Language selection

Search

Patent 2465233 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent Application: (11) CA 2465233
(54) English Title: NAVIGATION SYSTEM FOR DETERMINING THE COURSE OF A VEHICLE
(54) French Title: SYSTEME DE NAVIGATION DESTINE A DETERMINER LA TRAJECTOIRE D'UN VEHICULE
Status: Dead
Bibliographic Data
(51) International Patent Classification (IPC):
  • G01C 21/00 (2006.01)
  • G01C 21/16 (2006.01)
  • B63B 49/00 (2006.01)
(72) Inventors :
  • SCHMIEGEL, ARMIN (Germany)
(73) Owners :
  • ATLAS ELEKTRONIK GMBH (Germany)
(71) Applicants :
  • ATLAS ELEKTRONIK GMBH (Germany)
(74) Agent: FETHERSTONHAUGH & CO.
(74) Associate agent:
(45) Issued:
(86) PCT Filing Date: 2002-09-20
(87) Open to Public Inspection: 2003-05-08
Examination requested: 2004-06-02
Availability of licence: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): Yes
(86) PCT Filing Number: PCT/EP2002/010581
(87) International Publication Number: WO2003/038378
(85) National Entry: 2004-04-28

(30) Application Priority Data:
Application No. Country/Territory Date
101 53 212.1 Germany 2001-10-31

Abstracts

English Abstract




The invention relates to a navigation system for determining the course of a
vehicle. Said navigation system comprises a main sensor system (10) for
measuring the status variables describing the vehicle state, an auxiliary
sensor system (20) that comprises at least one sensor for measuring an
additional status variable, and a navigation core (15) that estimates error-
minimized status variables on the basis of the measured status variables. The
navigation core (15), in order to achieve a higher generality and robustness
with regard to sensor errors of the system, comprises a vehicle model (16)
that predicts, on the basis of the measured data of the main sensor system
(10), the status variables of the vehicle. The navigation core further
includes an error estimator (17) for predicting the errors of estimation made
by the vehicle model (16), and a correction element (18) that corrects the
predicted status variables by means of the predicted errors of estimation.


French Abstract

L'invention concerne un système de navigation destiné à déterminer la trajectoire d'un véhicule, composé d'un système de capteurs principal (10) destiné à mesurer des variables d'état concernant l'état du véhicule, d'un système de capteurs auxiliaire (20) comportant au moins un capteur destiné à mesurer une variable d'état ultérieure, et d'un noyau de navigation (15) évaluant des variables d'état à erreurs réduites à partir des variables d'état mesurées. L'invention vise à réduire la sensibilité dudit système de navigation par rapport aux erreurs de capteurs. A cet effet, le noyau de navigation (15) contient un modèle de véhicule (16) prévoyant les variables d'état du véhicule à partir des données mesurées par le système de capteurs principal (10), un évaluateur d'erreurs (17) destiné à prévoir les erreurs d'évaluation faites par le modèle de véhicule (16), ainsi qu'un organe de correction (18) corrigeant les grandeurs d'état prévues à partir des erreurs d'évaluation prévues.

Claims

Note: Claims are shown in the official language in which they were submitted.




Claims


1. Navigation system for determining the course of a vehicle, in particular an
underwater craft, with a main sensor system (10) that has sensors (8, 9) for
measuring status variables that describe the status of the vehicle, with an
auxiliary
sensor system (20) that has at least one sensor (11 - 14) for measuring an
additional status variable, and with a navigation core (15) that estimates
error-
minimized status variables with the measured status variables, characterized
in that
the navigation core ( 15) contains a vehicle model (16) that describes
mathematically the vehicle's movement and the measurement process as well as
errors in the vehicle movement resulting from errors of measurement, which
with
the measured data from the main sensor system (10) predicts the status
variables
for the vehicle; an error estimator (17) that predicts the errors in
estimation of the
status variables from the predicted status variables and the measured data
from the
auxiliary sensor system; and a correction element (18) that corrects the
predicted
status variables with the predicted errors in estimation.

2. Navigation system as defined in Claim 1, characterized in that the vehicle
model
(16) is realized as an integrator with Kalman filters, the input of which is
connected to the main sensor system (10) and the output of which is connected
on
one side to the input of the error estimator (17) and on the other side to the
input of
the correction element (18).

