant techniques, or chemical precursors or other chemicals
when chemi-
cally synthesized. While it may optionally encompass untranslated sequence
located at
both the 3' and 5' ends of the coding region of a gene, it may be preferable
to remove the
sequences which naturally flank the coding region in its naturally occurring
replicon.
[0046] As used herein, the term "environmental stress" refers to a sub-optimal
condi-
tion associated with salinity, drought, nitrogen, temperature, metal,
chemical, pathogenic, or
oxidative stresses, or any combination thereof. The terms "water use
efficiency" and "WUE"
refer to the amount of organic matter produced by a plant divided by the
amount of water
used by the plant in producing it, i.e., the dry weight of a plant in relation
to the plant's water
use. As used herein, the term "dry weight" refers to everything in the plant
other than water,
and includes, for example, carbohydrates, proteins, oils, and mineral
nutrients.
[0047] Any plant species may be transformed to create a transgenic plant in
accor-
dance with the invention. The transgenic plant of the invention may be a
dicotyledonous
plant or a monocotyledonous plant. For example and without limitation,
transgenic plants of
the invention may be derived from any of the following diclotyledonous plant
families:
Leguminosae, including plants such as pea, alfalfa and soybean; Umbelliferae,
including
plants such as carrot and celery; Solanaceae, including the plants such as
tomato, potato,
aubergine, tobacco, and pepper; Cruciferae, particularly the genus Brassica,
which includes
plant such as oilseed rape, beet, cabbage, cauliflower and broccoli); and A.
thaliana; Com-
positae, which includes plants such as lettuce; Malvaceae, which includes
cotton; Fa-
baceae, which includes plants such as peanut, and the like. Transgenic plants
of the inven-
tion may be derived from monocotyledonous plants, such as, for example, wheat,
barley,
sorghum, millet, rye, triticale, maize, rice, oats and sugarcane. Transgenic
plants of the in-
vention are also embodied as trees such as apple, pear, quince, plum, cherry,
peach, nec-
tarine, apricot, papaya, mango, and other woody species including coniferous
and decidu-
ous trees such as poplar, pine, sequoia, cedar, oak, and the like. Especially
preferred are
Arabidopsis thaliana, Nicotiana tabacum, oilseed rape, soybean, corn (maize),
wheat, lin-
seed, potato and tagetes.
[0048] As shown in Table 1, one embodiment of the invention is a transgenic
plant
transformed with an expression cassette comprising an isolated polynucleotide
encoding a
CAAX amino terminal protease family protein. The transgenic plant of this
embodiment
may comprise any polynucleotide encoding a CAAX amino terminal protease family
protein.
The transgenic plant of this embodiment comprises a polynucleotide encoding a
CAAX
amino terminal protease family protein having a sequence comprising amino
acids 1 to 301
of SEQ ID NO:2; and a protein having a sequence comprising amino acids 1 to
293 of SEQ
ID NO:4.
[0049] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
prenyl-
dependent CAAX protease. The transgenic plant of this embodiment may comprise
any
polynucleotide encoding a prenyl-dependent CAAX protease. The transgenic plant
of this
embodiment comprises a polynucleotide encoding a prenyl-dependent CAAX
protease hav-


CA 02692650 2010-01-05
WO 2009/010460 10 PCT/EP2008/059070
ing a sequence comprising amino acids 1 to 311 of SEQ ID NO:6; a protein
having a se-
quence comprising amino acids 1 to 313 of SEQ ID NO:8; a protein having a
sequence
comprising amino acids 1 to 269 of SEQ ID NO:10.
[0050] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
SAR8.2 pro-
tein precursor. The transgenic plant of this embodiment may comprise any
polynucleotide
encoding a SAR8.2 protein precursor. The transgenic plant of this embodiment
comprises
a polynucleotide encoding a SAR8.2 protein precursor having a sequence
comprising
amino acids 1 to 86 of SEQ ID NO:12.
[0051] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
putative
membrane protein. The transgenic plant of this embodiment may comprise any
polynucleo-
tide encoding a putative membrane protein. The transgenic plant of this
embodiment com-
prises a polynucleotide encoding a putative membrane protein having a sequence
compris-
ing amino acids 1 to 696 of SEQ ID NO:14.
[0052] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
protein
phosphatase 2C protein. The transgenic plant of this embodiment may comprise
any
polynucleotide encoding a protein phosphatase 2C protein. The transgenic plant
of this
embodiment comprises a polynucleotide encoding a protein phosphatase 2C
protein having
a sequence comprising amino acids 1 to 284 of SEQ ID NO:16; a protein having a
se-
quence comprising amino acids 1 to 384 of SEQ ID NO:18; a protein having a
sequence
comprising amino acids 1 to 346 of SEQ ID NO:20; a protein having a sequence
comprising
amino acids 1 to 375 of SEQ ID NO:22; a protein having a sequence comprising
amino ac-
ids 1 to 390 of SEQ ID NO:24; a protein having a sequence comprising amino
acids 1 to
398 of SEQ ID NO:26; a protein having a sequence comprising amino acids 1 to
399 of
SEQ ID NO:28; a protein having a sequence comprising amino acids 1 to 399 of
SEQ ID
NO:30; a protein having a sequence comprising amino acids 1 to 399 of SEQ ID
NO:32; a
protein having a sequence comprising amino acids 1 to 276 of SEQ ID NO:34.
[0053] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
mitochondrial
carrier protein. The transgenic plant of this embodiment may comprise any
polynucleotide
encoding a mitochondrial carrier protein. The transgenic plant of this
embodiment com-
prises a polynucleotide encoding a mitochondrial carrier protein having a
sequence com-
prising amino acids 1 to 303 of SEQ ID NO:36; a protein having a sequence
comprising
amino acids 1 to 315 of SEQ ID NO:38; a protein having a sequence comprising
amino ac-
ids 1 to 289 of SEQ ID NO:40; a protein having a sequence comprising amino
acids 1 to
303 of SEQ ID NO:42; a protein having a sequence comprising amino acids 1 to
299 of
SEQ ID NO:44; a protein having a sequence comprising amino acids 1 to 299 of
SEQ ID
NO:46; a protein having a sequence comprising amino acids 1 to 311 of SEQ ID
NO:48.
[0054] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
protein


CA 02692650 2010-01-05
WO 2009/010460 11 PCT/EP2008/059070
kinase. The transgenic plant of this embodiment may comprise any
polynucleotide encod-
ing a protein kinase. The transgenic plant of this embodiment comprises a
polynucleotide
encoding a protein kinase having a sequence comprising amino acids 1 to 356 of
SEQ ID
NO:50; a protein having a sequence comprising amino acids 1 to 364 of SEQ ID
NO:52; a
protein having a sequence comprising amino acids 1 to 361 of SEQ ID NO:54; a
protein
having a sequence comprising amino acids 1 to 370 of SEQ ID NO:56; a protein
having a
sequence comprising amino acids 1 to 377 of SEQ ID NO:58; a protein having a
sequence
comprising amino acids 1 to 382 of SEQ ID NO:60.
[0055] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
peptidyl pro-
lyl isomerase. The transgenic plant of this embodiment may comprise any
polynucleotide
encoding a peptidyl prolyl isomerase. The transgenic plant of this embodiment
comprises a
polynucleotide encoding a peptidyl prolyl isomerase having a sequence
comprising amino
acids 1 to 523 of SEQ ID NO:62.
[0056] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding an
unknown
protein 1. The transgenic plant of this embodiment may comprise any
polynucleotide en-
coding an unknown protein 1. The transgenic plant of this embodiment comprises
a
polynucleotide encoding a unknown protein 1 having a sequence comprising amino
acids 1
to 111 of SEQ ID NO:64.
[0057] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding an
unknown
protein 2. The transgenic plant of this embodiment may comprise any
polynucleotide en-
coding an unknown protein 2. The transgenic plant of this embodiment comprises
a
polynucleotide encoding a unknown protein 2 having a sequence comprising amino
acids 1
to 104 of SEQ ID NO:66.
[0058] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
ornithine de-
carboxylase. The transgenic plant of this embodiment may comprise any
polynucleotide
encoding a ornithine decarboxylase. The transgenic plant of this embodiment
comprises a
polynucleotide encoding a ornithine decarboxylase having a sequence comprising
amino
acids 1 to 466 of SEQ ID NO:68.
[0059] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
glutathione
reductase. The transgenic plant of this embodiment may comprise any
polynucleotide en-
coding a glutathione reductase. The transgenic plant of this embodiment
comprises a
polynucleotide encoding a glutathione reductase having a sequence comprising
amino ac-
ids 1 to 483 of SEQ ID NO:70.
[0060] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding an
unknown
protein 3. The transgenic plant of this embodiment may comprise any
polynucleotide en-
coding a unknown protein 3. The transgenic plant of this embodiment comprises
a polynu-


CA 02692650 2010-01-05
WO 2009/010460 12 PCT/EP2008/059070
cleotide encoding a unknown protein 3 having a sequence comprising amino acids
1 to 129
of SEQ ID NO:72.
[0061] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
protein
phosphatase 2A protein. The transgenic plant of this embodiment may comprise
any
polynucleotide encoding a protein phosphatase 2A protein. The transgenic plant
of this
embodiment comprises a polynucleotide encoding a protein phosphatase 2A
protein having
a sequence comprising amino acids 1 to 306 of SEQ ID NO:74; a protein having a
se-
quence comprising amino acids 1 to 306 of SEQ ID NO:76; a protein having a
sequence
comprising amino acids 1 to 306 of SEQ ID NO:78; a protein having a sequence
comprising
amino acids 1 to 306 of SEQ ID NO:80; a protein having a sequence comprising
amino ac-
ids 1 to 306 of SEQ ID NO:82; a protein having a sequence comprising amino
acids 1 to
307 of SEQ ID NO:84; a protein having a sequence comprising amino acids 1 to
306 of
SEQ ID NO:86; a protein having a sequence comprising amino acids 1 to 306 of
SEQ ID
NO:88; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID
NO:90.
[0062] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding a
MEK1 pro-
tein kinase. The transgenic plant of this embodiment may comprise any
polynucleotide en-
coding a MEK1 protein kinase. The transgenic plant of this embodiment
comprises a
polynucleotide encoding a MEK1 protein kinase having a sequence comprising
amino acids
1 to 355 of SEQ ID NO:92; a protein having a sequence comprising amino acids 1
to 355 of
SEQ ID NO:94; a protein having a sequence comprising amino acids 1 to 338 of
SEQ ID
NO:96; a protein having a sequence comprising amino acids 1 to 350 of SEQ ID
NO:100.
[0063] In another embodiment, the invention provides a transgenic plant
transformed
with an expression cassette comprising an isolated polynucleotide encoding an
AP2 domain
containing transcription factor. The transgenic plant of this embodiment may
comprise any
polynucleotide encoding a AP2 domain containing transcription factor. The
transgenic plant
of this embodiment comprises a polynucleotide encoding a AP2 domain containing
tran-
scription factor having a sequence comprising amino acids 1 to 197 of SEQ ID
NO:98.
[0064] The invention further provides a seed produced by a transgenic plant ex-

pressing polynucleotide listed in Table 1, wherein the seed contains the
polynucleotide, and
wherein the plant is true breeding for increased growth and/or yield under
normal or stress
conditions and/or increased tolerance to an environmental stress as compared
to a wild
type variety of the plant. The invention also provides a product produced by
or from the
transgenic plants expressing the polynucleotide, their plant parts, or their
seeds. The prod-
uct can be obtained using various methods well known in the art. As used
herein, the word
"product" includes, but not limited to, a foodstuff, feedstuff, a food
supplement, feed sup-
plement, cosmetic or pharmaceutical. Foodstuffs are regarded as compositions
used for
nutrition or for supplementing nutrition. Animal feedstuffs and animal feed
supplements, in
particular, are regarded as foodstuffs. The invention further provides an
agricultural product
produced by any of the transgenic plants, plant parts, and plant seeds.
Agricultural prod-
ucts include, but are not limited to, plant extracts, proteins, amino acids,
carbohydrates,


CA 02692650 2010-01-05
WO 2009/010460 13 PCT/EP2008/059070
fats, oils, polymers, vitamins, and the like.
[0065] In a preferred embodiment, an isolated polynucleotide of the invention
com-
prises a polynucleotide having a sequence selected from the group consisting
of the
polynucleotide sequences listed in Table 1. These polynucleotides may comprise
se-
quences of the coding region, as well as 5' untranslated sequences and 3'
untranslated
sequences.
[0066] A polynucleotide of the invention can be isolated using standard
molecular
biology techniques and the sequence information provided herein, for example,
using an
automated DNA synthesizer.
[0067] "Homologs" are defined herein as two nucleic acids or polypeptides that
have
similar, or substantially identical, nucleotide or amino acid sequences,
respectively. Ho-
mologs include allelic variants, analogs, and orthologs, as defined below. As
used herein,
the term "analogs" refers to two nucleic acids that have the same or similar
function, but
that have evolved separately in unrelated organisms. As used herein, the term
"orthologs"
refers to two nucleic acids from different species, but that have evolved from
a common
ancestral gene by speciation. The term homolog further encompasses nucleic
acid mole-
cules that differ from one of the nucleotide sequences shown in Table 1 due to
degeneracy
of the genetic code and thus encode the same polypeptide. As used herein, a
"naturally
occurring" nucleic acid molecule refers to an RNA or DNA molecule having a
nucleotide
sequence that occurs in nature (e.g., encodes a natural polypeptide).
[0068] To determine the percent sequence identity of two amino acid sequences
(e.g., one of the polypeptide sequences of Table 1 and a homolog thereof), the
sequences
are aligned for optimal comparison purposes (e.g., gaps can be introduced in
the sequence
of one polypeptide for optimal alignment with the other polypeptide or nucleic
acid). The
amino acid residues at corresponding amino acid positions are then compared.
When a
position in one sequence is occupied by the same amino acid residue as the
corresponding
position in the other sequence then the molecules are identical at that
position. The same
type of comparison can be made between two nucleic acid sequences.
[0069] Preferably, the isolated amino acid homologs, analogs, and orthologs of
the
polypeptides of the present invention are at least about 50-60%, preferably at
least about
60-70%, and more preferably at least about 70-75%, 75-80%, 80-85%, 85-90%, or
90-95%,
and most preferably at least about 96%, 97%, 98%, 99%, or more identical to an
entire
amino acid sequence identified in Table 1. In another preferred embodiment, an
isolated
nucleic acid homolog of the invention comprises a nucleotide sequence which is
at least
about 40-60%, preferably at least about 60-70%, more preferably at least about
70-75%,
75-80%, 80-85%, 85-90%, or 90-95%, and even more preferably at least about
95%, 96%,
97%, 98%, 99%, or more identical to a nucleotide sequence shown in Table 1.
[0070] For the purposes of the invention, the percent sequence identity
between two
nucleic acid or polypeptide sequences is determined using the Vector NTI 9.0
(PC) software
package (Invitrogen, 1600 Faraday Ave., Carlsbad, CA92008). A gap opening
penalty of
15 and a gap extension penalty of 6.66 are used for determining the percent
identity of two
nucleic acids. A gap opening penalty of 10 and a gap extension penalty of 0.1
are used for


CA 02692650 2010-01-05
WO 2009/010460 14 PCT/EP2008/059070
determining the percent identity of two polypeptides. All other parameters are
set at the
default settings. For purposes of a multiple alignment (Clustal W algorithm),
the gap open-
ing penalty is 10, and the gap extension penalty is 0.05 with blosum62 matrix.
It is to be
understood that for the purposes of determining sequence identity when
comparing a DNA
sequence to an RNA sequence, a thymidine nucleotide is equivalent to a uracil
nucleotide.
[0071] Nucleic acid molecules corresponding to homologs, analogs, and
orthologs of
the polypeptides listed in Table 1 can be isolated based on their identity to
said polypep-
tides, using the polynucleotides encoding the respective polypeptides or
primers based
thereon, as hybridization probes according to standard hybridization
techniques under
stringent hybridization conditions. As used herein with regard to
hybridization for DNA to a
DNA blot, the term "stringent conditions" refers to hybridization overnight at
60 C in 10X
Denhart's solution, 6X SSC, 0.5% SDS, and 100 g/ml denatured salmon sperm
DNA.
Blots are washed sequentially at 62 C for 30 minutes each time in 3X SSC/0.1 %
SDS, fol-
lowed by 1 X SSC/0.1 % SDS, and finally 0.1 X SSC/0.1 % SDS. As also used
herein, in a
preferred embodiment, the phrase "stringent conditions" refers to
hybridization in a 6X SSC
solution at 65 C. In another embodiment, "highly stringent conditions" refers
to hybridiza-
tion overnight at 65 C in 10X Denhart's solution, 6X SSC, 0.5% SDS and 100
g/ml dena-
tured salmon sperm DNA. Blots are washed sequentially at 65 C for 30 minutes
each time
in 3X SSC/0.1 % SDS, followed by 1 X SSC/0.1 % SDS, and finally 0.1 X SSC/0.1
% SDS.
Methods for performing nucleic acid hybridizations are well known in the art.
Preferably, an
isolated nucleic acid molecule of the invention that hybridizes under
stringent or highly
stringent conditions to a nucleotide sequence listed in Table 1 corresponds to
a naturally
occurring nucleic acid molecule.
[0072] There are a variety of methods that can be used to produce libraries of
poten-
tial homologs from a degenerate oligonucleotide sequence. Chemical synthesis
of a de-
generate gene sequence can be performed in an automatic DNA synthesizer, and
the syn-
thetic gene is then ligated into an appropriate expression vector. Use of a
degenerate set
of genes allows for the provision, in one mixture, of all of the sequences
encoding the de-
sired set of potential sequences. Methods for synthesizing degenerate
oligonucleotides are
known in the art.
[0073] Additionally, optimized nucleic acids can be created. Preferably, an
opti-
mized nucleic acid encodes a polypeptide that has a function similar to those
of the poly-
peptides listed in Table 1 and/or modulates a plant's growth and/or yield
under normal
and/or water-limited conditions and/or tolerance to an environmental stress,
and more pref-
erably increases a plant's growth and/or yield under normal and/or water-
limited conditions
and/or tolerance to an environmental stress upon its overexpression in the
plant. As used
herein, "optimized" refers to a nucleic acid that is genetically engineered to
increase its ex-
pression in a given plant or animal. To provide plant optimized nucleic acids,
the DNA se-
quence of the gene can be modified to: 1) comprise codons preferred by highly
expressed
plant genes; 2) comprise an A+T content in nucleotide base composition to that
substan-
tially found in plants; 3) form a plant initiation sequence; 4) to eliminate
sequences that
cause destabilization, inappropriate polyadenylation, degradation and
termination of RNA,


CA 02692650 2010-01-05
WO 2009/010460 15 PCT/EP2008/059070

or that form secondary structure hairpins or RNA splice sites; or 5)
elimination of antisense
open reading frames. Increased expression of nucleic acids in plants can be
achieved by
utilizing the distribution frequency of codon usage in plants in general or in
a particular
plant. Methods for optimizing nucleic acid expression in plants can be found
in EPA
0359472; EPA 0385962; PCT Application No. WO 91/16432; U.S. Patent No.
5,380,831;
U.S. Patent No. 5,436,391; Perlack et al., 1991, Proc. Natl. Acad. Sci. USA
88:3324-3328;
and Murray et al., 1989, Nucleic Acids Res. 17:477-498.
[0074] An isolated polynucleotide of the invention can be optimized such that
its dis-
tribution frequency of codon usage deviates, preferably, no more than 25% from
that of
highly expressed plant genes and, more preferably, no more than about 10%. In
addition,
consideration is given to the percentage G+C content of the degenerate third
base (mono-
cotyledons appear to favor G+C in this position, whereas dicotyledons do not).
It is also
recognized that the XCG (where X is A, T, C, or G) nucleotide is the least
preferred codon
in dicots, whereas the XTA codon is avoided in both monocots and dicots.
Optimized nu-
cleic acids of this invention also preferably have CG and TA doublet avoidance
indices
closely approximating those of the chosen host plant. More preferably, these
indices devi-
ate from that of the host by no more than about 10-15%.
[0075] The invention further provides an isolated recombinant expression
vector
comprising a polynucleotide as described above, wherein expression of the
vector in a host
cell results in the plant's increased growth and/or yield under normal or
water-limited condi-
tions and/or increased tolerance to environmental stress as compared to a wild
type variety
of the host cell. The recombinant expression vectors of the invention comprise
a nucleic
acid of the invention in a form suitable for expression of the nucleic acid in
a host cell, which
means that the recombinant expression vectors include one or more regulatory
sequences,
selected on the basis of the host cells to be used for expression, which is
operatively linked
to the nucleic acid sequence to be expressed. As used herein with respect to a
recombi-
nant expression vector, "operatively linked" is intended to mean that the
nucleotide se-
quence of interest is linked to the regulatory sequence(s) in a manner which
allows for ex-
pression of the nucleotide sequence (e.g., in a bacterial or plant host cell
when the vector is
introduced into the host cell). The term "regulatory sequence" is intended to
include pro-
moters, enhancers, and other expression control elements (e.g.,
polyadenylation signals).
Such regulatory sequences are well known in the art. Regulatory sequences
include those
that direct constitutive expression of a nucleotide sequence in many types of
host cells and
those that direct expression of the nucleotide sequence only in certain host
cells or under
certain conditions. It will be appreciated by those skilled in the art that
the design of the
expression vector can depend on such factors as the choice of the host cell to
be trans-
formed, the level of expression of polypeptide desired, etc. The expression
vectors of the
invention can be introduced into host cells to thereby produce polypeptides
encoded by nu-
cleic acids as described herein.
[0076] Plant gene expression should be operatively linked to an appropriate
pro-
moter conferring gene expression in a timely, cell specific, or tissue
specific manner. Pro-
moters useful in the expression cassettes of the invention include any
promoter that is ca-


CA 02692650 2010-01-05
WO 2009/010460 16 PCT/EP2008/059070
pable of initiating transcription in a plant cell. Such promoters include, but
are not limited to,
those that can be obtained from plants, plant viruses, and bacteria that
contain genes that
are expressed in plants, such as Agrobacterium and Rhizobium.
[0077] The promoter may be constitutive, inducible, developmental stage-
preferred,
cell type-preferred, tissue-preferred, or organ-preferred. Constitutive
promoters are active
under most conditions. Examples of constitutive promoters include the CaMV 19S
and 35S
promoters, the sX CaMV 35S promoter, the Sep1 promoter, the rice actin
promoter, the
Arabidopsis actin promoter, the ubiquitan promoter, pEmu, the figwort mosaic
virus 35S
promoter, the Smas promoter, the super promoter (U.S. Patent No. 5, 955,646),
the GRP1-
8 promoter, the cinnamyl alcohol dehydrogenase promoter (U.S. Patent No.
5,683,439),
promoters from the T-DNA of Agrobacterium, such as mannopine synthase,
nopaline syn-
thase, and octopine synthase, the small subunit of ribulose biphosphate
carboxylase (ssu-
RUBISCO) promoter, and the like.
[0078] Inducible promoters are preferentially active under certain
environmental
conditions, such as the presence or absence of a nutrient or metabolite, heat
or cold, light,
pathogen attack, anaerobic conditions, and the like. For example, the hsp80
promoter from
Brassica is induced by heat shock; the PPDK promoter is induced by light; the
PR-1 pro-
moters from tobacco, Arabidopsis, and maize are inducible by infection with a
pathogen;
and the Adh1 promoter is induced by hypoxia and cold stress. Plant gene
expression can
also be facilitated via an inducible promoter (For a review, see Gatz, 1997,
Annu. Rev.
Plant Physiol. Plant Mol. Biol. 48:89-108). Chemically inducible promoters are
especially
suitable if gene expression is wanted to occur in a time specific manner.
Examples of such
promoters are a salicylic acid inducible promoter (PCT Application No. WO
95/19443), a
tetracycline inducible promoter (Gatz et al., 1992, Plant J. 2: 397-404), and
an ethanol in-
ducible promoter (PCT Application No. WO 93/21334).
[0079] In one preferred embodiment of the present invention, the inducible
promoter
is a stress-inducible promoter. For the purposes of the invention, stress-
inducible promot-
ers are preferentially active under one or more of the following stresses: sub-
optimal condi-
tions associated with salinity, drought, nitrogen, temperature, metal,
chemical, pathogenic,
and oxidative stresses. Stress inducible promoters include, but are not
limited to, Cor78
(Chak et al., 2000, Planta 210:875-883; Hovath et al., 1993, Plant Physiol.
103:1047-1053),
Cor15a (Artus et al., 1996, PNAS 93(23):13404-09), Rci2A (Medina et al., 2001,
Plant Phy-
siol. 125:1655-66; Nylander et al., 2001, Plant Mol. Biol. 45:341-52; Navarre
and Goffeau,
2000, EMBO J. 19:2515-24; Capel et al., 1997, Plant Physiol. 115:569-76), Rd22
(Xiong et
al., 2001, Plant Cell 13:2063-83; Abe et al., 1997, Plant Cell 9:1859-68;
Iwasaki et al., 1995,
Mol. Gen. Genet. 247:391-8), cDet6 (Lang and Palve, 1992, Plant Mol. Biol.
20:951-62),
ADH1 (Hoeren et al., 1998, Genetics 149:479-90), KAT1 (Nakamura et al., 1995,
Plant
Physiol. 109:371-4), KST1 (Muller-Rober et al., 1995, EMBO 14:2409-16), Rhal
(Terryn et
al., 1993, Plant Cell 5:1761-9; Terryn et al., 1992, FEBS Lett. 299(3):287-
90), ARSK1 (At-
kinson et al., 1997, GenBank Accession # L22302, and PCT Application No. WO
97/20057), PtxA (Plesch et al., GenBank Accession # X67427), SbHRGP3 (Ahn et
al.,
1996, Plant Cell 8:1477-90), GH3 (Liu et al., 1994, Plant Cell 6:645-57), the
pathogen indu-


CA 02692650 2010-01-05
WO 2009/010460 17 PCT/EP2008/059070
cible PRP1-gene promoter (Ward et al., 1993, Plant. Mol. Biol. 22:361-366),
the heat induc-
ible hsp80-promoter from tomato (U.S. Patent No. 5187267), cold inducible
alpha-amylase
promoter from potato (PCT Application No. WO 96/12814), or the wound-inducible
pinll-
promoter (European Patent No. 375091). For other examples of drought, cold,
and salt-
inducible promoters, such as the RD29A promoter, see Yamaguchi-Shinozalei et
al., 1993,
Mol. Gen. Genet. 236:331-340.
[0080] Developmental stage-preferred promoters are preferentially expressed at
certain stages of development. Tissue and organ preferred promoters include
those that
are preferentially expressed in certain tissues or organs, such as leaves,
roots, seeds, or
xylem. Examples of tissue-preferred and organ-preferred promoters include, but
are not
limited to fruit-preferred, ovule-preferred, male tissue-preferred, seed-
preferred, integument-
preferred, tuber-preferred, stalk-preferred, pericarp-preferred, leaf-
preferred, stigma-
preferred, pollen-preferred, anther-preferred, petal-preferred, sepal-
preferred, pedicel-
preferred, silique-preferred, stem-preferred, root-preferred promoters, and
the like. Seed-
preferred promoters are preferentially expressed during seed development
and/or germina-
tion. For example, seed-preferred promoters can be embryo-preferred, endosperm-

preferred, and seed coat-preferred (See Thompson et al., 1989, BioEssays
10:108). Ex-
amples of seed-preferred promoters include, but are not limited to, cellulose
synthase
(celA), Cim1, gamma-zein, globulin-1, maize 19 kD zein (cZ19B1), and the like.
[0081] Other suitable tissue-preferred or organ-preferred promoters include
the
napin-gene promoter from rapeseed (U.S. Patent No. 5,608,152), the USP-
promoter from
Vicia faba (Baeumlein et al., 1991, Mol. Gen. Genet. 225(3): 459-67), the
oleosin-promoter
from Arabidopsis (PCT Application No. WO 98/45461), the phaseolin-promoter
from
Phaseolus vulgaris (U.S. Patent No. 5,504,200), the Bce4-promoter from
Brassica (PCT
Application No. WO 91/13980), or the legumin B4 promoter (LeB4; Baeumlein et
al., 1992,
Plant Journal, 2(2): 233-9), as well as promoters conferring seed specific
expression in
monocot plants like maize, barley, wheat, rye, rice, etc. Suitable promoters
to note are the
lpt2 or Ipt1-gene promoter from barley (PCT Application No. WO 95/15389 and
PCT Appli-
cation No. WO 95/23230) or those described in PCT Application No. WO 99/16890
(pro-
moters from the barley hordein-gene, rice glutelin gene, rice oryzin gene,
rice prolamin
gene, wheat gliadin gene, wheat glutelin gene, oat glutelin gene, Sorghum
kasirin-gene,
and rye secalin gene).
[0082] Other promoters useful in the expression cassettes of the invention
include,
but are not limited to, the major chlorophyll a/b binding protein promoter,
histone promoters,
the Ap3 promoter, the [i-conglycin promoter, the napin promoter, the soybean
lectin pro-
moter, the maize 15kD zein promoter, the 22kD zein promoter, the 27kD zein
promoter, the
g-zein promoter, the waxy, shrunken 1, shrunken 2, and bronze promoters, the
Zm13 pro-
moter (U.S. Patent No. 5,086,169), the maize polygalacturonase promoters (PG)
(U.S. Pat-
ent Nos. 5,412,085 and 5,545,546), and the SGB6 promoter (U.S. Patent No.
5,470,359),
as well as synthetic or other natural promoters.
[0083] Additional flexibility in controlling heterologous gene expression in
plants may
be obtained by using DNA binding domains and response elements from
heterologous


CA 02692650 2010-01-05
WO 2009/010460 18 PCT/EP2008/059070
sources (i.e., DNA binding domains from non-plant sources). An example of such
a het-
erologous DNA binding domain is the LexA DNA binding domain (Brent and
Ptashne, 1985,
Cell 43:729-736).
[0084] In a preferred embodiment of the present invention, the polynucleotides
listed
in Table 1 are expressed in plant cells from higher plants (e.g., the
spermatophytes, such
as crop plants). A polynucleotide may be "introduced" into a plant cell by any
means, in-
cluding transfection, transformation or transduction, electroporation,
particle bombardment,
agroinfection, and the like. Suitable methods for transforming or transfecting
plant cells are
disclosed, for example, using particle bombardment as set forth in U.S. Pat.
Nos.
4,945,050; 5,036,006; 5,100,792; 5,302,523; 5,464,765; 5,120,657; 6,084,154;
and the like.
More preferably, the transgenic corn seed of the invention may be made using
Agrobacte-
rium transformation, as described in U.S. Pat. Nos. 5,591,616; 5,731,179;
5,981,840;
5,990,387; 6,162,965; 6,420,630, U.S. patent application publication number
2002/0104132, and the like. Transformation of soybean can be performed using
for exam-
ple a technique described in European Patent No. EP 0424047, U.S. Patent No.
5,322,783,
European Patent No.EP 0397 687, U.S. Patent No. 5,376,543, or U.S. Patent No.
5,169,770. A specific example of wheat transformation can be found in PCT
Application
No. WO 93/07256. Cotton may be transformed using methods disclosed in U.S.
Pat. Nos.
5,004,863; 5,159,135; 5,846,797, and the like. Rice may be transformed using
methods
disclosed in U.S. Pat. Nos. 4,666,844; 5,350,688; 6,153,813; 6,333,449;
6,288,312;
6,365,807; 6,329,571, and the like. Other plant transformation methods are
disclosed, for
example, in U.S. Pat. Nos. 5,932,782; 6,153,811; 6,140,553; 5,969,213;
6,020,539, and the
like. Any plant transformation method suitable for inserting a transgene into
a particular
plant may be used in accordance with the invention.
[0085] According to the present invention, the introduced polynucleotide may
be
maintained in the plant cell stably if it is incorporated into a non-
chromosomal autonomous
replicon or integrated into the plant chromosomes. Alternatively, the
introduced polynucleo-
tide may be present on an extra-chromosomal non-replicating vector and may be
transiently
expressed or transiently active.
[0086] Another aspect of the invention pertains to an isolated polypeptide
having a
sequence selected from the group consisting of the polypeptide sequences
listed in Table
1. An "isolated" or "purified" polypeptide is free of some of the cellular
material when pro-
duced by recombinant DNA techniques, or chemical precursors or other chemicals
when
chemically synthesized. The language "substantially free of cellular material"
includes
preparations of a polypeptide in which the polypeptide is separated from some
of the cellu-
lar components of the cells in which it is naturally or recombinantly
produced. In one em-
bodiment, the language "substantially free of cellular material" includes
preparations of a
polypeptide of the invention having less than about 30% (by dry weight) of
contaminating
polypeptides, more preferably less than about 20% of contaminating
polypeptides, still more
preferably less than about 10% of contaminating polypeptides, and most
preferably less
than about 5% contaminating polypeptides.
[0087] The determination of activities and kinetic parameters of enzymes is
well es-


CA 02692650 2010-01-05
WO 2009/010460 19 PCT/EP2008/059070
tablished in the art. Experiments to determine the activity of any given
altered enzyme must
be tailored to the specific activity of the wild-type enzyme, which is well
within the ability of
one skilled in the art. Overviews about enzymes in general, as well as
specific details con-
cerning structure, kinetics, principles, methods, applications and examples
for the determi-
nation of many enzyme activities are abundant and well known to one skilled in
the art.
[0088] The invention is also embodied in a method of producing a transgenic
plant
comprising at least one polynucleotide listed in Table 1, wherein expression
of the polynu-
cleotide in the plant results in the plant's increased growth and/or yield
under normal or wa-
ter-limited conditions and/or increased tolerance to an environmental stress
as compared to
a wild type variety of the plant comprising the steps of: (a) introducing into
a plant cell an
expression vector comprising at least one polynucleotide listed in Table 1,
and (b) generat-
ing from the plant cell a transgenic plant that expresses the polynucleotide,
wherein expres-
sion of the polynucleotide in the transgenic plant results in the plant's
increased growth
and/or yield under normal or water-limited conditions and/or increased
tolerance to envi-
ronmental stress as compared to a wild type variety of the plant. The plant
cell may be, but
is not limited to, a protoplast, gamete producing cell, and a cell that
regenerates into a
whole plant. As used herein, the term "transgenic" refers to any plant, plant
cell, callus,
plant tissue, or plant part, that contains at least one recombinant
polynucleotide listed in
Table 1. In many cases, the recombinant polynucleotide is stably integrated
into a chromo-
some or stable extra-chromosomal element, so that it is passed on to
successive genera-
tions.
[0089] The present invention also provides a method of increasing a plant's
growth
and/or yield under normal or water-limited conditions and/or increasing a
plant's tolerance
to an environmental stress comprising the steps of increasing the expression
of at least one
polynucleotide listed in Table 1 in the plant. Expression of a protein can be
increased by
any method known to those of skill in the art.
[0090] The effect of the genetic modification on plant growth and/or yield
and/or
stress tolerance can be assessed by growing the modified plant under normal
and.or less
than suitable conditions and then analyzing the growth characteristics and/or
metabolism of
the plant. Such analysis techniques are well known to one skilled in the art,
and include dry
weight, wet weight, polypeptide synthesis, carbohydrate synthesis, lipid
synthesis,
evapotranspiration rates, general plant and/or crop yield, flowering,
reproduction, seed set-
ting, root growth, respiration rates, photosynthesis rates, metabolite
composition, etc., using
methods known to those of skill in biotechnology.
[0091] The invention is further illustrated by the following examples, which
are not to
be construed in any way as imposing limitations upon the scope thereof.

