Sélection de la langue

Search

Sommaire du brevet 1070068 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 1070068
(21) Numéro de la demande: 1070068
(54) Titre français: FILAMENT GAUFRABLE A DEUX COMPOSANTS
(54) Titre anglais: CRIMPABLE BICOMPONENT FILAMENT
Statut: Durée expirée - au-delà du délai suivant l'octroi
Données bibliographiques
Abrégés

Abrégé anglais


ABSTRACT OF THE DISCLOSURE
A crimpable, nylon bicomponent filament having
a sheath of a selected polyamide on an eccentric core of
a random copolymer of hexamethylene dodecanedioamide and
.epsilon.-caproamide units. The copolymer contains about 25-45%
by weight of .epsilon.-caproamide units.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


The embodiments of the invention in which an
exclusive property or privilege is claimed are defined as
follows:
1. A crimpable, non-precrimped nylon fiber in
filament or staple-fiber form, suitable for making into fabric
without precrimping and for being crimped thereafter, consisting
essentially of two, continuous, adherent, eccentric components,
one component being a sheath consisting essentially of a
homopolymer selected from the group consisting of
polyhexamethylene dodecanedioamide, polyhexamethylene adipamide,
and poly-.epsilon.-caproamide, the other component being a core consist-
ing essentially of a random copolymer of hexamethylene dodecane-
dioamide and .epsilon.-caproamide units, said copolymer containing
about 25-45% by weight of .epsilon.-caproamide units.
2. The fiber of claim 1, said copolymer con-
taining about 35% by weight of .epsilon.-caproamide units.
3. A fabric from yarn comprised of fiber as defined
in claim 1 or 2.
4. A fabric from yarn comprised of fiber as defined
in claim 1 or 2, said yarn having been made into said fabric
without precrimping and subsequently having been crimped.
5. The fiber of claim 1 or 2, wherein said sheath
consists essentially of polyhexamethylene dodecanedioamide.
6. The fiber of claim 1 or 2, wherein said
sheath consists essentially of polyhexamethylene adipamide.
7. The fiber of claim 1 or 2, wherein said sheath
consists essentially of poly-.epsilon.-caproamide.
8. The fiber of claim 1 or 2, wherein said core
is 30-70% by weight of the fiber.

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


68
BACKG~)UND OF THE INVENTIO~a
This invention relates to yarns melt æpun ~rom
syrlthetlc, linear polyamlde~ and, more particularly3 to
composit2 fllaments~
Nylon filament~ and yarns have long been pre~-
domin~t in the women'~ hosiery ~rket. In recen-t ~rear~3
there ha~ been a strong demand for so-cls.lled stretch hose
which are much 3ma11er ~han the legs on whlch they are to
be worn but stretch su~ficiently to provide not or~ly
im~roved flt bu~ also a reductlon ln the nu~ber o~ 3izea
re~quired ~or the normal range o~ leg ~ize3,
Crlmpable filamenta p~rticularly sultable Por
~tretch ho~iery have been di~clo~ed by Olson ~n U.S. Pa~en~
No. 39 399,1080 Such filaments are able to crimp against
tenslons and re~tra:~nt~ impvsed by the stitche~ in a krllt
~abr~cS thu~ co~erring excelïent stretchability on
ho~iery prepared ~rom such a ~abric. Although fllamen~s
o~ the compo~it~ons disclosed by Olson produce ho~iery o~
high qualityJ a need ~or ~urther iLmprovemc-,nts ~n the
per~ormance ~d appearance o~ ~oda~ retch fabrics ha~
been recogn~zed.
b~8~
I~provem~t~ in durab:Lllty, flt and ~it retention
hav~ now been achleved in ho~iery k~Lt :~rom a cri~pable
yax~ o~ a~ lea~t one nylon filament having two collt~uous,
adherent5 eccexl~ric comp~nt~, one eo~ponent bei~g a
~h~h consi~t~I~g e~ tiall~ o~ a hon~opol~mer ~elected
~rom the group cons~sting o~ polyhexamethylen~ dodecane-
di.oamlde, polyhexæ~thylene adlpam~de ~d poly ~caproamld~
the other CO~pO~lel~ ~g a C~Sl"e con~i~ting e~ ntlally o~
,, ~ .

a random copolymer o~ he~camethylene dodecaxled~oa~lde and
-caproamlde units~ The copolymer contain~ about 25-45%
by weigh~ of ~-caproamide unitsi,
DESCRIPTION OF THE D:RAWING
In the drawingg Figure 1 is a~n enlargefl cross
sectiorl o~ the co~posite filament of thle present i~vention
and Fig. 2 i~ a vertical, ~ectlonal Ylew o~ a ~pi~neret
~uitable ~or lt~ production.
In each iilament lO, a contirluol;Ls sheath 12 o~
a elected polya~lde ~urround~ an eccentric core 14. An
edge 16 o~ core 14 ad~acen~ e th~c}c portlon of ~he~th 12
i~ substantlally :Elat. The core ~ a copolymer of
hexamethylene dodecanedio~mide (6-12 n~rlon) and -caproamide
(6 nylon) unlt~ which contain~ abo~t 25-~5q~ by weight of
6 nylon units (Example IV). Better propertle~ are achi~ved
at core content~ of 30-4~ by weîght 6 n~lon unit80 In
thi~ respect, fllaments with core~ conltaining ~bout 3~ by
~ight of 6 ~ylon unit~ have a unique bal~nce o~ propertie~g
wherea~ filaments w~kh core~ conta~ing 2û% and 50%~,
r~pectively, by weight of 6 nylon unit~ ha~re be~n ~ouIld
un~uita~le ~or pre~ent pu~po~e~ ample~ IVJ V ~1~ V~
Illu~trative preparation~ o* 6-lZ n~lon homo-
polymer and 6-12/6 rlylon copolymer are de~cribed ln
E:~carnple I .
The test fil~ment~ 10 exempli~ied herein were
prepared by ~elt ~p~ing an extrudate o:f two contlnuou~,
eccentrlc co~pon~nts in a sheath-core relation~hip through
a ~pinneret ~s~embly 18 o~ th~ type ~how3l :ln ~ig. 2.
S;p~nneret a~embly 18 include~ ~ di~tr~butlon plate 20
- 3 -

having separate cavities 22, 24 from which the homopolymer
and copolymer, respectively, are discharged under pres~ure
tQ a distribution space 26 between plate 20 and a spinneret
pl~te 28. The sheath polymer from cavity 22 passes through
space 26 to passages 30, 32 a~ indicated by arrows. The
core copolymer is discharged axially into pas~age 32, i.e.,
the two materials flow through passage 32 in substantially
concentric paths. The diameter of a projection 34 and its
spacing from plate 28 are chosen to provlde a pre~elected
ratio of homopolymer flow rates into passages 30J 32 At
the ~uncture o~ passages 30, 32 the two flows are combine~
in a side by-side relatlonship and a composite ~ilament 10
i9 extruded throu~h a reduced round ~pinning orifice 36. If
trilobal or other ~ilament cro~s sections ~re desired,
paR6ages 36 can be shaped ~ccordingly. Additional orifLces
provided in spinneret plate 28 are ~upplied from cavitieæ 22,
24 through diætribution passages duplicating those shown in
Fig. 2.
Sheath 12, along its thinne6t arc adjacent the
20 outer, convex surface of core 14, has a thickne~s of
abou~ 1~ o~ the ~ilament diameter. ~or a given spi~ning
~ystem, thi~ dimension is dependent on the clearance
between pro~ection 34 and æpinneret plate 28, t~pically
of the order of 3 3.5 mils. (o.076-0.089 mm.~.
The m~gnitude of the di~ference in relative
vi~cosities (~RV) between sheath and core polymers is
important ~or obtaining opkimum oper~bility When
the filament is 50-60~ by weight core and R~ ~or
each component is determined using the same solve~t, the
30 6heath polymer ~V is prev~rably about 2 to 8 le~s
than that o:f the cor~ polymer, Two me~hods ~or
~ r
.

measur~ng RV are given ~der "De~initions and Test
Descrlptions"; and both can be used for measuring core
polymer RV. If ~RV is either too large or ~oo sm~
bending o~ the extruded stream occurs at the spinneret
~ace~ and the D~shape of the core ls undlesirably distortedO
Selection of ~RV to elimlnate bending of the extruded
stream provides optimu~ operation.
On emergence ~rom the ~pinneret, the ~ilaments
are quenched, separated into yarns o~ one or more fi~lament~
~nd then either wound on an intermediate pack~ge be~ore
being drawn or advanced continuously to a draw zone, In
some instanceæ, the drawn yarn is heat set before p~ckag~ng
but the sensitive, precrimp~ng step di~closed by Ol~on is
eli~nated. Detalled descriptions o~ several yarn pre-
p~rations have been set ~o~th in the examples.
: Two types of yarn are u~ed in knitting hose or
pantyhose, i.e., welt yarn~ and leg yarns~ Welt yarns
are normally 40-50 denier ya~n~ wlth 6 to 13 filaments.
~ They are used to knit the panty port~on and toes o~ panty-
: 20 ho~e and the welt, shadow welt, and toes o~ regular ho~e.
In the examples, the welt yarns used are commerc~ally
available ~tretch yarns of the ~alse-t~lst-textured or
bicomponent types~ Only the legs of either type of gar-
ment are knitted ~rom the yarns described ~n the ~ollowing
: 25 ex~mples. The "heel mark" is simply a sing~e end o~
~nother vls~.ble ys m knit in for a few ~titche~ o~ one
cour~e. When c~anging ~rom an area knit of welt ~arn to
one knit o~`leg yarn, or vice versa, the two y~rn~ are
plied ~or a p~rtlon o~ one course to ~asten the area~
together~
.
.