3. Navigation system as defined in Claim 2, characterized in that the error
estimator
(17) is in the form of an integrator with Kalman filters, the input of which
is
connected to the auxiliary sensor system (20) and the output of which is
applied to
the input of the correction element (18).

4. Navigation system as defined in Claim 2 and Claim 3, characterized in that
the
correction element (18) is a difference generator that generates as an output
value a
difference, preferably weighted, of its input values.


6


5. Navigation system as defined in Claim 4, characterized in that the output
values
from the difference generator (18) are fed back to the inputs of the two
integrators
with Kalman filters.

6. Navigation system as defined in one of the Claims 1 to 5, characterized in
that one
or a plurality of the sensors (11-14) of the auxiliary sensor system (20) is
included in the main sensor system (10), either permanently or temporarily.

7. Navigation system as defined in one of the Claims 1 to 6, characterized in
that the
main sensor system (10) has as sensors a gyroscope (8) and an accelerometer
(9) of
an inertial navigation system (7).

8. Navigation system as defined in one of the Claims 1 to 7, characterized in
that a
speed-measuring device (11) and/or a position sensor (12) and/or a depth
measuring device (13) and/or a position sensor (14) is provided as a sensor of
the
auxiliary sensor system.

9. Navigation system as defined in one of the Claims 1 to 8, characterized in
that the
status values from the control elements (19) that affect the movement of the
vehicle, e.g., the speed at which the propeller is rotating and the position
of a
rudder, are passed to the vehicle model (16) and the error estimator (17).

10. Navigation system as defined in one of the Claims 1 - 9, characterized in
that a
parameter estimator (21) is connected on the input side to the main sensor
system
(10) and/or with the auxiliary sensor system (20), which for a chronological
series
of measured values from the initial sensor system (10) varies the parameters
of the
vehicle model (16) until such time as the measured values for the time series
are
well enough reproduced by the values of the time series computed with the
vehicle
model (16); and in that the navigation core (18) that is connected to the
output of
the parameter estimator (21) matches the parameters of the vehicle model (16)
to
the correction parameters delivered from the parameter estimator (20).

11. Navigation system as defined in Claim 10, characterized in that the
correction
parameters are routed to the vehicle model (16) and to the error estimator
(17).


7

Description

Note: Descriptions are shown in the official language in which they were submitted.




CA 02465233 2004-04-28
Navigation System for Determining the Course of a Vehicle
The present invention relates to a navigation system for determining the
course of a
vehicle, in particular an underwater craft, of the type described in the
preamble to Patent
Claim 1.
A navigation system that functions according to the principle of inertial
navigation,
using an inertial sensor system, provides precise, independent navigation, but
not for
protracted periods, since errors in measurement made by the inertial-sensor
system lead
to serious inaccuracies in determining position.
It is already known that an inertial navigation system (INS) can be coupled to
a global
1 S positioning system (GPS) so as to exploit the advantageous characteristics
of each
system, which complement each other. Whereas the GPS provides stability over
the
long term, the INS has a higher measurement rate, and a greater dynamic and
robustness
with respect to error (Vik and Fossen, "Nonlinear Observer for Integration of
GPS and
Inertial Navigation System," Proceedings of the IEEE CDC, May 7 2001, Florida,
USA,
pp. 1 -17). The measured values obtained from the GPS and the INS are routed
to an
integrating filter, e.g. a Kalman filter, that estimates the vehicle's
variable status values
such as position, speed, and position, with minimized errors. During
estimation of the
variable status values or status variables, the measurement data obtained from
the
inertial-sensor system are processed directly, which is to say without any
evaluation,
e.g., plausibility checks. The result of this is that the position error
between the two GPS
measurements increases by the squared power over time. If the GPS fails, for
example
as a result of a brief period of movement when submerged, determination of
position
will diverge and in some instances navigation may fail.
It is the task of the present invention to so improve a navigation system of
the type
described in the introduction hereto that it is capable of greater accuracy
and is more
robust with respect to sensor-based errors.
According to the present invention, this objective has been achieved by the
features set
out in Patent Claim 1.