EXAMPLE 1
Cloning of cDNAs
[0092] cDNAs were isolated from proprietary libraries of the respective plant
species
using known methods. Sequences were processed and annotated using
bioinformatics
analyses. The degrees of amino acid identity and similarity of the isolated
sequences to the


CA 02692650 2010-01-05
WO 2009/010460 20 PCT/EP2008/059070
respective closest known public sequences are indicated in Tables 2 through 18
(Pairwise
Comparison was used: gap penalty: 10; gap extension penalty: 0.1; score
matrix: blo-
sum62).

Table 2
Comparison of At2g20725 (SEQ ID NO: 2) to known CAAX amino terminal protease
pro-
teins

Public Database Species Sequence
Accession # Identity (%)
NP 565483 A. thaliana 99.70%
ABE87113 Medicago truncatula 27.00%
NP 563943 A. thaliana 25.60%
AAU90306 Solanum tuberosum 25.20%
AAM65055 A. thaliana 25.00%
Table 3
Comparison of At3g26085 (SEQ ID NO: 4) to known CAAX amino terminal protease
pro-
teins

Public Database Species Sequence
Accession # Identity (%)
NP 566788 A. thaliana 100.00%
BAC43478 A. thaliana 99.70%
AAM63917 A. thaliana 99.30%
NP 001078210 A. thaliana 91.00%
BAB01072 A. thaliana 65.30%



CA 02692650 2010-01-05
WO 2009/010460 21 PCT/EP2008/059070
Table 4
Comparison of AtFACE-2 (SEQ ID NO: 6) to known prenyl-dependent CAAX proteases
Public Database Acces- Species Sequence
sion # Identity (%)
NP 850262 A. thaliana 100.00%
BAC43705 A. thaliana 99.70%
CAN61196 Vitis vinifera 36.70%
XP 695285 Danio rerio 32.70%
XP 001342272 D. rerio 32.70%
Table 5
Comparison of CASAR82A (SEQ ID NO: 12) to known SAR8.2 protein precursors
Public Database Species Sequence
Accession # Identity (%)
AAF18935 C. annuum 100.00%
AAL56986 C. annuum 97.70%
AAL16783 C. annuum 93.00%
AAL16782 C. annuum 91.90%
AAR97871 C. annuum 52.30%
Table 6
Comparison of b3358 (SEQ ID NO: 14) to known putative membrane proteins
Public Database Species Sequence
Accession # Identity (%)
YP_312284 Shigella sonnei 99.90%
ZP 00715046 E. coli 99.90%
ZP 00725390 E. coli 99.60%
AP 004431 E. coli 99.40%
YP 858957 E. coli 99.40%


CA 02692650 2010-01-05
WO 2009/010460 22 PCT/EP2008/059070
Table 7
Comparison of EST564 (SEQ ID NO: 16) to known protein phosphatase 2C proteins
Public Database Species Sequence
Accession # Identity (%)
ABF93864 O. sativa 56.40%
NP 974411 A. thaliana 51.60%
AAC35951 Mesembryanthe- 51.10%
mum crystallinum
EAZ25504 O. sativa 45.70%
EAZ02383 O. sativa 43.40%
Table 8
Comparison of EST390 (SEQ ID NO:36) to known mitochondrial carrier proteins
Public Database Species Sequence
Accession # Identity (%)
NP 172866 A. thaliana 63.50%
AAT66766 Solanum de- 60.80%
missum
CAH67091 O. sativa 60.00%
CAE01569 O. sativa 59.70%
CAN75338 V. vinifera 59.50%
Table 9
Comparison of EST257 (SEQ ID NO: 50) to known protein kinases
Public Database Species Sequence
Accession # Identity (%)
NP 001043682 0. sativa 62.20%
CAN82019 V. vinifera 62.10%
AAR01726 O. sativa 61.10%
NP 001056408 0. sativa 61.10%
CAN64754 V. vinifera 60.90%


CA 02692650 2010-01-05
WO 2009/010460 23 PCT/EP2008/059070
Table 10
Comparison of EST465 (SEQ ID NO: 62) to known peptidyl prolyl isomerases
Public Database Species Sequence
Accession # Identity (%)
AAC39445 A. thaliana 54.30%
ABE85899 M. truncatula 54.20%
CAB88363 A. thaliana 54.10%
NP 566993 A. thaliana 53.80%
NP 001050182 0. sativa 53.00%
Table 11
Comparison of YBL109w (SEQ ID NO: 64) to unknown protein 1
Public Database Species Sequence
Accession # Identity (%)
CAA84936 S. cerevisiae 49.50%
P38898 S. cerevisiae 43.10%
Table 12
Comparison of YBL100c (SEQ ID NO: 66) to unknown protein 2

Public Database Species Sequence
Accession # Identity (%)
P38168 S. cerevisiae 100.00%
Table 13
Comparison of YKL184w (SEQ ID NO: 68) to known ornithine decarboxylases
Public Database Species Sequence
Accession # Identity (%)
NP 012737 S. cerevisiae 100.00%
XP_445434 Candida glabrata 70.90%
XP_451651 Kluyveromyces lactis 60.30%
NP_984947 Ashbya gossypii 57.40%
XP_001385782 P. stipitis 49.80%


CA 02692650 2010-01-05
WO 2009/010460 24 PCT/EP2008/059070
Table 14
Comparison of YPL091w (SEQ ID NO: 70) to known glutathione reductases
Public Database Species Sequence
Accession # Identity (%)
NP 015234 S. cerevisiae 100.00%
AAA92575 S. cerevisiae 96.70%
BAA07109 S. cerevisiae 95.70%
XP_447042 C. glabrata 79.90%
XP 455036 K. lactis 73.30%
Table 15
Comparison of TA54587433 (SEQ ID NO: 72) to unknown protein 3
Public Database Species Sequence
Accession # Identity (%)
EAY88696 O. sativa 22.80%
EAZ25723 O. sativa 21.90%
NP 001049087 0. sativa 21.20%
Table 16
Comparison of ZM68532504 (SEQ ID NO: 74) to known protein phosphatase 2A
proteins
Public Database Species Sequence
Accession # Identity (%)
AAC72838 O. sativa 95.40%
AAA91806 O. sativa 94.10%
BAA92697 Vicia faba 93.10%
AAQ67226 Lycopersicon 92.80%
esculentum
BAD17175 O. sativa 92.80%
Table 17
Comparison of ZM59202533 (SEQ ID NO: 92) to known MEK1 protein kinases
Public Database Species Sequence
Accession # Identity (%)
AAC83393 Z. mays 100.00%
ABG45894 O. sativa 92.70%
NP 001043164 0. sativa 85.90%
BAB32405 Nicotiana tabacum 77.80%
CAC24705 N. tabacum 77.20%


CA 02692650 2010-01-05
WO 2009/010460 25 PCT/EP2008/059070
Table 18
Comparison of BN42671700 (SEQ ID NO: 98) to known AP2 domain containing
transcrip-
tion factors
Public Database Species Sequence
Accession # Identity (%)
NP 177631 A. thaliana 58.60%
NP 173355 A. thaliana 56.70%
AAF82238 A. thaliana 54.80%

[0093] The full-length DNA sequence of the AtFACE-2 (SEQ ID NO: 5) was blasted
against proprietary databases of canola, soybean, rice, maize, linseed,
sunflower, and
wheat cDNAs at an e value of e-10 (Altschul et al., 1997, Nucleic Acids Res.
25: 3389-3402).
All the contig hits were analyzed for the putative full length sequences, and
the longest
clones representing the putative full length contigs were fully sequenced. Two
homologs
from maize were identified. The degree of amino acid identity of these
sequences to the
closest known public sequences is indicated in Tables 19 and 20 (Pairwise
Comparison
was used: gap penalty: 10; gap extension penalty: 0.1; score matrix:
blosum62).
Table 19
Comparison of ZM57353913 (SEQ ID NO: 8) to known prenyl-dependent CAAX
proteases
Public Database Species Sequence
Accession # Identity (%)
NP 850262 A. thaliana 52.20%
BAC43705 A. thaliana 52.20%
NP 001055298 0. sativa 42.10%
EAZ33973 O. sativa 36.60%
XP_001353747 Drosophila pseu- 33.50%
doobscura
Table 20
Comparison of ZM59252659 (SEQ ID NO: 10) to known prenyl-dependent CAAX
proteases
Public Database Species Sequence
Accession # Identity (%)
NP 850262 A. thaliana 47.00%
BAC43705 A. thaliana 47.00%
EAZ33973 O. sativa 41.10%
NP 001055298 0. sativa 38.30%
CAN61196 V. vinifera 31.90%


CA 02692650 2010-01-05
WO 2009/010460 26 PCT/EP2008/059070
[0094] The full-length DNA sequence of EST564 (SEQ ID NO: 15) was blasted
against
proprietary databases of canola, soybean, rice, maize, linseed, sunflower, and
wheat cDNAs at
an e value of e-10 (Altschul et al., 1997, Nucleic Acids Res. 25: 3389-3402).
All the contig hits
were analyzed for the putative full length sequences, and the longest clones
representing the
putative full length contigs were fully sequenced. Six homologs from maize,
two homologs from
soybean, and one homolog from canola were identified. The degree of amino acid
identity of
these sequences to the closest known public sequences is indicated in Tables
21-29 (Pairwise
Comparison was used: gap penalty: 10; gap extension penalty: 0.1; score
matrix: blosum62).
Table 21
Comparison of BN49502266 (SEQ ID NO: 18) to known protein phosphatase 2C
proteins
Public Database Species Sequence
Accession # Identity (%)
NP 195118 A. thaliana 91.10%
NP 001067133 0. sativa 63.20%
EAY83661 O. sativa 60.80%
EAZ21008 O. sativa 60.50%
CAN76780 V. vinifera 57.60%
Table 22
Comparison of GM49788080 (SEQ ID NO: 20) to known protein phosphatase 2C
proteins
Public Database Species Sequence
Accession # Identity (%)
EAZ02383 O. sativa 75.60%
EAZ38299 O. sativa 75.30%
CAB90634 Fagus sylvatica 73.80%
EAZ25504 O. sativa 73.00%
AAC35951 M. crystallinum 72.80%
Table 23
Comparison of GM53049821 (SEQ ID NO: 22) to known protein phosphatase 2C
proteins
Public Database Species Sequence
Accession # Identity (%)
CAN72598 V. vinifera 82.40%
NP 566566 A. thaliana 73.50%
AAM61747 A. thaliana 73.50%
BAA94987 A. thaliana 73.00%
NP 001051801 0. sativa 60.20%


CA 02692650 2010-01-05
WO 2009/010460 27 PCT/EP2008/059070
Table 24
Comparison of ZM58462719 (SEQ ID NO: 24) to known protein phosphatase 2C
proteins
Public Database Species Sequence
Accession # Identity (%)
NP 001058597 0. sativa 91.10%
EAZ02383 O. sativa 81.20%
EAZ38299 O. sativa 81.00%
AAD11430 M. crystallinum 75.70%
CAB90634 F. sylvatica 74.20%

Table 25
Comparison of ZM61092633 (SEQ ID NO: 26) to known protein phosphatase 2C
proteins
Public Database Species Sequence
Accession # Identity (%)
NP 001065203 0. sativa 87.00%
AAK20060 O. sativa 86.00%
NP 001048899 0. sativa 80.70%
EAY88457 O. sativa 79.90%
ABE77197 Sorghum bicolor 77.20%
Table 26
Comparison of ZM62016485 (SEQ ID NO: 28) to known protein phosphatase 2C
proteins
Public Database Species Sequence
Accession # Identity (%)
ABE77197 S. bicolor 90.70%
NP 001048899 0. sativa 86.20%
EAY88457 O. sativa 85.20%
NP 001065203 0. sativa 78.50%
AAK20060 O. sativa 77.80%
Table 27
Comparison of ZM62051019 (SEQ ID NO: 30) to known protein phosphatase 2C
proteins
Public Database Species Sequence
Accession # Identity (%)
ABE77197 S. bicolor 92.50%
NP 001048899 0. sativa 88.00%
EAY88457 O. sativa 87.00%
NP 001065203 0. sativa 79.50%
AAK20060 O. sativa 78.80%


CA 02692650 2010-01-05
WO 2009/010460 28 PCT/EP2008/059070
Table 28
Comparison of ZM65086957 (SEQ ID NO: 32) to known protein phosphatase 2C
proteins
Public Database Species Sequence
Accession # Identity (%)
ABE77197 S. bicolor 91.00%
NP 001048899 0. sativa 86.50%
EAY88457 O. sativa 85.50%
NP 001065203 0. sativa 78.80%
AAK20060 O. sativa 78.00%

Table 29
Comparison of ZM68587657 (SEQ ID NO: 34) to known protein phosphatase 2C
proteins
Public Database Species Sequence
Accession # Identity (%)
EAZ02383 O. sativa 70.60%
EAZ38299 O. sativa 70.60%
AAC35951 M. crystallinum 69.80%
ABF93864 O. sativa 68.50%
NP 974411 A. thaliana 65.00%

[0095] The full-length DNA sequence of the EST390 (SEQ ID NO: 35) was blasted
against proprietary databases of canola, soybean, rice, maize, linseed,
sunflower, and
wheat cDNAs at an e value of e-10 (Altschul et al., 1997, Nucleic Acids Res.
25: 3389-3402).
All the contig hits were analyzed for the putative full length sequences, and
the longest
clones representing the putative full length contigs were fully sequenced.
Four homologs
from canola and two homologs from maize were identified. The degree of amino
acid iden-
tity of these sequences to the closest known public sequences is indicated in
Tables 30-35
(Pairwise Comparison was used: gap penalty: 10; gap extension penalty: 0.1;
score matrix:
blosum62).

Table 30
Comparison of BN51363030 (SEQ ID NO: 38) to known mitochondrial carrier
proteins
Public Database Species Sequence
Accession # Identity (%)
CAN77545 V. vinifera 71.90%
BAE71294 Trifolium pratense 71.90%
NP 194188 A. thaliana 70.70%
AAU11466 Saccharum officina- 70.60%
rum
AAU11465 S. officinarum 69.90%


CA 02692650 2010-01-05
WO 2009/010460 29 PCT/EP2008/059070
Table 31
Comparison of BN42986056 (SEQ ID NO: 40) to known mitochondrial carrier
proteins
Public Database Species Sequence
Accession # Identity (%)
NP 179836 A. thaliana 74.80%
AAK44155 A. thaliana 74.50%
AAM63236 A. thaliana 74.20%
CAN77545 V. vinifera 67.70%
BAE71294 Trifolium pratense 65.50%

Table 32
Comparison of BN49389066 (SEQ ID NO: 42) to known mitochondrial carrier
proteins
Public Database Species Sequence
Accession # Identity (%)
AAY97866 L. esculentum 73.50%
CAA68164 Solanum tuberosum 73.50%
CAC84547 N. tabacum 73.30%
AAR06239 Citrus junos 73.00%
CAC84545 N. tabacum 73.00%
Table 33
Comparison of BN51339479 (SEQ ID NO: 44) to known mitochondrial carrier
proteins
Public Database Species Sequence
Accession # Identity (%)
CAC84545 N. tabacum 85.60%
CAC84547 N. tabacum 85.30%
AAR06239 C. junos 85.30%
CAA68164 S. tuberosum 85.30%
CAC12820 N. tabacum 85.30%
Table 34
Comparison of ZM57651070 (SEQ ID NO: 46) to known mitochondrial carrier
proteins
Public Database Species Sequence
Accession # Identity (%)
NP 001066927 0. sativa 57.00%
NP 680566 A. thaliana 53.80%
BAF00711 A. thaliana 51.70%
CAN71674 V. vinifera 43.20%
CAN71674 V. vinifera 43.20%


CA 02692650 2010-01-05
WO 2009/010460 30 PCT/EP2008/059070
Table 35
Comparison of ZM62073276 (SEQ ID NO: 48) to known mitochondrial carrier
proteins
Public Database Species Sequence
Accession # Identity (%)
AAU11471 S.officinarum 94.90%
NP 001054904 0. sativa 92.30%
BAA08105 Panicum miliaceum 86.20%
BAA08103 P. miliaceum 85.50%
EAY80779 O. sativa 82.90%

[0096] The full-length DNA sequence of the EST257 (SEQ ID NO: 49) was blasted
against proprietary databases of canola, soybean, rice, maize, linseed,
sunflower, and
wheat cDNAs at an e value of e-10 (Altschul et al., 1997, Nucleic Acids Res.
25: 3389-3402).
All the contig hits were analyzed for the putative full length sequences, and
the longest
clones representing the putative full length contigs were fully sequenced.
Three homologs
from maize, one homolog from linseed, and one sequence from wheat were
identified. The
degree of amino acid identity of these sequences to the closest known public
sequences is
indicated in Tables 36-40 (Pairwise Comparison was used: gap penalty: 10; gap
extension
penalty: 0.1; score matrix: blosum62).

Table 36
Comparison of LU61665952 (SEQ ID NO: 52) to known protein kinases
Public Database Species Sequence
Accession # Identity (%)
NP 566716 A. thaliana 75.10%
CAN82019 V. vinifera 74.50%
NP 193214 A. thaliana 74.50%
ABK06452 synthetic construct 73.00%
ABK06453 synthetic construct 72.30%
Table 37
Comparison of TA56863186 (SEQ ID NO: 54) to known protein kinases
Public Database Species Sequence
Accession # Identity (%)
AA072550 O. sativa 87.30%
NP 001046047 0. sativa 79.80%
EAZ01979 O. sativa 73.80%
NP 001058291 0. sativa 73.60%
AA048744 O. sativa 73.40%


CA 02692650 2010-01-05
WO 2009/010460 31 PCT/EP2008/059070
Table 38
Comparison of ZM62026837 (SEQ ID NO:56) to known protein kinases
Public Database Species Sequence
Accession # Identity (%)
AAR01726 O. sativa 83.40%
NP 001050732 0. sativa 77.00%
EAY91142 O. sativa 76.30%
EAZ27891 O. sativa 76.00%
CAN82019 V. vinifera 73.30%
Table 39
Comparison of ZM65457595 (SEQ ID NO: 58) to known protein kinases
Public Database Species Sequence
Accession # Identity (%)
NP 001056408 0. sativa 89.60%
AA072572 O. sativa 87.20%
NP 001043682 0. sativa 81.50%
CAN64754 V. vinifera 79.80%
NP 199811 A. thaliana 77.20%

Table 40
Comparison of ZM67230154 (SEQ ID NO: 60) to known protein kinases
Public Database Species Sequence
Accession # Identity (%)
NP 001043682 0. sativa 87.10%
NP 001056408 0. sativa 82.80%
AA072572 O. sativa 80.80%
EAZ12861 O. sativa 79.20%
CAN64754 V. vinifera 77.50%

[0097] The full-length DNA sequence of the ZM68532504 (SEQ ID NO: 73) was
blasted against proprietary databases of canola, soybean, rice, maize,
linseed, sunflower,
and wheat cDNAs at an e value of e-10 (Altschul et al., 1997, Nucleic Acids
Res. 25: 3389-
3402). All the contig hits were analyzed for the putative full length
sequences, and the
longest clones representing the putative full length contigs were fully
sequenced. Two ho-
mologs from canola, two homologs from maize, one homolog from linseed, two
sequences
from rice and one sequence from sunflower were identified. The degree of amino
acid


CA 02692650 2010-01-05
WO 2009/010460 32 PCT/EP2008/059070
identity of these sequences to the closest known public sequences is indicated
in Tables
41-48 (Pairwise Comparison was used: gap penalty: 10; gap extension penalty:
0.1; score
matrix: blosum62).

Table 41
Comparison of BN42856089 (SEQ ID NO: 76) to known protein phosphatase 2A
proteins
Public Database Species Sequence
Accession # Identity (%)
NP 172514 A. thaliana 97.10%
AAM65099 A. thaliana 95.80%
AAQ67226 L. esculentum 95.40%
BAA92697 Vicia faba 95.10%
CAC11129 Fagus sylvatica 94.40%
Table 42
Comparison of BN43206527 (SEQ ID NO: 78) to known protein phosphatase 2A
proteins
Public Database Species Sequence
Accession # Identity (%)
NP 172514 A. thaliana 97.40%
AAM65099 A. thaliana 96.10%
AAQ67226 L. esculentum 95.10%
BAA92697 V. faba 94.10%
AAQ67225 L. esculentum 94.10%
Table 43
Comparison of HA66872964 (SEQ ID NO: 80) to known protein phosphatase 2A
proteins
Public Database Species Sequence
Accession # Identity (%)
P48579 H. annuus 99.30%
BAA92697 V. faba 93.50%
CAC11129 F. sylvatica 93.10%
BAA92698 V. faba 92.80%
Q9ZSE4 Hevea brasiliensis 92.80%


CA 02692650 2010-01-05
WO 2009/010460 33 PCT/EP2008/059070
Table 44
Comparison of LU61662612 (SEQ ID NO: 82) to known protein phosphatase 2A
proteins
Public Database Species Sequence
Accession # Identity (%)
AAQ67226 L. esculentum 94.10%
BAA92697 V. faba 94.10%
BAA92698 V. faba 94.10%
CAN74947 V. vinifera 93.50%
CAC11129 F. sylvatica 93.10%

Table 45
Comparison of OS32806943 (SEQ ID NO: 84) to known protein phosphatase 2A
proteins
Public Database Species Sequence
Accession # Identity (%)
AAC72838 O. sativa 96.10%
BAD17175 O. sativa 95.80%
AAA91806 O. sativa 94.80%
AAQ67226 L. esculentum 93.20%
BAA92697 V. faba 93.20%

Table 46
Comparison of OS34738749 (SEQ ID NO: 86) to known protein phosphatase 2A
proteins
Public Database Species Sequence
Accession # Identity (%)
AAQ67226 L. esculentum 97.70%
BAA92697 V. faba 97.10%
CAC11129 F. sylvatica 96.70%
BAA92698 V. faba 96.10%
AAQ67225 L. esculentum 96.10%


CA 02692650 2010-01-05
WO 2009/010460 34 PCT/EP2008/059070
Table 47
Comparison of ZM59400933 (SEQ ID NO: 88) to known protein phosphatase 2A
proteins
Public Database Species Sequence
Accession # Identity (%)
AAC72838 O. sativa 95.80%
AAA91806 O. sativa 94.40%
BAA92697 V. faba 92.80%
AAQ67226 L. esculentum 92.80%
AAQ67225 L. esculentum 92.80%

Table 48
Comparison of ZM62132060 (SEQ ID NO: 90) to known protein phosphatase 2A
proteins
Public Database Species Sequence
Accession # Identity (%)
AAC72838 O. sativa 95.10%
AAA91806 O. sativa 93.80%
BAA92697 V. faba 92.80%
AAQ67226 L. esculentum 92.50%
BAD17175 O. sativa 92.50%

[0098] The full-length DNA sequence of the ZM59202533 (SEQ ID NO: 91) was
blasted
against proprietary databases of canola, soybean, rice, maize, linseed,
sunflower, and wheat
cDNAs at an e value of e-10 (Altschul et al., 1997, Nucleic Acids Res. 25:
3389-3402). All the
contig hits were analyzed for the putative full length sequences, and the
longest clones repre-
senting the putative full length contigs were fully sequenced. Two homologs
from canola and
one homolog from maize were identified. The degree of amino acid identity of
these se-
quences to the closest known public sequences is indicated in Tables 49-51
(Pairwise Com-
parison was used: gap penalty: 10; gap extension penalty: 0.1; score matrix:
blosum62).
Table 49
Comparison of BN41901422 (SEQ ID NO: 94) to known MEK1 protein kinases
Public Data- Species Sequence
base Accession Identity (%)
ABF55661 synthetic construct 79.80%
NP 849446 A. thaliana 76.30%
AAQ96337 Vitis aestivalis 66.00%
AAL62336 G. max 64.10%
AAS21304 Petroselinum crispum 63.60%


CA 02692650 2010-01-05
WO 2009/010460 35 PCT/EP2008/059070
Table 50
Comparison of BN47868329 (SEQ ID NO: 96) to known MEK1 protein kinases
Public Data- Species Sequence
base Acces- Identity (%)
sion #
NP 188759 A. thaliana 72.30%
CAA68958 A. thaliana 72.00%
ABF55664 synthetic construct 70.90%
AAL91161 A. thaliana 70.10%
AAU04434 L. esculentum 66.40%
Table 51
Comparison of ZM68416988 (SEQ ID NO: 100) to known MEK1 protein kinases
Public Data- Species Sequence
base Acces- Identity (%)
sion #
AB193775 Oryza minuta 80.00%
NP 001056806 0. sativa 79.70%
ABP88102 O. sativa 78.90%
CAD45180 O. sativa 75.20%
AB193776 O. minuta 72.40%
EXAMPLE 2
Well-watered Arabidopsis plants
The polynucleotides of Table 1 are ligated into a binary vector containing a
selectable marker. The resulting recombinant vector contains the corresponding
gene in
the sense orientation under a constitutive promoter. The recombinant vectors
are trans-
formed into an Agrobacterium tumefaciens strain according to standard
conditions. A.
thaliana ecotype Col-0 or C24 are grown and transformed according to standard
conditions.
T1 and T2 plants are screened for resistance to the selection agent conferred
by the select-
able marker gene. T3 seeds are used in greenhouse or growth chamber
experiments.
Approximately 3-5 days prior to planting, seeds are refrigerated for
stratifica-
tion. Seeds are then planted, fertilizer is applied and humidity is maintained
using transpar-
ent domes. Plants are grown in a greenhouse at 22 C with photoperiod of 16
hours light/8
hours dark. Plants are watered twice a week.
At 19 and 22 days, plant area, leaf area, biomass, color distribution, color
intensity, and growth rate for each plant are measured using using a
commercially available
imaging system. Biomass is calculated as the total plant leaf area at the last
measuring
time point. Growth rate is calculated as the plant leaf area at the last
measuring time point


CA 02692650 2010-01-05
WO 2009/010460 36 PCT/EP2008/059070
minus the plant leaf area at the first measuring time point divided by the
plant leaf area at
the first measuring time point. Health index is calculated as the dark green
leaf area di-
vided by the total plant leaf area.

EXAMPLE 3
Nitrogen stress tolerant Arabidopsis plants
The polynucleotides of Table 1 are ligated into a binary vector containing a
selectable marker. The resulting recombinant vector contains the corresponding
gene in
the sense orientation under a constitutive promoter. The recombinant vectors
are trans-
formed into an A. tumefaciens strain according to standard conditions. A.
thaliana ecotype
Col-0 or C24 are grown and transformed according to standard conditions. T1
and T2
plants are screened for resistance to the selection agent conferred by the
selectable marker
gene.
Plants are grown in flats using a substrate that contains no organic compo-
nents. Each flat is wet with water before seedlings resistant to the selection
agent are
transplanted onto substrate. Plants are grown in a growth chamber set to 22 C
with a 55%
relative humidity with photoperiod set at 16h light/ 8h dark. A controlled low
or high nitrogen
nutrient solution is added to waterings on Days 12, 15, 22 and 29. Watering
without nutri-
ent solution occurs on Days 18, 25, and 32. Images of all plants in a tray are
taken on days
26, 30, and 33 using a commercially available imaging system. At each imaging
time point,
biomass and plant phenotypes for each plant are measured including plant area,
leaf area,
biomass, color distribution, color intensity, and growth rate.

EXAMPLE 4
Stress-tolerant Rapeseed/Canola plants
[0099] Canola cotyledonary petioles of 4 day-old young seedlings are used as
ex-
plants for tissue culture and transformed according to EP1566443. The
commercial cultivar
Westar (Agriculture Canada) is the standard variety used for transformation,
but other varie-
ties can be used. A. tumefaciens GV3101:pMP90RK containing a binary vector is
used for
canola transformation. The standard binary vector used for transformation is
pSUN
(W002/00900), but many different binary vector systems have been described for
plant
transformation (e.g. An, G. in Agrobacterium Protocols, Methods in Molecular
Biology vol
44, pp 47-62, Gartland KMA and MR Davey eds. Humana Press, Totowa, New
Jersey). A
plant gene expression cassette comprising a selection marker gene, a plant
promoter, and
a polynucleotide of Table 1 is employed. Various selection marker genes can be
used in-
cluding the mutated acetohydroxy acid synthase (AHAS) gene disclosed in US
Pat. Nos.
5,767,366 and 6,225,105. A suitable promoter is used to regulate the trait
gene to provide
constitutive, developmental, tissue or environmental regulation of gene
transcription.
[00100] Canola seeds are surface-sterilized in 70% ethanol for 2 min,
incubated for
15 min in 55 C warm tap water and then in 1.5% sodium hypochlorite for 10
minutes, fol-
lowed by three rinses with sterilized distilled water. Seeds are then placed
on MS medium
without hormones, containing Gamborg B5 vitamins, 3% sucrose, and 0.8%
Oxoidagar.


CA 02692650 2010-01-05
WO 2009/010460 37 PCT/EP2008/059070
Seeds are germinated at 24 C for 4 days in low light (< 50 pMol/m2s, 16 hours
light). The
cotyledon petiole explants with the cotyledon attached are excised from the in
vitro seed-
lings, and inoculated with Agrobacterium by dipping the cut end of the petiole
explant into
the bacterial suspension. The explants are then cultured for 3 days on MS
medium includ-
ing vitamins containing 3.75 mg/I BAP, 3% sucrose, 0.5 g/l MES, pH 5.2, 0.5
mg/I GA3,
0.8% Oxoidagar at 24 C, 16 hours of light. After three days of co-cultivation
with Agrobac-
terium, the petiole explants are transferred to regeneration medium containing
3.75 mg/I
BAP, 0.5 mg/I GA3, 0.5 g/l MES, pH 5.2, 300 mg/I timentin and selection agent
until shoot
regeneration. As soon as explants start to develop shoots, they are
transferred to shoot
elongation medium (A6, containing full strength MS medium including vitamins,
2% su-
crose, 0.5% Oxoidagar, 100 mg/I myo-inositol, 40 mg/I adenine sulfate, 0.5 g/l
MES, pH 5.8,
0.0025 mg/I BAP, 0.1 mg/I IBA, 300 mg/I timentin and selection agent).
[00101] Samples from both in vitro and greenhouse material of the primary
transgenic
plants (TO) are analyzed by qPCR using TaqMan probes to confirm the presence
of T-DNA
and to determine the number of T-DNA integrations.
[00102] Seed is produced from the primary transgenic plants by self-
pollination. The
second-generation plants are grown in greenhouse conditions and self-
pollinated. The
plants are analyzed by qPCR using TaqMan probes to confirm the presence of T-
DNA and
to determine the number of T-DNA integrations. Homozygous transgenic,
heterozygous
transgenic and azygous (null transgenic) plants are compared for their stress
tolerance, for
example, in the assays described in Examples 2 and 3, and for yield, both in
the green-
house and in field studies.

EXAMPLE 5
Screening for stress-tolerant rice plants
[00103] Transgenic rice plants comprising a polynucleotide of Table 1 are
generated
using known methods. Approximately 15 to 20 independent transformants (TO) are
gener-
ated. The primary transformants are transferred from tissue culture chambers
to a green-
house for growing and harvest of T1 seeds. Five events of the T1 progeny
segregated 3:1
for presence/absence of the transgene are retained. For each of these events,
10 T1 seed-
lings containing the transgene (hetero- and homozygotes), and 10 T1 seedlings
lacking the
transgene (nullizygotes) are selected by visual marker screening. The selected
T1 plants
are transferred to a greenhouse. Each plant receives a unique barcode label to
link unam-
biguously the phenotyping data to the corresponding plant. The selected T1
plants are
grown on soil in 10 cm diameter pots under the following environmental
settings: photope-
riod = 11.5 h, daylight intensity = 30,000 lux or more, daytime temperature =
28 C or higher,
night time temperature = 22 C, relative humidity = 60-70%. Transgenic plants
and the cor-
responding nullizygotes are grown side-by-side at random positions. From the
stage of
sowing until the stage of maturity, the plants are passed several times
through a digital im-
aging cabinet. At each time point digital, images (2048x1536 pixels, 16
million colours) of
each plant are taken from at least 6 different angles.
[00104] The data obtained in the first experiment with T1 plants are confirmed
in a


CA 02692650 2010-01-05
WO 2009/010460 38 PCT/EP2008/059070
second experiment with T2 plants. Lines that have the correct expression
pattern are se-
lected for further analysis. Seed batches from the positive plants (both
hetero- and homo-
zygotes) in T1 are screened by monitoring marker expression. For each chosen
event, the
heterozygote seed batches are then retained for T2 evaluation. Within each
seed batch, an
equal number of positive and negative plants are grown in the greenhouse for
evaluation.
[00105] Transgenic plants are screened for their improved growth and/or yield
and/or
stress tolerance, for example, using the assays described in Examples 2 and 3,
and for
yield, both in the greenhouse and in field studies.