In knitting ho~e~ welt yarn is flr~t ied to a
knitting machine. After a welt portion is knitted, it is
doubled and stltched on the m~chlne to form the final welt
before knitting a short undoubled portion k~own a3 the
~hadow welt. Then, leg y~rn is fed in place of welt yarn
for knitting the upper leg, tran~ition9 lower leg, ankle
and ~oot portions~ A switch back to welt yarn ~eed is
made for ~inishing the tow.
P~ntyhv3e are similarly prepared, except that
each knit tube has a longer portlon initlally knit from
welt yarn to prov~de half o~ a panty ~ection~ There i~
no doubling o~ the welt as in the hose described above.
The heavler Pabric at the top o~ a tu~e for pantyhose i~
then ~lit and ~eamed to ~inish the panty. All hose or
pantyhose disclosed herein were circular-knitted in a
plain ~ersey stitch throughout. Some were prepared us~ng
multiple-~eed machine~ but most were knit on single-f~ed
machine~.
The ~traight~ uncrimped yarn of this invention
handles well during knitting operattons. The unexpectedly
high shrinkage ~orce o~ the copolymeric component make~
po~s~ble the development o~ mQre than adequate cri~p by
shrinkage in ~bric ~orm. Heat treatment o~ the order o~
100C., a~ rout~nely used during cu6tomary fabric ~inlshlng,
is ~u~icient to develop this crimp. Known crlmpable
filament~ ha~e not had s~iicie~t di~ferential shrink~ge
to develop adequate crimp ~or the fir~t time again~t
re~traint~ pre~ent in ~abric~. Accordlngly, it h~s been
nec~ary to precri~p bicomponent ~lament~ with heat
se~ting ~n order to ~ub~titute relative~y ~tronger iorce~
- 6 -

~ - ~
of heat-set, crystalline "memory" for weaker, shrinkage
~orces .
Hose knit from crimpable, nylon yarns of this
invention are very durable because o~ their high yarn
tenacity at break. Variable delays between drawing and
crimping have no effect on the crimp properties obtained.
Known crimped and crimpable yarns have been very sensikive
to these v~riable delays, making it dif~icult to achieve
uni~orm crimp properties~ especially where the yarnæ are
1~ spun in one operation and then drawn and precrimped or
otherwise textured in an entirely separate operation, with
yarn-packaging therebetween.
Because of its unique balance of properties,
there is no need to precrimp the yarns of this invention,
i.e , the as-drawn yarn can be knit directly into a fabric.
Surprisingly, the as drawn yarn provides significantly
better hosiery stretch and recovery properties tha~ the
same yarn precrimped (Table 2), In addition to high cost,
a precrimping ætep sometimes causes periodic s~ctions of
low crimp in the yarn, presumably due to random filament~
to-~ilament and ~ilament-to-heater contacts while being
crimped in a nearly tensionless state. The~e low-crimp
zones appear as ~law~ in knit fabrics. The as-drawn)
crimpable yarns o~ this inventiDn are free ~rom such low-
crimp zones. Equally significant is the fact that, since
~he inherently slow precrimping step is eliminated, crimp-
able linear pol~amide bicomponent-~ilament yarns o~ this
invention can be made readily in a single coupled process
beginning with melting of the components and ending with
packaging of yarn ready for k~itting or weaving.
- 7
' "'
.~; , .

1~70~63~1
WhilP the 6-12~/6-12/6, 6~6//6 12/6 and
6//6-12/6 nylon yarns di~closed hereln (6-6 nylon is poly-
hexamethylene adlp~mide; // separates sheath and core
co~ponents and / separates polymer unit~ tn the copoJ.ymeric
core) are especially well 3uited as ho~:ie~y leg yarn~,
thelr u~e i8 by no means so limited. For in~tance9 ~elt
yarn~ in cu~to~ary denler~ and count~ a:re readily prepared,
Multii~ilament ya~ns of usual te~tile deniers (e.ga9 40 150
denier) are also suitable ~or the prep~ration o~ tricot or
circular knlt fabric~ ~or ~tretch apparel, e.gi,, swi~uit~,
men's slack~3 sports clothing and the likeO Also, the
~llaments of th~ invention may be cut to staple fibers
(ordinarily ~rom 3 to 18 denier per filament) and u~ed
al~ne or blended with other staple to prepare ~ab:rics3
which, on ~ubse~uent heat treatmellt, become bulky when
the ~taple ~ibers o~ thl~ inven~ion ~hrin~s and crimp.
W~th the 6-12//6-12/6 nylon y~ disclosed
}lerein, better levels of ~brlc sheernes~ can be ~chieved
because of the ma~er in which dyes, under proper COhdi-
tiO~ pa~ition preponderantly ~o the 6-12/6 nylon core~.
In thl~ re~pect9 it h~ been demon~trated that 6-12~6
~ylon ~ccept~ acid dye~ very readily~ SimilarlyJ dl~per~e
dyes ~ometimeæ ~vor the 6~12/6 n~lon core9 leaving the
homopolymeric nylon sheath lighter in colorO
2~ ~
y~t~ Cea~e~/: RelatiY~ vi~co~i-ty (RV~ i~ the
~o~ution to~olvent ratlo of ab~olute vi~cosities a~
25 ~ 0~05~Co For the 6-12 polym~r~ ~nd copolymers ~nd
for ths 6 nylon reported herein, a 6.166 percent by ~eight
solution of the polymer in a 50% Pormlc acid (98%3J 50
~ 8 ;
-

7~6~3
phenol solvent ls used~, ~or poly}lexame-thylene adipamide
(6-6 nylon) (.Ecamples IV~ V and Vïï~ the ~olvent i~ 90%
by weight f:`ormic acid (10~ ws.ter) and the polymer solution
ha~ 8.4% by weight polymer ln the 801vent.
2. ~ The~e are calculated ~rom measure-
ments of a trace recorded on a stress- ~train ana:Ly~er"
Sample length i8 ten inche~ (25.4 cm. ~ arld elongation is
at the rate o~ ~ix ln./min. (15.2 cml,fmin, ) ,. Before
tes ting, packaged yarn is conditloned for at le~t ~4 hours
~ a 72~ RH,, 25C. atmoqphereO Ter~city (T) i.8 the load
ln gram~ at the point of ~ailure divided by the denler o~
the pach~ged, condltioned ~arn. Elongation (E) i3 the
percent increase in length of the san~ple at the point of
~ailure. Tenacity (TB) 1~ the load in gram~ at the point
o~ ~ailure divided by denier at the point o~ ~ailureO I~
i8 computed from:
TB ' T(l~E/lOO)o
3 ~ ~ A 750 denier bundle of yarn is
prepared ~y w~naing the requisite number o~ tUrnB OYl a
reel to ~ield a skein about 55 cm. long when su~peslded
with a weight attach~dO The denier o~ tbe ~uspended
ske~x~ w~ o~ cour~e) be twice that o~ the bundle, i.e~,
1500 denierO Initially, a 500 grQ. weight i8 hung from
the ~u~pended skein. A~ter one mlnute9 length (a) o~
the ~kein ~ measured. The 500 gmO weight i~ t}len replaced
with a 1.8 ~m. we ght to provide a ten~ile lo~Lding of
1.2 mgO/~enO~ i.eO, a tension in exce~ of that u~u~lly
ex3?erlæ,nced by the yarn ln a knitted ~heer ~abric" The
~3kein wit~ th~ weight attached t~ ~ub~ected to 100Co
~te~m at atmo~pheric prs~ure ~o:r two mînutes, ~ter w~lch
,.,, g _ .

it is allowed to dry in alr for ten minutes. Then, skein
length (b) is measuredn Flnally, the 1.8 gm. weight iæ
replaced by the 500 gm. weight and, after a one minute
delay, skein length (c) is measured .
~ ( CE) is computed as
c -~
CE(~) = 100 ~~~
Crim~ ~hrin~age (CS) is computed as
a-c
CS(%) - 100 a
In the prior art, crimp elongation (CE) of a
yarn has been relied upon as an indication of ~tretch
properties to be expected in knit hose. The higher the
CE, the better i~ the anticipated ~tretch. Surprisingly,
the yarn~ o~ this invention generall~ provide low C~
value~ hich do not predict their outstandingly improved
stretch propert~es in hose.
4. ~ The shQpe,
size and eccentr~city of the core (Fig. 1~ in a blcompo-
ne~tS sheath-core filament can be ob~erved and mea3ur~d
microscopically~ A straight ~llament i5 first em~edded
O in a para~fin wax, and then 8 micron thick slice~ are cut
normal to the filament axie us~ng a microtome. A ~ingle
81~ ce i~ mounted ~or observation using transmltted light
~n an optical microscope, the ~ample be~ng covered with a
; thin film o~ oll with refractive lndex o~ about 1~53.
25 :3ither ph~e contrast or polarized light 1~ em~?loyed to
m~dm~ze optical e~fect~ due to refr~ctive in~ex di~erence
between ~heath and coreO T~ the event the refractive index
dif~ere~ce ls too s~all for dist~nguishing sheath :Erom core,
the i~ merllt is ver~ brie~ly tmmersed in a warm solution
3~ o~ a d~rk acid dye be~ore em~edding, whereby only the more
~'