CA 02465233 2004-04-28
The navigation system according to the present invention entails the advantage
that,
because of the use of a model that describes the behaviour of the vehicle or
the
movement of the vehicle mathematically and which is broadened by the
measurement
process and the errors in the vehicle movement resulting from inaccurate
measurements
-hereinafter referred to as the vehicle model-a comparison of the measured
sensor data
with the sensor data that is to be anticipated theoretically is performed. The
measured
values from at least one auxiliary sensor are used to determine the errors of
the vehicle
model and ensure the quality of the vehicle model thereby. In this way, the
method is
robust with respect to sensor drift and has a high level of stability over the
long term, to
the point that the vehicle model is correctly formulated.
Practical embodiments of the navigation system according to the present
invention, with
functional developments and configurations of the present invention are set
out in the
secondary claims.
In order to ensure correct formulation of the vehicle model, according to one
preferred
embodiment of the present invention, a parameter estimator determines the
parameters
of the vehicle model from the unprocessed measured data from the main sensor
system
and/or from the auxiliary sensor system, and the navigation core constantly
matches the
parameters of the vehicle model to the correction parameters supplied from the
parameter estimator; it does this in parallel to the navigation task.
The present invention is described in greater detail below on the basis of an
embodiment
shown in the drawing appended hereto. This drawing is a block circuit diagram
of a
navigation system for determining the course of a water craft, e.g., a surface
vessel or an
underwater craft.
The navigation system comprises a main sensor system 10 that, in the
embodiment
shown, is formed as an inertial sensor system of an inertial navigation system
(INS)
consisting of the sensor gyroscope 8 and accelerometer 9, and a plurality of
sensors 11 -
14 of a so-called auxiliary sensor system 20, as well as a navigation core 15
that, with
the measured values from the sensors 8 -14 from the main and auxiliary sensor
systems
10, 20 outputs error-minimized course data for determining the course at its
output 115.
2



CA 02465233 2004-04-28
The measured values obtained by the sensors 8 -14, referred to as sensor data
hereinafter, are status variables that describe the present status of the
vehicle. Thus, the
inertial sensor system measures the status variables "rate of turn" and
"acceleration" with
the gyroscope 8 and the accelerometer 10; in the case of an underwater craft,
this is done
for three axes. The speed measuring device 11, e.g., Dolog, measures the speed
of the
vehicle through the water and over the bottom; a position sensor 12 measures
the angle
of course, roll angle and angle of pitch; a depth sensor measures water
pressure; and a
position sensor 14, preferably a GPS, measures the time and the position and
speed of
the vehicle. In addition, a control element 19 supplies more control data of
the vehicle,
in the case of an underwater craft, for example, the speed of rotation of the
propeller and
the position of the rudder.
The navigation core 15 contains a vehicle model 16 that mathematically
represents
vehicle movement or vehicle behaviour, the measurement process, and the errors
in
vehicle movement that result from imprecise measurements; it also contains an
error
estimator 17 and a correction element 18, the output from which is applied to
the output
151 of the navigation core. The measured data from the main sensor system 10
are
routed to the vehicle model 16 and the measured data from the auxiliary sensor
system
20 are routed to the error estimator 17. The control data of the control
element 19 are
passed both to the vehicle model 16 and to the error estimator 17. The vehicle
model,
which is realized for example, by means of an integrator with Kalman filters,
the input of
which is connected to the main sensor system 10 and the output of which is
connected
on one side to the input of the error estimator 17 and on the other side to
the input of the
correction element 18, uses the measured data from the main sensor system 10
and the
control data from the control element 19 to predict the vehicle's status
variables such as
position, speed, acceleration, course angle, roll and pitch position, and rate
of turn. The
error estimator 17 that is, for example, configured as an integrator with
Kalman filters,
the input of which is connected to the auxiliary sensors 11-14 of the
auxiliary sensor
system 20 as well as to the control element 19, and the output of which is
connected to
the additional input of the corrector element 18, predicts the errors of
estimation
contained in the predicted status variables, using the predicted status
variables from the
vehicle model 16 and the measured data from the auxiliary sensors 11 -14 and
the
3