EXAMPLE 6
Stress-tolerant soybean plants
[00106] The polynucleotides of Table 1 are transformed into soybean using the
meth-
ods described in commonly owned copending international application number WO
2005/121345, the contents of which are incorporated herein by reference.
[00107] The transgenic plants generated are then screened for their improved
growth
under water-limited conditions and/or drought, salt, and/or cold tolerance,
for example, us-
ing the assays described in Examples 2 and 3, and for yield, both in the
greenhouse and in
field studies.

EXAMPLE 7
Stress-tolerant wheat plants
[00108] The polynucleotides of Table 1 are transformed into wheat using the
method
described by Ishida et al., 1996, Nature Biotech. 14745-50. Immature embryos
are co-
cultivated with Agrobacterium tumefaciens that carry "super binary" vectors,
and transgenic
plants are recovered through organogenesis. This procedure provides a
transformation effi-
ciency between 2.5% and 20%. The transgenic plants are then screened for their
improved
growth and/or yield under water-limited conditions and/or stress tolerance,
for example, is
the assays described in Examples 2 and 3, and for yield, both in the
greenhouse and in field
studies.
EXAMPLE 8
Stress-tolerant corn plants
[00109] The polynucleotides of Table 1 are transformed into immature embryos
of
corn using Agrobacterium. After imbibition, embryos are transferred to medium
without se-
lection agent. Seven to ten days later, embryos are transferred to medium
containing se-
lection agent and grown for 4 weeks (two 2-week transfers) to obtain
transformed callus
cells. Plant regeneration is initiated by transferring resistant calli to
medium supplemented
with selection agent and grown under light at 25-27 C for two to three weeks.
Regenerated
shoots are then transferred to rooting box with medium containing selection
agent. Plant-
lets with roots are transferred to potting mixture in small pots in the
greenhouse and after
acclimatization are then transplanted to larger pots and maintained in
greenhouse till matur-
ity.


CA 02692650 2010-01-05
WO 2009/010460 39 PCT/EP2008/059070
[00110] Using assays such as the assay described in Examples 2 and 3, each of
these plants is uniquely labeled, sampled and analyzed for transgene copy
number. Trans-
gene positive and negative plants are marked and paired with similar sizes for
transplanting
together to large pots. This provides a uniform and competitive environment
for the trans-
gene positive and negative plants. The large pots are watered to a certain
percentage of
the field water capacity of the soil depending the severity of water-stress
desired. The soil
water level is maintained by watering every other day. Plant growth and
physiology traits
such as height, stem diameter, leaf rolling, plant wilting, leaf extension
rate, leaf water
status, chlorophyll content and photosynthesis rate are measured during the
growth period.
After a period of growth, the above ground portion of the plants is harvested,
and the fresh
weight and dry weight of each plant are taken. A comparison of the drought
tolerance
phenotype between the transgene positive and negative plants is then made.
[00111] Using assays such as the assay described in Example 2 and 3, the pots
are
covered with caps that permit the seedlings to grow through but minimize water
loss. Each
pot is weighed periodically and water added to maintain the initial water
content. At the end
of the experiment, the fresh and dry weight of each plant is measured, the
water consumed
by each plant is calculated and WUE of each plant is computed. Plant growth
and physiol-
ogy traits such as WUE, height, stem diameter, leaf rolling, plant wilting,
leaf extension rate,
leaf water status, chlorophyll content and photosynthesis rate are measured
during the ex-
periment. A comparison of WUE phenotype between the transgene positive and
negative
plants is then made.
[00112] Using assays such as the assay described in Example 2 and 3, these
pots
are kept in an area in the greenhouse that has uniform environmental
conditions, and culti-
vated optimally. Each of these plants is uniquely labeled, sampled and
analyzed for trans-
gene copy number. The plants are allowed to grow under theses conditions until
they reach
a predefined growth stage. Water is then withheld. Plant growth and physiology
traits such
as height, stem diameter, leaf rolling, plant wilting, leaf extension rate,
leaf water status,
chlorophyll content and photosynthesis rate are measured as stress intensity
increases. A
comparison of the dessication tolerance phenotype between transgene positive
and nega-
tive plants is then made.
[00113] Segregating transgenic corn seeds for a transformation event are
planted in
small pots for testing in a cycling drought assay. These pots are kept in an
area in the
greenhouse that has uniform environmental conditions, and cultivated
optimally. Each of
these plants is uniquely labeled, sampled and analyzed for transgene copy
number. The
plants are allowed to grow under theses conditions until they reach a
predefined growth
stage. Plants are then repeatedly watered to saturation at a fixed interval of
time. This wa-
ter/drought cycle is repeated for the duration of the experiment. Plant growth
and physiol-
ogy traits such as height, stem diameter, leaf rolling, leaf extension rate,
leaf water status,
chlorophyll content and photosynthesis rate are measured during the growth
period. At the
end of the experiment, the plants are harvested for above-ground fresh and dry
weight. A
comparison of the cycling drought tolerance phenotype between transgene
positive and
negative plants is then made.


CA 02692650 2010-01-05
WO 2009/010460 40 PCT/EP2008/059070
[00114] In order to test segregating transgenic corn for drought tolerance
under rain-
free conditions, managed-drought stress at a single location or multiple
locations is used.
Crop water availability is controlled by drip tape or overhead irrigation at a
location which
has less than 10cm rainfall and minimum temperatures greater than 5 C expected
during an
average 5 month season, or a location with expected in-season precipitation
intercepted by
an automated "rain-out shelter" which retracts to provide open field
conditions when not
required. Standard agronomic practices in the area are followed for soil
preparation, plant-
ing, fertilization and pest control. Each plot is sown with seed segregating
for the presence
of a single transgenic insertion event. A Taqman transgene copy number assay
is used on
leaf samples to differentiate the transgenics from null-segregant control
plants. Plants that
have been genotyped in this manner are also scored for a range of phenotypes
related to
drought-tolerance, growth and yield. These phenotypes include plant height,
grain weight
per plant, grain number per plant, ear number per plant, above ground dry-
weight, leaf con-
ductance to water vapor, leaf CO2 uptake, leaf chlorophyll content,
photosynthesis-related
chlorophyll fluorescence parameters, water use efficiency, leaf water
potential, leaf relative
water content, stem sap flow rate, stem hydraulic conductivity, leaf
temperature, leaf reflec-
tance, leaf light absorptance, leaf area, days to flowering, anthesis-silking
interval, duration
of grain fill, osmotic potential, osmotic adjustment, root size, leaf
extension rate, leaf angle,
leaf rolling and survival. All measurements are made with commercially
available instru-
mentation for field physiology, using the standard protocols provided by the
manufacturers.
Individual plants are used as the replicate unit per event.
[00115] In order to test non-segregating transgenic corn for drought tolerance
under
rain-free conditions, managed-drought stress at a single location or multiple
locations is
used. Crop water availability is controlled by drip tape or overhead
irrigation at a location
which has less than 10cm rainfall and minimum temperatures greater than 5 C
expected
during an average 5 month season, or a location with expected in-season
precipitation in-
tercepted by an automated "rain-out shelter" which retracts to provide open
field conditions
when not required. Standard agronomic practices in the area are followed for
soil prepara-
tion, planting, fertilization and pest control. Trial layout is designed to
pair a plot containing
a non-segregating transgenic event with an adjacent plot of null-segregant
controls. A null
segregant is progeny (or lines derived from the progeny) of a transgenic plant
that does not
contain the transgene due to Mendelian segregation. Additional replicated
paired plots for a
particular event are distributed around the trial. A range of phenotypes
related to drought-
tolerance, growth and yield are scored in the paired plots and estimated at
the plot level.
When the measurement technique could only be applied to individual plants,
these are se-
lected at random each time from within the plot. These phenotypes include
plant height,
grain weight per plant, grain number per plant, ear number per plant, above
ground dry-
weight, leaf conductance to water vapor, leaf CO2 uptake, leaf chlorophyll
content, photo-
synthesis-related chlorophyll fluorescence parameters, water use efficiency,
leaf water po-
tential, leaf relative water content, stem sap flow rate, stem hydraulic
conductivity, leaf tem-
perature, leaf reflectance, leaf light absorptance, leaf area, days to
flowering, anthesis-
silking interval, duration of grain fill, osmotic potential, osmotic
adjustment, root size, leaf


CA 02692650 2010-01-05
WO 2009/010460 41 PCT/EP2008/059070
extension rate, leaf angle, leaf rolling and survival. All measurements are
made with com-
mercially available instrumentation for field physiology, using the standard
protocols pro-
vided by the manufacturers. Individual plots are used as the replicate unit
per event.
[00116] To perform multi-location testing of transgenic corn for drought
tolerance and
yield, five to twenty locations encompassing major corn growing regions are
selected.
These are widely distributed to provide a range of expected crop water
availabilities based
on average temperature, humidity, precipitation and soil type. Crop water
availability is not
modified beyond standard agronomic practices. Trial layout is designed to pair
a plot con-
taining a non-segregating transgenic event with an adjacent plot of null-
segregant controls.
A range of phenotypes related to drought-tolerance, growth and yield are
scored in the
paired plots and estimated at the plot level. When the measurement technique
could only
be applied to individual plants, these are selected at random each time from
within the plot.
These phenotypes included plant height, grain weight per plant, grain number
per plant, ear
number per plant, above ground dry-weight, leaf conductance to water vapor,
leaf CO2 up-
take, leaf chlorophyll content, photosynthesis-related chlorophyll
fluorescence parameters,
water use efficiency, leaf water potential, leaf relative water content, stem
sap flow rate,
stem hydraulic conductivity, leaf temperature, leaf reflectance, leaf light
absorptance, leaf
area, days to flowering, anthesis-silking interval, duration of grain fill,
osmotic potential, os-
motic adjustment, root size, leaf extension rate, leaf angle, leaf rolling and
survival. All
measurements are made with commercially available instrumentation for field
physiology,
using the standard protocols provided by the manufacturers. Individual plots
are used as
the replicate unit per event.


CA 02692650 2010-01-05
WO 2009/010460 42 PCT/EP2008/059070
APPENDIX

cDNA sequence of At2g20725 from Arabidopsis (SEQ ID NO:1):

ATGATTCTAGGCCGATGGGTTTCCTTCAGTTGCGGAAACACGCCGGTGACTAATTGTT
CCGAACGACGACGACATACGGAGTTTCGTCGTCTCTCCTCTGCTAGTACTTGTCGACC
TTCTCTCATATGCTCTTGTCTCAAAAGCAAATCCTCCCAAGAAACTACTCAGATTGAACA
GTTGGGGAATGGAGAAGGGTTCTCAGTTTTGGCATCAGAGATTCCATGGGAGGATGAT
AACATATGGAGCACATTTGCTCTTTACATGTTCTCTCTGCATATTCCTCTCAGTTTTGGG
GGTTTATCCATTGTTGCCAACATACTCCACCGGCAGGTTCTTGATCCTCAGACCCAAGT
GCTATCACTTGTGGTTCTCCAAATGGTAGAACTTGCAGGGACAGTCTTGCTGCTGAGG
ACCACAGCGAAGCCTCAGTGCAAATCAATCAACTTTCTAAAGGGTAATAACGAAACAA
GGGAAGGAAGAAACTGTGTGGTTGGCTCAGCATTGGGTTTGGGATGTCTTGTGGGCTT
TATCTTCGTCACGTCGCTTGTAGCTGATCAACTCTTTGGCCCTAAGGCTGTACATGAAT
CAGAATTGGAGAAGATAATGGTGAGCGGGGAAGTGGCGAGAAGCGGATGTTTTGCTC
TCTACTGCGTAGTAGCTCCCATCCTTGAGGAGATAGTGTACAGACGCTTTCTCCTGAC
CTCCTTAGCGTCGAGAATGGAATGGTGGAAGGCACTAGTGATCAGCTCAGGAGTATTT
GCTGCAGGTCACTTCTCAGGTGAGGATTTTGTGCAGCTGTTTGGGATAGGTTGCGGTC
TCGGGTTATGTTACAGCTGGTCAGGGAACTTAGCCTCATCAGTGCTCGTCCACTCCTT
GTACAATGCATTGACACTTCTCTTCTCTTAG

The At2g20725 cDNA is translated into the following amino acid sequence (SEQ
ID NO:2):
MILGRWVSFSCGNTPVTNCSERRRHTEFRRLSSASTCRPSLICSCLKSKSSQETTQIEQLG
NG EG FSVLAS E I PWE DD N IWSTFALYM FSLH I PLS FGG LS IVAN I LH
RQVLDPQTQVLSLVVL
QMVELAGTVLLLRTTAKPQCKSINFLKGNNETREGRNCVVGSALGLGCLVGFIFVTSLVAD
QLFGPKAVHESELEKIMVSGEVARSGCFALYCVVAPILEEIVYRRFLLTSLASRMEWWKAL
VISSGVFAAGHFSGEDFVQLFGIGCGLGLCYSWSGNLASSVLVHSLYNALTLLFS

cDNA sequence of At3g26085 from Arabidopsis (SEQ ID NO:3):
ATGGGTTCCATCGCTCTGCAATCTTGGAGCAGAGGAGCTTCAACTTCTCTTCATCTCCT
TTTTCGTCCAGTTGGCTCGAACCCTAAGCTATATGATGCTCGAAGAGTACAATTTGATG
TAAGAGCCTCTTCAAGTCGTAAATCACTTAAGAAACTCAAAAGAGAGTCACAACAAGGT
AAAGACATAGGCTTAAGAAATGTTACAGATGAAGAAGTTTCTTCTCCAAGATTTGAGGA
AGCTCAAGTTGATTCTTCAACTTCAAAGGACTCCATTGATGTTTTTGTTGCTGCTCCTC
GAGACAAAGTGCTTCAGGCTTGCACTGTAACTTCCGGTTTGATGGCTGCACTAGGTCT
GATCATCAGAAAGGCGTCTCATGTTGCTTCGACTGAAGGATTACTGGTTCCAGACTGC
TCTATAGATGTACCATTTGGGTTTGAAACTTGGCATCTCGGTTTAATTGCTGGAATCGT
TGTGTTTATATCGTCAAGTAGGTTCTTGCTACTTAAATCTTGGCCAGATTTTGCTGATTC
TAGTGAAGCAGCAAACCGACAGATTCTCACTTCCCTCGAACCTCTAGATTACCTTGTTG
TTGCAATGTTACCGGGAATAAGTGAGGAGCTGCTGTTTAGAGGTGCATTAATGCCTTT


CA 02692650 2010-01-05
WO 2009/010460 43 PCT/EP2008/059070
GTTCGGAACTAATTGGAATGGTATTGTAGCGGTTGGCCTCATTTTCGGTTTACTTCATC
TCGGGAGCGGAAGAAAGTATTCTTTTGCAGTTTGGGCTTCGATTGTCGGTATAGTCTA
CGGTTATGCAGCTGTTTTGTCGTCGAGTCTTATCGTTCCAATGGCCTCGCACGCACTC
AACAATTTGGTGGGAGGTCTGTTGTGGCGATATAGTTCCAAGATCAAGTCATTGGAG-
TAA

The At3g26085 cDNA is translated into the following amino acid sequence (SEQ
ID NO:4):
MGSIALQSWSRGASTSLHLLFRPVGSNPKLYDARRVQFDVRASSSRKSLKKLKRESQQGK
DIGLRNVTDEEVSSPRFEEAQVDSSTSKDSIDVFVAAPRDKVLQACTVTSGLMAALGLIIRK
ASHVASTEGLLVPDCSIDVPFGFETWHLGLIAGIVVFISSSRFLLLKSWPDFADSSEAANRQI
LTSLEPLDYLVVAMLPGISEELLFRGALMPLFGTNWNGIVAVGLIFGLLHLGSGRKYSFAVW
ASIVGIVYGYAAVLSSSLIVPMASHALNNLVGGLLWRYSSKIKSLE

cDNA sequence of AtFACE-2 from Arabidopsis (SEQ ID NO:5):
ATGGCCACCGATGGCGAGAGTATCTCGATGTCGTTGGCGGTGGCTACCTGCGTCGCG
ATGGCACTATTCTACGTTTTGATCCTTTACGTTCCCACCGTGATACTCCGTCTCCCGTC
GGCTTCTTCTTACACCGAATTCATGATTCGGCGATTCATCTGCGCGGCCATTTGTACTG
TAGCATCTCTCGTCTTCACAGCTTTTATACTTCCGATAAAAAGCTGGGAGGCCTCTTAT
ATACTTGGAGTTTATGGCATAAGGAAAGATCATCTGTGGCAAGGAGTGGTGTATCCTCT
TCTATTGACCTCGCTCGTTTATGCTGGGTCTTTGGTGTTGAAGTTGTTTACTCTCCTGG
AATCATGGAAGGAAAATGGCGGAGGATGTAGTTCCTTTAATTACATCAGAAGCTTTTTC
CAAACAATCCCTG CTTCG GTATTGACAAGTG CTTCTAATGTTTCCGTTTG G CG CAATTT
TATCGTGGCACCAGTAACTGAGGAGCTGGTTTTCCGATCATGTATGATACCTTTGCTTC
TGTGTGCTGGGTTTAGGATTAACACTGCCATCTTTCTGTGCCCAGTTCTCTTTAGCTTG
GCTCACTTAAACCATTTTAGAGAGATGTACATCAGGCATAACCGCAGCTATCTCCGGG
CTTCACTTATTGTTGGTCTTCAGCTTGGCTACACAGTCATTTTTGGTGCATATGCATCGT
TTCTCTTCATCAGAACCGGACATCTTGCTGCTCCTTTGTTTGCTCATATATTTTGCAACT
ACATGGGATTGCCTGTGCTATACGCAAATGGAAAAGGTTTGGTGAGTGCAGCGTTCTT
AGGCGGTGTGGTTGGGTTCGTCTTACTTCTCTTTCCTTTAACAAAGCCTCTCATGTACA
ACGATAGTACCAACGATTGTCCGTGTTGGCTTGGCTATTGTTTGTGGAATTGA
The AtFACE-2 cDNA is translated into the following amino acid sequence (SEQ ID
NO:6):
MATDGESISMSLAVATCVAMALFYVLILYVPTVILRLPSASSYTEFM I RRFICAAICTVASLVF
TAFILPIKSWEASYILGVYGIRKDHLWQGVVYPLLLTSLVYAGSLVLKLFTLLESWKENGGG
CSSFNYIRSFFQTIPASVLTSASNVSVWRNFIVAPVTEELVFRSCMIPLLLCAGFRINTAIFLC
PVLFSLAHLNHFREMYI RHNRSYLRASLIVGLQLGYTVIFGAYASFLFI RTGHLAAPLFAHIFC
NYMGLPVLYANGKGLVSAAFLGGVVGFVLLLFPLTKPLMYNDSTNDCPCWLGYCLWN
cDNA sequence of ZM57353913 from corn (SEQ ID NO:7):


CA 02692650 2010-01-05
WO 2009/010460 44 PCT/EP2008/059070
CGAAGCCACGCGACCGACTGTGTTACGATCCCAAATCTTCACTCCCGACGAAATCTAG
AATCCAATGAGCAATCTCGACTGACGCCTGCTTCACCAGATTATGGCGACGCCGGCG
GGCCTCCTTCTCGCCTCGCCGCCGGTGATATCAGGTGTCGCGGCGATGGCGGCGTG
CGCCGCAATGGCAGTATTCTACGTCGCTGTCCTCTATGC
CCCGACGGTCATCCTCCGGTTCCCACCCCCAACCTCACTCCGCACCTTCCTCCACCGT
CGCTTCGCCTGTGCCGCCGTCGCATCCGCCGCCTCCGTCCTTGCCACTGCGTCCCTC
CTCCGAGTCTGGAGCCTCAGCGACTTCGCTGATATGTTTGCTGTGTTCGGCATTAGGA
AGGATCACTTGATTCAGGCCGTGGCTATTCCACTTCTCCTGACATCCCTAGTGTATGCT
GGGTCATTCGTCGCTAGAGTGTGGCTCCTAGTGAGCTCGTGGGGCGGTGGCGATGAG
GTGGAGATAGGCTGCGCACAGAGGCTTGCACAATGGATCCAAGCTGCTGTTGCGGAT
GTTATGGTTTGGCGGAACTATGTAGTGGCACCATTTACTGAGGAGCTGGTTTTCAGGG
CATGCATGATACCTCTTCTGCTCTGTGGGGGATTCAAAATGTCTACAATTATATTTCTGA
GTCCAATCTTCTTCAGTCTAGCGCACTTGAACCATTTTTTCGAACTACACCAGCAGGGA
TGTAACTTTATGAGAGCGCTATTGATTGTAGGTGTCCAGTTAGGCTACACTGTCATTTT
TGGGTGGTATGCAACATTCTTGTTAATCCGAACAGGGAATCTGTTATGTCCAATTATTG
CTCACGTCTTCTGTAATATGATGGGTTTACCTGTTTTCTCGTCACCACGAACAAAAGGA
GCGGCATTGGTAGCGTTTCTGGCTGGTTCAATAGCCTTCTTTTGGCTGCTTTTCCCTGC
AACAAGTCCTGAACTGTACAACAG CAGTTTTGATCGCTGCAGTTGCTG GCATGGCTTTT
GCAATTGGAAATAACATAGAACTAGATTGGAAAGCAATGGGTCCTAACTTGAAGCTACT
AACAATTGAAACCTCCAGGCCCTAGCTGACACTTCTGACGGATTTTCTATTTGCAGAAA
CTCCATATGAATGTCTTAAAACGTTTTGTAGAAATGTGTCCCTTGTTTTAGCTTAAGACT
CAAGAGCTTAAACTAGCAAAAGATTGTATTTTGCCACTTGTTAAATACGTGCTGATCAT
GAAATCGCTGTCAATCCCTTCTCAAAGTGGAATTTGACTTTGTTGAGCTGCTTTTATTTA
TATTGTGCTTGCTACTGCAGCGCCTAGAGTTTGTAGATTACACATCATGGACCCGTCTG
ATATTGTAAACGAGAGACATGTTTCTAAGTTAATATGCTCCCTCCATTTATTTAAAAAAA
AAAAAAA

The ZM57353913 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:8):

MATPAGLLLASPPVISGVAAMAACAAMAVFYVAVLYAPTVILRFPPPTSLRTFLHRRFACAA
VASAASVLATASLLRVWSLSDFADMFAVFGIRKDHLIQAVAIPLLLTSLVYAGSFVARVWLL
VSSWGGGDEVEIGCAQRLAQWIQAAVADVMVWRNYVVAPFTEELVFRACMIPLLLCGGF
KMSTIIFLSPIFFSLAHLNHFFELHQQGCNFMRALLIVGVQLGYTVIFGWYATFLLIRTGNLLC
PIIAHVFCNMMGLPVFSSPRTKGAALVAFLAGSIAFFWLLFPATSPELYNSSFDRCSCWHG
FCNWK

cDNA sequence of ZM59252659 from corn (SEQ ID NO:9):
CCCAAATCTTCATTTCCGACGAAATCGAGAATCCAATGTGCAATCTCGACTGACGCCTG
CTTCAACAGATTATGGCGACGCGGTGGGTCTCCTTCTCGCCTCGCCGCCGGAATATCA


CA 02692650 2010-01-05
WO 2009/010460 45 PCT/EP2008/059070
GGGTCGCGCGATGGGTCGTGCGCCAACGGAAGGATTCTACGTCGCTGTCCTCTATGC
CCCGACGGTCATCCTCCGGGTCCCACCCCCAAGCTCACTCCGCACCTTCCTCCACCG
TCGCTTCGCCTGTGCCGCCGTCGCATCCGCCGCCTCCGTCCTTGCCACTGCGTCCCT
CCTCCGAATCTGGAGCCTCAGCGACTTCGCTGATATGTTTGCTGTGTTCGGCATTAGG
AAGGATCACTTGATTCAGGCCGTGGCTATTCCACTTCTCCTGACATCCCTAGTGTATGC
TGGGTCATTCGTCGCTAGAGTGTGGCTCCTAGTGAGCTCGTGGGGCGGTGGCGATGA
GGTGGAGATAGGCTGCGCACAGAGGCTTGCACAATGGATCCAAGCTGCTGTTGCGGA
TGTTATGGTTTGGCGGAACTATGTAGTGGCACCATTTACTGAGGAGCTGGTTTTCAGG
GCATGCATGATACCTCTTCTGCTCTGTGGGGGATTCAAAATGTCTACAATTATATTTCT
GAGTCCAATCTTCTTCAGTCTAGGTGTCCAGTTAGGCTACACTGTCATTTTTGGGTGGT
ATGCAACATTCTTGTTAATCCGAACAGGGAATCTGTTATGTCCAATTACTGCTCACGTC
TTCTGTAATATGATG G GTTTACCTGTTTTCTCGTCACCACGAACAAAAG GAG CG G CATT
GGTAGCGTTTCTGGCTGGTTCAATAGCCTTCTTTTGGCTGCTTTTCCCTGCAACAAGTC
CTGAACTGTACAACAGCAGTTTTGATCGCTGCAGTTGCTGGCATGGCTTTTGCAATTG
GAAATAACATAGAACTAGATTGGAAAGCAATGGGTCCTAACTTGAAGCTACTAACAATT
GAAACCTCCAGGCCCTAGCTGACACTGCTGACGGATTTTCTATTTGCAGAAACTCCATA
TGAATGTCTTAAAACGTTTTGTAGAAATGTGTCCCTTGTTTTAGCTTAAGACTCGAGCTT
AAACTAGCAAAAGATTGTATTTTGCCACTTGTTAAATACGTGCTGATCATGAAATCGCT
GTCAATCCCTTCTCAAAGTGGAATTTGACTTTGTTGTAAAAAAAAAAA
The ZM59252659 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:10):

MGRAPTEGFYVAVLYAPTVILRVPPPSSLRTFLHRRFACAAVASAASVLATASLLRIWSLSD
FADMFAVFGIRKDHLIQAVAIPLLLTSLVYAGSFVARVWLLVSSWGGGDEVEIGCAQRLAQ
WIQAAVADVMVWRNYVVAPFTEELVFRACMIPLLLCGGFKMSTIIFLSPIFFSLGVQLGYTVI
FGWYATFLLIRTGNLLCPITAHVFCNMMGLPVFSSPRTKGAALVAFLAGSIAFFWLLFPATS
PELYNSSFDRCSCWHGFCNWK

cDNA sequence of CASAR82A from pepper (SEQ ID NO:11):
ATGGTGTCTAAGTCCTCAATCTTCATTTGCCTGAGCCTTATCATCCTCGTGATCATGTC
TACCCAGATCGTGGCTAGAGAGATGACCAGTGAAGCTTCTGCTTCACTCACACAGGCA
ATGAACGGGAACAATATCTCTGAGACCAAGAAAGTGGGTCGTCACTTGGTGAAGGGCT
TGGATAAGATCTTCAAGGCTGGAAAGGTGATCTACTGCAAGACCTGCAAAACCTGCCA
CGGTCGCTGCGATTACTGTTGCGCC

The CASAR82A cDNA is translated into the following amino acid sequence (SEQ ID
NO:12):
MVSKSSIFICLSLIILVIMSTQIVAREMTSEASASLTQAMNGNNISETKKVGRHLVKGLDKIFK
AGKVIYCKTCKTCHGRCDYCCA


CA 02692650 2010-01-05
WO 2009/010460 46 PCT/EP2008/059070
cDNA sequence of b3358 from E.coli (SEQ ID NO:13):
ATGTGGCGCAGACTGATTTATCACCCCGATATCAACTATGCACTTCGACAAACGCTGG
TGCTATGTTTGCCCGTGGCCGTTGGGTTAATGCTTGGCGAATTACGATTCGGTCTGCT
CTTCTCCCTCGTTCCTGCCTGTTGCAATATTGCGGGCCTTGATA
CGCCTCATAAACGTTTTTTCAAACGCTTAATCATTGGTGCGTCGCTGTTTGCCACCTGT
AGCTTGCTGACACAGCTACTACTGGCAAAAGATGTTCCCCTGCCCTTTTTGCTGACCG
GATTAACGCTGGTACTTGGCGTCACTGCTGAGCTGGGGCCATTGCACGCAAAATTGCT
TCCTGCATCGCTGCTCGCCGCCATTTTTACCCTCAGTTTGGCGGGATACATGCCGGTC
TGGGAACCGTTGCTCATCTATGCGTTGGGCACTCTCTGGTACGGATTGTTTAACTGGT
TTTGGTTCTGGATCTGGCGCGAACAACCGCTGCGCGAGTCACTAAGTCTGCTGTACCG
TGAACTGGCAGATTATTGTGAAGCCAAATACAGCCTGCTTACCCAGCACACCGACCCT
GAAAAAGCGCTGCCGCCGCTGCTGGTGCGCCAGCAAAAAGCGGTCGATCTAATTACC
CAGTGCTATCAGCAAATGCATATGCTTTCCGCGCAAAATAATACTGACTACAAGCGGAT
GCTGCGTATTTTCCAGGAGGCGCTGGATTTACAGGAACATATTTCGGTCAGTTTGCAT
CAGCCGGAAGAGGTGCAAAAGCTGGTCGAGCGTAGCCATGCGGAAGAAGTTATCCGC
TGGAATGCGCAAACCGTCGCCGCTCGCCTGCGCGTGCTGGCTGATGACATTCTTTAC
CATCG CCTG CCAACG CGTTTTACGATG GAAAAG CAAATTG G CG CACTG GAAAAAATCG
CCCGCCAGCATCCGGATAATCCGGTTGGGCAATTCTGCTACTGGCATTTCAGCCGCAT
CGCCCGCGTGCTGCGCACCCAAAAACCGCTCTATGCCCGTGACTTACTGGCCGATAA
ACAGCGGCGAATGCCATTACTTCCGGCGCTGAAAAGTTATCTGTCACTAAAGTCTCCG
GCGCTACGCAATGCCGGACGACTCAGTGTGATGTTAAGCGTTGCCAGCCTGATGGGC
ACCGCGCTGCATCTGCCGAAGTCGTACTGGATCCTGATGACGGTATTGCTGGTGACAC
AAAATGGCTATGGCGCAACCCGTCTGAGGATTGTGAATCGCTCCGTGGGAACCGTGG
TCGGGTTAATCATTGCGGGCGTGGCGCTGCACTTTAAAATTCCCGAAGGTTACACCCT
GACGTTGATGCTGATTACCACCCTCGCCAGCTACCTGATATTGCGCAAAAACTACGGC
TGGGCGACGGTCGGTTTTACTATTACCGCAGTGTATACCCTGCAACTATTGTGGTTGA
ACGGCGAGCAATACATCCTTCCGCGTCTTATCGATACCATTATTGGTTGTTTAATTGCT
TTCGGCGGTACTGTCTGGCTGTGGCCGCAGTGGCAGAGCGGGTTATTGCGTAAAAAC
GCCCATGATGCTTTAGAAGCCTATCAGGAAGCGATTCGCTTGATTCTTAGCGAGGATC
CGCAACCTACGCCACTGGCCTGGCAGCGAATGCGGGTAAATCAGGCACATAACACTC
TGTATAACTCATTGAATCAGGCGATGCAGGAACCGGCGTTTAACAGCCATTATCTGGC
AGATATGAAACTGTGGGTAACGCACAGCCAGTTTATTGTTGAGCATATTAATGCCATGA
CCACGCTGGCGCGGGAACACCGGGCATTGCCACCTGAACTGGCACAAGAGTATTTAC
AGTCTTGTGAAATCGCCATTCAGCGTTGTCAGCAGCGACTGGAGTATGACGAACCGGG
TAGTTCTGGCGATGCCAATATCATGGATGCGCCGGAGATGCAGCCGCACGAAGGCGC
GGCAGGTACGCTGGAGCAGCATTTACAGCGGGTTATTGGTCATCTGAACACCATGCAC
ACCATTTCGTCGATGGCATGGCGTCAGCGACCGCATCACGGGATTTGGCTGAGTCGC
AAGTTGCGGGATTCGAAGGCGTAA

The b3358 cDNA is translated into the following amino acid sequence (SEQ ID
NO:14):