~07~ 8
readily dyeable core becomes dyed. For mea~urement
purpo~es, the vlewed cro~s sectio~ ls photographed along
with a ~uitable scale interpo~ed in the ~ield, When the
~tarting ~llament is ~ully d rawn, the thi~nest ~heath
portion (covering the curved periphery of the D-shaped
core 14 in Fig. 1) can be observed but has too small a
radlal thickness for precise measurementO The fiber
producer can determine thi~ miminum ehea~h thicknes~ by
collecting a ~ilament sample a~ it ~a~ls ~:reely from the
10 ~pinneret3 without having been drawn at all, and then
measuring as above described. Filaments 50 collected are
at least an order o~ magnitude larger in di~meter than
are the ~ully drawn ones. The mea~ured thickness can
then be scaled to the reduction in ~lze impo3ed by drawing~
15 It i~ pre~erred that the ~heath ln its thinne~t ~rc be
~ as thin ~ possible while completely cover~ng the core~
In the filament~ exempli~ied herein~ this radial thickne~
is abou~ 1% of the ~ilament diameterO
5. Hosie~_Propertie3. Ho~iery stretch (HS) and recove~y
(ER) are determined after susp~ndlng a leg portion of a
pantyho~e or hose irom a clamp ~astened at the welt~to-leg
~uncture. Fir~t, initial length ~Lo) i~ mea~ured. A load
in gram~ of abo~t ll~OD (where D t.s den:ler o~ a ~ingle leg
yarn) i~ care~ully appli.ed to the toe and, after a ~inute,
extended length (L~ measured. Then, the load is
r~moved ~uddenly and, a~ter a mlnute, recovered length
~L2) i~ mea~ured~ Hosiery length~ a~e mea3ured ~rom the
clamp to the heel mark ~the pa~tyho~e o~ E~ample II ha~e
~ no heel mark ~nd ~re mea~ured to the toe ~unc~ture)~ ~
~S(%) = 100 1
o

Ll-L2
HR(~) = 100 I~ Lo
The higher the HS, the wider is the range of leg
sizes a given hose can ~it~ i.e., fewer sixes o~ knit hose
are required to fit the population of leg sizes. High
values o~ HR indicate improved retention of rit.
~ osiery sizes are measured with a "~i~omaco" cross
stretch tester ~described in U.S. Patent No. 3,444,728 to
Burns, manufactured by Hickory Foundry & Machine Co., Inc.,
Hickory, ~orth Carolina). In Example III only9 equivalent
cross-stretch measurements are made using a Jones Tester
(descrlbed in U.S. Patent No~ 2,706~402 to Gaither M. Jones,
Sr., manu~actured b~ Jones Machine Co., Burlington, North
Carolina). Cross-stretch as reported herein is rneasured on
finishedg unboarded hose in the upper leg about ~our inches
(10.2 cm.) below the shadow welt and at the anklc about two
inches (5.1 cm.) above the heel mark.
6. dtex. The term "dtex" is an abbrevlation ~or "decite~",
a European term, and is obtained b~ multiplying denier by
,~,. '
7. precri~ . The term "precrimped" refers to yarn of
one or more bicomponent filaments which has been drawn,
crimped in a substantiall~ tensionless state in a heated
atmosphere and then stretched to remove the crl~p be~ore
packaging.
8 as-dr~wn. ~he term "as-drawn" refers to yarn which
has been drawn and packaged without precrimping.
Characteriæations obtained in the test described
above and other de~ailed in~ormation concerning test and
control ~arn6 and hose kni~ ~rom such yarns are se~ ~olth
in the ~ollowing illustrative e~amples. All pa:rts a~d
percentages are by welght unless otherwise indlcated.
- 12 -
.

6~1
EXAMPLE I
This example descr:Lbes a process ~or preparing
:~lake of polyhexamethylene dodecanedioamide t6-12) homo-
polyroer ~nd random copolymers comprislng hexamethylene
dodecanedioamide and epsilon caproamide uni~ (6~12J'6).
An aqueou~ solution of the salt o~ hexamethylene
diamine and dodeca~edioic acld (6-12 nylon salt ) is charged
to an evaporator as such ~or homopolymer) or with an
amount o~ epsilon caprolactam calculated to provide the
desired copolymer rat lo ( ~or 6-12~ copolymer~ ~ O The
solution ls e~aporated to a sollds cor~tent of about 80%
by weight. After tran~:fer to an autoclaveg the 801ution
i~ heated to about 160C. a~d br~ught to a pre~sure o~
250 psig. (17f6 kg9/cm.2 gauge~. Then, an amount o~ 20%
by weight aqueous slurry of TiO~ is added to provide 0.02%
b~ wei~ht TiO2 ln the ~inal polymer (any cu~tomary amount
of TiO2 delu~terant may be added, but all polymer~
exempl~fied herein contaln 0.02~ T102). While ~a~ntainlng
con~tant pressure~ temperature is gradually raised to
about 240C. F~Qlly, pres~ure i~ gradually reduced to
ambien~ atmospheric pressure while temperature con~lnu~s
to ri~e to about 250C. ~or 6-12 n~lon homopolymer ~nd
about 260~C. ~or 6-12/6 nylon copolymer~. The resulta~t
polymer i~ extruded under pre~sure of inert gas into
strands wh~ch are quenched with water and then cut in~o
0.25 ~n~h ~o~64 cm~ ke~
EXAMPLE II
A 6~1~ nylon homopolymer ~lake ~nd a 6-12/6
ra~dom copol~amlde with 30~ by we~ght 6 nylon units are
prep~red a~ de~crlbed ln ~x~mple I~ me two ilakes are
- ~3

~0~
separatel~ mel-ted using ~acuum exhau~ted screw ex-truder~,
the ~V's o~ the melted polymers sampled ~u~t prior to
entering the spinneret assembly being 36 and 42, re~pect-
lvely. Separate gear pump~ feed the two melts at 260
3C. to a spinneret assembly with flow passage~ o~ the
type shown in Fig. 2 at rate~ adjusted to provide a 40/60
weight ratio of sheath (6-12) and core (6-12/6) polymer~.
The e~truded filaments ha~e cro~s sections of the type
~hown ln Fiæ . 1 .
In their departure ~rom the ~pinneret, the fila-
ment~ are air-quenched and then ~team-conditioned be~ore
belng wound up a~ mono~ilaments at 516 yd./min (472 mO/~in.).
Quenching is in a 60 lnch (1.52 meter) long chimney using
cross flow air at 55F. (12~8C,). Steam conditioning i~
achieved on pa~sage through a cham~er 1.92 meters long
containing saturated steam at atmospheric pres~ureO
The undrawn monofilament i~ sub~equently w~th-
drawn from its pack~ge, dou~led to a 2~ilament yarn and
drawn over an u~heated draw pin located between ~eed ~nd
draw roll~. The draw rat~o (~atio of' draw-roll to feed
roll per~pheral velocitle~) is 4.67X and perlpheral ~peed
of the dr~w roll is 855 yd,/min. (782 m.~min~). The drawn
yarn i8 i~ediately pack~ged u~ing a ring-and~tra~eler
w~ndu~ operated at a ~pindle spe~d of 7710 rpm to ~n~ert
~ twi~t of 0025~ turn~ per inch (0.1 turns/cm~). Denier
of the re~ultant yarn i~ 2304 (26 dtex)~
A 30~denier 2~ ment prior a~ control yarn iB
ob-tained by plying two 15-denier co~mercial bico~ponent
monof~l~ment~ The ~hea~h is o:~ 6W6 nylon ~or~ing ~2% by
~e:lghtp and the eccentric core i~ o~ 6-6~6~10~6-12
- ~4 _