CA 02465233 2004-04-28
measure data from the control element 19 to do so. Within the correction
element 18,
the predicted status variables are corrected with the help of the predicted
errors of
estimation and the corrected status variables are output at the output 151 of
the
navigation core 15. The correction element 18 can, for example, be in the form
of a
difference generator that generates the difference or a weighted difference
from its input
values as output values. Additionally-as is indicated in the diagram by the
dashed
lines-the corrected status variables that are taken off at the output of the
correction
element 18 can be passed both to the vehicle model 16 and to the error
estimator 17 so as
to improve the predicted status variables and errors of estimation by means of
a new
computer run.
The measured values from the main sensor system 21 are also routed to a
parameter
estimator 21 in order to prevent false modelling in the navigation core 15.
This uses the
measured values from the main sensor system 10 to match the parameters of the
vehicle
model 16 and the error estimator 17 to the actual dynamic. The parameter
estimator 21
uses a chronological sequence of measured values from the main sensor system
10 and
thereby varies the parameters of the vehicle model until such time as the
measured
values are represented well enough by the values computed with the vehicle
model for
the same time series. These parameters are then passed to the navigation core
15 and the
parameters in the vehicle model 16 and in the error estimator 17 are thereby
matched
during continuous operation.
As is indicated in the diagram by the dashed line, the unprocessed sensor data
from the
auxiliary sensor system 20 can be passed to the parameter estimator 21 in
addition to or
in place of the unprocessed data from the main sensor system 10, and this data
from the
auxiliary sensor system is then processed by the parameter estimator 21 in the
same way
as described heretofore. Not all the auxiliary sensors 11 -14 need be involved
when this
is done; any selection of sensors can be used.
The present invention is not restricted to the embodiment described herein.
One or a
plurality of the auxiliary sensors 11-14 can be included either temporarily or
permanently in the main sensor system 10 in place of the inertial navigation
system
4



CA 02465233 2004-04-28
(INS) or in addition to this. The sensor data from these auxiliary sensors are
routed to
the vehicle model 16 instead of to the error estimator 17, whereas the sensors
that remain
in the auxiliary sensor system send their sensor data to the error estimator
17, as before.
If a plurality of auxiliary sensors are included in the main sensor system, it
is also
possible to incorporate the complete inertial navigation system or only the
individual
sensors 8, 9 of this into the auxiliary sensor system 20 so that their sensor
data then pass
to the error estimator 17.
5

Representative Drawing
A single figure which represents the drawing illustrating the invention.
Administrative Status

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Administrative Status , Maintenance Fee  and Payment History  should be consulted.

Administrative Status

Title Date
Forecasted Issue Date Unavailable
(86) PCT Filing Date 2002-09-20
(87) PCT Publication Date 2003-05-08
(85) National Entry 2004-04-28
Examination Requested 2004-06-02
Dead Application 2009-09-21

Abandonment History

Abandonment Date Reason Reinstatement Date
2008-09-22 FAILURE TO PAY APPLICATION MAINTENANCE FEE
2009-03-19 FAILURE TO PAY FINAL FEE

Payment History

Fee Type Anniversary Year Due Date Amount Paid Paid Date
Application Fee $400.00 2004-04-28
Maintenance Fee - Application - New Act 2 2004-09-20 $100.00 2004-04-28
Request for Examination $800.00 2004-06-02
Registration of a document - section 124 $100.00 2005-07-26
Maintenance Fee - Application - New Act 3 2005-09-20 $100.00 2005-08-23
Maintenance Fee - Application - New Act 4 2006-09-20 $100.00 2006-09-12
Maintenance Fee - Application - New Act 5 2007-09-20 $200.00 2007-08-22
Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
ATLAS ELEKTRONIK GMBH
Past Owners on Record
SCHMIEGEL, ARMIN
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Abstract 2004-04-28 1 23
Claims 2004-04-28 2 99
Drawings 2004-04-28 1 18
Representative Drawing 2004-04-28 1 14
Description 2004-04-28 5 245
Cover Page 2004-06-22 1 46
Description 2008-01-22 9 384
Claims 2008-01-22 5 167
Description 2007-05-29 9 383
Claims 2007-05-29 5 168
Prosecution-Amendment 2008-01-22 9 303
Assignment 2004-04-28 2 85
PCT 2004-04-28 15 587
Prosecution-Amendment 2004-06-02 1 38
PCT 2004-04-28 7 276
Correspondence 2004-06-18 1 26
Prosecution-Amendment 2004-10-25 1 33
Assignment 2005-07-26 2 65
Correspondence 2005-07-26 1 37
Prosecution-Amendment 2006-11-29 3 112
Prosecution-Amendment 2007-05-29 17 682
Prosecution-Amendment 2007-09-24 2 51