CA 02692650 2010-01-05
WO 2009/010460 47 PCT/EP2008/059070
MWRRLIYHPDINYALRQTLVLCLPVAVGLMLGELRFGLLFSLVPACCNIAGLDTPHKRFFKR
LIIGASLFATCSLLTQLLLAKDVPLPFLLTGLTLVLGVTAELGPLHAKLLPASLLAAIFTLSLAG
YMPVWEPLLIYALGTLWYGLFNWFWFWIWREQPLRESLSLLYRELADYCEAKYSLLTQHT
DPEKALPPLLVRQQKAVDLITQCYQQMHMLSAQNNTDYKRMLRIFQEALDLQEHISVSLHQ
PEEVQKLVERSHAEEVIRWNAQTVAARLRVLADDILYHRLPTRFTMEKQIGALEKIARQHP
DNPVGQFCYWHFSRIARVLRTQKPLYARDLLADKQRRMPLLPALKSYLSLKSPALRNAGR
LSVMLSVASLMGTALHLPKSYWILMTVLLVTQNGYGATRLRIVNRSVGTVVGLIIAGVALHF
KIPEGYTLTLMLITTLASYLILRKNYGWATVGFTITAVYTLQLLWLNGEQYILPRLIDTIIGCLIA
FGGTVWLWPQWQSGLLRKNAHDALEAYQEAIRLILSEDPQPTPLAWQRMRVNQAHNTLY
NSLNQAMQEPAFNSITYLADMKLWVTHSQFIVEHINAMTTLAREHRALPPELAQEYLQSCEI
AIQRCQQRLEYDEPGSSGDANIMDAPEMQPHEGAAGTLEQHLQRVIGHLNTMHTISSMA
WRQRPHHGIWLSRKLRDSKA

cDNA sequence of EST564 from moss (SEQ ID NO:15):
ATGTCATGCGACGTTCTCTGCCAATCTTTCAAGGAGGTAGAGGGCAAGTTCTTGGAAA
TCGTCGAAAGGGCTTGGGCCGTCAAGCCGCAAATTGCCGCTGTTGGATCTTGTTGTTT
GGTGGGAGCCGTATGGGATTCCAAACTGTACATCGCTAGTCTTGGAGATTCTCGAGCT
GTTTTAGGTAGTTGCTCTCGTGACACTGGCCTTCCAGTTGCTAAGCAAATTTCAACAGA
GCACAACGCAAGCATCGAGTCTATCCGGAATGAGTTGTTCGCAAAGCATAGTGATGAT
CCGCAGATCGTGGTTTTGAAGCATGGAGTGTGGCGTGTGAAGGGTATTATTCAGATTT
CACGCTCAATTGGTGATTTTTACTTGAAGAAAGCCGAATTTAATCAGCCGCCTCTTATA
GCCAGGTTCCGG
CTTCCAGATCCCCTCAAGAGACCTGTCATAAGCTCAGAGCCGGAGTGCAACGTCATTA
CACTCGGCCCGGATGACGAATTCGTCATTTTTGCATCTGATGGCCTTTGGGAGCACTT
GAGCAGCAAAGAGGCCGTAGACATTGTGTATAGTCATCCCCGGGCTGGGATTGCCAG
GCGTCTGATCAAAGCTGCTCTTCAAAAAGCTGCTACTAAACGTGAAATGCGGTACTCT
GATTTGAAAGGGATTGAGCGCGGGATACGACGGCATTTTCATGATGACATAACTGTTG
TGGTTCTTTATTTGGACACTAAACTGCTCAACAGAGGTGGTAGTATTTCTAATCATATTT
CTTCGAAATGTCCAATTGACATGCCAAAAGGCGATAACCCTCCGTCGTTAGTTAGCTCT
AACATGAACTTAGCTTTTAACAAATAA

The EST564 cDNA is translated into the following amino acid sequence (SEQ ID
NO:16):
MSCDVLCQSFKEVEGKFLEIVERAWAVKPQIAAVGSCCLVGAVWDSKLYIASLGDSRAVL
GSCSRDTGLPVAKQISTEHNASIESIRNELFAKHSDDPQIVVLKHGVWRVKGIIQISRSIGDF
YLKKAEFNQPPLIARFRLPDPLKRPVISSEPECNVITLGPDDEFVIFASDGLWEHLSSKEAV
DIVYSHPRAGIARRLIKAALQKAATKREMRYSDLKGIERGIRRHFHDDITVVVLYLDTKLLNR
GGSISNHISSKCPIDMPKGDNPPSLVSSNMNLAFNK


CA 02692650 2010-01-05
WO 2009/010460 48 PCT/EP2008/059070
cDNA sequence of BN49502266 from canola (SEQ ID NO:17):
CCAATAATCAAATCAAAACCCTTTCGATCAGTTGTTNCAGGAAAAAAAAAAACCCTTTC
GATCTCATTCCATTTCGAATCAGAAAACCCTAGCAATTGACGATGTTGCGAGCTTTAGC
GCGGCCTCTCGAACGGTGTTTAGGAAGCAGAGCGAGCGGCGACGGTTTGCTCTGGCA
ATCGGAGTTGAAACCACACGCCGGCGGAGATTACTCGATCGCGGTGGTTCAAGCCAA
TTCTAGCCTAGAGGATCAGAGTCAGGTGTTCACGTCTTCCTCCGCTACTTACGTCGGC
GTCTACGACGGCCATGGCGGACCCGAAGCTTCTAGATTCGTTAACAGACATCTCTTTC
CTTATATTCAGAAGTTCGCAAAAGAACATGGAGGACTGTCTGCAGACGTTATTAAAAAA
GCATTCAAAGAAACTGAAGAGGATTTTTGCGGTATGGTTAAACGCTCACTTCCCATGAA
GCCACAGATGGCTACTGTAGGATCTTGCTGTCTCTTTGGTGCCATCTCTAACGGCACG
CTCTATGTCGCGAATCTTGGAGACTCGAGAGCCGTTCTTGGGAGCGTTGTTGCAGGG
GATGATAGTAATAGTAGTAACAAGGGTGCTGCAGCTGAACGGTTGTCCACTGATCATA
ACGTTGCTGTTGAAGAAGTGAGGAAGGAGGTTAAGGAACTTAACCCGGATGATTCGCA
GATCGTCATGTACATTCGTGGAGTTTGGAGGATTAAAGGCATTATTCAGGTATCTAGAT
CAATTGGGGATGTTTACTTGAAGAAACCGGAGTTTTACAGGGATCCGATATTCCAGCAA
CATGGAAATCACATTCCTTTGAGGAGACCCGCGATGACAGCTGAACCGTCCATTATAG
TAAGGAAGCTTAAGCCGCAAGACTTGTTTCTGATATTTGCATCAGATGGTCTCTGGGAG
CATCTTAGTGATGAAGCAGCAGTAGAAATTGTACTCAAACACCCAAGAACTGGGATTG
CAAGAAAACTTGTAAGAGCAGCTCTTGAAGAAGCAGCAAGGAAGAGAGAAATGAGATA
TGGAGATATAAAGAAAATAGCCAAAGGGGTTAGAAGACATTTCCATGACGACATAAGC
GTCGTTGTAGTTTATCTTGATCAACAAAAAACCACTTCTTCATCGAATGATAGATTGATC
CAGAAAGGAGGAATCACTGCTCCACCGGATATCTACTCGTTACGTTCAGATGAAGCTG
AGCAACGACGGCTACTCAATGTGTTATATTGATACTCTCTGGTTAGAGGGATACAACTT
GTTTACATATTTGTTTAATCTTTTACAAAGAATGTTTGTTCTTTTTTCTTTCTTTTTTTAAT
ATTTGGAGTTGGATTTGTATATTCTTTTTACCAGCAAGGAACGAAAACCCTTCTCTTTTG
GGGGCAAAACAGTTTTGGTTTTGACAAACAATATAAAGTGAAACCGTTTGCAAAAAAAA
AAAAAAAAA

The BN49502266 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:18):

MLRALARPLERCLGSRASGDGLLWQSELKPHAGGDYSIAVVQANSSLEDQSQVFTSSSAT
YVGVYDGHGGPEASRFVNRHLFPYIQKFAKEHGGLSADVIKKAFKETEEDFCGMVKRSLP
MKPQMATVGSCCLFGAISNGTLYVANLGDSRAVLGSVVAGDDSNSSNKGAAAERLSTDH
NVAVEEVRKEVKELNPDDSQIVMYIRGVWRIKGIIQVSRSIGDVYLKKPEFYRDPIFQQHGN
HIPLRRPAMTAEPSIIVRKLKPQDLFLIFASDGLWEHLSDEAAVEIVLKHPRTGIARKLVRAAL
EEAARKREMRYGDIKKIAKGVRRHFHDDISVVVVYLDQQKTTSSSNDRLIQKGGITAPPDIY
SLRSDEAEQRRLLNVLY
cDNA sequence of GM49788080 from soybean (SEQ ID NO:19):


CA 02692650 2010-01-05
WO 2009/010460 49 PCT/EP2008/059070
TCCCGGGTCGACGATTTCGTGGTTACGGGGCGGAAGGAAGGGCTGCTGTGGTACAAG
GATGCGGGGCAGCACTTGTTTGGTGAATACTCAATGGCTGTTGTCCAGGCCAACAACC
TGCTCGAGGACCAGAGCCAGATTGAGTCTGGTCCTCTCAGCCTGCTTGACACTGGCC
CTTATGGGACCTTTGTTGGTGTATATGATGGACACGGTGGGCCCGAGACGTCGCGCTA
CGTCTGTGATCATCTCTTCCAACATCTAAAACGATTTGCATCTGAGCAGAAGTCCATGT
CTATGGAGGTTATTCGGAAGGCATACCAAGCCACAGAAGAAGGTTTTTTGTCAGTGGT
TACCAAACAGTGGCCCATGAATCCCCAAATTGCTGCTGTGGGATCTTGTTGTTTGGTTG
GTGTGATTTGTGGTGGTATCCTCTATATTGCTAACCTTGGTGATTCCCGTGCTGTGCTT
GGCCGGGTGGTCAGAGCAACTGGGGAGGTTTTGGCGATCCAGCTTTCGTCAGAGCAT
AATGTGGCCATAGAATCTGTGAGACAAGAGATGCATTCTTTGCATCCGGATGACTCAAA
AATTGTGGTTCTAAAGCACAATGTATGGCGGGTGAAGGGTCTGATACAGATTTCTAGAT
CCATTGGCGATGTATACCTAAAAAAGGCTGAATTTAACAAGGAACCGTTGTATGCTAAG
TTTCGTGTGCGGGAAGGTTTTAAGAGGCCCATTTTGAGCTCTGACCCATCAATTTCTGT
CCATGAACTTCAACAGCATGATCAATTTCTCATATTTGCTTCTGATGGTCTTTGGGAACA
CCTTAGCAATCAGGATGCCGTTGATATAGTTCAAAACAACCCACACAATGGAATTGCTC
GGAGGCTCATCAAAGCTGCGTTGCAAGAAGCAGCAAAAAAGAGAGAGATGAGGTACT
CTGATTTGAAGAAAATTGACCGTGGTGTCCGCCGGCATTTCCATGATGACATCACAGTT
GTAGTTGTATTTCTTGACTCCAATCTTGTCAGCAGAGCCAGCTCAGTAAGAGGTCCTCC
TTTATCGGTGAGAGGAGGTGGTGTTCCCCTACCTTCTAGAACTTTGGCTCCCTGTGCT
GCACCTATGGAAACTTAGTTCAGGTTGATGAAGCTGGCTGTATGATCTGTTATGCTTCT
ATTTAGTGTTGTACCCTTAGCAGACATTGAGCTCTGGTGATCCACCAGATTGTATATCC
AATTTAACAGAGATTGAAAAAATGTTCGTTCA
ATTAGTACAATGTTACAAGTGACTTGGGGTATGTAGCTTGCGTGAGTAAAGCATCATG-
GAA
The GM49788080 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:20):

MAVVQANNLLEDQSQIESGPLSLLDTGPYGTFVGVYDGHGGPETSRYVCDHLFQHLKRFA
SEQKSMSMEVIRKAYQATEEGFLSVVTKQWPMNPQIAAVGSCCLVGVICGGILYIANLGDS
RAVLGRVVRATGEVLAIQLSSEHNVAIESVRQEMHSLHPDDSKIVVLKHNVWRVKGLIQISR
SIG DVYLKKAEFNKEPLYAKFRVREGFKRPILSSDPSISVH ELQQH DQFLI FASDGLWEHLS
NQDAVDIVQNNPHNGIARRLIKAALQEAAKKREMRYSDLKKIDRGVRRHFHDDITVVVVFL
DSNLVSRASSVRGPPLSVRGGGVPLPSRTLAPCAAPMET
cDNA sequence of GM53049821 from soybean (SEQ ID NO:21):
TGCTCCTCTACCACCGAACACANCCCCGGCCACCACCGAACGCTAACGTGCGCCCCT
TCCTTACCCTGCGCCTCGGCACTCTCCCTTATTCCCCCTCCTTCATAAGCTCCGCGTTA
ACCGTCCTCTCTCTCTCTCTCTCTCGGATCGGAGCGAGACTGGCGGCTCCGGCGTTG
GGGGCGTTAGGGTTAGGGTTAGGGTTTCCAAGAGATG


CA 02692650 2010-01-05
WO 2009/010460 50 PCT/EP2008/059070
TGGTATGCTCCAGGCATTGATGAATCTGTTCTCGCTGTGTTGGAAGCCATTTGGCCGC
GATGCTGCTGATCGAATCGATTCCATCGGAGTTACCGGAAGAGAAGGCAAAGACGGC
TTGCTTTGGTTCCGCGACGGCGGAAAATATGGCTCTGGCGATTTCTCCATGGCCGTCG
TTCAGGCCAACCAGGTTCTCGAAGACCAGAGCCAGATCGAGTCTGGTCCTCTCGGCA
CCTTCGTCGGCATCTACGACGGTCACGGAGGACCCGACGCCTCAAGATACGTTTGCG
ATCACTTGTTTCGCCATTTTCAAG CAATATCAGCTGAGTCACGCG GGGTTGTGACAACT
GAGACAATCGAAAGAGCATTTCGCCAAACAGAAGAGGGGTACATGGCCCTCGTGTCA
GGCTCGTGGAATGCTCGACCTCATATTGCAAGTGCTGGGACCTGTTGTCTAGTTGGAG
TGATATTTCAGCAGACACTCTTTGTGGCAAACGCTGGAGATTCCCGTGTTGTATTGGGT
AAGAAAGTTGGCAACACTGGAGGTATGGCTGCAATTCAGCTGTCTACAGAACACAATG
CAAATCTTGAGGCTGTTAGGCAGGAACTTAAAGAATTACATCCTCATGATCCCCAAATT
GTTGTCCTCAAACATGGAGTGTGGAGAGTAAAAGGCATTATTCAGGTTTCTAGATCTAT
AGGTGATGTATATTTGAAGCATGCACAGTTTAACCGAGAACCACTTAATGCAAAATTCA
GACTTCCTGAACCGATGAACATGCCTATCTTGAGTGCTAATCCCACTATTCTTTCTCAT
GCTCTCCAACCAAATGATTCCTTCCTTATATTTGCATCTGATGGTTTATGGGAGCATTTG
AGTAACGAGAAAGCTGTGGATATTGTAAACAGCAATCCACATGCGGGTAGTGCCAAGA
GACTTATCAAGGCTGCTCTCCATGAAGCAGCAAGAAAACGAGAAATGCGATATTCAGA
CCTCCGTAAGATTGACAAGAAAGTTCGACGCCATTTTCATGATGATATATCCGTTATTG
TTTTATTCTTAAATCACGACCTTATTTCCAGAGGCACAGTGCTAGACCCGACACTTTCA
ATTCGAAGCGCTCTCGATCACTGACTTGTATCACTGTAAGCAGTCTTGTACGAGTTTTT
GGCAACTGTACCGATACCTGAAGCATTGGTAGGTACCTGGCTATAATATGTCATTTCTA
TGGCACATATGGCTTCTGGTACCGACATCATTCT
TGAGGCACGAGAATTTATTAAGTTATAACATATTATTAGAAATTTATTCATAAAGAGGAA
AAAAATAAATACAAAAATATCTTATTCCCTTTTCTAACCTTATAGTTTTACCCGAAATACT
GGATTTTATTTATTTGTTTGTTTTTTTGGCTGAACATAGCTAATCGAACAGCATGTTGAT
TGAATTCAAAGTTATTTTACAACAAATTATATGGAAAAAAAAAAAAAAA
The GM53049821 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:22):
MLQALMNLFSLCWKPFGRDAADRIDSIGVTGREGKDGLLWFRDGGKYGSGDFSMAVVQA
NQVLEDQSQIESGPLGTFVGIYDGHGGPDASRYVCDHLFRHFQAISAESRGVVTTETIERA
FRQTEEGYMALVSGSWNARPHIASAGTCCLVGVIFQQTLFVANAGDSRVVLGKKVGNTG
GMAAIQLSTEHNANLEAVRQELKELHPHDPQIVVLKHGVWRVKGI IQVSRSIGDVYLKHAQ
FNREPLNAKFRLPEPMNMPILSANPTILSHALQPNDSFLIFASDGLWEHLSNEKAVDIVNSN
PHAGSAKRLIKAALHEAARKREMRYSDLRKIDKKVRRHFHDDISVIVLFLNHDLISRGTVLDP
TLSIRSALDH

cDNA sequence of ZM58462719 from corn (SEQ ID NO:23):
CGTGGCGACGCCCAAATCGAGCGACCTGATCGAGGCCCCTCGCCCCTACTCGCTGAA
TCCCAATCCGAGCCCGCCAATTGGGCGCCCCCCCCCGCCCACGCAAAGGACAGATAG


CA 02692650 2010-01-05
WO 2009/010460 51 PCT/EP2008/059070
AAGAAAATTATTGGCGCTCTGACAAATCCAACTGAGGTTTTCTTGGACTACAGATGAAG
CGGGCTCGAAGGGCGTATGTGCAAGAGATGACTGATGAGGGATGCTAGTGAAATTGA
TGAACTTGTTACGGGCGTGCTGGCGACCGTCATCGAACCGGCATGCCCGAACAGGCT
CAGATGTTACCGGTAGGCAGGATGGACTTCTATGGTACAAGGACGCCGGGCAACATG
TCAATGGGGAGTTCTCCATGGCTGTTGTTCAGGCAAATAACTTACTTGAGGACCAGTG
TCAGATCGAGTCGGGCCCACTGAGTTTTCTAGATTCTGGACCATATGGCACTTTCGTT
GGTGTTTACGATGGGCATGGTGGTCCAGAGACGGCCTGCTATATCAATGATCATCTTT
TCCAGAATCTGAAAAGATTTGCATCTGAACAGAATGCAATGTCTGCTGATGTACTGAAG
AAGGCATATGAAGCTACAGAAGATGGATTCTTCTCCATTGTTACCAAACAATGGCCTGT
AAAGCCTCAGATAGCAGCTGTCGGCTCATGCTGCCTGGTCGGTGTAATTTGTGGTGGC
ATGCTTTATGTTGCCAATGTTGGGGATTCCCGTGTCGTTTTAGGAAAACATGTTAAGGC
CACTGGAGAAGTTTTGGCTGTCCAACTGTCAGCAGAACATAATGTTAGTATTGCGTCC
GTGAGAAAAGAACTGCAGTCAATGCACCCAGAAGATAGGCACATTGTTGTTCTCAAGC
ACAATGTTTGGCGTGTTAAAGGACTAATTCAGGTTTGTAGATCAATTGGTGATGCATAT
CTCAAAAAGCAAGAGTTCAACAGGGAACCCCTATATGCAAAATTTCGCCTCCGTGAAC
CTTTTCACAAGCCAATACTAAGTTCAGAACCATCAATCAGTGTGCAACCACTACAACCA
CACGACCAGTTTCTCATATTTGCATCTGATGGACTTTGGGAGCAGTTAACCAACCAAGA
GGCAGTTGATATTGTTCGAAGTAGCCCCCGCAGTGGCTGTGCTAGGAGGCTGATAAG
AGCGGCACTGCAAGAGGCAGCCAAGAAAAGAGAGATGAGGTACTCGGACCTCAAGAA
GATTGACCGCGGTGTTCGCCGCCACTTCCACGACGACATAACAGTCATAGTAGTGTTC
CTTGACTCCGGCCTCGTAAGCCAGGCGAGCACACACCGAGGTCCAACTCTTTCCTTGC
GAGGCGGTGGCGGCAGCGCTGGCCTGCGCAGCAACACACTTGCACCTACGTGACTAT
AAAGTGCCTGGTGGAGTGGAGGCTACTGACTGAAGGTGGTTTTCTTTCCTTGTGTCGA
ATGTGTTATATATGTACTTGTACCAGCCAAGATCATTCATCCCCCCCCCTAAAATGGTG
TAAAGAAGTAGGAGAGGCGCCGAAGTTCCTCACCAGCGTATCTGAATGCCCTCAATGG
TGTCAAGTTGTGGACTCAAGTGGATAGCTTCGCTGAATCTTCTGATGATGCTCTGTGGA
AAGCTCGAATCCTTTCCACCTGAAAAAGCAAGTAATATGTCTTCCAGTGCTGGAATTAA
CCCCTAGTGCATATATATATGTATGAAATAATAATAAGGCAAAAGGAGGAGTAACTTAT
TTAACTAATGCTGTGAGGTGTATTTATGTTTTGTATGTGTACTGCTTTTGACTGCTACTG
CATCTACTGTTGTTAATTGACCACTGGTGAAGTGAAATCACTGGTTTCGTAAAAAAAAA
AAAAAA

The ZM58462719 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:24):
MLVKLMNLLRACWRPSSNRHARTGSDVTGRQDGLLWYKDAGQHVNGEFSMAVVQANNL
LEDQCQIESGPLSFLDSGPYGTFVGVYDGHGGPETACYINDHLFQNLKRFASEQNAMSAD
VLKKAYEATEDGFFSIVTKQWPVKPQIAAVGSCCLVGVICGGMLYVANVGDSRVVLGKHV
KATGEVLAVQLSAEHNVSIASVRKELQSMHPEDRHIVVLKHNVWRVKGLIQVCRSIGDAYL
KKQEFNREPLYAKFRLREPFHKPILSSEPSISVQPLQPHDQFLIFASDGLWEQLTNQEAVDI
VRSSPRSGCARRLIRAALQEAAKKREMRYSDLKKIDRGVRRHFHDDITVIVVFLDSGLVSQ
ASTHRGPTLSLRGGGGSAGLRSNTLAPT


CA 02692650 2010-01-05
WO 2009/010460 52 PCT/EP2008/059070
cDNA sequence of ZM61092633 from corn (SEQ ID NO:25):
AGCTTCCTCCCTCTTCCCTGGTCTGGTCGCTTCTCCTGTAGCTGTAATTTTTGAGAGTC
CCTCTCAAACTTTGCTTGCTTGCGCTCTCCATATATCCTGTGGATCGGAGAGGATGCTC
TGATCTACCTGTCTGTTCTTCGATCGAGTCTGAGAGATTTGGGAGGAGGAGGGAAACA
AAGCGAAAGAGCCCATCTTTTTTGTCTTTTTGGTTCGGTTTCGTGGTTGCTTCTTTTGG
ACCCCGCGGAGGAGCCCACCGTTTCTACAAAAACCCAATCTTTGCTGCCTTCTCAGCG
GTCGAGATCGATAGGTTTCCAGATCTGAGGCTCCGTGTTCTGGCTGTGAGATCGGAG
GCGCAGCAATCCGAGCACGCAGCTAGTAGGGAAAGTATCCGAGAAAAGTTGCAGATT
TTGCTGGGGGCAACGGAGCGAGAACAAGTTACTGCAGAAGGAAAGGGCAAAGGTGG
GGGAGGCGCCGGAGATGAGGGATGCTATCAGCTCTGATGGATTATTTGAAATCTTGCT
GGGGTCCGGCATCACCGGCTGGGCGTCCCCGCAAAGGATCGGATGCCACCGGCCGC
CAGGACGGGCTCCTGTGGTACAAGGACGGCGGGCAGGTCGTCGATGGTGAGTTCTC
CATGGCCGTGGTCCAGGCCAATAACCTATTGGAGGACCATAGCCAGGTTGAATCCGG
GCCGCTTAGCACATCGGAGCCTGGACTGCAAGGCACCTTCGTCGGGGTCTACGATGG
GCACGGTGGCCCGGAGACAGCGCGTTACATCAATGACCATCTCTTCAACCACTTGAG
GAGATTCGCATCTGAGCACAAGTGCATGTCAGCGGATGTGATTCGGAAGGCATTCCGA
GCGACTGAGGAGGGTTTCATTTCTGTGGTTAGTAACCAATGGTCATTGAGACCTCAATT
AGCAGCTGTAGGCTCTTGCTGTCTAGTTGGTGTGGTTTGCAGCGGAACTCTATATGTT
GCAAACCTTGGGGACTCCCGTGCTGTTCTGGGGAGACTTGTCAAGGGAACTGGGGAG
GTTTTGGCAATGCAGCTCTCAGCAGAACACAATGCATCCTATGAGGAGGTTAGACGAG
AGCTGCAGGCATCACATCCTGATGATCCCCATATTGTGGTCCTAAAACACAATGTTTGG
CGTGTAAAGGGTATTATCCAGATAACAAGGTCAATTGGAGATGTGTATCTGAAGAAACC
AGAATTTAATAGAGAACCTTTGCACAGCAAGTTTCGTCTTCAGGAAACTTTTAGGAGAC
CACTTCTTAGTTCTGATCCAGCAATTACTGTCCACCAAATACAGCCAACTGATAAGTTC
ATCATTTTTGCATCTGATGGACTCTGGGAACATCTTAGTAATCAGGAAGTGGTTGACAT
GGTCCAAAGTAGCCCGCGTAATGGAATCGCACGAAAGTTAGTAAAGTCTGCAGTGCAG
GAAGCAGCGAAGAAGAGGGAGATGCGGTATTCAGACCTCAAGAAAGTTGATCGGGGG
GTGAGGCGGCACTTCCACGACGATATAACTGTCATTGTGGTATTTTTCGATTCAAACGC
CATGACAACTGCTGCCTGGAGCAGACCCTCGGTCTCTCTCCGAGGGGGTGGGTTTCC
AATCCATTCAAACACCCTTGCTCCATTCTCGGTTCCTACAGAGCTAAACAACTCCTACT
GAAACCACGCGGTATGTGAAGGAGCCAGGCAAGAGGATAAAAAAAAAGTAAAGGAAA
ACGGAGAAGGAAAAACAGCTGTTGTGATCAGTTGTAGTGTATTTCACCGTTCATGTTCA
TTTAAAACATTTTTTAGATTCTCAAGTCTCAACCTGGTGACCAGTGCACTGATAGCAAG
GTATAAGATTAGATTATTCTTAGCTTTTTTATCCTCTTTTTTTTTTCTCGTCCTTACCCTTT
AGATTCACTCATGGGATATCCGATATCAGGTGCTTGTACATTCTTTGGTTCAACTTGTG
ATAATAGTTCATCGCCCCCCTCTTTTCGCAAAAAAAAAAA

The ZM61092633 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:26):


CA 02692650 2010-01-05
WO 2009/010460 53 PCT/EP2008/059070
MLSALMDYLKSCWGPASPAGRPRKGSDATGRQDGLLWYKDGGQVVDGEFSMAVVQAN
NLLEDHSQVESGPLSTSEPGLQGTFVGVYDGHGGPETARYINDHLFNHLRRFASEHKCMS
ADVI RKAF RATE EG FISVVS NQWSLRPQLAAVGSCCLVGVVCSGTLYVANLG DS RAVLG R
LVKGTGEVLAMQLSAEHNASYEEVRRELQASHPDDPHIVVLKHNVWRVKGIIQITRSIGDV
YLKKPEFNREPLHSKFRLQETFRRPLLSSDPAITVHQIQPTDKFI I FASDGLWEHLSNQEVV
DMVQSSPRNGIARKLVKSAVQEAAKKREMRYSDLKKVDRGVRRHFHDDITVIVVFFDSNA
MTTAAWSRPSVSLRGGGFPIHSNTLAPFSVPTELNNSY
cDNA sequence of ZM62016485 from corn (SEQ ID NO:27):
TGTCTTGCTGCTGGCGCGCCGGGGCTCCGATTGCGCTCCAGATCTGAGGCACCTGCT
CGGTGGATTCCAGGAATCCGAGCACCAACTCGACAGGGGAGTTCTCAGGGTAAAGAG
GCTGAGAGCGCGTTGGAGATTTGGACTATAAGAGCGAGCGAGCGAGCTGGGTGCCTT
GCTGCCTTGAGGACGCCGTCAAGAAACCGCGTGGAGGGGAGGGCGATGAGATGAGG
GATGCTGGCCGCGGTGATGGACTACTTCAGCACCTGCTGGGGCCCGCGGTCTCGTGC
GGGGCACCGGGGCAAGGGCTCCGACGCCGCCGGCCGGCAGGACGGCCTCCTCTGG
TACAAGGACGCCGGGCAGCTCGTCACCGGGGGGTTCTCCATGGCCGTGGTGCAGGC
CAACCAGCTGCTTGAGGACCAGAGCCAGGTGGAGTCCGGATCGCTCTCCCTGGCTGA
CTACGGCCCGCAGGGCACCTTCGTCGGCGTCTATGATGGCCATGGCGGCCCGGAGA
CGTCCCGGTTCATCAATGACCACCTCTTCAACCATCTCAGGAGATTCGCAACTGAGCA
CAAGTCCATGTCAGCAGACGTGATCCGGAAAGCTTTCCAAGAAACTGAGGAGGGCTTT
CTTTCTCTAGTCATCAAGGAATGGTCTTTCAAGCCTCAGATTGCATCAGTTGGCTCCTG
TTGCCTTGTTGGTGTAATCTGTGCTGGGACTCTCTATGTTGCAAACCTGGGCGACTCG
CGTGCAGTTCTTGGAAGGCTTGTGAAAGCAACTGGAGAGGTTCTGGCCACTCAGTTGT
CAGCGGAGCACAATGCATGCTATGAAGAAGTTAGACAAGAGCTGCAGTCATCACATCC
TGATGATCCACGTATTGTGGTTCTCAAACATAACGTTTGGCGAGTGAAGGGTCTCATCC
AGATCTCAAGATCTATCGGAGATGTATATCTAAAGAAACCGGAGTATAACAGAGAACCT
CTTCACAGCAAGTTTCGGCTTCGAGAAACCTTCCAGAAGCCGATTCTTAGTTCTGAACC
TCAAATTACTGAACACCGAATACAGCCAAACGATCAGTTTGTTATATTTGCTTCCGATG
GTCTATGGGAGCACCTCAGCAATCAGGAAGCTGTTGACCTTGTCCAAAGTAGTCCCCG
TAATGGAATCGCTCGGAGACTAGTGAAAGCCGCGATGCAAGAAGCTGCCAAGAAGAG
GGAGATGAGATACTCAGACCTCAAGAAGATCGACCGTGGCGTGAGGAGGCATTTCCA
CGACGATATAACCGTCGTCGTGGTGTTCCTCGACTCGGATGCCATGAGCAAAGCTAGC
TGGAGCAAGAGCCCCTCGTTTTCTCTCCGAGGGGGCGGCGTCACCCTTCCCGCCAAG
TCCCTCGCACCCTTCTCGGCTCCGGCACAGTTGAACGGCACCCACTGAAGCTGCTACT
GCTCTTGAAAAGAAGGGCACAGTGCAGATCTGCTAGAGATGATGAGAGAAGCAGCAAT
CAAGTGTAGCTGTTGCTCGTACACCTGCTGTGCTGTTGCTGTTTGCAAAGCTGCCGTC
TTGACTCCGCCTGGTAATTAGTGTACTGATAGCGAGGTATAGAAATTAGGTTATTTGTT
AGCGACGCAAATCCTTTCTTTTTTTTTCTTCTCCCTCTGTTCTTATCTCTTTTCTCTTCAT
CATGGAGGAAACAGGTGGCTGTAAATTTGTCCAGAACATGTTTTCCCTAATAGCCCAAC
AAAAAAAAAAA


CA 02692650 2010-01-05
WO 2009/010460 54 PCT/EP2008/059070
The ZM62016485 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:28):

M LAAVM DYFSTCWG P RS RAG H RG KGS DAAG RQ DG LLWYKDAGQLVTGG FS MAVVQAN
QLLEDQSQVESGSLSLADYGPQGTFVGVYDGHGGPETSRFINDHLFNHLRRFATEHKSM
SADVIRKAFQETEEGFLSLVIKEWSFKPQIASVGSCCLVGVICAGTLYVANLGDSRAVLGRL
VKATGEVLATQLSAEHNACYEEVRQELQSSHPDDPRIVVLKHNVWRVKGLIQISRSIGDVY
LKKPEYNREPLHSKFRLRETFQKPILSSEPQITEHRIQPNDQFVIFASDGLWEHLSNQEAVD
LVQSSPRNG IARRLVKAAMQEAAKKRE M RYS DLKKI DRGVRRHFHDDITVVVVFLDSDAM
SKASWSKSPSFSLRGGGVTLPAKSLAPFSAPAQLNGTH

cDNA sequence of ZM62051019 from corn (SEQ ID NO:29):
TTTTCTCTTATCCAGCTTCTTAGCATGATTCTCTTTGATCCCGGAGAGCAGCCACCGGT
CCAACTAGTCCTTGCTGTTGGTCTGCCGGAACTTTTGATTGCTCTCCAGATCTGAGGC
ACCTGCTGGGTGGATTCCAGGAACCCGAGCACGAAGTTGACAGGTGAGTTCTCAGGG
AAAAAGGGGAGGAAGGAAGAGGCTGAAAGGGCGGTG
GAGAGAGAAAGACTATAAGGGCGAGCTGAGTCCCTTGAGGATGCCGTCAAGAAACCG
CGTGGAGAGGAGGGCGATGAGATGAGGGATGCTGGCCGCGGTGATGGACTACTTCA
GCTCCTGCTGGGGCCCGCGATCGGGCGCCGGGCACCGGGGCAAGGGCTCCGACGC
CGCCGGCCGGCAGGACGGTCTCCTCTGGTACAAGGACGCCGGCCAGCTCGTCACTG
GGGAGTTCTCCATGGCCGTGGTGCAGGCCAACCAGCTCCTCGAGGACCAGAGCCAAG
TAGAGTCCGGATCGCTCTCCCTGGCTGACCCGGGCCCACAGGGCACCTTCGTCGGCG
TCTATGATGGCCATGGCGGCCCGGAGACGTCCCGGTTCATCAATGACCACCTCTTCAA
CCATCTCAGAAGGTTTGCAACTGAGCACAAGTTTATGTCAGCGGACGTGATCCGGAAA
GCTTTCCAAGCAACTGAGGAGGGCTTTCTTTCTCTAGTCAGCAAGGAATGGTCTTTGAA
GCCTCAGATTGCTTCAGTGGGCTCCTGCTGCCTTGTTGGTGTAATCTGTGCTGGGACT
CTCTATGTTGCAAACGTGGGCGACTCACGTGCAGTTCTTGGAAGGCTTGTTAAGGCAA
CTGGAGAGGTTGTGGCCATGCAGTTGTCATCGGAGCACAATGCGTGCTATGAGGAAG
TTAGACAAGAACTGCAGTCATCACATCCTGACGATCCACATATTGTGGTTCTCAAACAC
AATGTTTGGCGAGTGAAGGGTCTCATCCAGATCTCAAGATCTATTGGAGATGTATATCT
AAAGAAACCAGAGTACAACAGAGAACCACTTCACAGCAAGTTTCGGCTTCGAGAAACC
TTCCAGAGGCCGACCCTTAGTTCTGAACCTCAAATTACTGAACATCGAATACAGCCGAA
CGATCAATTTGTTATATTTGCTTCTGATGGTCTATGGGAGCACCTCAGCAATAAGGAAG
CAGTTGACCTTGTCCAAAGTAGTCCCCGAAATGGAATCGCTCGGAGGCTAGTGAAAGC
CGCGATGCAAGAAGCTGCCAAGAAGAGGGAGATGAGATACTCAGACCTCAAGAAGAT
CGACCGTGGTGTGAGAAGGCATTTCCACGACGATATAACTGTCGTCGTGGTATTCCTC
GATTCGGATGCCATGAGCAAAGCTAGCTGGAGCAAAAGCCCCTCGGTTTCTCTCCGAG
GGGGCGGTGTCGCCCTCCCTGCGAAGTCCCTCGCACCTTTCTCAGCTCCGGCACGGC
TGAACAGCACCTACTGAAGTTGCTACCACTCTTGAAAGGAAGAACACAGTGCAGATCT
GCAGTGGTGAGAGAGAGAGAGAAAACAGCAACCAAGTGTAGCGTTACAGTTACACCT
GCTGTGTTGTTGCTCTTTGCAAAACTACTGTCTAGACTCCGCCTGGTAATTAGTGTACT