:~07~
(50/31~5/18~5~ ~orming the rem~nlng 58% (6~10 identl~ie~
units o~ hexamethylene ~ebacamide). These monofilament~
are prepared with precr1mping subætantially 28 described
ln Example VIII o~ U.S~ Patent No. 3J 399~108 to Olson,
Propertie~ measured for the te~t yarn and one
ply of the control yarn are reported in Table 1.
Table 1
15 1 Commercial
Test M~nofilament
____
Tenacity (gm.~den.) 5r6 4~6
(g~/dtex) 5.0 4.1
Elongation (%) 22,2 41.2
Crlmp elongation (~) 31.9 34.3
Crimp ~hrinkage (%) 16.6 401
Ladles' medium ~ize, ~heer, support pantyhose
are circu~arknitted to the ~ame f~ni~hed size ~rom the
two 2-filament yarnsO Flnishing o~ the knlt garment~
be~ore wear compri~e~ loose tumble-~teaming at atmo~pheric
pre~3ure, conventional ~couring and disperse dyeing and
boarding on a mediu~ bo~rd ln a steam che~t conta~n~ng
220F~ (104.4C.) saturated Bteam~
A panel of twenty women who nor~all~ wear ~heer
support hose wear the te3t pantyhose o~ thls i.nvention for
iive day3. One pa~r ~a~ls be~ore the end o~ the te~t,
and on~ te~ter di~co~t~nues testing because o~ poor iito
Of the rema~n~n~ eighteen, ~lxteen *ind their pantyhose
~it Well9 and tw~ rate thelr pantyho~e too loo~O TNelve
o~ the eighteen al~o r~te their pa~tyhose a~ equlval~nt
to o~ better thu~ thelr u~ual Buppo~t ho~e in term~ o~
~upport provlded.
- 15 -

~07~06 5i
A panel of nin¢teen of the above twenty women
wear the control pantyhose ~or five days~ There are two
early failures) and three testers discontinue testing
because of poor initial ~it. Four of the fourteen who
5 ~inish the test find their pantyhose to ~lt well, but ten
find they become too loose. Only ~ive o~ the ~our~een
~ind the ~upport provided equal to or better than that of
thei~ usual support hose~
Hosiery stretch (HS) and hosiery recovery (HR)
are mea~ured ~or unworn pantyhose ~rom the test yarn o~
thi~ example (II D) and from an otherwise identical yarn
(II P) which had been precrimped according to Olson.
P~ntyho~e which had been w~rn ~or five days and which had
been knit ~rom the test yarn o~ this example (II D 5~J
from an otherwi~e identical but precrimped yarn (II P 5)
and ~rom the control yarn ~Il C 5) are mea~ured ~lmllarlyO
In the~e determinations, a 3.46 kg. load ia applied at the
~oot-to~toe ~unctureO Averaged results for the tw~ legs
o~ each garment are report ed in Table 2 .
Table 2
HS~
II D 240 93
II P 184 84.4
II D 5 277 94.3
II P 5 211 81.2
II C 5 171 87.,8
EXAMPLE III
mi8 example illustr~tes the preparation o~
latently cri~npable yarns using a continuous spinning-
dr~wing packag~ng process. The polymer ~lakes oi
~ 16 -
.. . . . . . .................... . . . .
.- ' . ' . . ~ ~ :

~07~8
Exa~ple II are us~d slmilarly to ex-trude filaments of the
~ame description. Measured on melt at the point of entry
to the ~pinneret pack, R~ ~or the homopol~ner varle~3 ~rom
39.3 to 38.~ during the extru3ion and RV ~'or the copolymer
variee similarly ~rom 431D3 to 4~5. The ~lu~t-e~truded
~ilaments are ~uenched in a 60~inch (1.52 m.) long chimney
uslng cross ~low air at ~ 1Co They are simulta~eou~ly
converged to 8-~ilament yarns" each yaxn being pulled fro~
th~ ch~mney vla ~eed roll~ at 952 ydO/minO (870.5 m./m~n. )
From the ~eed rolls, each yarn pa~se~ to a ~.irst draw roll
operated ~t a perlpheral velocity of 2026 ydO~min (1853
m./min~) to provide a first stage draw ratio of 2013X~,
There~ter each yarn sequentially contact~ oppo~ite ~ides
of a palr of draw pins heated to 138C~ while ad~anc~n,g to
a p~ir of roll~ in a hot chest mainta~ed at 120C. ~ch
yarn wraps th~s pair of roll~ ~everal times and L8 deli~
vered there~rom at 3260 y~rd~/minO (2981 m./min.) ~o
provide additional drawlng at ~ 1.61X draw ratioO Tot~L
dr~ by both drawi~ t~p~ p~ide~ ~ 3.42X draw ratio.
Re~idence time in the hot che~t i~ about 0.18 8econd.
I~medlatel~r subsequent to the hot che~t~ e~ch ~a~n wrap~
a let-down .roll oper~t~d ~t ~ peripher~l velocity o:~
2938 yd./m~n. 2686 m,,/min~,) and then a ~orwardin~ roll
operated ~t 3012 yd./m~. ~2754 mO/min.3 peripher~l
~5 velocity. The yarn~ ~re then packaged on yarn tubes at a
yarn veloc:ltg o~ about 3026 yd~,fminO (2767 m.~nln,,)~ The
pack~ged 8~ilaale~ yarn ha~ a total denler of 15~,6
~17.3 dtex~, Aver~ged propertl~ ~or this yarn, ~ncl ~o:r
a control y~rn a~ de~crlbed b~lo~ are r~ported ln Ta~le 3.
.

7al~
Table 3
Te~t Control
Tenacit~ (gm.~denO ) 600 '~07
~gm.~dtex) 504 3~3
Elongation (9~) 30 "2 39 .8
Crimp elongation (~) 6 . 3 2~3 .0
Crimp ~hrinkage (,9~) 11.6 l~.4
The control yarn i3 an 18~3~denier (2003 dtex)
8-~llament yarn prepared with pr~crimping a1 descr~ bed in
~cample V~:II of Olæon~ It ha~ a 6-6 nylon F~heath ~nd ~
6-6~6-10/6-12 ( 50/31. 5~18 ~ 5 ) nylon core at a ~heath/core
weight ratio and eccentricity identlc~l to the te~t yarnO
Pantyho~ are knit using the abo~e yarn~ ~or the
leg portions. The panty portion i~ o~ commercial 50~den~er
10-rilament ral~e-twi~t-t~xtured 6-6 nylon yarn ~ A com-
merci~l 2-reed knitting machine producing a plain ,~er~e~
stitch i~ u~ed, and the num~er of cour~e~ and ~titche~ -
per couree are identical. In order to prov~de eq~
finished ~ize~ ~or the leg3 ~rom the two yarn~, it i~
~0 nece~ary to knit the legs rrOm the yarn o~ th~ lnvention
~rith l~rger ~titches, thu~ counterbalancing their high~r
~hrinkaæe. The greige hose Qre dyed in ~ commercl~l d~sa
perse-dye bath, the control ho~e at 160P~o ~71~1Cs~) and
the te~t hose ~t ~10Fo (98"9C.) for 45 minute~,, All
ho~e are boarded on leg ~orm~ at 2~5F. (118~,3C~) in a
~t~am ~he3t. The finished ho~e are Or ~ub~tant~lly equal
~l~e a3 lndicated by mea~ure~ent~ made on th~ "Jon~
te~sr" The result~ are reported in r~ble 4
- 18 - :
.. ..
.. : .
.. . . ~ . .. ... . . . .
` . ,
- .-: . : . : . '

~able 4
Test Controï
Cross ~tretchwankle (inO)9~,4 10,,0
-knee (inO )14,,2 1406
~upper leg ~in. ) 15~5 15.1
The ho~e ~rom test yarn~ have a ilatter appearance
and ~re ~reer o~ vl~ual defect~ than the control ho~eO A
panel o~ t~nty girls ranging ln ~,reight :~rom 108 to 150
pounds (49 to 68 kg.3 i~ ~elected to wear one p~ir o* each
10 type o~ ho~e ~or ~ive days~ Two o~ the testers ~lnd the
panty portion o~ the te~t hose to be too tight to wear.
One pair of th~ control ho~e ~ails be:eore completion o~ the
~e~t~ The we~rer~ rate each ho~e ~eor ~it~ Re~ults are
repo~ted in Table 5
~
Te~t Control
too tight
~lightl~ tight ~ 1
~ati~actory 14 17
~lightly loo~e 3 2
too loo~e -
too tight 1
~lightly tight 1 -
t~y 10 9
~llghtly loo~e 5
t~ loo~@ 1 3
' .
.
_ ~9 ~

Tes t Control
too tight - -
slightly tight - _
sati~actvry 12 7
~lightly loose 6 8
too loo~e - 4
It i~ apparent that the te~t hose m~intain th~ir
fit better than the control ho~e.
Cri~p elongation (C~**) i~ mea~ured on yarn~
re~oved ~rom unworn ho~e (bo~rded at 118.3C. ~or 45 min.),
~rom hose worn for f~ve day~, and from two 3ets o~ hose
identical in every way to the origlnal unworn hose except
~or having been boarded in steam ~or 1 minute at 104.4 and
110.0C., respectively. Crimp elongation ~c~**3 ~or yarn
raveled ~rom ~ini~hed ho~e i8 determined b~ preparing a
45 meter ~ein having ~orty turns, ~llowlng the ~kein to
hang ~ree Por thirty ~econds, hanglng a 108 gram weight
: 20 ~roffl the skeln for about flve ~inute~9 recordlng it~ -
relaxed ~ength Ll, han~ng a 500 gram welght on the ~keln,
recording its extended length ~ and computlng C~* a~
lOO~L2-L~ . The computed values for CE** are reported
in Tabl@ 6.
Table 6
Boarded at 118 ~ 3 C o99% 82
Worn 5 d~y; 87% 73
Boarded at llOoOCo121%~ 825~
Boarded at 104 " 4 C .138~ 77%
~ ~o ~o :
:

It i~ app~rent that 107rer boardlng te~perature~
than u~ed :~or the wear te~t hose y:leld e~en better stretch
and that, ~or yarn remoYed ~rom finlshed hose, the te~t
yarn~ are clearly l~proved over the control yarn~ Thi~
impro~ement i~ completely unexpected ln vlew o~ CE ~ral~le~
obtained on the yarn~ before being knltted (Table 3).
EXA~PLE IV
A 6-12 homopolymer and ~our random copol~er~ o~
6 12/6 nylon with 8Q/20, 70/309 65/35, and 60~40 weight
ratios are prepared a~ de~cribed in Exa~ple Il The RV of
the homopolymer i~ 38 . 0 ~ 1 c 5 and that o* the copolymer~
i~ 43 + 3 as measured on ~ampleB taken of each melt before
it enter~ the ~pinneret pack durlng extrusion o~ filament~ .
The ~ilament~ ~re ~ormed by extru~ion as in Example II,
~nd are ~tructu~ally Bimllar, i.e., 40,~ by weight 6~12
sheath, 609C by w~ight 6 12/6 core9 and a ~hea*h thiclules~
along the thlrlnest ~rc o~ the ~heath ~rhich 1~ about 1% of
the ~llament diameter. The ~ilament~ are ~uenched in a
60 inch (1.52 m.) chlmney u~lng cross flow air at 49 + 1~.
(905 0~5Co ) ~ Before windup and after convergenc2 to
3 ~ilament yarna, the yarns pa~ through a 7536 inch
(1~92 m~) long ch~mber containing ~aturated ~team at
~tm~pherlc pre~ure~ ~indup o~ the und~awn y~rn into
pack~ges i~ at 520 yd~/min. (475.5 m./mlnO). The yarn~
are subsequently withdr~wn irom their pack~ges and drawn
a draw ra~io o~ 3.933X over an unheated draw pin
located b~ween thè ~eed and draw roll~ of a conventlonal
dr~wtwl~ter. The draw roll peripheral velocity i~ 385
yd.~in (352 mO/m~O)~ ~nd the ring--and-travel~r windulp
~ollo~ng dra~rlng i~ at a ~plndle ~p~ed of 568g rpm to
~ 21 --

01~8
provlde û.411 turns~inch (00:162 turns~cm. ) o~ :3n~eFted
twist .
5amples o:f each yarn are handled in three
dif~erent ways between draw rol:l and windup., ïn the fir~t"
each drawn ya rn i9 packaged immedlately fol.lo~rlng drawing;
without ~urther heat treatment6, Yarns so prepared are
de3cr~bed a~ I'cold-~rawn only " and are 1 denti~ied lby the
code letter D (thu~g D-30 identl~ie~ "cold d~awn only" y~rn
containing 30~ by weight 6 nylon unit~ in the core).
The second and third types o~ handling under
tension immediately a~ter drawlng lnvolve pa~slng the
drawn yarn through a 5~8 inch (14.7 cm.) long tube through
which hot air i8 ~etted cocurrently at 0.7 + 0.1 ~t,3/min.
(1908 2.8 liter~/~qin. ) to provide an exit-air temperature
~ 115 ~ 2Co At the polnt o~ air e~try~ the tube is oDo8 in~
(0.20 cm.) in dlameterJ increaslng gradu~lly to 0~20 in~
(0051 cm.~ at a distance of 2.8 inJ (7.1 cm.). There the
tube diameter increa~e~ a~ruptly to 0~,25 in~, (01~63 cm.)
and remains constant ~or the last 3 lnO (7.6 cm~) o~ tube
lengthO ~ch y~rn a~ter exit ~rom the tu~e passe~ in
~.ig-ZAg faæhion over 3 ~nub plns at a total contact angle
o~ 390 ~ 15 d~gree~0 In the second type of handling the
yarn 18 immediately p~ckaged under tension~ as above
de~cribedO These heat treated yarns are identi~led in the
table~ by code letter Ho In the th~rd t~pe o~ handling,
~ach yarn after snubbin~ ~r~t wrap~ an additional roll
op~rated at a peripheral velocltg 4Q~ les~ than that of
the draw roll. R~c~aglng tenslon i~ ad~usted to Ju~t
re~ove the cri~p developed in the ~ery low~ten~ion reglon
~ithin and imm~d~ately ~ollo~ing the hea~ing. The~e
- ~2 -

68
precrl~ped yarn~ are i dent 1 ~le~ by code let;te:r PO They
represent prior art proce~ing a~ described by Ol~on.
Properties of the Dg H and P yarn8 are repvrted in
Table~ 7, 8 and 9, re~pectlvelyO
A 3-fi lament yarn iæ spun æub~tan:tially as
described above except th~t the cores are 6-12/6 nylon
(50/50) and the undrawn yarn i~ immedia~ely drawn 3.o8x
be~ore in~tial windupO It is found that package3 o~ the
undra~ yarn are un~table and that the yarn tends ~o
~lough off the package be~ore it can be unwound and d:e~a~
Drawing coupled w~h ~pinning overcomes sloughing. This
~rarn spin with great dl~iculty, ha~ very poor along the-
end denier uniformity, and ha~ frequent polntæ where
flla~ents are ~tuck together. It læ subsequently un~round
and re-dr~wn l.lX to a d~nier of about 16. Onl~r a D-50
yarn is prepared. Re-drawing is alæo di~icult~ but
enough knittable yarn to knit a few hose can be selected.
~ 23
.'

68
,,
o , ~ o o~ o
~ ~ r~ J
~1 rJ
r~
U~ ~ ~D
C~
C~
0 1 W ~ ~ O ~D
a) ~r
~_
~ ~1 r~ l r~
E-
C~l
1~ :
~ ,.
O ~ C--
P~ ~1 ~ r3
,_
--
^ tl
X b,~
h
~ ~ a~ U3
h rl ~3
O ~1 ~ ,
,!YE,,W r~ ~ ~
'. .,
"
. . .
-~4
.
..

~)7~Q~3
' .
o ~ ~ ~ o U~
~ . ~ . . o
l ~ ~ ~ ~ ~
~3 ~ ~ C~ .
C~l ..
oo ~ ~ ~ ~o
~: ~J ~ C~J
~ ~ O GO
Q) ~
~ :~ ~
~ ,_ .
_,
~ ~! ~ ~ ~
I ~ ~ ,~
~ ~ U~
,_ .
.. ..
~ .
,~ o
g ~
~ h ~rl ~1 ~
h ;~ ~d
a) a.~ ~I h
.
:.
, .
_ 25
.,
.
.
. . ' .

~07~
oo
C~l
~ I '~ ~ ~
L~
,~
bD
C~l rl
N
O ~ ~1
)
O N CU a:) U`
q~
N
~ l ~ ~ ~
~1 l O ~ l~
a~ c~
'13
,~ ' .
O h
N¦ * * * * *
~!0
:
'~I O ~J ,~
'C1 ~ O h
h ~ s4
t i
. .
.~
' .
.
~ -
.~ ,
_ 2~; ~
.. . : . : . .. .

Both heat treating and precrlmp:lng de~irably
decrea~e crimp ~hrlnkageJ but they al~o diminl~h ten~city
somewhat ~
I.adie~ ' stretc~ ho~e are kni~ted w~th a plaln
~ersey ~titch uslng a slngle-feed circul&r knitting n~chine
with 400 75-gauge knitting needles arrangeà ln a circle
about a cylinder whlch is 3.75 in. (9.52 cmO) in diametçr~,
The welt and ~hadow welt are immE~ter:Lal to the ~tretch and
recovery test~ to be performed, buk the~ are knitted wlth
432 and 60 couræes, re pecti~ely. The upper leg i8 knitted
with 672 courses, taper~ng beg~ n~ during the next 12
cour~e~, and the lower leg compri~e~ 516 course~O Then,
the ~oot i~ knittea with 372 course~ in the ~l~st o~ wh.~ch
a ~econd yarn i~ i.nserted for a ~ew st~tches to ~erve a~
~ heel markO
After knitti ng~ the grelge hose (packed loo~ely
in bags at 12 per bag~ are flrst tumble-~teamed in atmos~
pherlc s~ea~ :OEor 15 alinutes9 then scoured conventionally
at 99 C . for ~l~keen m~nutes, then rln~ed in three 5-~nute
~ater r~n~e~, and then spun dry in the ~pin cycle of a
home launderlng ~achine~, The bag~ are made by doubl~ng
chee~e cloth (U.S.P0 11 or equivalent) and perman~ntly
closlng three ~ides. When empt~ and :Elat, each baE5 i~
abou~ 18 X 16 inches (45.7 X 4006 cm~ ) ~ The ~illed bags
are tied ~hu~ at the ~ourth ~id~. St~ll in bag~, the
ho~e ar~ dyed in a conventlonal di~pers~ dye bath at 60C.,
for one hour and 15 ~Lnutes. ~ter ~e~reral ~hort wa~hing~
to remove exce~ dye 801utlon~ the ho~e are a~ain ~pun
dr~ 1~1ng 1~ co~pleted at room temper~ture with each
~8e car@fully l~id ~lat on a ts.ble topO
27
.
.
..... ~. , .. ~ .