CA 02692650 2010-01-05
WO 2009/010460 55 PCT/EP2008/059070
GATAGCGAGGTAAAAAAAGTTAGATTATTTGTTAGCGACACACATCCTTTCACCTTCTC
TTCTCTCCCTCGATTCCTATCCCTTTTCTCTTCATCCTTGAGAGAACAGGTGGATGTAA
ATTGTTCAGAACATGTTTTCCCTTATAGTCCATCATATCCCGCTTTTTTCGTGTTGAAAA
AAAAAAAAAA
The ZM62051019 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:30):

MLAAVMDYFSSCWGPRSGAGHRGKGSDAAGRQDGLLWYKDAGQLVTGEFSMAVVQAN
QLLEDQSQVESGSLSLADPGPQGTFVGVYDGHGGPETSRFI NDHLFNHLRRFATEHKFMS
ADVIRKAFQATEEGFLSLVSKEWSLKPQIASVGSCCLVGVICAGTLYVANVGDSRAVLGRL
VKATGEVVAMQLSSEHNACYEEVRQELQSSHPDDPHIVVLKHNVWRVKGLIQISRSIGDVY
LKKPEYNREPLHSKFRLRETFQRPTLSSEPQITEHRIQPNDQFVIFASDGLWEHLSNKEAV
DLVQSSPRNGIARRLVKAAMQEAAKKREMRYSDLKKIDRGVRRHFHDDITVVVVFLDSDA
MSKASWSKSPSVSLRGGGVALPAKSLAPFSAPARLNSTY

cDNA sequence of ZM65086957 from corn (SEQ ID NO:31):
CTCTGTCTCCTTGGATTTGCGCTTGTGCTCGTCTGGCCGCATACTAGTATCCGCACCA
GAGAGGAGACACCTCCGACTCCGACCTGCTCTTGCATATAGATTGGACAGAGAGTGA
GGGAGAGAGAGAGCGCGCGCGCTGAAGGGGTGCCAAAGGGAGATTTTTTTTTTTTAAT
CCAGCTTCTTAGCCTGACTGACTCTCTTTGATCCCGG
AGAGCAGCCGCCAGCCCAACTAATCCTTGCTGCTGGCGCGCCGGGGCTCTGATTGCG
CTCCAGATCTGAGGCACCTGCTCGGTGGATTCCAGGAATCCGAGCACCAACTCGACA
GGGAGAGTTCTCAGGGTAAAGGACGACGCTTGATGCACACGGGACGGGACAACGAGT
TGG CCGCAAGTTTTGTTTGCACACG CACACGACCCACCAGCTCACGCGTTTTTTTTTTT
TTTTTTG CTTCTTAACTCGCTTTGATTGCATCTGTTGTTTCGGAAGGAAGAGG CTGAGA
GCGCGTTGGAGATTTGGACTATAAGAGCGAGCGAGCGAGCGAGCTGGGTGCCTTGAG
GACGCCGTCAAGAAACCGCGTGGAGGGGAGGGCGATGAGATGAGGGATGCTGGCCG
CGGTGATGGACTACTTCAGCACCTGCTGGGGCCCGCGGTCTCGTGCGGGGCACAGG
GGCAAGGGCTCCGACGCCGCCGGCCGGCAGGACGGCCTCCTCTGGTACAAGGACGC
CGGGCAGCTCGTCACCGGGGGGTTCTCCATGGCCGTGGTGCAGGCCAACCAGCTGC
TTGAGGACCAGAGCCAGGTGGAGTCCGGATCGCTCTCCCTGGCTGACTACGGCCCGC
AGGGCACCTTCGTCGGCGTCTATGATGGCCATGGCGGCCCGGAGACGTCCCGGTTCA
TCAATGACCACCTCTTCAACCATCTCAGGAGATTTGCAACTGAGCACAAGTCCATGTCA
GCAGACGTGATCCGGAAAGCTTTCCAAGAAACTGAGGAGGGCTTTCTTTCTCTAGTCA
TCAAGGAATGGTCTTTCAAGCCTCAGATTGCATCAGTTGGCTCCTGTTGCCTTGTTGGT
GTAATCTGTGCTGGGACTCTCTATGTTGCAAACCTGGGCGACTCCCGTGCAGTTCTTG
GAAGGCTTGTTAAGGCAACTGGAGAGGTTCTGGCCACGCAGTTGTCAGCGGAGCACA
ATGCATGCTATGAAGAAGTTAGACAAGAGCTGCAGTCATCACATCCTGATGATCCACG
TATTGTGGTTCTAAAACATAACGTTTGGCGAGTGAAGGGTCTCATCCAGATCTCAAGAT
CTATCGGAGATGTATATCTAAAGAAACCGGAGTATAACAGAGAACCTCTTCACAGCAA


CA 02692650 2010-01-05
WO 2009/010460 56 PCT/EP2008/059070
GTTTCGGCTTCGAGAAACCTTCCAGAAGCCGATTCTTAGTTCTGAACCTCAAATTACTG
AACACCGAATACAGCCAAACGATCAGTTTGTTATATTTGCTTCTGATGGTCTATGGGAG
CACCTCAGCAATCAGGAAGCTGTTGACCTTGTCCAAAGTAGTCCCCGTAATGGAATCG
CTCGGAGACTAGTGAAAGCCGCGATGCAAGAAGCTGCCAAGAAGAGGGAGATGAGAT
ACTCAGACCTCAAGAAGATCGACCGTGGCGTGAGGAGGCATTTCCACGACGATATAAC
CGTCGTCGTGGTGTTCCTCGACTCGGATGCCATGAGCAAAGCTAGCTGGAGCAAGAG
CCCCTCGGTTTCTCTCCGAGGGGGCGGCGTCACCCTTCCCGCCAAGTCCCTCGCACC
CTTCTCGGCTCCGGCACAGTTGAACGGCACCCACTGAAGCTGCTACTGCTCTTGAAAA
GGGGCACAGTGCAGATCTGCTAGAGATGATGAGAGAAGCAGCAATCAAGTCAAGTGT
AGCTGTTGCTCGTACACCTGCTGTGCTGTTGCTGTTTGCAAAGCTGCCGTCTTGACTC
CGCCTG GTAATTAGTGTACTGATAG CGAGGTATAGAAATTAGGTTATTTGTTAGCGACG
CAAATCCTTTCTTTTTTTTCTTCTTCTCTCTCTGTTCTTATCCCTTTTCTCTTCATCATGG
AGGAAACAGGTGGCTGTAAATTTGTCCAGAACGTGTTTTCCCTAATAGCCCATCATATC
CCGCTATTTTTCTTGTTAAAAAAAAAA
The ZM65086957 cDNA is translated into the following amino acid sequence (SEQ
ID
N0:32):

M LAAVM DYFSTCWG P RS RAG H RG KGS DAAG RQ DG LLWYKDAGQLVTGG FS MAVVQAN
QLLEDQSQVESGSLSLADYGPQGTFVGVYDGHGGPETSRFINDHLFNHLRRFATEHKSM
SADVIRKAFQETEEGFLSLVIKEWSFKPQIASVGSCCLVGVICAGTLYVANLGDSRAVLGRL
VKATGEVLATQLSAEHNACYEEVRQELQSSHPDDPRIVVLKHNVWRVKGLIQISRSIGDVY
LKKPEYNREPLHSKFRLRETFQKPILSSEPQITEHRIQPNDQFVIFASDGLWEHLSNQEAVD
LVQSSPRNG IARRLVKAAMQEAAKKRE M RYS DLKKI DRGVRRHFHDDITVVVVFLDSDAM
SKASWSKSPSVSLRGGGVTLPAKSLAPFSAPAQLNGTH

cDNA sequence of ZM68587657 from corn (SEQ ID NO:33):
GGACGCCGGGCAACATGTCAATGGGGAGTTCTCCATGGCTGTTGTTCAGGCAAATAAC
TTACTTGAGGACCAGTGTCAGATCGAGTCGGGCCCACTGAGTTTTCTAGATTCTGGAC
CATATGGCACTTTCGTTGGTGTTTACGATGGGCATGGTGGTCCAGAGACGGCCTGCTA
TATCAATGATCATCTTTTCCAGAATCTGAAAAGTAA
CTTGCTAACCTTTAAATCTGTGCAGTAGCACTATTCCCGTTTCTTAGCACTATATCTGCA
TTTGGCTTTCAGTTTGCACATAAAGGAGATCATCCATTTTTTCATGGCTTGTATTTAGGA
TTTGCATCTGAGCAGAATGCAATGTCTGCTGATGTACTGAAGAAGGCATATGAAGCTAC
AGAAGATGGATTCTTCTCCATTGTTACCAAA
CAATGGCCTGTAAAGCCTCAGATAGCAGCTGTCGGCTCATGCTGCCTGGTCGGTGTAA
TTTGTGGTGGCATGCTTTATGTTGCCAATGTTGGGGATTCCCGTGTCGTTTTAGGAAAA
CATGTTAAGGCCACTGGAGAAGTTTTGGCTGTCCAACTGTCAGCAGAACATAATGTTA
GTATTGCGTCCGTGAGAAAAGAACTGCAGTCAATG
CACCCAGAAGATAGGCACATTGTTGTTCTCAAGCACAATGTTTGGCGTGTTAAAGGACT
AATTCAGGTTTGTAGATCAATTGGTGATGCATATCTCAAAAAGCAAGAGTTCAACAGGG


CA 02692650 2010-01-05
WO 2009/010460 57 PCT/EP2008/059070
AACCCCTATATGCAAAATTTCGCCTCCGTGAACCTTTTCACAAGCCAATACTAAGTTCA
GAACCATCAATCAGTGTGCAACCACTACAACCA
CACGACCAGTTTCTCATATTTGCATCTGATGGACTTTGGGAGCAGTTAACCAACCAAGA
GGCAGTTGATATTGTTCGAAGTAGCCCCCGCAGTGGCTGTGCTAGGAGGCTGATAAG
AGCGGCACTGCAAGAGGCAGCCAAGAAAAGAGAGATGAGGTACTCGGACCTCAAGAA
GATTGACCGCGGTGTTCGCCGCCACTTCCACGACGACATAACAGTCATAGTAGTGTTC
CTTGACTCCGGCCTCGTAAGCCAGGCGAGCACACACCGAGGTCCAACTCTTTCCTTGC
GAGGCGGTGGCGGCAGCGCTGGCCTGCGCAGCAACACACTTGCACCTACGTGACTAT
AAAGTGCCTGGTGGAGTGGAGGCTACTGACTGAAGGTGGTTTTCTTTCCTTGTGTCGA
ATGTGTTATATATGTACTTGTACCAGCCAAGATCATTCATCCCCCCCCCTAAAATGGTG
TAAAGAAGTAGGAGAGGCGCCGAAGTTCCTCACCAGCGTATCTGAATGCCCTCAATGG
TGTCAAGTTGTGGACTCAAGTGGATAGCTTCGCTGAATCTTCTGATGATGCTCTGTGGA
AAGCTCGAATCCTTTCCACCTGAAAAAGCAAGTAATATGTCTTCCAGTGCTGGAATTAA
CCCCTAGTGCATATATATATGTATGAAATAATAATAAGGCAAAAGGAGGAGTAACTTAT
TTAACTAATGCTGTGAGGTGTATTTATGTTTTGTATGTGTACTGCTTTTGACTGCTACTG
CATCTACTGTTGTTAATTGAAAAAAAAAAAAAAA
The ZM68587657 cDNA is translated into the following amino acid sequence (SEQ
ID
N0:34):
MSADVLKKAYEATEDGFFSIVTKQWPVKPQIAAVGSCCLVGVICGGMLYVANVGDSRVVL
GKHVKATGEVLAVQLSAEHNVSIASVRKELQSMHPEDRHIVVLKHNVWRVKGLIQVCRSIG
DAYLKKQEFNREPLYAKFRLREPFHKPILSSEPSISVQPLQPHDQFLIFASDGLWEQLTNQE
AVDIVRSSPRSGCARRLIRAALQEAAKKREMRYSDLKKIDRGVRRHFHDDITVIVVFLDSGL
VSQASTHRGPTLSLRGGGGSAGLRSNTLAPT

cDNA sequence of EST390 from moss (SEQ ID NO:35):

ATCCCGGGTGGAGCCCTTTCAAGCCTCACGCATTCTGGATTCGCTCCCGGCTTCGAAT
GCTTGAGTGGTTCTAAGTGATGAGATAGCGCCGTCTAGGGAGAATTTCGAATTTGCGC
TAGAACATGGGTGGTTATTCCATCAGTGTGGCAGCGCCCACAGATATTGCAGTGAAAG
GTTGAACACAACGACCCAAGGACAACCTGCACCTTCCAACAGTCAGCGTGAGGTGAAA
AGATAGGCCAGTTTTCAGCTGCACATAACCTTCACTTCTGCAGGCGCAGAACACGTGC
GGTACTGAGCAATGGGGTCCTCTAAGGCAGAAGAGAATTTGGCCTTACGGCTGGGCC
TCACTGCAGCGTCAGCCATGGCGTCGGAGTCTGTGACCTTCCCAATCGATATCACGAA
AACCCGCCTGCAGCTCCAAGGCGAAATGGGTGCCACAGCTGGCGCACCCAAGCGAG
GAGCGATCAGCATGGCGATCTCTATAGGCAAGGAGGAGGGCATTGCCGGTCTTTATA
GGGGCCTTTCTCCGGCACTTTTGCGTCATGTATTTTACACAAGCATTCGTATTGTTGCG
TATGAAAATCTACGTACCGCCCTCAGTCATGGCGAACACCCGGAAAATCTGTCCGTTG
CAAAAAAGGCTTTCATCGGTGGCACTTCCGGTATTATTGGGCAGGTGATAGCGAGTCC
AGCGGATTTGGTGAAGGTGCGCATGCAAGCGGATGGGAGGCTGGTGAAGCTTGGGC


CA 02692650 2010-01-05
WO 2009/010460 58 PCT/EP2008/059070
AGCAGCCACGCTACACCGGAGTAGCTGACGCATTCACCAAGATTGCCCGAGCCGAGG
GTGTGACAGGGCTGTGGCGTGGAGTGGGACCCAATGCTCAACGTGCCTTCCTCGTCA
ACATGGGGGAGCTTGCATGCTACGACCAGTCGAAGCAATGGATCATAGGACGCGGCA
TTGCTGCCGACAACATCGGAGCTCACACGCTTGCATCAGTGATGTCTGGGTTATCAGC
TACTATTCTGAGCTGCCCTGCCGATGTGGTGAAGACCCGGATGATGAACCAAGGCGCT
GCAGGTGCCGTGTACCGCAACTCTCTGGATTGTCTCACCAAAACCGTGAAGGCTGAAG
GCGTGATGGCGCTGTGGAAGGGCTTCTTCCCGACGTGGACAAGGCTGGGCCCTTGG
CAATTCGTGTTTTGGGTCTCATATGAGCAGCTCCGCCGCATCAGCGGTCT
ATCATCCTTCTAATAAGTAAAGCCTCGCAGTTGTTTTGGGTGTGAAACTTACATGGCAT
TCAGCTCTTACAAAGATTTCACATGCTTGAAGATTTTGAGGTGCTGTTTTTTTTATCATT
TTTGTTCCTTCTCTTTTCTGCCTCAATTGGATGTCATAGCT
GAGGCTATGAAGCTTAGTTTCATTGACAAATGTTTACATTTGTTAGCAATGTGTAGTAGT
GCACTTGCGTTAACCG

The EST390 cDNA is translated into the following amino acid sequence (SEQ ID
NO:36):
MGSSKAEENLALRLGLTAASAMASESVTFPIDITKTRLQLQGEMGATAGAPKRGAISMAISI
GKEEGIAGLYRGLSPALLRHVFYTSIRIVAYENLRTALSHGEHPENLSVAKKAFIGGTSGIIG
QVIASPADLVKVRMQADGRLVKLGQQPRYTGVADAFTKIARAEGVTGLWRGVGPNAQRA
FLVNMGELACYDQSKQWIIGRGIAADNIGAHTLASVMSGLSATILSCPADVVKTRMMNQGA
AGAVYRNSLDCLTKTVKAEGVMALWKGFFPTWTRLGPWQFVFWVSYEQLRRISGLSSF
cDNA sequence of BN51363030 from canola (SEQ ID NO:37):

AGAAAACAAATAAAAATCAAATCGTTACAGCAATGGGCGTCAAAAGTTTCGTGGAAGGT
GGGATTGCCCCTGTAGTCGCCGGCTGCTCCACTCACCCTCTCGATCTCATCAAGGTTC
GCCTTCAGCTCCACGGCGAAGCTTCCGCCGTCACTCTCCTCCGCCCAGCTCTCGCTTT
CCACAATTCTCCCCCAGCTTTTCTGGAGACGACTC
ATTCGGTCCCTAAAGTAGGACCCATCTCCCTCGGAATCAACCTCGTCAAAACCGAAGG
CGCCGCCGCGCTTTTCTCCGGCGTCTCCGCCACACTCCTCCGTCAGACTCTCTACTCC
ACCACCAGGATGGGTCTCTACGAGGTGTTGAAAAACAAATGGACTGATCCCGAGTCCG
GTAAGCTGAGTCTCACTCGTAAAATCGCCGCGGGGCTAGTCGGTGGCGGGATCGGAG
CCGCCGTCGGGAACCCAGCCGACGTGGCGATGGTAAGGATGCAAGCCGACGGGAGG
CTTCCCGTGGCAGAGCGTCGTAACTACGCGGGCGTAGGAGACGCGATCAAGAGGATG
GCGAAGCAAGAAGGCGTGGTGAGCCTGTGGCGCGGCTCGGCTCTGACGATCAACAG
GGCGATGATAGTGACGGCGGCGCAGCTCGCGTCGTACGATCAGTTCAAGGAAGGGAT
GGTGGAGAGCGGGGGGATGAAAGATGGGCTCGGGACTCACGTGGTGGCGAGCTTCG
CGGCGGGGATCGTGGCGGCTGTTGCGTCGAATCCGGTGGATGTGATAAAGACGAGG
GTGATGAATATGAAGGTGGATGCGCGTGGTGGGGAGGCTCAGTACAAAGGCGCGTGG
GATTGTGCGGTGAAGACGGTTAGAGCTGAAGGACCGATGGCTCTTTATAAAGGGTTTG
TTCCTACGGTTTGCAGGCAAGGACCTTTCACTGTTGTGCTCTTTGTTACGTTGGAGCAA
GTCAAGAAGCTGCTTCGTGATTTTTGATTATCATTTGAAGGTTATGATGATGAGGACGA


CA 02692650 2010-01-05
WO 2009/010460 59 PCT/EP2008/059070
CTAAGAATAAGAATGCTAGTAGTATTGATTTGATAGGGATTTTTCGTATTGGGTTATTCA
TTTTCG

The BN51363030 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:38):

MGVKSFVEGGIAPVVAGCSTHPLDLIKVRLQLHGEASAVTLLRPALAFHNSPPAFLETTHSV
PKVGPISLGI NLVKTEGAAALFSGVSATLLRQTLYSTTRMGLYEVLKNKWTDPESGKLSLTR
KIAAGLVGGGIGAAVGNPADVAMVRMQADGRLPVAERRNYAGVGDAIKRMAKQEGVVSL
WRGSALTINRAMIVTAAQLASYDQFKEGMVESGGMKDGLGTHVVASFAAGIVAAVASNPV
DVIKTRVMNMKVDARGGEAQYKGAWDCAVKTVRAEGPMALYKGFVPTVCRQGPFTVVLF
VTLEQVKKLLRDF

cDNA sequence of BN42986056 from canola (SEQ ID NO:39):
TCTAAAAAAACTTTTTGTCTGAACGGCATATGTCTCAGAGACCTCAAGTTCCTCATTCTT
CTTCTATAGCTTTCGGTCTCCATTCTCATCTCCTAATCTCCAGTGAGATCAGCTCCAATT
CCAACTGGTCTCTCTAAGAAAAAAATAATCAAACCTTTTCAAAATTTTCTCTCGGATTTT
CTCGGAATAAAAATCTAACCTTTCTGACTTTTTTGATTTTCGATTTGATAAAAACAAGAA
ATGGGTCTTAAGGGTTTCGCTGAAGGAGGCATCGCATCGATCGTAGCGGGATGTTCG
ACCCACCCGCTTGATCTAATCAAGGTCTGAATGCAGCTCCAAGGGGAATCAGCCTCGA
TTCAGACAAATCTCCGACCAGCTCTTGCTTTCCAGACTTCCTCCGCCGTTCACGCGCC
TTCGCCTCCTCCGCGCGTGGGTATAATCACCATCGGATCTCGCATCATCAGACAAGAA
GGCACGTGCACTCTCTTCTCCGGCATCTCCGCCACCTCCGCCACCGTTCTCCGCCAG
ACTCTCTACTCGACGACTCGCATGGGTCTATACGACATCCTGAAAACCAAATGGACCG
ACCCGGAAACCAAAACCATACCTTTGACCCGCAAACTCGCCGCCGGGTTCATCGCCG
GAGGTATCGGCGCCGCCGTCGGGAACCCGGCGGATGTCGCCATGGTGCGCATGCAA
GCCGACGGGAGGCTCCCGGTGGTCGACCGGAGGAACTACAAGAGCGTTTTGGACGC
GATCGCGCAGATGGTTCGCGGCGAAGGCGTCACGTCGCTGTGGAGAGGTTCGTCGAT
GACGATCAACAGAGCGATGCTCGTGACG
GCGTCGCAGCTGGCTACGTACGACTCGGTGAAAGAGACGATTTTGGAGAAAGGGTTG
ATGAGGGACGGGCTCGGGACTCACGTGACGTCGAGCTTCGCGGCGGGGTTTGTGGC
TTCGGTCGCGTCGAACCCCGTGGATGTGATCAAGACGAGAGTGATGAATATGAAAGTG
GAGGCGGGGAAAACGGCGCCGTATAAGGGAGCGGTTGATTGCGCGTTGAAGACGGT
GAGAGCGGAAGGGATCATGGCTTTATACAAAGGGTTTCTGCCGACGGTGTCGAGACA
AGCACCGTTCACGGTGATTATGTTTGTGACACTTGAACAAGTTAAGAAGGTGTTCAAGG
ACTTTGACTTTTGAGACAAGAGTTAAAGATGATGGTGGCGATAATTTGCTTTAAACTAAA
TAAATTTTGTTTTTTTTTATTGTATTTTCTTT

The BN42986056 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:40):


CA 02692650 2010-01-05
WO 2009/010460 60 PCT/EP2008/059070
MQLQGESASIQTNLRPALAFQTSSAVHAPSPPPRVGI ITIGSRIIRQEGTCTLFSGISATSAT
VLRQTLYSTTRMGLYDILKTKWTDPETKTIPLTRKLAAGFIAGGIGAAVGNPADVAMVRMQ
ADG RLPVVD RRNYKSVLDAIAQMVRG EGVTSLWRGSS MTI N RAM LVTASQLATYDSVKET
ILEKGLMRDGLGTHVTSSFAAGFVASVASNPVDVIKTRVMNMKVEAGKTAPYKGAVDCAL
KTVRAEGIMALYKGFLPTVSRQAPFTVIMFVTLEQVKKVFKDFDF

cDNA sequence of BN49389066 from canola (SEQ ID NO:41):
CGACGATTTCGTTTAATATAAACATCACCAAGTGAATCTCTCCGCCTCTCTCTCTCTTTC
TCTGCGGAATCTCTTCGTCTCGTTGCGTTCGAGAGTTCCGTACGATTCCCAACAAGAA
AGGGAAGAGATGGCGGAGGAGAAGAAAGTAGCTCCGATTGGTATCTGGACTGCCGTG
AAGCCTTTCGTCAATGGCGGTGCCTCTGGTATGCT
CGCCACTTGCGTTATCCAGCCTATTGACATGATCAAGGTGAGGATTCAACTAGGTCAG
GGATCTGCAGCTAGTGTGACCACCACCATGTTGAAGAATGAAGGTATCGGTGCCTTCT
ACAAGGGATTATCAGCTGGTTTGCTGAGGCAAGCAACTTACACCACAGCTCGTCTTGG
ATCATTCAAGATGCTGACTGCGAAAGCAAGCGAGGCTAACGATGGGAAGCCACTACC
GCTGTATCAAAAAGCTCTATGTGGTCTGACAGCTGGTGCTATCGGTGCCTGCGTTGGT
AGTCCAGCCGATTTAGCGCTTATCAGAATGCAAGCTGATAACACTTTGCCGTTAGCTCA
GCGCAGGAACTATACCAACGCCTTCCATGCGCTTTACCGTATTAGCGCTGATGAAGGA
GTTTTGGCGCTTTGGAAAGGTTGTGGGCCAACTGTGGTCAGAGCAATGGCTTTGAACA
TGGGGATGCTTGCGTCTTATGATCAAAGTGCTGAGTATATGAGAGATAATCTTGGTCTT
GGGGAGACATCCACAGTCGTAGGAGCAAGTGCTGTTTTGGGATTCTGCGCTGCGGCT
TGCAGTCTTCCATTTGACTTTGTCAAAACACAGATCCAAAAAATGCAACCCGACGCTCA
GG GTAAATATCCATACACTGGTTCG CAGGACTGTGCGATGCAAAACAGGAGGACCTTT
GAAATTCTACACAGGCTTTCCGGTATACTGCGTCAGGATCGCCCCTCACGTCATGGTG
ACATGGATCTTCCTGAACCAGATTACAAAGTTCCAAAAGAACATTGGGATGTGATCTTC
AAGCAAACCTTATGAAGTGCGCGGTG
AAAATATGATGAGAAGAATTCATTTGCTTTTTAATCATATACATGATTAG
The BN49389066 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:42):

MAEEKKVAPIGIWTAVKPFVNGGASGMLATCVIQPIDMIKVRIQLGQGSAASVTTTMLKNE
G I GAFYKG LSAG LL RQATYTTARLG S F KM LTAKAS EAN D G KP LP LYQKALCG LTAGAI GAC
VGSPADLALI RMQADNTLPLAQRRNYTNAFHALYRISADEGVLALWKGCGPTVVRAMALN
MGMLASYDQSAEYMRDNLGLGETSTVVGASAVLGFCAAACSLPFDFVKTQIQKMQPDAQ
GKYPYTGSQDCAMQNRRTFEILHRLSGILRQDRPSRHGDMDLPEPDYKVPKEHWD-
VIFKQTL

cDNA sequence of BN51339479 from canola (SEQ ID NO:43):


CA 02692650 2010-01-05
WO 2009/010460 61 PCT/EP2008/059070
CTTTCTCCGCCTATCTCTTTCTCTCCGCGGATTCTCTTCTTCTCGTTTCGACTCCGTAC
GATCCCCAAAGAAAAAAAGAGATGGCGGAAGAGAAAAAAGTAGCTCCGATTGGTGTCT
GGAATACCGTGAAGCCCTTCGTCAATGGCGGTGCCTCCGGTATGCTCGCCACTTGCG
TTATCCAGCCGATCGACATGATCAAGGTGAGGATTC
AACTAGGTCAGGGATCTGCAGTCAGTGTGACCAAGAACATGTTGAAGAATGATGGTAT
TGGTGCTTTCTACAAG GGATTGTCTGCTGGTTTGCTAAGGCAAGCAACTTACACCACA
GCCCGTCTTGGATCCTTCAAGATGCTGACTGCAAAAGCAATTGAGGCTAACGATGGGA
AGCCGCTACCTCTGTACCAGAAGGCTCTATGTGGTC
TGACAGCTGGTGCAATCGGTGCTTGCGTTGGTAGTCCAGCTGACTTGGCGCTTATCAG
AATGCAAGCTGATAACACCTTGCCGTTAGCTCAGCGCAGGAACTATACCAATGCCTTC
CATGCGCTTTACCGTATTAGCGCTGATGAAGGAGTTTTGGCACTTTGGAAAGGTTGTG
GTCCTACTGTGGTCAGAGCTATGGCTTTGAACATGG
GAATGCTTGCTTCTTATGATCAAAGTGCTGAGTACATGAGAGATAATCTCGGTCTTGGG
GAGACTTCTACGGTCGTAGGAGCAAGTGCTGTTTCTGGATTCTGCGCTGCGGCTTGCA
GTCTTCCATTTGACTTTGTCAAAACTCAGATCCAGAAGATGCAACCTGACGCTCAGGG
GAAGTATCCATACACGGGTTCGCTTGACTGTGCCA
TGCAAACCTTGAAGTCAGGAGGACCTCTTAAATTCTACACAGGTTTCCCTGTTTACTGC
GTCAGGATCGCCCCTCACGTCATGATGACATGGATCTTCCTGAACCAGATTACAAAGT
TTCAAAAGACCATTGGTCTGTGAGCTTCAAGCATTGTGAAGTGCGCGCTGAGAATAAG
TTGAAAACGAAAACGCAATTGGAATTGTGTTAGAT
TTGCTTTTTATTCAATATACATGATCGCATGCCTTAACGCATTATTTGAAGTGTTGGAGA
CTTTA

The BN51339479 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:44):

MAEEKKVAPIGVWNTVKPFVNGGASGMLATCVIQPIDMIKVRIQLGQGSAVSVTKNMLKND
GIGAFYKGLSAGLLRQATYTTARLGSFKMLTAKAI EANDGKPLPLYQKALCGLTAGAIGACV
GSPADLALIRMQADNTLPLAQRRNYTNAFHALYRISADEGVLALWKGCGPTVVRAMALNM
GMLASYDQSAEYM RDNLGLGETSTVVGASAVSGFCAAACSLPFDFVKTQIQKMQPDAQG
KYPYTGSLDCAMQTLKSGGPLKFYTGFPVYCVRIAPHVMMTWIFLNQITKFQKTIGL
cDNA sequence of ZM57651070 from corn (SEQ ID NO:45):
CTAGCACGTGAAAATTCCTTCGGCTCCAGTTATTACGGAGGATTAGGTTGGTGAACTG
GTGACTGGAGCTGGAATCGCATTTCTTGCTCTTTGGTCTCTCCAGAATCATCCTCCGG
CCAGCCGTTCTTGGAATCCTCCCGAGATTCGCTTGCCCGCCCTTTTCTTTTCAAGTGG
ATCTGAACTTGGGAGGGAACCCCGATGCAGCCGCGG
TACGGAGAAGCACGACAACCGCTGCCGGGGCGGTACGCGCTGTACCACTTCGGCAC
CAGCGGCGCCGCCGTCGCCGCCGCCACCGCCGTGACCCATCCGTTCGATGTTATCAA
AGTCAGGCTTCAAATGCAGCTTGCTGGGCAAAGAGGAAACTTAGTTGGAATGGGAACA


CA 02692650 2010-01-05
WO 2009/010460 62 PCT/EP2008/059070
ATATTTACACAAATGGTTGAAAGGGAAGGGACTCGGTCACTCTACCTGGGACTTGCAC
CAGCGTTGGCGAGAGCTGTTGTCTATGGTGGCCTTCGGTTTGGACTGTATGAGCCCTG
CAAGCATGTCTGCAGTTATGCATTTGGTTCAACAAACTTTGCTTTTAAATTTGCATCTGG
AG TCATTG CTG G G G G CCTTG CAACT G CTTTAACAAAT CC CATG G AAG TTTTG AAG G TG
AGGCTGCAGATGAGTAAAAGCAGTACCAGTACAATAAGAGAGATGAGAAAAGTTATAG
CGCACGAAGGGTTTAAAGCACTTTGGAAAGGAGTCGGCCCAGCAATGACAAGAGCAG
GTTGCCTTACTGCATCACAAATGGCGACTTACGATGAGGCCAAACAGGCCTTAATGAA
GTGGACACCACTTGAAGAAGGTTTTCAGTTACATCTCATCTCGAGTTTCATAGCTGGAA
CAGCTGGTACTCTTGTGACCTCACCTGTAGACATGATCAAAACACGGTTAATGCTGCAA
CAGGAGTCCAAAGGCGCCAGAGTATACAGGAACGGATTCCATTGTGCTTCCCAGGTTG
TGGTGACAGAGGGTGTGAAATCACTTTATAAAGGTGGATTTGCCACATTCGCGAGAGT
AGGCCCTCAGACAACGATTACCTTTATCGTGTGCGAGAAACTGCGCGAACTTGCAGGA
ATGACTGCCATCTAGTGCCACCCCAAATTGCATAATGTGTGGGGTCCAACGGTTGAAC
AGCATACTCTACCCGAGTTTTCACACCATTCTTTATTCACTATTCATGATGAGAAGGGA
GAAGATAAGCACCCACTGGGATGTCTAAGGATTGGGAAGCCCAGAGCTCCTTCAGATT
TATCATACCTCATTTGAAATTTCGAAATAGCGTGATTGTTCTTATGTTTGCTCTAAGACT
TACTCATCATATCTCCAATCTCATCTTGTATTTCAAACTACACTCTACAAACAATACAGT
CTGTAGTGTAAAAACATTATTTTGGGTGACCATATGGGTAACCTGCTGTA-
CAAAAAAAAAA
The ZM57651070 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:46):