~)7~6~
Hosiery stretch (HS) and hoslery recovery (~)
are measured. In -thi~ determ~nation, the applied load ls
a 2~27 kgo weight which i~ ~aætened to the toe and slo~ly
lowered until the hose support lt without tensile shock.
Five to elght mea~urement~ are averaged to prc:vlde the
hosiery stretch, hosiery recovery and croa~ ~tretch results
repor~ed ln Table 10 (except ~or D-507 ~or whlch only
~e~ hose are available).
For comparison, ho~e are knitted and fi~ hecl
idenkl cally using commercial 20-denier three bico~ponent-
filament nylon hosiery yarn. Stretch and recoverg viEl.lue8
for a range of sizes are reported in Table llo
It is apparent that measured hosiery atretch is
a function of size (cross ~tretch). The increases in
ho~ierg stretch for hose ~rom yarns of this inventlorl o~er
hose of commercial control ~ ns are3 however, much larger
than can be accounted for ,~ust by the mlnor ~ze dlf~erence~
~or purposes of compari~on with the ho~ier~
properties repo~ted ln Table 11:~, more ~ilaments ~rom
polymer~ dlsclo~ed by 0180n ~re prepared. The ~rarn~ are
18-denier, 8 ~llaments, and each ~ilam~nt h~s 405~ by
weight ~heath polymer and 60~o by we~ght copolymer in an
eccentric core. The ~heath polymer i~ pol~h~xaE~eth~rlerle
adipa~ide (6-6) and the core polymer iL~ a random copolymer
~ 5% by ~elg~t 6-6 ~:Lt~, 31.~ by we~ght he~arnethylene
~ebacamlde (6-103 unit~ and 18~5~ by ~eight hexamet~rlene
dodec~edioamlde (6~:12) unit~0 Relatl~re viE~Co8~ty (P~)
fo~ the~e polymer~ 18 ~easured on ~a!nple~ taken of the
~elt at a point ju~t prlor to entry into the sp~nnîng
pack. The equipmerlt and gene:~l procedur~ o~ Exampl~ III
- 2~
. .
. ,. .. ~ . .

~'7~
are used to prepare cold-drawn only9 heattreated a,nd
precrimped yarns a~ described above. Process condltions
for preparing these three products are reported in T~ble 12.
T~ble 13 shows CE~ ~nd CS* re~ults :Eor these
yarns. Prior to this work~, crimp elongatio:n (c~ nd crimp
~hrinkage (CS) had alw~ys been mes,5ured us$ng the test3 as
described under "De~in~tiorl~ and Teæt Descripti on~ 11 . It
is to be noted that the C15 values i~or yarna of this inven-
tlon are much lower than previously obtained u~ng precrlmped
bicomponent stretch yarns but that, in spite o~ low CE,
the yarns of this invention yield hose o~ vastly superior
stretch propertles. In an attempt to obtain crimp elonga-
tlon v~lues correlating better wlth ho~iery stretch pro~
pertie3, a ~ubst~tute test wa~ devisedO
In the substitute test, a skeln o~ yarn is
formed :~rom an integral number (n) of loop~ such that
total ~kein denier (2nD, where D is denier o~ the yarn~
is ~s close as poss~ble to 2084. The suspended ske$n ls
o.563 m. long, Length Lo is mea~ured ~d recorded for the
skein su~pended in air under a load o:~ 6g5 gm" The heav~y
load i~ removed leaving only it~ aluminum ~uppor-t ~elghitlg
2.5 gm. The ske~n and attached ~uppv~ are su~pended ~n
water ~t 95C. ~or one mlnute for cr~p development~, Due
to water ~uoyancy, the ~upport ~ctually exert~ only about
û~,75 ng",~den. of force on the skein during crlmp develop-
mentt, R~moved :~rom the water, the ~kein drie~ ambient
alr~, Length Ll i~ then mea~u:red arad recorded the full
695 gm. load is reapplledg and extended length L2 is
- meae7lred ~d recordedO CE* ~nd CS* (the asterl~k den3ti~g
~hi~ re~ised method ~ ~re computed as:
29

CE~ 100 ( L2 -L~
CS* (~) = 100 (Lo~L2 )/l;o
The CE* values of Table 13 for ~rlor a~t ~icom-
ponent yarns are generally as great as the corre3ponding
CE value~ of Table 7-9 for yarns o~ this ILnvention, but
the HS values o~ Table 13 a,re generally much sn aller th~n
found in Table 10 ~or yarns o~ this inventiorl~ While the
reason~ are not csmpletely under~tood3 experience has
~ho~ that CE:* i~ not only a better predictor of ultim~te
hosiery ~tretch thall CE, but alco it ~s a ~ar more
reproducible property v~lue~
~ 30 _

-~
u~ ~ O
1~ C~ 0O~ l~ ~- CO CO )
o~ s
-
p~s
c~ ~ ~ ~ ~ O U~
a, ~~ o~ .t o ~ ~ o o~ I ~ cu C~l
u~ ~ r~ N N tr) C~l ~ CU t~C~J N C~
O ~U~ S
Q~
,S: rl 0 0CO ~ ( C~J N
C~ _ C~JN ~1~J
" ~ ~ ~ ~ I o o o
a) O ::o ~) ~ ~ t u
h r-1 ~ r I ~I r~l O O O O
~ ~¢ O~
~Q
h
~, e
C~l ~ ~ 0 ~D ~ t-
~n
b ~rl
_ 1~ ~ O O I ~ $ tr~ Ih I 1~l ~~
~ o
b~~) N
~:1 r~ ~ ~ ~ ~i ~1 ~ ~I rl rl rl
~ O O L~ O O O O ~O O O ~ O
a c~ t L~ N
~ Q ~
.. . . :'
'
:.
- 31 ~
, ` : .
.

~L~700~
.
~ ~ CO C~ o o
rl O r~ ~I N C``l
~q P;
_ ..
_
Q) ~ ~ O _ ~
U~, ; ~i
~ _
00 U~
_
Q~ O~ O I In
O ~1
S~ ~: O O
~ ~ ~1 ~1
C~ ¢ . .
~O
h
.i ~ ~ ' '":
~/ ~ ~ :~ ~f ) N
æ ~ ~
bO ~ D
~J ~ ~ ~I N ...
.
.
- 3~
., ' -.` . . ~ ' ' ~ .

ô
r~ o t-~ ooo o ~ ~ ~ ~ o
h O U~J O15~ cC\U~ ~w C~ r-l ~ ~ tr) U~
t.l Ot~ r-ltf) C0 ~ N Or I N ~ ~ N oO ~ l ~ CU ~ C~l
. "~
r~
~ ~S . ~ o ~o ~ ~ o ;1 ~ o
,~ h ~ ~DNl ~ `~ N N `-- r~ S; N ~ N `-- N
E~
N~
~a O O ~o ~ ~ o ~ ~
r-l 0~ ~r~ C0 ~) ~1 0 00 N ~ O O ~ N ~ N ~ N
.
~ ^
p~ h ~-- o ~CU p~
o ~ ~ o ~ ~
o ~ a~
_~ p.,~ , ~ V ~ Q)
~ ~ $ ~ ~ æ ~ ~ ~ $ ~
O ~ tO ~ r~ ~' q) ~
$ ,, ~ o o h 111 ~I h
h ~o O ~ h h bD ~:4 ~ 9 r-l
~: .rl h ~ ~:: h bD r1
r~'
OJ h ~ 0 ~3 ~rl Q) tl) El
O QJ h ~ Ql .~ S ~ ~ h
~g~ ~ ~æ æ~
:: -
::
;
.
.
.
~ 33

al _~
~ o
~ - ~ ~
h ~ . I rl 1
C~ ~ ~ O O U~ 0~ oO o
,_
N
~1 ~ ' cu
rl Q~
I ~ ~
~ ~ ~ ~ ~ O ~ O
,1 c
h ~ ~ ~ ~O t~ O t~ ~1 0t)
~4 N
o~ o o~ ~ ~ ~ ~
r-l ~ N r l r-l :
O Cl~ ~ ~ CU ~D ~ C~ ~ -~ ~ "
~
; ~ -
',,
34 _
~ .
. ~
:~ .