MQPRYGEARQPLPGRYALYHFGTSGAAVAAATAVTHPFDVIKVRLQMQLAGQRGNLVGM
GTIFTQMVEREGTRSLYLGLAPALARAVVYGGLRFGLYEPCKHVCSYAFGSTNFAFKFAS
GVIAGGLATALTNPMEVLKVRLQMSKSSTSTIREMRKVIAHEGFKALWKGVGPAMTRAGC
LTASQMATYDEAKQALMKWTPLEEGFQLHLISSFIAGTAGTLVTSPVDMIKTRLMLQQESK
GARVYRNGFHCASQVVVTEGVKSLYKGGFATFARVGPQTTITFIVCEKLRELAGMTAI

cDNA sequence of ZM62073276 from corn (SEQ ID NO:47):
GCCGCCTCTCCTACTGCATCTCCCTCGCTCTCGTCGCCTCGTTCGCTTCGCCTCCGCC
CCGCCCCGCCCCGAGCAGAGCGCAGCCCTATCCGGAGCTGGGATGGCGGACGCGAA
GCAGCAGCAGCAGCAGCAGCAGCAGCCACAGCAGGCGGCAGCGGCAGCCACCGGC
GTGTGGAAGACGGTCAAGCCCTTCGTTAACGGCGAGGCCTCTGGGATGCTCGCGACC
TGCGTCATCCAGCCTATCGACATGGTCAAGGTGAGGATCCAGTTGGGTGAGGGCTCT
GCTGGTCAGGTCACAAGGAACATGCTTGCAAATGAGGGTGTCCGTTCTTTCTACAAGG
GTTTGTCCGCCGGATTGCTGAGGCAAGCGACGTACACGACTGCTCGTCTTGGATCCTT
TAGGGTTCTAACTAACAAAGCAGTTGAAAAGAATGAAGGGAAGCCATTGCCTCTATTTC
AGAAAGCTTTTATTGGTCTGACTGCTGGTGCAATTGGTGCTTGTGTTGGTAGTCCTGCT
GATCTGGCACTCATTAGAATGCAAGCCGATTCGACCCTGCCAGTTGCACAACGACGCA
ACTATAAGAATGCTTTCCATGCACTCTACCGTATCAGTGGTGATGAGGGAGTCCTTGC


CA 02692650 2010-01-05
WO 2009/010460 63 PCT/EP2008/059070
GCTTTGGAAGGGTGCAGGTCCAACTGTGGTGAGAGCTATGGCACTCAATATGGGTATG
CTTGCTTCCTATGACCAGAGTGTCGAGCTATTTAGGGACAAATTTGGCGCAGGAGAAA
TTTCTACTGTTGTTGGAGCCAGCGCTGTTTCTGGATTCTTTGCCTCAGCATGCAGTTTG
CCCTTTGACTATGTGAAGACACAGATTCAGAA
GATGCAACCTGATGCGAATGGCAAGTACCCATACACAGGGTCTTTGGACTGTGCTGTG
AAGACCTTCAAGAGCGGTGGCCCATTCAAGTTCTACACTGGTTTCCCGGTGTACTGCG
TCAGGATTGCACCCCATGTCATGATGACCTGGATATTCTTGAATCAGATCCAGAAGTTT
GAGAAGAAGATCGGCATATAGGATTCCCATCGGAC
GGATACAGGGTTGACAGTTCTATGCTATTACTGCTTGACTCTGTAATAACATTCCAGCT
GCTTTCGCACCATGGTAGTTGGTTTTGGTAGAGACAAGTCTGTTACAATTTTTTACCTTA
G CTTTC CAATTATTG TG TTG CAATAATC GAATTAATTG TTG CTG G G G G ATTTTTTTG G G G
GGTTGGGAGGGTGGCATGCTTTTGTTGGCTG
GGATGTAGCCATAAGGAGAGGGGGATACTGCCTAGTTATGTCATTGAATGGAATTGGA
CCATATTTTATACAGATTTTTACCTTCAAAAAAAAAAAAAA
The ZM62073276 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:48):

MADAKQQQQQQQQPQQAAAAATGVWKTVKPFVNG EASGMLATCVIQPI DMVKVRIQLGE
GSAGQVTRNMLANEGVRSFYKGLSAGLLRQATYTTARLGSFRVLTNKAVEKNEGKPLPLF
QKAFIGLTAGAIGACVGSPADLALIRMQADSTLPVAQRRNYKNAFHALYRISGDEGVLALW
KGAGPTVVRAMALNMGMLASYDQSVELFRDKFGAGEISTVVGASAVSGFFASACSLPFDY
VKTQIQKMQPDANGKYPYTGSLDCAVKTFKSGGPFKFYTGFPVYCVRIAPHVMMTWIFLN
QIQKFEKKIGI
cDNA sequence of EST257 from moss (SEQ ID NO:49):
CCCGGGGATTCAGCAGTACTTCACAAGAAGAATAGCATGGTGCGTGCAGATCTTGTCA
ACCTTGCGGACTTAGATACTGCTCTAAACAGAGTTCATAATAAGCTACCTAATTCCATA
GAAACAGCTAGTGCAGAGCCTCCTGCTCCTCCAGAAGAATGGGAAATAAATCCTCGAG
AGATCACTTTGAAGCATATGATTGCGCGTGGCACCTTTGGGACTGTCCACAAAGGAGT
GTACAAAGGTCAGGATGTCGCAGTTAAGCTACTTGAGTGGGGCGAGGAGAATACCAT
GAAGAAAACAGAGGTTCAATACTACAGAAACCAATTCAGACAAGAGGTTGCTGTGTGG
CATAAACTCGACCACCCTAATGTCACGAAGTTCATCGGAGCCTCGATGGGGAACTCAG
ATTTGCGGATTCCCTCAGCCGTGGATGGTGATGATGGATTCCATCATGTGCCGAACAA
TGCTTGTTGTGTTGTCGTTGAGTACCTTGCAGGCGGGACTCTTAAAGATCATCTCATTC
GCAGCCGGCGGAAAAAACTCTCGTACAAGGTGGTCGTGCAATTAGCCTTGGATGTTTC
TAGAGGGCTTGCATACCTCCATTCTCAGAAGATCGCTCATCGTGACGTGAAGACAGAG
AACATGTTGCTCGATAAACAGATGAGGGTCAAAATTGCAGATTTCGGAGTTGCACGAG
TGGAGGCATCCAATCCCAAGGACATGACTGGTGATACTGGTACCCCAGGATACATGGC
TCCGGAGATTCTCGACGGCAAGCCCTACAACAAGAAGTGCGATGTGTACAGCTTCGG
GATCTGTTTGTGGGAAGTTTATTGCTGCGACATGCCGTACTTGGACCTCTCCTTTGCG


CA 02692650 2010-01-05
WO 2009/010460 64 PCT/EP2008/059070
GACATGACATCGGCAGTTGTGCATCAGAATTTGAGACCCGAGGTGCCCAAGTGCTGC
CCTCAGGGACTCGCGGATATCATGAGGCAGTGTTGGGATGCAAATCCTGAGAAACGG
CCTGCCATGGCTGATGTGGTGCAGATGCTGGAGGCTCTAGACACCTCCAAAGGTGGA
GGTATGATACCAACAGACGCCCAGCCGCATGGGTGTCTCTGTTTTGGGAGATTCAAGG
GCCCATAGCACGTTTTTGGTTTTTTTTTTCCTTAATTGTGGTTTTACATTTTATTTATATTT
TTCCCTTTTTTAATGTAGGGATGACATGATAATAAGTGTGCAAACATTTTGTTGTCTCCC
CTGGTTTCGTTTCAAGCGTAGCTGCTTGACTTGCAATTTCAGTAACCTGGTGCAGGAC
CCGTTAAC

The EST257 cDNA is translated into the following amino acid sequence (SEQ ID
NO:50):
MVRADLVNLADLDTALNRVHNKLPNSIETASAEPPAPPEEWEINPREITLKHMIARGTFGTV
HKGVYKGQDVAVKLLEWGEENTMKKTEVQYYRNQFRQEVAVWHKLDHPNVTKFIGASM
GNSDLRIPSAVDGDDGFHHVPNNACCVVVEYLAGGTLKDHLIRSRRKKLSYKVVVQLALD
VSRGLAYLHSQKIAHRDVKTENMLLDKQMRVKIADFGVARVEASNPKDMTGDTGTPGYM
APEILDGKPYNKKCDVYSFGICLWEVYCCDMPYLDLSFADMTSAVVHQNLRPEVPKCCPQ
GLADIMRQCWDANPEKRPAMADVVQMLEALDTSKGGGMIPTDAQPHGCLCFGRFKGP
cDNA sequence of LU61665952 from linseed (SEQ ID NO:51):
AGGGTGATCACGAGGGAGGTATGAATTCTAAGGTGAAGGGAAATGGAAGTGTTAGTA
GAAAAGATATGATTTTTCGAGCGGATCGAATCGATTTGAAGATCCTGGATGTACAGCTA
GAGAAGCACCTGAGTAGGGTGTGGTCGAGGAACACCACAGACAACGCTAAGCCTAAA
GAAGAGTGGGAGATTGATTTGTCTAAGTTGGACATCAAAACCCAGATAGCTCGTGGTA
CTTATGGCACTGTTTATAAAGGCACTTATGATAATCAAGATGTTGCAGTGAAAGTGTTG
GATTGGGGGGAAGATGGTATGACTACAGTATCTGAAGCTGCTTCTCTTCGAGCATCAT
TTCGTCAAGAGGTTGCTGTTTGGCATAAGCTTGACCATCCTAATGTTACCAAATTCGTT
GGAGCATCGATGGGAACTTCAAATCTCAAGGTTTCAAATAATAAATCTGATGGTCAGCA
TACTGCTAGAGCATGTTGTGTTGTGGTTGAGTATCAACCTGGTGGAACACTAAAGCAG
TACTTGATAAGAAATAGGCGAAAGAAACTTCCTTATAAAGTTGTAATACAACTTGCTTTG
GATCTCTCTAGGGGTTTGAGTTACCTACATTCGAAGAAAATTGTGCACCGTGATGTGAA
GTCGGAAAACATGTTGCTTGATAATCATAGAAATCTTAGGATTGCGGATTTTGGTGTTG
CTCGAGTCGAAGCTCAAAATCCAAGTGATATGACTGGTGAAACTGGTACCCTTGGATA
CATGGCACCTGAGGTCCTTGATGGCAAGCCATATAACAGAAGGTGTGATGTTTATAGC
TTCGGCATATGTTTATGGGAAATCTATTGTTGTGATATGCCATATCCAGATCTTAGCTTT
GCTGATGTGACGTCCGCGGTTGTTCGACAAAACTTGAGGCCGGAGATTCCGAGATGTT
GTCCAAGTTCACTAGGAAGCATCATGAAGAAATGTTGGGATGCACAATCAGAGAACCG
TCCAGAAATGGCTGAAGTGGTGAAGATGTTGGAAGCCATTGATACAAGTAAAGGAGGA
GGAATGATCCCTGAAGACCAGAACCCTGGTTGTTTCTGCTTCGCCCCAACCCGTGGCC
CTTAAACCCCCTTATTAATTTACTCCCCAAACAGTCCTCATCCATCTATGTGTGCACAAA
TTTCAATTTCTTTATATTTGAGTTGTTTTCTTTGTTTATCATTTTCTTGTGTTCTTCACTTC


CA 02692650 2010-01-05
WO 2009/010460 65 PCT/EP2008/059070
TGCACATATTTTGATTTTGAACTACCTAAAGGGAGTGAAAGGATTAATGTTATAAGTAAA
AAAAAAAAAAAA

The LU61665952 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:52):

MNSKVKGNGSVSRKDMIFRADRIDLKILDVQLEKHLSRVWSRNTTDNAKPKEEWEIDLSKL
D I KTQIARGTYGTVYKGTYD N QDVAVKVL DWG E DG MTTVS EAAS L RAS F RQ EVAVWH KL
DHPNVTKFVGASMGTSNLKVSNNKSDGQHTARACCVVVEYQPGGTLKQYLIRNRRKKLP
YKVVIQLALDLSRGLSYLHSKKIVHRDVKSENMLLDNHRNLRIADFGVARVEAQNPSDMTG
ETGTLGYMAPEVLDGKPYNRRCDVYSFGICLWEIYCCDMPYPDLSFADVTSAVVRQNLRP
EIPRCCPSSLGSIMKKCWDAQSENRPEMAEVVKMLEAIDTSKGGGMIPEDQNPGCFCFAP
TRGP

cDNA sequence of TA56863186 from wheat (SEQ ID NO:53):
AGCACTGACAACTACAACCTCGCTGGTGGCTCCGTTACCATGTCAGTGGACAACAGCA
GCGTGGGCTCGAACGAGTCCCGCACCGTCATACTTAAGCACCCGGGCCTCCGTGATG
CTCCAACCGCAAGCTACTCGGTTGGCAACAGTGTCTTTCGTCCCAACCGTGTGGCTGC
GCACACCCTAAATGAAGATGCATTGGCCAGGGTTCTGATGGACCCAAATCATCCAACA
GAGATACTTAGCAAGTACCAGCAGTGGGCCATTGATCTGGGGAGGTTGGATATGGGG
GTTCCCTTTGCACAGG GAGCCTTTGGGAAG CTGTACCG GGGAACATATATTGGAGAAG
ATGTTGCCATTAAGCTGCTGGAGAAGCCTGACAATGATATCGAGAGAGCACAATCGTT
GGAACAGCAGTTTGTGCAAGAAGTTATGATGTTATCTACCCTAAGGCACCCAAATATAG
TAAGATTTATAGGGGCTTGCAGGAAGTCAATTGTGTGGTGCATTATTACTGAGTATGCA
AAAGGTGGCTCAGTCAGGCAGTTCCTGGCAAAAAGGCAGAACAAGTCGGTACCTTTGA
GGCTGGCTGTCAAACAAGCATTGGATGTAGCGAGGGGAATGGCGTATGTGCATGCTC
TGGGATTTATCCATAGGGACCTGAAGTCGGATAATCTTCTAATTGCAGCAGACAGATCC
ATTAAGATTGCTGACTTTGGAGTTGCTCGAATTGAAGTGAAAACAGAGGGGATGACAC
CAGAGACAGGAACCTACCGCTGGATGGCACCGGAAATGATCCAGCACAGGCCTTATG
ATCATAAGGTTGATGTCTACAGCTTTGGGATTGTCTTGTGGGAGCTTATAACTGGCATG
CTTCCTTTCACAAACATGACAGCTGTTCAGGCGGCTTTTGCTGTTGTAAATAAGGGTGC
TCGTCCAGCGATCCCACATGACTGCCTGCCTTCCCTAACCCACATCATGACGCGCTGT
TGGGATGCAAACCCTGAAGTTCGCCCACCATTCACCGAGATCGTCTGCATGCTTGAGA
ACGCCGAGATGGAGGTCGTGAGCCATGTCCGTAAAGCGCGCTTCCGCTGCTGCGTTG
CTGAACCCATGACCACCGACTGAAACTAAAGCAGGTTAGACTATCGCAGCGGGCATTA
GGGAAGAAAACAGGTAAGGATGAAGAAAAGAGGCAATGCCAATGTGTTCATCGTTGTC
AGTGCGTGGGGTCTGTGTGCCTTTACCAGTGCGCATTCTGTCTTGTGTAAGTTGCACA
CCTCAAGTAAAAGTAATTTCGTATAGATGTTGCCTTGTATGCTAACAAAGACCTAATGG
AGCTTTTCCGTGTTAATAATATCCGCTTGCTCTTGTACTCGTGCAAGTTTGTGCCAAAA
AAAAAAAAAAA


CA 02692650 2010-01-05
WO 2009/010460 66 PCT/EP2008/059070
The TA56863186 cDNA is translated into the following amino acid sequence (SEQ
ID
N0:54):

MSVDNSSVGSNESRTVILKHPGLRDAPTASYSVGNSVFRPNRVAAHTLNEDALARVLMDP
NHPTEILSKYQQWAIDLGRLDMGVPFAQGAFGKLYRGTYIGEDVAIKLLEKPDNDIERAQSL
EQQFVQEVMMLSTLRHPNIVRFIGACRKSIVWCIITEYAKGGSVRQFLAKRQNKSVPLRLA
VKQALDVARGMAYVHALGFIHRDLKSDNLLIAADRSIKIADFGVARI EVKTEGMTPETGTYR
WMAPEMIQHRPYDHKVDVYSFGIVLWELITGMLPFTNMTAVQAAFAVVNKGARPAIPHDC
LPSLTHIMTRCWDANPEVRPPFTEIVCMLENAEMEVVSHVRKARFRCCVAEPMTTD
cDNA sequence of ZM62026837 from corn (SEQ ID NO:55):
CGCGCGGCCAAACTCCTGTTCTTCCACCTGCTGGCTGCTCCTGCCTCCCCTGCGCCC
CAAACCCACCCGCCTCGCCGTCCCCGCAGGCCGCAGCCTGCTCTCGGCTCCCGCCG
CCGTCTACCGCGTCCTGCGGCTGCGGTGTTGCGTCACCTCGGGTTCGCCTTAACTTC
CACAATCCTCGCCGTCCTGGTGCTCCGCCGCCCCTCCCTT
TGTACTCGCGCTGGAGCTGCAGATCCACCGCGACCTGGCGACCAATTCCTCCTCCCG
CTGAAGAATTGGCGACCTTGGCCTCCGCCCCCGCGGCGCGGAGGAGTCAACTGTGGT
AGCAACCACCGCGGAGGCTGCAAGCCTTCGGTAAGGGAGGAAAGTTGACTTGTTGGA
AGCCGGTCCAGGGCCGCGATGACGTCGACCGCCGCCGGCGCGTCGTCGTCGGCGG
CGAAGAGCGAGTCCTACCTGCGGGCCGACAAGATCGACCTCGAGAGCCTGGACATCC
AGCTGGAGAAGCAGCTGGCCAAGACCTGGGAGAAGCACAAGGGGTCGTACAACCAG
GGGCCCAGGGAGGACTGGGAGATCGACCTCGCCAAGCTCGAGATTCGCTACGTCATA
GCGCAGGGCACCTACGGCACGGTGTATCGCGGCACGTATGATGGGCAGGACGTCGC
AGTAAAACTATTGGATTGGGGTGAAGATGGCTTTGCGTCAGAAACTGAAACTGCCACA
CTGCGAGCATCATTTAAGCAGGAGGTTGCTGTCTGGCATGAGCTCAACCATCCGAATG
TTACAAAGTTTGTTGGTGCATCAATGGGTACTACAGACCTTAAGATTCCAGCCAATAGT
TCTAACAGTGGTGGGCGCACTGAGCTGCCGCCAAAAGCATGTTGTGTTGTGGTCGAAT
ATCTCGCTGGAGGATCACTGAAG CAGTATTTAATAAAGAACAG GCGAAGGAAGCTTGC
ATACAAGGTTGTTGTTCAGATAGCACTGGATCTTGCCAGAGGATTGAACTATCTACATT
CAAGAAAGATAGTACATCGGGATGTAAAAACTGAAAATATGCTGCTCGATACACAGCG
AAACCTTAAGATTGCTGATTTTGGTGTTGCTCGTGTTGAGGCTCAGAATCCAAAGGACA
TGACAGGCGCGACTGGGACACTTGGCTACATGGCCCCAGAGGTGCTTGAAGGCAAGC
CATACAACAGAAAGTGTGATGTCTACAGTTTTGGCATATGCTTATGGGAAATATACTGC
TGTGACATGCCATATCCAGACCTCAGTTTTGCAGACGTCTCGTCCGCCGTCGTTCACC
AGAACCTGCGGCCTGACATCCCTCGCTGCTGCCCAAGCCCAATGGCGAACATCATGC
GGAAGTGCTGGGACGCAAACCCGGATAAGCGCCCTGACATGGACGACGTGGTGCGG
TTCCTGGAGGCCCTCGACACGAGCAAGGGCGGTGGCATGATACCAGAAGGCCAGGC
AGGCGGGTGCTTGTGTTTCTTCAGAGCCCGTGGTCCTTAGAACCAACCAACCCTTTCC
AGCCATCCTCTACTTGTCTCTGCCATACTACAGTATTGGAGCCAGATGTAGGCCTTTGT
TGTTCATCGGATAGGGGATTGCAGATAACTTGATGACAATCTTTGTGATTGGTTGACAC


CA 02692650 2010-01-05
WO 2009/010460 67 PCT/EP2008/059070
TTGTTATACGTTCTATAGTGATGTGAATACCAGTGAGGAGTCCATAATACAGAGTGAAA
AAAAAAA

The ZM62026837 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:56):

MTSTAAGASSSAAKS ESYLRADKI DLESLDIQLEKQLAKTWEKH KGSYNQG PRE DWE I DLA
KLEI RYVIAQGTYGTVYRGTYDGQDVAVKLLDWGEDGFASETETATLRASFKQEVAVWHE
LNHPNVTKFVGASMGTTDLKIPANSSNSGGRTELPPKACCVVVEYLAGGSLKQYLIKNRRR
KLAYKVVVQIALDLARGLNYLHSRKIVHRDVKTENMLLDTQRNLKIADFGVARVEAQNPKD
MTGATGTLGYMAPEVLEGKPYNRKCDVYSFGICLWEIYCCDMPYPDLSFADVSSAVVHQN
LRPDIPRCCPSPMANIMRKCWDANPDKRPDMDDVVRFLEALDTSKGGGMIPEGQAGGCL
CFFRARGP
cDNA sequence of ZM65457595 from corn (SEQ ID NO:57):
ACCTCGCCACCCTCCTGCCTCCTCCGCATCCGCGCCCCCTCGCTTAGCCTAAACCGC
GGGGCAGCTAGTCTCGCCACCGCAGGCCGCACCGGTCATCACACCGAAGCGCACGC
GGGGAGCCCCCGTAGAGTTCCGGGGCGACCAGGCCAACTAACGCCATGAAGGAGGA
AGGCGGCGGCGGGGACGCGGGGTTCGTGCGGGCGGACCAGATCGACCTCAAGAGC
CTGGACGAGCAGCTGGAGCGCCATCTCACCCGCGCCTGGACCATGGAGAAGCGCAA
GGAGGAGGCCTCCGCCGGCGCTGGCGCCGGCGCCAGGCAGCACCAGCAGTCCCGG
CGCCCGCGGAGGGAGGACTGGGAGATCGACCCCGCCAAGCTTGTCGTCAAGGGCGT
CATCGCCCGCGGCACCTTTGGCACCGTCCACCGCGGCATCTACGACGCTCACGACGT
CGCAGTGAAACTACTTGATTGGGGAGAGGATGGGCATAGATCAGAACAAGACATTGCA
GCACTAAGAG CAGCTTTTTCACAAGAG GTCTCTGTTTGGCATAAG CTTGACCATCCAAA
TGTAACCAAGTTTATTGGAGCTATAATGGGTGCAAGGGATCTGAATATTCAAACGGAAA
ACGGCCACATTGGCATGCCAACTAATATCTGCTGTGTCGTTGTGGAGTACCTTCCTGG
TGGTGCACTAAAATCATTTCTGATAAAGAACAGGAGAAAGAAGCTAGCTTTTAAGGTCG
TTGTTCAAATCGCTCTTGACCTTGCCAGGGGATTAAGCTATCTCCATTCCAAGAAGATT
GTGCACCGTGATGTGAAGACTGAAAATATGCTTCTTGACAAAACGAGAACCGTGAAGA
TCGCTGATTTTGGTGTTGCTCGCCTTGAAGCTTCAAATCCCAGTGACATGACGGGCGA
AACTGGAACGCTTGGTTACATGACACCTGAGGTTCTCAATGGAAATCCCTACAACAGG
AAATGCGATGTTTACAGCTTCGGGATCTGTTTGTGGGAGATATACTGCTGTGATATGCC
ATATCCTGACTTGAGCTTTTCTGAGGTCACGTCTGCGGTTGTCCGTCAGAACCTGAGG
CCGGAGATACCACGCTGCTGCCCGAGCTCTCTATCGAACGTGATGAAGCGCTGCTGG
GACGCCAACCCCGACAAGCGACCTGAGATGGCCGAGGCGGTGTCCATGCTGGAGGC
GATCGACACGTCGAAGGGTGGAGGCATGATCCCTGTGGACCAGCGGCCAGGATGCCT
TGCGTGCTTCCGGCAGTACAGAGGTCCATGACAGATAGGTGGAAACCTGTTGGAGCT
GCGGCCTCTAGATCTCGTGGATGCCGATCGATCGCGTGTTGTTTTCTGGGGAAGCAAA


CA 02692650 2010-01-05
WO 2009/010460 68 PCT/EP2008/059070
CTGGTTAATGGAGCTAGCCCGCCTTACCGGCTCGTGTAAATCCTCTGTCCATCAATTCT
GTAACTCTGTTTTATCGATTAATGAAAAGAACCGGGCTTGCTCGAAAAAAAAAAAAAAA
The ZM65457595 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:58):
MKEEGGGGDAGFVRADQIDLKSLDEQLERHLTRAWTMEKRKEEASAGAGAGARQHQQS
RRPRREDWEIDPAKLVVKGVIARGTFGTVHRGIYDAHDVAVKLLDWGEDGHRSEQDIAAL
RAAFSQEVSVWHKLDHPNVTKFIGAIMGARDLNIQTENGHIGMPTNICCVVVEYLPGGALK
SFLIKNRRKKLAFKVVVQIALDLARGLSYLHSKKIVHRDVKTENMLLDKTRTVKIADFGVARL
EASNPSDMTGETGTLGYMTPEVLNGNPYNRKCDVYSFGICLWEIYCCDMPYPDLSFSEVT
SAVVRQNLRPEIPRCCPSSLSNVMKRCWDANPDKRPEMAEAVSMLEAIDTSKGGGMIPV
DQRPGCLACFRQYRGP

cDNA sequence of ZM67230154 from corn (SEQ ID NO:59):
CGGCAACCCACTATCTCATGCGCTCACATGGAGACTCCCGCACGAACTGGAATCATCT
CCGCCTCGCCACCTCTTCATCTTCTTCCCCAGTAGCCGCCGCCACCACCACTGCAGCA
GCCAAACCACGTGACACCTCCCGCGCCGCTCAACCCCACAGCATCCGTTGCCACCGC
CGCTCACCTCCCCGGCGCTCCCGGCTACAACCACTGC
AAGCATGAGGCAGCCAACCAGCGCGGGCGGCGACGCTGGGTTCTTGCGCGCGGACC
AGATCGACCTCAAGAGCCTGGACGAGCAGCTCGAGCGCCACCTCGGACATCCCGCG
GAGCGGGTAGTTGGCCCAGTCTCTGGGACAGGGAGCCGCCGCGGCGAAACGGCCAA
GCTGGGTCCGGAGGAGCTGACGCCACTGCAGCGGTGCCGTGAGGACTGGGAGATCG
ACCCTACCAAGCTCATCATCAAGGGCGTCATCGCGCGCGGCACCTTTGGCACCGTCC
ACCGCGGCGTCTACGACGGCCAGGACGTCGCTGTAAAATTGCTTGACTGGGGCGAAG
ATGGCCATAGATCAGAACAAGAAATTGGTGCACTAAGAGCAGCGTTTGCACAAGAGGT
CGCTGTCTGGCATAAGCTTGAGCATCCAAACGTTACTAAGTTTATTG GGG CTATAATGG
GCGCAAGAGATTTAAATATACAAACGGAACATGGACAGCTTGGCATGCCAAGCAATAT
TTGCTGTGTTGTTGTTGAGTACCTTGCTGGAGGTGCGCTGAAAAATTTTCTGATAAAGA
ACAGGAGAAGGAAACTTGCCTTTAAAGTTGTGGTCCAAATAGCTCTTGACCTTGCCAG
GGGATTATGCTACCTCCACTCAAAGAAAATAGTGCACCGTGATGTCAAGACTGAAAAC
ATGCTTCTGGACAAGACGAGAACGGTAAAGATCGCTGATTTTGGTGTTGCTCGAGTCG
AGGCTTCAAATCCTAGCGATATGACGGGAGAAACAGGGACGCTTGGTTACATGGCTCC
TGAGGTTCTCAATGGCCATGCTTACAACAGGAAGTGTGACGTGTACAGCTTTGGGATC
TGCCTGTGGGAGATATACTGCTGTGACATGCCGTACCCTGATCTCAGTTTTTCTGAGG
TCACCTCTGCCGTCGTTCGCCAGAATCTGAGGCCTGAGATACCGCGCTGCTGCCCGA
GCTCGCTAGCGAATGTGATGAAGCGATGCTGGGACGCGAACCCGGACAAGCGTCCCG
AGATGGCGGAGGTGGTGTCCATGCTGGAGGCGATCGACACGTCCAAGGGTGGCGGC
ATGATCCCTAAGGACCAGACGCAGGGCTGCCTCTCGTGCTTCCGCCAGTACCGAGGT
CCCTAACGCAGGGTTGTTTATTTATACCCGGTGAAATGATGATATTGGTCTCTACACTA
CAACTCAGTGTAATCTAATCGCAGAAGTGGCTATATAATGGAGAAGCTTATCATTGCTT


CA 02692650 2010-01-05
WO 2009/010460 69 PCT/EP2008/059070
GCCATGGGTGTAAATGGATGGGGCGGGGTGGTTGACGATTGGTGTGCTTGTATGCTC
GCTTCGAGTTATAATGCTTGCTGTAAGTTAAGGTGTGGAAAAAAAAAAAAAA
The ZM67230154 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:60):
MRQPTSAGGDAGFLRADQIDLKSLDEQLERHLGHPAERVVGPVSGTGSRRGETAKLGPE
ELTPLQRCREDWEIDPTKLIIKGVIARGTFGTVHRGVYDGQDVAVKLLDWGEDGHRSEQEI
GALRAAFAQEVAVWHKLEHPNVTKFIGAI MGARDLNIQTEHGQLGMPSNICCVVVEYLAG
GALKNFLIKNRRRKLAFKVVVQIALDLARGLCYLHSKKIVHRDVKTENMLLDKTRTVKIADFG
VARVEASNPSDMTGETGTLGYMAPEVLNGHAYNRKCDVYSFGICLWEIYCCDMPYPDLSF
SEVTSAVVRQNLRPEIPRCCPSSLANVMKRCWDANPDKRPEMAEVVSMLEAIDTSKGGG
MIPKDQTQGCLSCFRQYRGP

cDNA sequence of EST465 from moss (SEQ ID NO:61):
GGGCCTCCTTCCTAGCCTTCATCTGCTGCGACGATGGAGGAGCTCGCCTCATCTGATG
TTCCGAACAAGTTGAAGAAGAAGGAATCTAAGATGAAGAAGAGGGTTATAACTCCAGG
GGCCTTGCTGAAGGCAGTAGTAAGGTCTGGAGAGGGGACTAAACGTCCTGTAGAAGG
TGATCAGATTATCTTCCATTATGTCACACGAACAAATCAGGGAGTGGTGGTTGAGACAT
CGCGATCTGACTTTGGAGGAAAGGGAGTTCCTCTTAGACTTGTTCTGGGAAAAAGCAA
AATGATTGCTGGATG GGAGGAAGG CATCACCACCATGGCCAAAGGTGAAATAGCTATG
CTGAAAGTGCAACCTGAATTACATTATGGTGACCCGGAGTGTCCTGTACCAGTGCCCG
AGAACTTTCCAGTTTCTGATGAGCTCCTTTACGAAGTGGAGTTGTTCAACTTCTGTAAG
GCGAAGATTATCACAGAGGATCTTGGTGTGACAAAAGTGGTCTTAGAAGAGGGTGAGG
GCTGGGAAACTGCAAGGCCTCCGTACGAGGTGAAGCTTTGGATTACAGGCCGGATCT
TAGGTGGGTCCACATTTTTTACTCATAAAGAGTGCGATCCCATTCATGTTGAATTCGGC
AAGGAACAGTTGCCAGAAGGACTTGAGAAGGCAGTCGGCACTATGACGAGGAAAGAA
AAGTCAATTATCTACATTTCAAGTTCATACTGTACGAATTCTTCAAATGCATACAAATTG
AATATATCTCCTCAAGCGCAAGAACTAGAATTTGAAGTGCAGTTGGTGCAGCTCATTCA
GGTAAGAGACATGTTTGGAGATGGAGGATTGATTAAGAGACGCCTGCGAGACGGACT
AGGTGAATTTCCTGTGGACTGTCCTCTGCAAGATAGTGTGCTTAGAGTCCACTATAAG
GCTATGCTACCTGATGATGGCGGCAGAATATTTATTGACACCAGAAGTAATGGAGGGG
AGCCTGTTGAGTTTGCTTCTGGTGAGGGTGTGGTACCAGAGGGACTTGAGGCAAGTTT
GAGGTTGATGCTTCCGGGGGAGCTCGCACTGATCAACAGCGTCTCTAAGTACGCATAT
GACAAATTTCAAAGGCCAGAGAGTGTTCCAGAGGGAGCTTCAGTCCAATGGGAAGTG
GAATTACTG GAATTTGAGAG TG CAAAG GATT G GAC G G G CCTTAATTTTCAAGAGATCAT
GGCTGAAG CTGATTCCATAAAGACCACAGGTAACCGGTTATTTAAGGAGG GCAAG CAC
GAGCTGGCTAAAGCTAAGTACGAAAAGGTGTTGAGGGATTTCAGACATGTAAACCCTG
GCAGTGATGAAGAAGCAAAGGAACTACAAGACACCAATAACGCACTGCGGCTTAATGT
AGCAGCTTGTTATCATAAACTCCATGAGTACATCAAATGCATAGAAACATGCAACAAGG
TG CTAGAAGGTAACCCG CATCATGTCAAAGGGTTATTTCGCCGAGGAACTGCTTACAT


CA 02692650 2010-01-05
WO 2009/010460 70 PCT/EP2008/059070

G GAAAC G G G G GACTTTGATGAAG CTAGAG CTG ATTT CAAG CAGATGATAACAG TTGAC
AAGGCTGTCACAGTTGATGCAACTGCTGCTTTACAGAAGCTCAAGCAAAAAGAACGGG
AAGCTGAGCTGAAAGCTAAGAAACAGTTCAAAGGGCTATTTGACTTAAAACCTGGAGA
ACTCTCTGAGGGGCTAGAAGAGGTAAAGCCCGTAAGCGAAATCCATGAGAAGACTGTT
GTCAACGAGGAACTTCCGATAGCATCTATGGATCAACATCAACACTCAAAGCACGAAA
CAGAGGAAGGGAGCCATGAATCGCCCAGGGCAAGCAGCCGATTGTTAAGACTTCTGA
AAGGTGGAGAGCACCTGATAAGGACAGTCACTTTTGGGAAGTGTACGATTCTTTAATTT
TTCATATTGCTACTGCTAGGATCTCCCCTTTTTACTGTACTGGTGACTACCTTATGCTCA
TTTACATTTCTAAGCCGTTATAGCTGTTATTAACCATTCGATAATGTACTATGAACAATAT
TCCACTAGCGTTTTATGGCTATTTTTCATTAAGTCCTCGTGCCGTTA

The EST465 cDNA is translated into the following amino acid sequence (SEQ ID
NO:62):
MEELASSDVPNKLKKKESKMKKRVITPGALLKAVVRSGEGTKRPVEGDQIIFHYVTRTNQG
VVVETSRSDFGGKGVPLRLVLGKSKMIAGWEEGITTMAKGEIAMLKVQPELHYGDPECPV
PVPENFPVSDELLYEVELFNFCKAKIITEDLGVTKVVLEEGEGWETARPPYEVKLWITGRIL
GGSTFFTHKECDPIHVEFGKEQLPEGLEKAVGTMTRKEKSIIYISSSYCTNSSNAYKLNISP
QAQELEFEVQLVQLIQVRDMFGDGGLIKRRLRDGLGEFPVDCPLQDSVLRVHYKAMLPDD
GGRIFIDTRSNGGEPVEFASGEGVVPEGLEASLRLMLPGELALINSVSKYAYDKFQRPESV
PEGASVQWEVELLEFESAKDWTGLNFQEIMAEADSIKTTGNRLFKEGKHELAKAKYEKVL
RDFRHVNPGSDEEAKELQDTNNALRLNVAACYHKLHEYIKCIETCNKVLEGNPHHVKGLFR
RGTAYMETGDFDEARADFKQMITVDKAVTVDATAALQKLKQKEREAELKAKKQFKGLFDL
KPGELSEGLEEVKPVSEIHEKTVVNEELPIASMDQHQHSKHETEEGSHESPRASSRLLRLL
KGGEHLIRTVTFGKCTIL

cDNA sequence of YBL109w from yeast (SEQ ID NO:63):
ATGTCCCTACGGCCTTGTCTAACACCATCCAGCATGCAATACAGTGACATATATATATA
CCCTAACACTACCCTAACCCTACCCTATTTCAACCCTTCCAACCTGTCTCTCAACTTAC
CCTCACATTACCCTACCTCTCCACTTGTTACCCTGTCCCATTCAACCATACCACTCCCA
ACCACCATCCATCCCTCTACTTACTACCACCAATCAACCGTCCACCATAACCGTTACCC
TCCAATTAGCCATATTCAACTTCACTACCACTTACCCTGCCATTACTCTACCATCCACCA
TCTGCTACTCACCATACTGTTGTTCTACCCTCCATATTAA
The YBL109w cDNA is translated into the following amino acid sequence (SEQ ID
NO:64):
MSLRPCLTPSSMQYSDIYIYPNTTLTLPYFNPSNLSLNLPSITYPTSPLVTLSHSTIPLPTTIHP
STYYHQSTVHHNRYPPISHIQLHYHLPCHYSTIHHLLLTILLFYPPY

cDNA sequence of YBL100c from yeast (SEQ ID NO:65):


CA 02692650 2010-01-05
WO 2009/010460 71 PCT/EP2008/059070
ATGTTGTTCAAACCAAAAACACGAGCAATACCATCACCGACTGCAAGAACTCTACCAGT
TTCGTTCAAATTGGCCTCGTCGGACACACCCTTAATTCTTTCCTCTAAGATGGAGGAAA
CTTCTGTGGGTTGTGCCTTGGTGGAAGCCAATCTTCTGGTGGAAGCCAAAGCAGCAGC
GGCAGGTCTTGCGGCCTTGGTAGAGTTAATTAGAGTTCTCGATAGAGAACGAATAGCA
GCAGTACGAGCCAACATTATTATATGTGCGTGTTTTTTTTATTTATTTTGTTACTGTTCTT
GCGATAGTTATGAGAGCTAA

The YBL100c cDNA is translated into the following amino acid sequence (SEQ ID
NO:66):
MLFKPKTRAIPSPTARTLPVSFKLASSDTPLILSSKMEETSVGCALVEANLLVEAKAAAAGL
AALVELIRVLDRERIAAVRANIIICACFFYLFCYCSCDSYES
cDNA sequence of YKL184w from yeast (SEQ ID NO:67):
ATGTCTAGTACTCAAGTAGGAAATGCTCTATCTAGTTCCACTACTACTTTAGTGGACTT
GTCTAATTCTACGGTTACCCAAAAGAAGCAATATTATAAAGATGGCGAGACGCTGCACA
ATCTTTTGCTTGAACTAAAGAATAACCAAGATTTGGAACTTTTACCGCATGAACAAGCG
CATCCTAAAATATTTCAAGCGCTCAAGGCTCGTATTGGTAGAATTAATAATGAAACGTG
CGACCCCGGTGAGGAGAACTCGTTTTTCATATGCGATTTGGGAGAAGTCAAGAGATTA
TTCAACAACTGGGTGAAGGAGCTTCCTAGAATTAAGCCATTTTATGCCGTCAAATGTAA
TCCTGATACCAAGGTTTTGTCATTATTAGCAGAGTTGGGCGTTAATTTCGATTGCGCTT
CCAAAGTGGAAATTGACAGAGTATTATCGATGAACATCTCGCCGGATAGAATTGTTTAC
GCTAATCCTTGTAAAGTAGCATCTTTCATTAGATATGCAGCTTCAAAAAATGTAATGAAG
TCTACTTTTGACAATGTAGAAGAATTGCATAAAATCAAAAAGTTTCATCCTGAGTCTCAG
TTGTTATTAAGAATCGCTACCGATGACTCTACCGCTCAATGTCGACTTTCCACCAAATA
TGGCTGTGAAATGGAAAACGTAGACGTTTTATTAAAGGCTATAAAGGAACTAGGTTTAA
ACCTGGCTGGTGTTTCTTTCCACGTCGGTTCAGGCGCTTCTGATTTTACAAGCTTATAC
AAAGCCGTTAGAGATGCAAGAACGGTATTTGACAAAGCTGCTAACGAATACGGGTTGC
CCCCTTTGAAGATTTTGGATGTAGGTGGTGGATTTCAATTTGAATCCTTCAAAGAATCA
ACTGCTGTTTTGCGTCTAGCGCTAGAGGAATTTTTCCCTGTAGGTTGTGGTGTTGATAT
AATTGCAGAGCCTGGCAGATACTTTGTAGCTACAGCGTTCACTTTGGCATCTCATGTGA
TTGCGAAGAGAAAACTGTCTGAGAATGAAGCAATGATTTACACTAACGATGGTGTATAC
GGGAACATGAATTGTATTTTATTCGATCATCAAGAGCCCCATCCAAGAACCCTTTATCA
TAATTTGGAATTTCATTACGACGATTTTGAATCCACTACTGCGGTCCTCGACTCTATCAA
CAAAACAAGATCTGAGTATCCATATAAAGTTTCCATCTGGGGACCCACATGTGATGGTT
TGGATTGTATTGCCAAAGAGTATTACATGAAGCATGATGTTATAGTCGGTGATTGGTTT
TATTTTCCTGCCCTGGGTGCCTACACATCATCGGCGGCTACTCAATTCAACGGCTTTGA
GCAGACTGCGGATATAGTATACATAGACTCTGAACTCGATTAA
The YKL184w cDNA is translated into the following amino acid sequence (SEQ ID
NO:68):


CA 02692650 2010-01-05
WO 2009/010460 72 PCT/EP2008/059070
MSSTQVGNALSSSTTTLVDLSNSTVTQKKQYYKDGETLHNLLLELKNNQDLELLPHEQAHP
KIFQALKARIGRINNETCDPGEENSFFICDLGEVKRLFNNWVKELPRIKPFYAVKCNPDTKV
LSLLAELGVNFDCASKVEIDRVLSMNISPDRIVYANPCKVASFIRYAASKNVMKSTFDNVEE
LHKIKKFHPESQLLLRIATDDSTAQCRLSTKYGCEMENVDVLLKAIKELGLNLAGVSFHVGS
GASDFTSLYKAVRDARTVFDKAANEYGLPPLKILDVGGGFQFESFKESTAVLRLALEEFFP
VGCGVDIIAEPGRYFVATAFTLASHVIAKRKLSENEAMIYTNDGVYGNMNCILFDHQEPHPR
TLYHNLEFHYDDFESTTAVLDSINKTRSEYPYKVSIWGPTCDGLDCIAKEYYMKHDVIVGD
WFYFPALGAYTSSAATQFNGFEQTADIVYIDSELD

cDNA sequence of YPL091w from yeast (SEQ ID NO:69):
ATGCTTTCTGCAACCAAACAAACATTTAGAAGTCTACAGATAAGAACTATGTCCACGAA
CACCAAGCATTACGATTACCTCGTCATCGGGGGTGGCTCAGGGGGTGTTGCTTCCGC
AAGAAGAGCTGCATCTTATGGTGCGAAGACATTACTAGTTGAAGCTAAGGCTCTTGGT
GGTACCTGTGTTAACGTGGGTTGTGTTCCGAAGAAAGTCATGTGGTATGCTTCTGACC
TCGCTACTAGAGTATCCCATGCAAATGAATATGGATTATATCAGAATCTTCCATTAGATA
AAGAG CATTT GACTTTTAATTG G C CAGAATTTAAG CAGAAAAG G G ATG CTTATG TC CAT
AGGTTGAACGGTATATACCAGAAGAATTTAGAAAAAGAAAAAGTGGATGTTGTATTTGG
ATGGGCTAGATTCAATAAGGACGGTAATGTTGAAGTTCAGAAAAGGGATAATACTACTG
AAGTTTACTCCGCTAACCATATTTTAGTTGCGACCGGTGGAAAGGCTATTTTCCCCGAA
AACATTCCAGGTTTCGAATTAGGTACTGATTCTGATGGGTTCTTTAGATTGGAAGAACA
ACCTAAGAAAGTTGTTGTTGTTGGCGCTGGTTATATTGGTATTGAGCTAGCAGGTGTGT
TCCATGGGCTGGGATCCGAAACGCACTTGGTAATTAGAGGTGAAACTGTCTTGAGAAA
ATTTGATGAATGCATCCAGAACACTATTACTGACCATTACGTAAAGGAAGGCATCAACG
TTCATAAACTATCCAAAATTGTTAAGGTGGAGAAAAATGTAGAAACTGACAAACTGAAA
ATACATATGAATGACTCAAAGTCCATCGATGACGTTGACGAATTAATTTGGACAATTGG
ACGTAAATCCCATCTAGGTATGGGTTCAGAAAATGTAGGTATAAAGCTGAACTCTCATG
ACCAAATAATTGCTGATGAATATCAGAACACCAATGTTCCAAACATTTATTCTCTAGGTG
ACGTTGTTGGAAAAGTTGAATTGACACCTGTCGCTATTGCAGCGGGCAGAAAGCTGTC
TAATAGACTTTTTGGTCCAGAGAAATTCCGTAATGACAAACTAGATTACGAGAACGTCC
CCAGCGTAATTTTCTCACATCCTGAAGCCGGTTCCATTGGTATTTCTGAGAAGGAAGCC
ATTGAAAAGTACGGTAAGGAGAATATAAAGGTCTACAATTCCAAATTTACCGCCATGTA
CTATGCTATGTTGAGTGAGAAATCACCCACAAGATATAAAATTGTTTGTGCGGGACCAA
ATGAAAAGGTTGTCGGTCTGCACATTGTTGGTGATTCCTCTGCAGAAATCTTGCAAGG
GTTCGGTGTTGCTATAAAGATGGGTGCCACTAAGGCTGATTTCGATAATTGTGTTGCTA
TTCATCCGACTAGCGCAGAAGAATTGGTTACTATGAGATAA
The YPL091w cDNA is translated into the following amino acid sequence (SEQ ID
NO:70):
MLSATKQTFRSLQIRTMSTNTKHYDYLVIGGGSGGVASARRAASYGAKTLLVEAKALGGT
CVNVGCVPKKVMWYASDLATRVSHANEYGLYQNLPLDKEHLTFNWPEFKQKRDAYVHRL


CA 02692650 2010-01-05
WO 2009/010460 73 PCT/EP2008/059070
NGIYQKNLEKEKVDVVFGWARFNKDGNVEVQKRDNTTEVYSANHILVATGGKAIFPENIPG
FELGTDSDGFFRLEEQPKKVVVVGAGYIGIELAGVFHGLGSETHLVIRGETVLRKFDECIQN
TITDHYVKEGINVHKLSKIVKVEKNVETDKLKIHMNDSKSIDDVDELIWTIGRKSHLGMGSEN
VGIKLNSHDQI IADEYQNTNVPNIYSLGDVVGKVELTPVAIAAGRKLSNRLFGPEKFRNDKL
DYENVPSVIFSHPEAGSIGISEKEAIEKYGKENIKVYNSKFTAMYYAMLSEKSPTRYKIVCAG
PNEKVVGLHIVGDSSAEILQGFGVAIKMGATKADFDNCVAI HPTSAEELVTMR

cDNA sequence of TA54587433 from wheat (SEQ ID NO:71):

ATGGCGGTCATGTCACGGTTGAAGAGGCTGGCGGCGCCCGCGCTGCTGGTGCTGCTT
GCGCTGGCGGCGTCCGCGGCCGTGGCGGCGAAGACGACCCAGGACGGCGCGGAGG
CGGCGCCGGGCAAGGATGAAGAGTCGTGGACGGGGTGGGCCAAGGACAAGATCTCC
GAGGGGCTGGGGCTCAAGCACGACGCTGACGAGGAGGCCGCGCGCGAGACCGTCC
AGCACACCGCCTCCGAGACGGGGAGTCAGGTGAGCGGCAAGGCAGCGGACGCCAAG
GAGGCGGCCAAGGGAACGGTCGGGGAGAAGCTCGGGGAGGTGAAGGACAAGGTCA
CCGGCGCAGCAGCCGACGGCAAGGACAAGACGCACCGCAAGGATGACTTGCTGTGA
The TA54587433 cDNA is translated into the following amino acid sequence (SEQ
ID
N0:72):
MAV M S RL KRLAAPAL LV LLALAASAAVAAKTTQ D GAEAAPG KD E E S WTG WAKD KI S E G
LG
LKHDADEEAARETVQHTASETGSQVSGKAADAKEAAKGTVGEKLGEVKDKVTGAAADGK
DKTHRKDDLL

cDNA sequence of ZM68532504 from corn (SEQ ID NO:73):
ATGCCGTCGCACGGGGATCTGGACCGGCAGATCGCGCAGCTGCGCGACTGCAAGTA
CCTGCCCGAGGCGGAGGTCAAGGCGCTCTGCGAGCAGGCCAAGGCCATCCTTATGG
AGGAGTGGAACGTGCAGCCCGTGCGCTGTCCTGTCACCGTCTGTGGCGACATCCACG
GCCAGTTCTATGACCTCATCGAGCTCTTCCGCATCGGCGGCGACGCTCCCGACACCA
ACTACCTCTTCATGGGCGACTACGTCGATCGTGGGTACTATTCAGTTGAAACAGTTTCT
CTGTTAGTGGCTTTGAAAGTCCGTTACAGAGATAGAATTACAATACTTAGAGGAAATCA
TGAGAGCAGACAAATCACTCAAGTATATGGCTTCTATGATGAATGCTTAAGAAAGTATG
GAAATGCAAATGTCTGGAAGTATTTTACAGACTTGTTTGATTTTTTGCCTCTCACAGCTC
TTATAGAAAATCAGGTCTTCTGTCTTCACGGTGGCCTCTCTCCGTCATTGGACACGTTG
GATAATATTCGTTCTCTTGATCGCGTACAGGAGGTTCCTCATGAAGGACCCATGTGTGA
TCTTTTGTGGTCTGACCCAGATGACCGATGTGGATGGGGAATTTCACCAAGAGGAGCA
GGTTACACATTTGGGCAAGACATTGCGCAGCAGTTCAACCATACAAATGGTCTTTCTCT
CATTTCAAGGGCCCATCAACTTGTAATGGAAGGATTTAATTGGTGCCAGGATAAGAATG
TAGTCACAGTCTTCAGCGCGCCTAATTATTGTTACCGCTGTGGTAACATGGCTGCTATT


CA 02692650 2010-01-05
WO 2009/010460 74 PCT/EP2008/059070
CTTGAAATCGGGGAAAACATGGACCAGAACTTCCTTCAATTCGACCCGGCACCTCGGC
AAATTGAGCCAGACACAACTCGGAAAACCCCAGACTACTTTTTGTAA
The ZM68532504 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:74):
MPSHGDLDRQIAQLRDCKYLPEAEVKALCEQAKAILMEEWNVQPVRCPVTVCGDIHGQFY
DLIELFRIGGDAPDTNYLFMGDYVDRGYYSVETVSLLVALKVRYRDRITILRGNHESRQITQ
VYGFYDECLRKYGNANVWKYFTDLFDFLPLTALIENQVFCLHGGLSPSLDTLDNIRSLDRV
QEVPHEGPMCDLLWSDPDDRCGWGISPRGAGYTFGQDIAQQFNHTNGLSLISRAHQLVM
EGFNWCQDKNVVTVFSAPNYCYRCGNMAAILEIGENMDQNFLQFDPAPRQIEPDTTRKTP
DYFL

cDNA sequence of BN42856089 from canola (SEQ ID NO:75):
AAAACTCCAAAAACAAACCATTTTCCATCTCTCAGGCCAAAAAAACCAGAGATTTGATC
TCTCTGGCGATTCATCATCCTCTTCATCCACCACACGCCGTATAAGTTAAAGGATCGGT
GGTGGTCTCTCGATGCCGCCGAACGGAGATCTAGACCGTCAGATCTCCCAGCTGATG
GAGTGTAAACCGCTATCTGAGGCCGATGTGAAGACGCTCTGCGATCAAGCGAGGGCC
ATCCTCGTCGAGGAGTGGAACGTTCAGCCCGTGAAGTGTCCTGTCACCGTCTGCGGC
GATATCCACGGACAGTTCTATGACCTTATCGAGCTCTTTCGAATCGGTGGGAATCCTC
CGGATACTAACTACCTCTTCATGGGAGACTATGTAGACCGTGGCTACTATTCAGTAGAA
ACAG TTTCTCTATTG G T G G CACTGAAAG T G CG ATACAG G GATAG G ATTACAAT CTTG C
GAGGGAATCACGAGAGTCGGCAGATTACTCAAGTCTATGGGTTTTATGATGAATGTTT
GAGGAAGTATGGAAATGCAAATGTCTGGAAGTTTTTCACGGACCTTTTCGATTATCTTC
CTCTTACTGCTCTCATAGAGAGTCAGGTTTTCTGCTTGCATGGAGGGCTTTCACCTTCT
CTGGACACCCTTGATAATATCCGAAGCTTGGATCGTATACAAGAGGTTCCACATGAAG
GACCAATGTGTGATTTATTATGGTCTGATCCCGATGATCGATGTGGGTGGGGAATATCT
CCACGAGGTGCTGGTTATACATTTGGACAAGACATCGCAACTCAGTTTAATCACAACAA
TGGACTCAGTCTCATATCAAGAGCACATCAACTTGTCATGGAAGGCTTTAACTGGTGTC
AGGACAAAAATGTTGTGACGGTGTTTAGTGCACCAAACTATTGCTACCGGTGTGGAAA
CATGGCAGCTATTCTAGAGATAGGAGAGAACATGGACCAGAACTTCCTCCAGTTCGAT
CCAGCTCCTCGTCAAGTCGAACCAGATACTACCCGCAAGACCCCTGATTATTTTTTGTG
ATTTATTTGCATTTTTTTTTCTTTTGTTCCCAACCATTTATAATTTTTAAAAAATCTGTTTT
ATCTTGCTTATGAATAATCATTCTAGTGTCTCTTCAAAAAAAAAAAAAAA

The BN42856089 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:76):

MPPNGDLDRQISQLMECKPLSEADVKTLCDQARAILVEEWNVQPVKCPVTVCGDIHGQFY
DLIELFRIGGNPPDTNYLFMGDYVDRGYYSVETVSLLVALKVRYRDRITILRGNHESRQITQ
VYGFYDECLRKYGNANVWKFFTDLFDYLPLTALIESQVFCLHGGLSPSLDTLDNIRSLDRIQ


CA 02692650 2010-01-05
WO 2009/010460 75 PCT/EP2008/059070
EVPHEGPMCDLLWSDPDDRCGWGISPRGAGYTFGQDIATQFNHNNGLSLISRAHQLVME
GFNWCQDKNVVTVFSAPNYCYRCGNMAAILEIGENMDQNFLQFDPAPRQVEPDTTRKT-
PDYFL

cDNA sequence of BN43206527 from canola (SEQ ID NO:77):
CCAAAGACCATTTGATCTCTGGCGATTTCATCTTCCGATATGCCGCCGAACGGAGATC
TAGACCGTCAGATCGAGCATCTGATGGAGTGCAAACCTTTATCGGAGGAGGATGTGAG
GACGCTCTGCGATCAAGCTAAGGCCATCCTCGTCGAGGAATGGAACGTCCAGCCCGT
GAAATGCCCCGTCACCGTCTGCGGCGATATCCACGGCCAGTTCTATGACCTTATCGAG
CTTTTCCGAATCGGTGGTAACGCCCCCGATACGAATTACCTCTTCATGGGTGACTATGT
AGACCGTGGCTACTATTCAGTGGAAACGGTTTCTTTATTGGTGGCATTGAAAGTCAGAT
ACAGGGATAGGATTACAATCTTGCGAGGGAACCACGAGAGTCGTCAGATCACCCAAGT
ATATGGTTTTTATGACGAGTGCTTGAGGAAGTACGGAAACGCAAATGTGTGGAAGTATT
TCACAGACCTTTTCGATTATCTTCCTCTTACTGCTCTTATCGAGAGTCAGGTTTTCTGTT
TGCATGGAGGGCTATCACCTTCTCTGGATACACTTGATAATATCCGAAGCTTGGATCGT
ATACAAGAGGTTCCACACGAAGGACCAATGTGTGATTTACTATGGTCTGATCCAGATGA
TCGATGCGGGTGGGGAATATCTCCAAGAGGTGCTGGTTATACATTTGGACAGGATATA
GCAACTCAGTTTAATCACAACAATGGACTCAGTCTCATATCAAGAGCGCATCAGCTTGT
CATGGAAGGTTTTAACTGGTGTCAGGATAAGAATGTGGTGACGGTGTTTAGTGCACCA
AACTATTGCTACCGGTGTGGAAACATGGCAGCGATTCTAGAGATAAGTGAGAACATGG
AGCAGAACTTCCTTCAGTTTGATCCAGCTCCAAGACAAGTCGAACCTGATACTACCCGT
AAGACCCCTGATTATTTTTTGTGATTTTATTTGTATTTTTTTTTCTTCTAAG CG GAGTTCG
AGTTTCCCTCAAAACGAAAGAAAGAAACAAACATCATTTTGTTGTTGTTGATGTGATTGC
TGAGAACAAAGTTTGTAGTAGAAGCGTCTATATATAGAATAGTGTCTTCTCATTGTCATT
TCACTTGTTACTGCATAGAGGAATGAGGTTTCGAACCCTGCCCGCCACTTTCATTTCAG
TTTCATTTATAAAATATGAGTTTGATACCGAAAAAAAAAAAAAAA
The BN43206527 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:78):
MPPNGDLDRQIEHLMECKPLSEEDVRTLCDQAKAILVEEWNVQPVKCPVTVCGDIHGQFY
DLIELFRIGGNAPDTNYLFMGDYVDRGYYSVETVSLLVALKVRYRDRITILRGNHESRQITQ
VYGFYDECLRKYGNANVWKYFTDLFDYLPLTALIESQVFCLHGGLSPSLDTLDNIRSLDRIQ
EVPHEGPMCDLLWSDPDDRCGWGISPRGAGYTFGQDIATQFNHNNGLSLISRAHQLVME
GFNWCQDKNVVTVFSAPNYCYRCGNMAAILEISENMEQNFLQFDPAPRQVEPDTTRKT-
PDYFL

cDNA sequence of HA66872964 from sunflower (SEQ ID NO:79):
CTAAAAATATCTTTAACCGCCGGCTGCCATGACGGAACCCTAAGCAACTTCTCCGGCG
ACTCCGGCGGAGCTCCGTTCAACCTAAATGCGAATCATTCTTCCAGATCTTCAAATCCG


CA 02692650 2010-01-05
WO 2009/010460 76 PCT/EP2008/059070
AACACACAAATCACGTAACAATGCCGTCGCAATCGGATCTGGACCGTCAGATCGAGCA
CTTGATGGACTGTAAACCGCTGCCGGAGGCGGAGGTGCGGACGTTGTGTGATCAGGC
GAGGACGATTTTGGTCGAGGAGTGGAATGTGCAGCCGGTGAAGTGTCCGGTGACTGT
TTGCGGTGATATTCATGGGCAGTTTCATGATTTGCTTGAGCTGTTTCGGATCGGAGGA
AGTGCTCCGGACACGAATTACTTGTTTATGGGAGATTATGTTGATCGAGGCTATTACTC
GGTGGAGACTGTTACGCTTCTTGTGGCATTGAAAGTTCGTTACAGAGATAGGATTACTA
TTCTCAGAGGAAACCATGAGAGCAGGCAGATAACTCAAGTGTATGGATTTTACGATGA
ATG CTTG AG GAAG TAC G GAAAC G CAAATG TAT G GAAACATTTCACT GACCTTTTTG ATT
ATCTACCTCTCACTGCCCTTATCGAGAGTCAGATATTCTGTCTCCATGGTGGCTTGTCT
CCATCTTTGGATACACTAGATAACATACGTGCTTTAGATCGCATACAAGAGGTTCCTCA
TGAGGGGCCAATGTGTGACCTTTTGTGGTCTGATCCTGATGACCGGTGTGGTTGGGG
AATATCTCCTCGTGGAGCCGGTTACACTTTCGGGCAGGATATAGCCGCACAGTTTAAC
CATACAAACGGGCTCTCGCTTATTTCTCGGGCTCACCAGCTTGTCATGGAAGGTTACA
ATTGGTCTCAGGAGAACAACGTTGTAACCATATTTAGTGCACCAAACTACTGCTATAGA
TGCGGGAATATGGCTGCGATACTTGAGGTTGGAGAGAATATGGACCAGAATTTCTTAC
AATTTGACCCAGCCCCTCGTCAGGTTGAGCCCGATGTTGCACGAAGAACTCCGGATTA
CTTCCTGTAAATTTGTGTTGGATAATATGACCTTTGCATGCATCCTATTTATGTTGTTAT
AGTTTTCGCTTTCCCCTGCTAGAGAGTCCCCCTATTCTTGAGAATTAAAGACAATATGT
ATGATTGTTTGTCCCTTGTTCTATTTGAGATTATTTGTTTAAAAAAAAAAAAAAA
The HA66872964 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:80):

MPSQSDLDRQIEHLMDCKPLPEAEVRTLCDQARTILVEEWNVQPVKCPVTVCGDIHGQFH
DLLELFRIGGSAPDTNYLFMGDYVDRGYYSVETVTLLVALKVRYRDRITILRGNHESRQITQ
VYGFYDECLRKYGNANVWKHFTDLFDYLPLTALIESQIFCLHGGLSPSLDTLDNIRALDRIQ
EVPHEGPMCDLLWSDPDDRCGWGISPRGAGYTFGQDIAAQFNHTNGLSLISRAHQLVME
GYNWSQENNVVTIFSAPNYCYRCGNMAAILEVGENMDQNFLQFDPAPRQVEPDVARRT-
PDYFL
cDNA sequence of LU61662612 from linseed (SEQ ID NO:81):
CATCTCTCTTTCTCTCTCTTCCATTTTCGTTCTTTTGAATCTCCGTTAGCCCTACAAATC
CATGGTCATGGCCTGAGAGAGATAGAGGGATAGAGCTCTCAGTTCCTAATCACCTTAC
CTGACCTAACCCCACGGACATATTATCGAAGGTCTGCGAGCAGGAGAGCGCAGGAGG
AAGAGTGGGGCCAGGGTACGATGCCGTCCCACGCCGATCTGGACCGTCAGATCGAG
CACTTGATGCAGTGCAAGCCACTTTCTGAGGCCGAAGTGAAGGCTCTCTGCGAGCAG
GCCAGGGCCGTCCTCGTCGAGGAATGGAACGTCCAGCCGGTCAAGTGTCCGGTGACT
GTCTGCGGCGACATCCACGGCCAGTTTCACGATCTTGTCGAGCTCTTTCGAATCGGAG
GAAACGCCCCTGACACGAACTACCTCTTCATGGGCGACTATGTAGATCGAGGGTATTA
TTCGGTGGAGACTGTCACCCTTCTAGTCGCCTTGAAAGTAAGATATAGAGATAGGATC
ACAATTCTGAGAGGAAATCATGAAAGTCGTCAAATAACTCAAGTGTATGGATTCTATGA


CA 02692650 2010-01-05
WO 2009/010460 77 PCT/EP2008/059070
TGAGTGCTTGAGAAAATATGGAAATGCCAATGTGTGGAAACATTTTACCGATCTCTTTG
ATTATCTACCACTTACAGCTCTGATTGAGAGTCAGGTCTTCTGCTTACATGGTGGACTT
TCCCCTTCACTAGACACGCTAGACAACATTCGCTCCCTTGATCGTATCCAAGAGGTTCC
GCACGAGGGTCCTATGTGCGACCTCCTATGGTCGGACCCGGATGACCGTTGCGGGTG
GGGGATCTCTCCTCGTGGAGCTGGCTACACCTTTGGACAGGACATATCTCAACAGTTC
AACCACACGAACGGCCTTTCTCTCATATCCAGAGCTCACCAGCTGGTCATGGAAGGTT
ACAATTGGGCCCAGGACAAGAATGTGGTGACGGTGTTCAGCGCCCCGAACTACTGCT
ACCGGTGTGGGAACATGGCGGCCATTCTCGAGATCGGAGAGAACATGGAGCAGAACT
TCCTGCAGTTCGACCCAGCTCCTCGACAGATCGAACCGGAGACGACTCGCAGAACAC
CCGATTATTTTTTGTGAAATGCATAGCTTCTTCTTCCTCCCTCCTTCTTGCTTGGAAATG
GGATCCGTGTCCATTTTTTCTAATCGCCTGCCCTGCTATGTGCTTATGTTTTTTGTAGAT
G CATTCATCATCATCATATC CAG AATAGAGAAGAAATTTTG G TG TTTG CTTTGATT GAGA
AAAGGCGGGGAGGGAAAAATCGGCCTCTAGAGATGCTGGGTGTTGTCATTTTTCTTCT
TCTTCTTCCTCCTTTTG GGATG GTTTCGTTTTTACTTTTTCTTTTGGGTTTCTATTGTTTA
TCCTGCATTCATTTGAGTTTAACAAAGTTTATTATTTACAGTCTGGGTGTGTTATTAATAT
TATTCACTGTGGTCTTGTACCAAAAAAAAAAAAAAA
The LU61662612 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:82):
MPSHADLDRQIEHLMQCKPLSEAEVKALCEQARAVLVEEWNVQPVKCPVTVCGDIHGQF
HDLVELFRIGGNAPDTNYLFMGDYVDRGYYSVETVTLLVALKVRYRDRITILRGNHESRQIT
QVYGFYDECLRKYGNANVWKHFTDLFDYLPLTALIESQVFCLHGGLSPSLDTLDNIRSLDRI
QEVPHEGPMCDLLWSDPDDRCGWGISPRGAGYTFGQDISQQFNHTNGLSLISRAHQLVM
EGYNWAQDKNVVTVFSAPNYCYRCGNMAAILEIGENMEQNFLQFDPAPRQIEPETTRRTP
DYFL

cDNA sequence of OS32806943 from rice (SEQ ID NO:83):