68
EXAMPI,E V
This example shows the e~ect of a dif~erent
homopolyamide shea-th, 6~6 nylong on yarns and hosiery
~rhich otherwise are as described in Example IV. At the
same time~ additional 6 12//6-12/6 bicomponent-filament
yarns are prepared in the same manner. ~hen two yarns
of identical composition are shown in Tab:Les 14-17~ it
means that they are identically prepared on separate days.
The polyhexamethylene adipamide (6-6 nylon)
employed in forming the 6-6~/6-12/6 ~ilaments has an RV
o~ 51.4 ~ 4 2 and is spun at a melt temperature o~ about
290C. The filaments containing 6-12/6 (50/50) cores are
processed ~ust like the others rather than as separately
described in Example IV. Test methods are identical to
those o~ Example IV.
ln Tables 14 and 16~ the listed proper-ties are
averages o~ 6 -to 8 determinations. In Tables 15 and 17,
the hosiery properties are averages ~or 4 hose, each
knitted ~rom a separate package of the indicated yarn
type The "out-of~hose" properties~ are measured on
yarn removed ~rom hose a~ter measuremen-t o~ HS and HR.
The ~ilaments with 6-12/6 (50/50) cores (outside
this inven-tlon), although improved over the correspondlng
ones o~ Example 1~, are di~ficult to prepare and nonuni:~orrn
in denier. Inter~ilament sticking is ~requent. Hose
prepared uslng these ~ilaments have surprisingly high HS
values, which is not predicted by the CE* values OL the
corresponding yarns. Tables 14 and 16 con~irm that CE*
is a much more reliable indicator of ultima-te hoslery
s-tretch than is CE. Statistical study o~ the breaking
- 35 -

strengths o~ yarn out-o~-ho~e (Tables 15 and 17) reveal~
that breaking strength of each yarn decre~se3 substantially
linearly with lncreasing w~ight percent o~ 6 nylon ln the
core of each filament. Above about 45~ 6 nylon in the
core, the yarns become too weak for adequate durability
ln use~
Use of 6-6 nylon as sheath polymer, rather th~n
6-12 nylon, yields sllghtly lower hosiery stretch and
hosiery recovery value~, but the diminishment is slight
when co~pared to stretch properties attalnable hereto~ore
with known bicomponent-~ilament hoæier~ yarns, In both
ca~es, the dependence of hosiery stretch on percent 6 nylon
in the core is substantially the ~ame. Below 25~ 6 nylon
in the core, ~tretch properties become in~dequate~ Above
45% 6 nylon in the core, the yarns become not only di~
cult to handle in spinning but al~o inadequate in breaking
~trength~
36 -

-I
__ ~r) ~) r ICt~ Lr~ O C~ O C~ D O O
v~ ~ ~1 ~D ~ 1~ ~ ~X)~`f) ~ O ~ ~i ~I r-i O N
~d
V ~
.
C~ ~ ~ L~ D O CO (~ Lf~ ~ O
* C~i ~i C~ O ~i r~ D r~i O ~i
V ~ O 1~ 0 ~'f) O ~ Lt~ O =J-
D O O O
_ ~) N ~) N =~- N ~~; N C0 C0 0; C0 O C0 O 0; C0
u~ V ~1 1-1~1 ~1 ~1 ~1~Ir~r I ~ ~1 . .
_ C)
~D h
rl a)
o~ ~D ~IL~ O O O~ N O ~ ~I-- o o~ U`\ (~ ~1
O ,~ N~ ~ ~ 15~ C~ 1~ ~ C-- ~i
_ ~
~q
~rl ~
O C~ ~3
~i ~rl ~ bD C0 ~1 c0 (~ ~D ~ O C0 ~ ~1 :~ ~1 N ~ O C~ L~ N
~ O ~:1
-1 E~ E~LOLl~ L~L(`\ L~ ~ Lr~ o L~Lt~L~`\
: ~ h
E~ ~ 0~
h rl
td ~3
V ~D ~ ~I L ~~ N ~ Lr~ r-l ~ Or`f~ N O (Yl ~I co N N
0~ ~ .. . . . . ~ o
~ ~1 _~ N C~ N CJ~ ~I Lr~ Lr~ N~D N N O Lf~ CO N a~ CO
5-~ ~1 ~N N N N N N CJN NCf)~) Cflrf)~r) N ~) N N
~,
_~
~1 ,~
~rl ~tJ
~; 5
~o ~ ~o ~o ~ Lr. ~ ~ o o co ~O Lf~ ~ O O O a~ ~ Lt~ ~
a~ ..... ~O ....... ~ ..
N E~ =~ =J J ~ ~ ~ ~ ~
~O
~D
I rlt--r~ (Y)0~ N O ~)N ~ rI~r) ~ o ~ O Ir) N O~
~O C~
a)coco co~. co co coCl ) COcr~ G~ C~ ~ C7~ Ci~ CO
~1 ~1--I ~I rl ~l
S~
r~CO ~ Lf~~1 ~ C~ Lr~ L~ ~ Lr~ ~1 ~ ~ O
~ . . . . . ~ , . . . . . . . . . .
a)~D ~D ~O~O ~O ~D ~O~O ~O
.
O L~ O O LO Lf~ OLt~ O O L~ O O L~ Lr~ O L~ O
5-~N N ~~1 ~1 ~) ~ J L~ N N ~) ~i ~) Y) ~ =~ L ~ :
~ 37 - ~:

-~
hO
O C~ O L~ o -
r I 0 L~ t ~ 00 ~ 1 U~ r-l (r) ~ r~l ~ ~0 O
~ .~ ~ ~ ~ ~ ~ ~ ~ ~' ~ ~ ~ ~ ~ ~ ~ ~ ~
_
I
W
a~ ,~
O bl
O :q
o ~n ~D o ~ O O ~
N ~ . . o o o
~rl 0 S-~ ~ ~O ~ O O (~ Ir~ O~ L~ l 0
hp.~ ~ t~ L~ ~t ~ ~1!-- W~) L~~D L~
a~
C)
C'~l ~r l ~ C~.l) O C~ ac~ .) L~
~~ - -.---.-.-
, ~ a) ac;1~ O ~ o,1 o ~) ~Cl~ L~
_h ~ ~ t--Ot) ~ 01 )OD ao ~ t-- t-- ~1~ ~ CO ~ 00 t-- CiD
~1 ~ U~
O ~rl h
--t 14 h _ r-l00 ~t ~ L~CU ~) 0~ r) Lf~ ~ C.l ~ ~1
~ æ ~ ~ ~ ~ ~ ~ co ~ ~ 0 0 ~O co ~ ~ Lf~
N ~ C~l `
~O :~ It~J O ~ ~D r-l ~ ~r) ~ (~r) C\J a:)~D t~) O Cl~ Ll~
O:c~ :~: ~/ N N N ~ N ~ ~ ~) ~1~I NC~J~) N Ir~ t~')
-1
) O U~ CO6~ D0 C~l~ 0 1~ C~
_ ~ COCO00 OD 1~ ) ~ 00 ~ D ~Lf~ D ~) L~ ~O
tu. ~ CU ~JCUC~ .l CU C~ l NC~l NC\~ C~l N C~l
v ~ ~ Ir~ Lr\C~
_, ~ ~1 o C~lO~~U oo ~I Lr` ~~ ~11~ Lr~ L~ r~l ~)
J~ ~ i ri O~i 0 ~i 0 0 00 0 V C~ O O
~ ~ O ~1:;10 oo lS~ D 0~0 ~1 0C~.l L~ ~ ~--
a)~ S ....... O .... OO
cO ~C~ 0 ~ ~ 0 P~ D L~ o
t~ ~ ~ N ~D ~ ~ ~ 0 ~ ~ ~ ~ ~ ~O L
rn ~ ~ ~:) ~ L~ N 0 0 ~ ~ L~ O
r~~ 0 1~ Lf~ O L~ O OLr't O O L~S ~ O 1~ O
S~l ~ ~~~ ~ Lr~ NC~ ~ L
0
"
~ :.
3~ :

-~
_. ~O ~O O O~ N O C\J ~O ~I O r~ CO 1:--
~ n u~ co co~ co co ~ ~ co o; ~ ci~ co
$
v
,~ ;,~1
k t~ ~ ~) ~ (r) O CO C~ CO ~ J r~l 0
, ~~ ~ ~ ~f) ~t ~O ~ C~ CO Lr~ ~:; ~, ri (~)
~ C~ C co ~ ~ ~
~1 ~ ~ CO ~0 0~ C~l J(r)r-l C~l C~ L~ L~ O CU
r~ $ ~ ~) U~ ~ L LS~ L~ CO ~ CO CO ~ O ~~
~ ~ V
~rl C~
~ .~
a) ~
~` . _
~ ~ _ CO CO~r) ~) ~ C\J~) CO ~1 :~; L(-\ O C~
1~1 -1~ 1:~ CO ot) ~0 U) 0~ i co ~0 o ~ r-l
¢ V r-l ~ r-l r~
V~
O _
t~ ~ ra
N ~r~ ~
~O .~ ~ 3
r~l ~ ~, N Cj~ ~ co ~O ~r-l :::t L~ O L-- r~l L~ r~
,-1 ~ E~ E~ ~O ~O ~O Lf; L ~ ~ ~ L~ ~O ~O ~O L~ L~'\
: .
E~ S ~
~ rl
~0_ f~ CO ~ O N COL~ O ~) r~l CO N OU \
0~
1:~ r~ 0~ N0`~ O ~ O r~l ~ CO ~) ~ ~ C~J N
O ~ N
~\ ~
N ~rl ra
r-l ~
\ Q)-- CO NO L~ ~ rl ~ ;1 CU O ~0 N 0~ ~
I :,
~:) X ., . :
~rl ~ ~O ~ ~ a~ ~co co ~ ~O ~ ~ ~O ~ ~: -
Q r-l r-l r-l ~I r~ 1 r~~ 1-l r-l r-~ r~l ~
5~ ., .
~ 0~ CO~0 f~ r-l ~ OCO ~ ~0 LO ~ ~0 1~-- :
q) L~ L~ L~ L5'\ ~ IS~
r-i r-l r-l r I ~I rt r-l ~I r--l r-l r-l ~I r~
S:;' L~ OO L~ O LS~ O L~ O O Ll~ O L~ O :
~1 C'J~1 ~r) tY-) ~ ~ LS~ N Cf) (~) ~ ~ ~ LO
~1 Q Q ~
- 39 -

-
o
b~
O O ~ 0~ O ~ ~ 0 C~
~ cu
b~
a~
:~ 5
o :q
~ ~ w
o ~ ~
~ o ~
0 ~ 0 ~ 0 CX~ D O ~ ~ t~ ,
N ;-
~ 0 S~ N O N 0~t-- ~1
~ ~ ~1 ~ ~ ~
~ _l
s~ ~e
c) o ~ ~ ~
~ ~ o~ o~ o~ ~ ~ ~ ~ oo oo ~o oo oo CO ~o
a) ~
,,1, I '~,~ U~ ~1 '`? ? ~ ~ ~ o v~ '`? ~ '-
,D O ~n~) ~J ~ .-1 CJ~ ~) ~I N 1~ ~0 ~ ll~ O ~10
~ ~ o n ~ o a:) o cu ~ ~ cu c~
E~ ~ :~ ~: N ~ C~l ~ ~) ~) tr) CU N CU ~ ~ ~ ~1
N ~r~ ~ ~D Or-l O~\1 ) O r l ~t O r l
~1 ~ o o
_ N N Nl C~ l C~J CUCU _ _ CU N
E~ a) o t-- o ~ ooN N~D N~D ~ I
~NI _ ~L~
~D C ¢ Q O O O C~ O S~ O ~ O
d~
N ~ ~
~1 0 o~ o o > E-
U~ ~ . . o o ~ ~o ~ . . . . .
h I
q) ~5
tR C ~0
~ Lr~ C~ O IS`\ O 1~ 0 L~ O O It~ O IS~ O
,
-- 40 _

6~3
EXa~ LE VI
This example ~how~ the e~fect O:e va~ring sheath~
core weight ratio ~, The 3ample ideNti~ied a3 D-30 ln
Example IV h~ a 6-12 sheath and a 6-12~6 core with 305
5 by weight 6 units. Sampl~ J and K are prep~red a~
described for D-30 in Exa~ple TV except ~or sheath/core
welght ratioO Sheath/core weight ratio i~ varied by
ad~u~ting the ~low rate~ of' the two melt~ into the
3pinneret assembly. Yam properties are reported in
Table 18.
T;~ble 18
D-~ J K
_~_ __
sheath/core wgt . ratio 40/60 45/55 35/65
Ter~city (gmO/denO ) 5.3 5.4 503
15(gm./dte~) 4~8 4.9 4"8
ElongatioIl ~%) 28.3 30~5 28.9
CE ~%) 13.0 12"1~ ,7
CS (%) 16.6 15~ 17.~ .
Deni~r 15.6 15.6 15~5
dtex 17~3 17.3 17.2
Within the r~ge inve~tlgated, ~heathfcore wei~5~t
r~tios }~ve l~ttle ef~ect on ya~ propertle~., For ho31ery
~llament~ with the ~heath at ~t~ thlnne~t pOillt be$ng
about 1S~ o~ the filament diameter, m~ximum crimp frequency
Ps obta~ed when the ~lla~ae~t comprises ~bout 50 60 p~rcent
by ~eight core po:Lymer,, Crlmp frequency i~ not ~trongly
dependent on percentage of` coreO Except at the lower extreme
o~ the bperable level ~or percentage o:~ 6 nylon units irl the : .
core, ~llaments with 3û~70% b~ weight core polymer can
provi de use~ul levels of crimpO
~ 41 -

~7
~.M~LE VII
This example ~ollows essentially the preparative
method~ and u~es the same apparatus as Example II to com-
pare 6~/6-12/6 nylon yarns and hose with e~uivalently
prepared 6-12//6-12/6 and 6 6//6~12~6 ny;lon yarns ~d ho~e ~,
The RV ' s of the polymers, measured a~ ple II, are:
6-12/6 43 ~ 1.5 ~65/35 weight ratio)
6-12 3~.5 ~ -5
6 40~,6
6--6 51n4 ~ 2~4
Melt temperature~ are 260 ~ 3C. for sp~ning fibers wlth
6-12 or 6 ~heath~ and 287 ~ 3C. for tho~e w~th 6-6 sheath~.
Meter pumps are adjusted to provide 60~ by volume of core
polymer in each fllament which, by calculation, ylelds
58.7 59.0% by welg~ of core po:Lymer (is~ clo~e to a
40/60 ~heath/core welght ratio). Mono~ilament~ are ~pun,
quenched, and stea~ conditioned, being plled to 2~ ment
ya~s Just be~ore windup o~ the undra~ yarns at 500 ydO/
minO (45702 m./min,.), Croæs flow quench~ air 1~ 8Up-
pl~ed at 49 ~ 1F. (9.4 ~ 0.5C~, ) . .
The spun 2-filam~nt yarns are ~ub~e~uentl~
~rawn UB.lng an unheated draw pln located between ~eed aJnd
draw roll~. Draw ratio i8 4.225X at a draw-roll speed o~
~90 ydO/min. l~e drawn ya~n~ are immedl~tely packaged
u~lng a ring-~d-traveler ~rindup which inserts 0~335 t;UI'n9
o~ twl~t per ~ch (00132 turn~m~,). Yarn propert~e~ :
~bta~ed are ~hown ~n Table l9o
Nosiery are knitted ~d tested a~ d~cribed in
}~ca~ple :I:V except that the load applied ~or HS and ~R
det~ ml~tion~ :La 2.77 ~, rather than 2027 kgs~ The
- 42 ~

6~
drawn-only yarns o~ ~xampl~ IV are nominally 16-denlerg
whereas the yarns of thi~ example are nom~nally 20~denierO
The ad~ustment in load i~ proport~onal to the di~erence
in yarn denierO Characterl~ations of -the hoqe are pre~ented
in Table 20.
~ xcept for the out o~-ho~e mea~ured pr~pertles
of Table 20S all reeorded mea~urement~ are aver~ge~ of
samples from twelve y~rn packages for the 6 nylon ~heath
specle~ and from ~ix yarn packages for the 6-6 and 6-12
nylon sheath specieæ. Out-o~hose propertie~ are me~sured
~or ~our ho~e of the 6 nylon shea-th ~arns and ~or two
ho~e each of the yarn~ with 6-6 and 6-12 nylon ~heaths~
It is apparent fro~n Tabl~ 20 thatJ although
the hose of yarns wlth 6-12 nylon sheaths are ~uperior,
all three species provide excellent stretch propertie~
- ~3 -
,~.

~3 ¦ O~ ~ CO
~ v ~ ~ ~
~q
c)
s
N ~1
I O~ O~
~;
h *
O U~ . . . ~
V ~1 ~O r~ O
N ~I N rl
V' ~0,~ O ~ O~ '
o * I O co ~D 01-
V
~I r~ r~ a~
O ~0 ~,
[~q ~:: a
~,-- q~
O ~_
C~ ~ U~ ~rl~ O' O;
~ 1~ ~o L~ ~1 co 1_ o
O
N ~1 ~ ~ co ~O o
O~ N CO C~ O a~ ~; ~ CO
~1 0~ tY`) C~J r~ ~ ~ CO ~ 1
a) ¢~ ~ ~n
__ ~ s~ ~ ~ o~ o
:~ ~ ~a U~ N tr
O tQ r~ CO ~
~,1 a~ co ~ ~ ~ ;r ~ N ~1
~\ ~ ~ L~
~i
_ r~
~ ~oe-- ~
s ~ -O ¦o~ ~1 N ~ CO
:~ QC~ N N S
~ C)
N ~ ~ ~ ~)
~r~ Q~
t N
~Q ~ ~
~ r~ ~ 1 ~ ~ N
h S~ ~ N N a~ ~ C~l~O
Q N N C`J t~ O bD~ r) N
N N ~ ~ I r I ~I r~l
~O ~O
N \ N
+~ r-l N ~ ~1
S;' ~ I N ~ ~1:) I CU
c~ o ~ 0 N \ ~D
r l ~ ~ ~O \ ,1 ~1 ~O
~ r~ ~:
14 ~'~o ~o ~O h ~1 ~O

Dessin représentatif

Désolé, le dessin représentatif concernant le document de brevet no 1070068 est introuvable.

États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : Périmé (brevet sous l'ancienne loi) date de péremption possible la plus tardive 1997-01-22
Accordé par délivrance 1980-01-22

Historique d'abandonnement

Il n'y a pas d'historique d'abandonnement

Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
E.I. DU PONT DE NEMOURS AND COMPANY
Titulaires antérieures au dossier
S.O.
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document (Temporairement non-disponible). Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(yyyy-mm-dd) 
Nombre de pages   Taille de l'image (Ko) 
Page couverture 1994-03-24 1 24
Revendications 1994-03-24 1 44
Abrégé 1994-03-24 1 13
Dessins 1994-03-24 1 33
Description 1994-03-24 43 1 610