GAGGCTTGAGCTCCACCTCCACCTCCTCCACCTCCAACCCCCGATCCCCCGCAAACC
CTAGCCCTCTCCCCCACCCTCCTCGCCGGCGGCGAGCGGCGGCGGCGCGCGGCGG
GACCCGGAGCCCCCAGTAGCGCCTCCTCCGTCCTCCCCTCCCTGAGGTGCGGGGGA
GAGGATGCCGTCGTCGCACGGGGATCTGGACCGGCAGATCGCGCAGCTGCGGGAGT
GCAAGCACCTGGCGGAGGGGGAGGTGAGGGCGCTGTGCGAGCAGGCGAAGGCCAT
CCTCATGGAGGAGTGGAACGTGCAGCCGGTGCGGTGCCCCGTCACGGTCTGCGGCG
ACATCCACGGCCAGTTCTACGACCTCATCGAGCTCTTCCGCATCGGCGGCGAGGCGC
CCGACACCAACTACCTCTTCATGGGCGACTACGTCGACCGTGGCTACTACTCAGTGGA
GACTGTTTCGTTGTTGGTGGCTTTGAAAGTACGCTACAGAGATCGAATTACAATATTGA
GAGGAAATCATGAGAGCAGACAAATCACTCAAGTGTACGGCTTCTACGATGAATGCTT
GAGAAAGTATGGAAATGCAAATGTATGGAAATACTTTACAGACTTGTTTGATTATTTGCC
TCTCACAGCTCTTATAGAAAACCAGGTGTTCTGCCTTCACGGTGGTCTCTCTCCATCAT
TGGATACTTTAGATAACATCCGTGCTCTTGATCGTATACAAGAGGTTCCTCATGAAGGA


CA 02692650 2010-01-05
WO 2009/010460 78 PCT/EP2008/059070
CCCATGTGTGATCTTTTGTGGTCTGACCCAGATGACAGATGCGGGTGGGGAATTTCAC
CGAGAGGAGCAG GTTATACATTTGGG CAAGATATCG CTCAACAGTTTAACCATACAAAT
GGTCTATCTCTCATCTCAAGGGCACATCAACTTGTAATGGAAGGATTTAATTGGTGTCA
GGACAAGAATGTTGTGACGGTCTTCAGTGCACCAAACTACTGTTATCGCTGTGGTAAC
ATGGCTGCAATTCTTGAGATTGGCGAAAACATGGATCAGAACTTCCTCCAATTTGATCC
AGCTCCTCGGCAAATTGAACCAGACACAACACGCAAGACTCCCGACTACTTTTTGTAAT
TTGTGGTGTTGACAATTTTAACTCACCTGTGTTGATGCTCCTCTCCTCCGCGGTGTCGG
GGTCTGTAGATCTTCTGTCCTTAGATACGGGTTCCACGAGCCCGGCTGTATGTCTCTC
AATTCTTTTGTTTGGAGATTTTGTTGCTGCTTCTCAACCTTTATACAAGACGTTAAAAGT
TACATGCACTGGATTTTTTTCTC GAAAA
AAAAAAAAAAA

The OS32806943 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:84):
MPSSHGDLDRQIAQLRECKHLAEGEVRALCEQAKAILMEEWNVQPVRCPVTVCGDIHGQF
YDLIELFRIGGEAPDTNYLFMGDYVDRGYYSVETVSLLVALKVRYRDRITILRGNHESRQIT
QVYGFYDECLRKYGNANVWKYFTDLFDYLPLTALIENQVFCLHGGLSPSLDTLDNIRALDRI
QEVPHEGPMCDLLWSDPDDRCGWGISPRGAGYTFGQDIAQQFNHTNGLSLISRAHQLVM
EGFNWCQDKNVVTVFSAPNYCYRCGNMAAILEIGENMDQNFLQFDPAPRQIEPDTTRKTP
DYFL

cDNA sequence of OS34738749 from rice (SEQ ID NO:85):

GGTCGACGCCGTCACCGTCGCGCCAACTGCCGCAAACCGAATAAACCGAATCGATCT
GAGAGAAGAAGAAGAAGAAGACGCGATCTCGGAGGTGGGAGCGAAACGAAACGATG
CCGTCTCACGCGGATCTGGAACGACAGATCGAGCAGCTGATGGAGTGCAAGCCTCTG
TCGGAGTCGGAGGTGAAGGCGCTGTGTGATCAAGCGAGGGCGATTCTCGTGGAGGAA
TGGAACGTGCAACCGGTGAAGTGCCCCGTCACCGTCTGCGGCGATATTCACGGCCAG
TTTTACGATCTCATCGAGCTGTTTCGGATTGGAGGGAACGCACCCGATACCAATTATCT
CTTCATGGGTGATTATGTAGATCGTGGATACTATTCAGTGGAGACTGTTACACTTTTGG
TGGCTTTGAAAGTCCGTTACAGAGATAGAATCACAATTCTCAGGGGAAATCATGAAAGT
CGTCAAATTACTCAAGTGTATGGCTTCTATGATGAATGCTTGAGAAAATATGGAAATGC
CAATGTCTGGAAATACTTTACAGACTTGTTTGATTATTTACCTCTGACTGCCCTCATTGA
GAGTCAGATTTTCTGCTTGCATGGAGGTCTCTCACCTTCTTTGGATACACTGGATAACA
TCAGAGCATTGGATCGTATACAAGAGGTTCCACATGAAGGACCAATGTGTGATCTCTT
GTGGTCTGACCCTGATGATCGCTGTGGATGGGGAATATCTCCACGTGGTGCAGGATA
CACATTTGGACAGGATATAGCTGCTCAGTTTAATCATACCAATGGTCTCTCCCTGATAT
CGAGAG CTCATCAG CTTGTTATG GAAG GATTCAATTG GTG CCAG GACAAAAATGTG GT
GACTGTATTTAGTGCACCAAATTACTGTTACCGATGTGGGAATATGGCTGCTATACTAG
AAATAGGAGAGAATATGGATCAGAATTTCCTTCAGTTTGATCCAGCGCCCAGGCAAATT
GAGCCTGACACCACACGCAAGACTCCAGATTATTTTTTATAATTTCATTTATCTGCCTGT


CA 02692650 2010-01-05
WO 2009/010460 79 PCT/EP2008/059070
TTGTAGTTACTGCTCTCTGCCATTACTGTAGATGTGTCTTTAAGGAAAGGAGTTTTGCT
GTTTAAGTGGAGGGTGGTCATCAACATAATTCTTTCTTTTGGAGTTTACCTCCTGCTGC
TGCCGCTGCCGCTGCCTTATTTGTACAAGAAACCAATAGAACTGACACAAGCCACCAA
TTG GGGTTGTATATTTTTGGGAG GAAGCGGTAATAACATGGTATATCTTGTTCTGTAAT
CCTTTTTCTTTAAATTGAATCTCAAGTTAGAGAGCAAAAAAAAAAAAA

The OS34738749 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:86):

MPSHADLERQIEQLMECKPLSESEVKALCDQARAILVEEWNVQPVKCPVTVCGDIHGQFY
DLIELFRIGGNAPDTNYLFMGDYVDRGYYSVETVTLLVALKVRYRDRITILRGNHESRQITQ
VYGFYDECLRKYGNANVWKYFTDLFDYLPLTALIESQIFCLHGGLSPSLDTLDNIRALDRIQ
EVPHEGPMCDLLWSDPDDRCGWGISPRGAGYTFGQDIAAQFNHTNGLSLISRAHQLVME
GFNWCQDKNVVTVFSAPNYCYRCGNMAAILEIGENMDQNFLQFDPAPRQIEPDTTRKTP-
DYFL

cDNA sequence of ZM59400933 from corn (SEQ ID NO:87):
CTGACCGCCAGCGGGCCCGCAGGCCGGAGAAGGAGTCGGAGTCGCCCCCACCCACC
CACCCTCTGCCGCGGGCGGGGAGCGGGCGGCGGACGAGATGCCGTCGCACGGGGA
TCTGGACCGGCAGATCGCGCAGCTGCGCGACTGCAAGTACCTGCCCGAGGCGGAGG
TCAAGGTGCTCTGCGAGCAGGCCAAGGCCATCCTCATGGAGGAATGGAACGTGCAGC
CCGTGCGCTGCCCCGTCACCGTCTGCGGCGACATCCACGGCCAGTTCTATGACCTCA
TCGAGCTCTTCCGCATCGGCGGCGACTCTCCCGACACCAACTACCTCTTCATGGGCG
ACTACGTCGATCGTGGCTATTATTCAGTTGAAACGGTTTCTCTGTTAGTGGCTTTGAAA
GTCCGTTACAGAGATAGAATTACAATACTTCGAGGAAATCATGAGAGCAGACAAATCAC
TCAAGTGTACGGCTTCTATGATGAATGCTTAAGAAAATATGGAAATGCAAATGTATGGA
AGTATTTTACAGACTTGTTTGATTATTTGCCTCTCACAGCTCTTATAGAAAATCAGGTCT
TCTGTCTTCATGGAGGCCTCTCTCCGTCATTGGACACATTGGATAACATTCGTTCTCTT
GATCGCATACAGGAGGTACCTCATGAAGGACCCATGTGTGATCTTTTGTGGTCTGACC
CAGATGACCGATGTGGGTGGGGAATTTCACCCAGAGGAGCAGGTTACACATTTGGGC
AAGACATTGCACAGCAGTTCAACCATACAAATGGTCTCTCTCTCATTTCAAGGGCCCAT
CAACTTGTAATGGAAGGATTTAATTGGTGCCAGGATAAGAATGTAGTCACAGTCTTCAG
TGCGCCTAATTACTGTTACCGCTGTGGTAACATGGCTGCTATTCTTGAAATCGGGGAAA
ACATGGACCAGAACTTCCTTCAATTCAACCCCGCACCTCGGCAAATTGAGCCAGACAC
AACTCGCAAAACCCCAGACTACTTTCTGTAATTGTGGTGGTGACCTTAACTTTCTGGTG
TTTGATGCTCCTCTCTTCCGCAGCATCAGGGTATGTAGATCTTGTCCTTAGATATGGGT
CCCATGTGCCCGGCCTTAACGTCTCCCTATTCTTTTGTTTGGAGATTTTGTTTCTGCTT
CTCGATCTTGATACAAGATGTTAGAAGTTGAATGCCAGTGTATTTTTTT-
CAAAAAAAAAAA


CA 02692650 2010-01-05
WO 2009/010460 80 PCT/EP2008/059070
The ZM59400933 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:88):

MPSHGDLDRQIAQLRDCKYLPEAEVKVLCEQAKAILMEEWNVQPVRCPVTVCGDIHGQFY
DLIELFRIGGDSPDTNYLFMGDYVDRGYYSVETVSLLVALKVRYRDRITILRGNHESRQITQ
VYGFYDECLRKYGNANVWKYFTDLFDYLPLTALIENQVFCLHGGLSPSLDTLDNIRSLDRIQ
EVPHEGPMCDLLWSDPDDRCGWGISPRGAGYTFGQDIAQQFNHTNGLSLISRAHQLVME
GFNWCQDKNVVTVFSAPNYCYRCGNMAAILEIGENMDQNFLQFNPAPRQIEPDTTRKTP-
DYFL
cDNA sequence of ZM62132060 from corn (SEQ ID NO:89):
AATCGTCGCTCCACCTCCTCCTCGTCTATCGCCGATCTCCCCCAAACCCTAGCCCCGA
CCTGACCGCCGGCGGGCCCGCCGGCCGGAGAAGGAGTCGCTCCCACCCATCCAACT
TCTGCGGCGGAAGGGGAGCGGGCGGCGGACGAGATGCCGTCGCACGGGGATCTGG
ACCGGCAGATCGCGCAGCTGCGCGACTGCAAGTACCTGCCCGAGGCGGAGGTCAAG
GCGCTCTGCGAGCAGGCCAAGGCCATCCTTATGGAGGAGTGGAACGTGCAGCCCGT
GCGCTGTCCTGTCACCGTCTGTGGCGACATCCACGGCCAGTTCTATGACCTCATCGAG
CTCTTCCGCATCGGCGGCGACGCTCCCGACACCAACTACCTCTTCATGGGCGACTAC
GTCGATCGTGGGTACTATTCAGTTGAAACAGTTTCTCTGTTAGTGGCTTTGAAAGTCCG
TTACAGAGATAGAATTACAATACTTAGAGGAAATCATGAGAGCAGACAAATCACTCAAG
TATATGGCTTCTATGATGAATGCTTAAGAAAGTATGGAAATGCAAATGTCTGGAAGTAT
TTTACAGACTTGTTTGATTTTTTGCCTCTCACAGCTCTTATAGAAAATCAGGTCTTCTGT
CTTCACGGTGGCCTCTCTCCGTCATTGGACACGTTGGATAATATTCGTTCTCTTGATCG
CGTACAGGAGGTTCCTCATGAAGGACCCATGTGTGATCTTTTGTGGTCTGACCCAGAT
GAC CGAT G TG GATG G G GAATTTCAC CAAGAG G AG CAG G TTACACATTTG G G CAAGAC
ATTGCGCAGCAGTTCAACCATACAAATGGTCTTTCTCTCATTTCAAGGGCCCATCAACT
TGTAATGGAAGGATTTAATTGGTGCCAGGATAAGAATGTAGTCACAGTCTTCAGCGCG
CCTAATTATTGTTACCGCTGTGGTAACATGGCTGCTATTCTTGAAATCGGGAAAAACAT
GGACCAGAACTTCCTTCAATTCGACCCGGCACCTCGGCAAATTGAGCCAGACACAACT
CGGAAAACCCCAGACTACTTTTTGTAATTGTGGTGGTGACATTAACTTACTGGTGTTGA
TGCTCCTCTTTTCCGCAGCATCAGGGTCTGTAGATCATCTGTCCTTAGATATGGGTTCC
ATGAGCCCGACCTGTACGTCTCCCAATTCTTTTGTTTGGAGATTTTGTTGCCGCTTAAC
GATCTTTATACAATATGTTAAAAAGTTAAATGCCATTGGATTTTTCTCCAAAAAAAAAAA
The ZM62132060 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:90):

MPSHGDLDRQIAQLRDCKYLPEAEVKALCEQAKAILMEEWNVQPVRCPVTVCGDIHGQFY
DLIELFRIGGDAPDTNYLFMGDYVDRGYYSVETVSLLVALKVRYRDRITILRGNHESRQITQ
VYGFYDECLRKYGNANVWKYFTDLFDFLPLTALIENQVFCLHGGLSPSLDTLDNIRSLDRV
QEVPHEGPMCDLLWSDPDDRCGWGISPRGAGYTFGQDIAQQFNHTNGLSLISRAHQLVM


CA 02692650 2010-01-05
WO 2009/010460 81 PCT/EP2008/059070
EGFNWCQDKNVVTVFSAPNYCYRCGNMAAILEIGKNMDQNFLQFDPAPRQIEPDTTRKTP
DYFL

cDNA sequence of ZM59202533 from corn (SEQ ID NO:91):
ATGAAGGGGAAGAAGCCGGTCAAGGAGCTCAAGCTCACCGTGCCGGCGCAGGAGAC
CCCGGTAGACAAGTTCCTGACGGCAAGTGGCACGTTCAAGGATGGTGAGCTGAGGCT
CAATCAGAGCGGCTTGCGGCTTATCTCTGAGGAAAACGGGGATGAAGATGAATCTACA
AAGCTGAAGGTGGAAGATGTGCAGTTATCAATGGATGATCTTGAGATGATTCAAGTCAT
TGGCAAAGGAAGCGGTGGTGTTGTCCAGCTAGTGAGGCACAAATGGGTGGGCACATT
GTTTGCCTTAAAGGGTATTCAAATGAACATTCAGGAGTCAGTTCGTAAACAAATAGTAC
AGGAGCTCAAAATAAACCAAGCAACACAGAGCCCTCATATAGTTATGTGCCATCAATCT
TTTTACCACAATGGTGTAATATATCTTGTTCTTGAGTACATGGACCGTGGATCGCTTGC
AGACATTGTTAAGCAAGTGAAGACTATTCTGGAGCCATACCTTGCAGTACTTTGTAAGC
AGGTCTTGGAGGGTTTATTGTATCTTCATCATCAAAGGCACGTGATTCACAGGGACATA
AAACCATCTAACTTGTTGGTCAACCGTAAAGGTGAAGTCAAGATTACCGACTTCGGAGT
GAGTGCTGTGCTAGCAAGCTCAATAGGTCAGCGAGATACATTTGTTGGAACCTACAAC
TATATGGCGCCTGAGCGGATTAGTGGTAGCACTTATGACTACAAAAGTGACATATGGA
GTTTGGGCTTAGTTATACTTGAGTGTGCCATTGGCCGGTTCCCTTATATACCTTCGGAA
GGTGAAGGTTGGTTAAGCTTTTATGAACTTCTGGAGGCCATTGTCGATCAGCCACCAC
CTTCTGCACCTGCAGATCAGTTCTCTCCAGAATTCTGCTCATTTATCTCCTCTTGCATAC
AGAAAGATCCGGCTCAGAGGATGTCTGCTTCAGAACTCTTGAATCACCCTTTTTTGAAG
AAGTTCGAGGATAAGGACTTAAACCTGGGGATTCTTGTGGAGAACCTGGAACCTCCAA
TGAATATACCCGAATAG
The ZM59202533 cDNA is translated into the following amino acid sequence (SEQ
ID
N0:92):

MKGKKPVKELKLTVPAQETPVDKFLTASGTFKDGELRLNQSGLRLISEENGDEDESTKLKV
EDVQLSMDDLEMIQVIGKGSGGVVQLVRHKWVGTLFALKGIQMNIQESVRKQIVQELKINQ
ATQSPHIVMCHQSFYHNGVIYLVLEYMDRGSLADIVKQVKTILEPYLAVLCKQVLEGLLYLH
HQRHVIHRDIKPSNLLVNRKGEVKITDFGVSAVLASSIGQRDTFVGTYNYMAPERISGSTYD
YKSDIWSLGLVILECAIGRFPYIPSEGEGWLSFYELLEAIVDQPPPSAPADQFSPEFCSFISS
CIQKDPAQRMSASELLNHPFLKKFEDKDLNLGILVENLEPPMNIPE
cDNA sequence of BN41901422 from canola (SEQ ID NO:93):
GTCATTCTTCTAATTTCTCTGACCTCTGCTACTGTCTATCCGTTCGTGTTGCTTTGATCT
CTCTAATCAGACATGAAGAGAGGCAGCTTGAGTCTTAATCCCATCTCTCTCCCTCCTCC
TGAGCAATCCATCTCCAAATTCTTAACACAGAGCGGAACGTTCAAGGATGGAGACCTT
CAAGTGAACAAAGATGGAATCCAGACAGTATCTCATTCTGAGCCTGGAGCTCCACCAC
CTATTGATCCATTGGACAACCAGTTGAGTTTGGCTGACCTTGAAGTGATCAAAGTCATT


CA 02692650 2010-01-05
WO 2009/010460 82 PCT/EP2008/059070
GGCAAAGGAAGCAGTGGTAGTGTTCAGCTGGTTAAACACAAACTAACTCAACAGTTTTT
CGCTACTAAGGTTATTCAGTTAAACACAGAAGAGTCCACATGTCGAGCCATTTCTCAGG
AGCTGAGGATAAACTTGGCATCTCAATGTCCATATCTCGTCTCATGTTATCAGTCTTTCT
ACCATAACGGTCTCGTCTCAATCGTAATGGAGTTCATGGACGGTGGATCTCTTTTGGAT
TTGTTGAAGAAAGTCCAGAGAGTTCCTGAAAACATGCTCGCTGCCATCTCCAAGCGAG
TGCTCCGAGGCTTGTGCTATATTCACGATGAGAGGCGAATCATTCACCGGGACTTGAA
GCCTTCCAACTTGCTAATCAATCACAGAGGTGAAGTCAAGATCGCAGACTTTGGTGTC
AGCAAGATCTTGTCTAGCACAAGCAGTCTAGCGCATACCTTCGTGGGCACAGACTTCT
ATATGTCGCCAGAGAGAATCAGTGGGAAAGCGTATGGGAACAAGTGTGATATTTGGAG
TTTGGGAGTGGTTCTGCTCGAATGTGCAACGGGTAAGTTTCCGTATACTCCTCCTGAA
AACATGAAGGGATGGACTAGCATGTATGAGCTAGTTGACGCCATTGTTGAAAACCCGC
CTCCTCGTGCACCTTCCCACCTGTTCTCTCCAGAGTTTTGCTCCTTCATCTCGCAATGT
GTACAAAAAGATCCAAGGGACCGGAAATCAGCAATGGAGCTTCTGGACCATAGGTTCG
TAAACATGTTTGAAGATGTGGATGTGGATCTCTCGTCTTACTTCACCGCCGCAGGATCT
TTGATTCCCCCACTAGCCAACAGCTAGAACCGAGTTTGAACAATCCTTTTAACACCAAG
TTATATATATGTATTTTATATCCACTGGAAGAGACGATATTTACGAGATGTTGCGACTTA
TGAGAGAATTCTCTTGATAGACATTTATATTTTCAAGTATTGAAATTTATTTGGGTAAAAA
AAAAAAAAAA

The BN41901422 cDNA is translated into the following amino acid sequence (SEQ
ID
N0:94):

MKRGSLSLNPISLPPPEQSISKFLTQSGTFKDGDLQVNKDGIQTVSHSEPGAPPPIDPLDN
QLSLADLEVIKVIGKGSSGSVQLVKHKLTQQFFATKVIQLNTEESTCRAISQELRINLASQCP
YLVSCYQSFYHNGLVSIVMEFMDGGSLLDLLKKVQRVPENMLAAISKRVLRGLCYIHDERRI
IHRDLKPSNLLINHRGEVKIADFGVSKILSSTSSLAHTFVGTDFYMSPERISGKAYGNKCDIW
SLGVVLLECATGKFPYTPPENMKGWTSMYELVDAIVENPPPRAPSHLFSPEFCSFISQCVQ
KDPRDRKSAMELLDHRFVNMFEDVDVDLSSYFTAAGSLIPPLANS

cDNA sequence of BN47868329 from canola (SEQ ID NO:95):
CCAGATCGTTAAACCATAATCCAAACCAAGCTTGCAAAAACTTTTGATCCTAAACCGAG
ATGAAACCAATCCAACCGCCACCAGGAGTAATCGGTCCGGTTAAGAACCGCCCTCGC
CGCCGTCCAGACCTCTCCTTACCACTTCCTCACCGCGACGTTTCCCTCGCCGTACCTC
TCCCCCTCCCACCAACTTCCGGCGGCGGTTCCACCACCTCAGAGCCTAAAAGCTACTC
AGACTTAGTACGTGGCAACCGGATCGGAAGCGGAGCCGGTGGAACGGTTTACAGAGT
AGTCCACCGTCCAACCTCCCGCGTATACGCACTCAAGATAATCAACGGTAACCACGAT
GACACTGTTCGTGGCCAGATCTGCAGAGAGATCAAGATTCTCCGAGACGTGAATCACC
CCAACGTGGTGAAATGCCACGAGATGTTCGATCAAAACGGAGAGATCCAGGTCTTGCT
CGAGCTCATGGACCAAGGATCTTTAGAAGGTGCTCATATCTCGAACGAGCAACAGTTA
TCTGACCTATCTCGTCAGATACTAAACGGTTTGGCTTATCTTCACGGCCGTCATATAGT
CCATAGAGACATAAAGCCATCGAATCTACTTATAAACTCGGACAATAACGTCAAGATTG


CA 02692650 2010-01-05
WO 2009/010460 83 PCT/EP2008/059070
CTGATTTTGGAGTGAGCAGGGTCTTGGCTCAGACCCTGTCTCCGTGTAAGTCCTCTGT
TGGGACTATTGCTTACATGAGTCCTGAGAGGATCAACACGGATTTGAATCAGGGGATG
TATGATGGTTGCGCTGGGGATATTTGGAGCTTCGGTGTTAGTGTTCTTGAGTTTTTCTT
GGGGAGGTTTCCTTTTAATGTGAATAGGCTAGGTGATTGGGCTAGTCTTATGTGTGCTA
TTTGTATGTCTAAGCCGCCTGAAGCTCCTGCCACGGCGTCTCCGGAGTTTAGACACTT
TGTTTCGTGTTGTTTGCAGAGAGAACCGGGGAGGAGGCAAACTGCTGTTCAGCTTTTG
CAACATCCTTTTGTGCGTAGAGGGGCGATTCAGAGTCAGAATAGGTCTCCTCAGAATC
TACATCAACTCTTGCCTCCTCCACACTAAAGGTTTAGTTTTGTCTGATAATGTTTCTACA
CTAAAGGTTGATCATGTCTTGCTGTTTAGACAAACTATATCATTGTCTTGTACTTAGCTG
AAAGCAAAGCGTATATAGTTTGAATCACTTTGCACCTCATGATGGTTAATTTCACTAAGT
AATTCAGTAGTAGAGTCATTAAATGTAAAAAAAAAAAAAAA
The BN47868329 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:96):
MKPIQPPPGVIGPVKNRPRRRPDLSLPLPHRDVSLAVPLPLPPTSGGGSTTSEPKSYSDLV
RGNRIGSGAGGTVYRVVHRPTSRVYALKI INGNHDDTVRGQICREIKILRDVNHPNVVKCH
EMFDQNGEIQVLLELMDQGSLEGAHISNEQQLSDLSRQILNGLAYLHGRHIVHRDIKPSNLL
INSDNNVKIADFGVSRVLAQTLSPCKSSVGTIAYMSPERINTDLNQGMYDGCAGDIWSFGV
SVLEFFLGRFPFNVNRLGDWASLMCAICMSKPPEAPATASPEFRHFVSCCLQREPGRRQT
AVQLLQHPFVRRGAIQSQNRSPQNLHQLLPPPH
cDNA sequence of BN42671700 from canola (SEQ ID NO:97):

CTGCAAACTAAAATCTAGAACCGGAACAGATCTAAACCAAACCAAACCGAACCGGGTG
TCTTTGTTTGTAACTCTCCAAATGGTGAAGAAAGCGATGAAGGAGGAAGAAGAAGCAG
AGATGAGAAACTCGTCGATGCAGTCAAAGTACAAAGGCGTGAGGAAGAGGAAGTGGG
GCAAATGGGTTTCGGAGATCAGACTTCCCAACAGCAGAGAGCGAATCTGGCTAGGCT
CTTTCGACACTCCCGAGAAGGCGGCGCGTGCCTTCGACGCCGCCCAGTTTTGTCTCC
GCGGCTGCCAATCCGGTTTCAATTTCCCCGATAATCCGCCGTCGATCTCCGGCGGAA
GGTCGCTGACGCCTCCGGAGATCCGGGAAGCGGCTGCTCGATACGCAAACGCTCAG
GACGACGATATTATCATCACCACCGGAGAAGAAGAATCGGTTTTGTCCGAAACCCGAC
CGGAGTCTCCTTCAACAACCTCCGTGTCTGAAGCAGATACGTCGCTGGATTGCGATCT
ATCGTTCTTAGACACGCTTCCTAATGATTTCGGGATGTTTTCTGTGTTTGATGACTTCTC
CGACGGCTTCTCCGGCGATCAGTTTACAGAGGTTTTACCCGTTGAAGATTACGGAGAT
GTGATTTTTGATGAGTCTCTGTTTCTTTGGGATTTTTAAATGTGTAAAGAGTTTTGAATT
GTTGTTTATTCGGGTCATGGAGAGTAATCTGGATATTTTTGTAAGTCGGAGCTCCAGCG
ACCCGGGAACTTGATCATTCTTGCTTTGGTTGATGATATCTATCATTCCTTCATTTTTTG
TTGTTATTAATGAAAATATTTGGATAAAATAGCAATTACAGAAAAAAAAAAAAAAAAAA


CA 02692650 2010-01-05
WO 2009/010460 84 PCT/EP2008/059070
The BN42671700 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:98):

MVKKAMKEEEEAEMRNSSMQSKYKGVRKRKWGKWVSEIRLPNSRERIWLGSFDTPEKA
ARAFDAAQFCLRGCQSGFNFPDNPPSISGGRSLTPPEIREAAARYANAQDDDIIITTGEEES
VLSETRPESPSTTSVSEADTSLDCDLSFLDTLPNDFGMFSVFDDFSDGFSGDQFTEVLPVE
DYGDVIFDESLFLWDF

cDNA sequence of ZM68416988 from corn (SEQ ID NO:99):
CTCGCCTCGCCTTCCTCCGAGCCCCGGCGAGGAAGAGGAACCCGCCGCCGCCGCCG
CCGGACGCACTTCCGATGGCGACGCCACGGAAGCCGATCAAGCTCACGCTGCCGTCC
CACGAGACCACCATCGGCAAGTTCCTGACGCACAGCGGGACGTTCACGGACGGGGAT
CTGCGCGTGAACAAGGACGGCCTCCGCATCGTCTCGCGGAGGGAGGGAGGCGAGGC
TCCTCCTATAGAGCCGTTGGATAGTCAACTGAGCTTAGATGATCTAGACGTTATAAAAG
TGATCGGGAAAGGTAGCAGCGGAAATGTGCAATTGGTCCGCCACAAATTTACTGGCCA
GTTTTTTGCTCTGAAGGTTATTCAACTAAATATTGATGAGAGTATACGCAAACAGATTGC
CAAGGAGTTGAAGATAAACTTATCAACACAGTGCCAATATGTTGTTGTGTTCTATCAGT
GTTTCTATTTCAATGGTGCCATTTCTATTGTTTTGGAATACATGGATGGTGGCTCCCTTG
CAGATTTCCTGAAGACTGTTAAAACCATTCCAGAGGCCTACCTCGCTGCTATCTGTACG
CAGATGCTAAAAGGACTGATCTATTTGCATAACGAGAAGCGCGTTATACACCGAGATCT
GAAACCATCAAATATATTGATAAATCATAGGGGTGAAGTAAAAATATCAGATTTTGGTGT
GAGTGCCATTATATCTAGTTCCTCTTCGCAACGAGATACATTTATTGGCACACGCAACT
ACATGGCGCCAGAAAGAATCGATGGAAAGAAACATGGTTCTATGAGTGATATCTGGAG
TTTGGGACTAGTGATACTGGAATGTGCAACCGGCATCTTTCCATTTCCTCCTTGTGAAA
GCTTCTACGAACTTCTCGTGGCTGTTGTTGATCAACCGCCACCTTCTGCGCCGCCGGA
TCAGTTTTCACCAGAATTCTGTGGGTTCATTTCTGCATGTCTCCAGAAGGATGCTAATG
ACAGGTCATCAGCCCAAGCCTTATTGGACCATCCGTTCCTGAGCATGTATGATGACCT
GCATGTAGATCTTGCTTCGTACTTCACGACAGCAGGATCTCCTCTCGCCACCTTCAATT
CCAGGCAACTCTAATTTTTTTGTCCTCCTTATTACGCGAACGGTGTGGCGACAAATTTC
TCTTTTTGGACAAGGCTTGGATTGTGTACTGAGCTGTAATGATCTTGTGTGTGTCAGGT
CGGTGATTGGCTCCATCACTTTACATATATGACATACATGTACAGCCTTTTAGGATAAA
AATGAGCACTGAAGTTTTGCCTATCTGTATATCGGCAGCAAACGTTTGGTCATGTTTGT
TTCACCTTGTAATGTATTGACTCAGATATGGGATTGGTCATTGTCTCTAAAAAAAAAAA
The ZM68416988 cDNA is translated into the following amino acid sequence (SEQ
ID
NO:100):

MATPRKPIKLTLPSHETTIGKFLTHSGTFTDGDLRVNKDGLRIVSRREGGEAPPIEPLDSQL
SLDDLDVIKVIGKGSSGNVQLVRHKFTGQFFALKVIQLNIDESIRKQIAKELKINLSTQCQYVV
VFYQCFYFNGAISIVLEYMDGGSLADFLKTVKTIPEAYLAAICTQMLKGLIYLHNEKRVIHRD


CA 02692650 2010-01-05
WO 2009/010460 85 PCT/EP2008/059070
LKPSNILINHRGEVKISDFGVSAIISSSSSQRDTFIGTRNYMAPERIDGKKHGSMSDIWSLGL
VILECATGIFPFPPCESFYELLVAVVDQPPPSAPPDQFSPEFCGFISACLQKDANDRSSAQA
LLDHPFLSMYDDLHVDLASYFTTAGSPLATFNSRQL

Representative Drawing

Sorry, the representative drawing for patent document number 2692650 was not found.

Administrative Status

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Administrative Status , Maintenance Fee  and Payment History  should be consulted.

Administrative Status

Title Date
Forecasted Issue Date Unavailable
(86) PCT Filing Date 2008-07-11
(87) PCT Publication Date 2009-01-22
(85) National Entry 2010-01-05
Examination Requested 2013-07-09
Dead Application 2015-07-13

Abandonment History

Abandonment Date Reason Reinstatement Date
2014-07-11 FAILURE TO PAY APPLICATION MAINTENANCE FEE
2014-12-04 R30(2) - Failure to Respond

Payment History

Fee Type Anniversary Year Due Date Amount Paid Paid Date
Registration of a document - section 124 $100.00 2010-01-05
Application Fee $400.00 2010-01-05
Maintenance Fee - Application - New Act 2 2010-07-12 $100.00 2010-07-08
Maintenance Fee - Application - New Act 3 2011-07-11 $100.00 2011-06-17
Maintenance Fee - Application - New Act 4 2012-07-11 $100.00 2012-06-26
Maintenance Fee - Application - New Act 5 2013-07-11 $200.00 2013-06-27
Request for Examination $800.00 2013-07-09
Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
BASF PLANT SCIENCE GMBH
Past Owners on Record
CHARDONNENS, AGNES
CHEN, RUOYING
PUZIO, PIOTR
SARRIA-MILLAN, RODRIGO
SHIRLEY, AMBER
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Cover Page 2010-03-18 1 31
Abstract 2010-01-05 1 56
Claims 2010-01-05 1 39
Drawings 2010-01-05 6 398
Description 2010-01-05 85 5,029
Description 2010-04-01 85 5,029
Correspondence 2010-03-11 1 16
PCT 2010-01-05 6 224
Assignment 2010-01-05 9 238
Fees 2010-07-08 1 52
Correspondence 2010-08-10 1 45
Prosecution-Amendment 2010-04-01 3 95
Prosecution-Amendment 2013-07-09 2 59
Prosecution-Amendment 2014-06-04 4 206

Biological Sequence Listings

Choose a BSL submission then click the "Download BSL" button to download the file.

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.

Please note that files with extensions .pep and .seq that were created by CIPO as working files might be incomplete and are not to be considered official communication.

BSL Files

To view selected files, please enter reCAPTCHA code :