Sélection de la langue

Search

Sommaire du brevet 1147988 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 1147988
(21) Numéro de la demande: 1147988
(54) Titre français: RESTAURATION DENTAIRE A L'AIDE DE MATIERES MOULEES NON PRECIEUSES
(54) Titre anglais: DENTAL RESTORATIONS USING CASTINGS OF NON-PRECIOUS METALS
Statut: Durée expirée - après l'octroi
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • C22C 19/05 (2006.01)
(72) Inventeurs :
  • TSAI, MIN H. (Etats-Unis d'Amérique)
(73) Titulaires :
  • BRISTOL-MYERS SQUIBB COMPANY
(71) Demandeurs :
  • BRISTOL-MYERS SQUIBB COMPANY (Etats-Unis d'Amérique)
(74) Agent: GOWLING WLG (CANADA) LLP
(74) Co-agent:
(45) Délivré: 1983-06-14
(22) Date de dépôt: 1979-11-19
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Non

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
962,118 (Etats-Unis d'Amérique) 1978-11-20

Abrégés

Abrégé anglais


DENTAL RESTORATIONS USING
CASTINGS OF NON-PRECIOUS METALS
Abstract of the Disclosure
A method and material for making dental restorations
by using a porcelain-covered body of a non-precious metal
alloy. The alloy preferably includes about 58-68% nickel,
18-23% chromium, 6-10% molybdenum, up to 5% of at least
one rare-earth element, up to 4% columbium plus tantalum,
up to 2% iron, and lesser quantities of carbon, aluminum,
titanium, silicon and manganese. The alloy is resistant to
corrosion by mouth fluids, is easy to finish and polish,
and is closely matched to the thermal-expansion properties
of commercially available dental porcelains. The alloy
does not contaminate alloy-melting crucibles, exhibits
excellent bonding characteristics to dental porcelains, is
easy to melt and cast, and has sufficient ductibility to enable
margin burnishing of dental-restoration castings of the
alloy.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


The embodiments of the invention in which an exclusive
property or privilege is claimed are defined as follows:
1. A non-precious metal base for a dental restoration,
comprising:
a body of a stainless metal alloy configured for intra-
oral installation, the alloy comprising about:
58 to 68 percent nickel, 18 to 23 percent chromium,
6 to 10 percent molybdenum, 1 to 4 percent columbium plus
tantalum, and 0.01 to 5 percent of at least one rare-earth
element selected from the group consisting of lanthanum,
cerium, praseodymium, neodymium, samarium, gadolinium, and
dysprosium, all by weight.
2. A dental restoration, comprising:
a body of stainless metal alloy configured for intra-oral
installation, and a porcelain jacket fired on the alloy body,
the alloy comprising, by weight:
nickel, 58 to 68 percent;
chromium, 18 to 23 percent;
molybdenum, 6 to 10 percent
columbium plus tantalum, 1 to 4 percent
iron, 0.02 to 2 percent;
silicon, 0.01 to 0.5 percent;
manganese, 0.01 to 0.4 percent;
titanium, 0.01 to 0.2 percent;
aluminum, 0.01 to 1.0 percent;
carbon, 0.01 to 0.1 percent; and
0.01 to 5 percent of at least one rare-earth element
selected from the group consisting of lanthanum, cerium,
praseodymium, neodymium, samarium, gadolinium, and dysprosium.
11

3. A method for making a dental restoration, comprising:
firing a porcelain jacket on a body of non-precious metal
alloy, the alloy comprising, by weight:
nickel, 58 to 68 percent;
chromium, 18 to 23 percent;
molybdenum, 6 to 10 percent;
columbium plus tantalum, 1 to 4 percent;
iron, 0.02 to 2 percent;
silicon, 0.01 to 0.5 percent;
manganese, 0.01 to 0.4 percent;
titanium, 0.01 to 0.2 percent;
aluminum, 0.01 to 1.0 percent;
carbon, 0.01 to 0.1 percent; and
0.01 to 5 percent of at least one rare-earth element
selected from the group consisting of lanthanum, cerium,
praseodymium, neodymium, samarium, gadolinium, and dysprosium.
12

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


~7988
Background of the Invention
Dental restorations such as crowns or artificial teeth
have traditionally been made by firing porcelain on a cast
body of precious metal such as an alloy of gold. The physical
properties of these precious alloys are well understood in
dentistry, and the alloys bond properly with porcelain and are
compatible for use in the mouth. Gold alloys are easy to melt
and cast, are sufficiently ductile to permit burnishing of
casting margins in the finishing of dental restorations, and
can be polished to a high luster to resist plaque formation.
Alloys of precious metals, however, are relatively heavy,
and have increased in cost to such an extent that substitute
materials have been sought in recent years.
It is now known that certain stainless alloys of non-
precious metals can be used in dentistry, and examples of
specific nickel alloys and processing techni~ues are set forth
in United States Patents 3,716,418, 3,727,299, 3,749,570 and
3,761,728. These nickel alloys have a higher modulus of
elasticity than that of precious metal alloys, contributing
to better sag resistance of the ceramo-metal structure after
repeated firings in a furnace.
The higher strength of nickel alloys enables use of
thinner castings which minimize reduction of the natural
tooth structure in preparation for installation of the
restoration. Nickel-alloy restorations are also light in
weight and low in thermal conductivity, and these features
provide greater comfort to a patient with a sensitive or
deeply involved tooth. These alloys bond satisfactorily to
porcelain, and further have the important economic advantage
-- 2 --
~,

1~4,1:~P ~47988
l of being significantly lower in cast than gold or other
precious-metal alloys.
There are various shortcomings of known nickel alloys.
For example, these alloys are difficult to finish and polish,
thereby requiring more dental laboratory time as compared
to precious-metal alloys. Bond strengths of nickel alloys
to dental porcelains are sensitive to the necessary repeated
firings in laboratory manipulation and preparation, and this
factor can affect clinical performance of the porcelain and
nickel-alloy system. It is desirable, therefore, for a
nickel alloy to have a high porcelain-metal bond strength
to be compatible with the laboratory processing involved in
making a restoration. Another problem is that slags of known
nickel alloys tend to adhere to clay crucibles used to melt
the alloy prior to casting. It takes time and effort to
grind or chip off these tenacious slags to avoid possible
contamination of other alloys during subsequent casting.
It is believed that these and other problems arise
from the use in known alloys of elements such as beryllium,
tin, silicon, gallium and boron which are added for improved
melting and casting performance. In contrast to precious-
alloy ingots which melt into a pool with little or no slag,
prior-art nickel-alloy-ingots tend to form into an individual
molten mass covered by a thick slag when melted by a torch.
This problem is at least partially controlled by use of the
aforementioned elements, but not without incurring other
problems.

~L47~8~3
-- 4
For example, beryllium poses a health risk if not
1 carefully hand~cd duling alloy processing. Alloys containing
significant amounts of silicon and g~llium tend to be brittle,
and have an as-cast elongation of only about 2% due to the
formation of intermetallic compounds. Alloys of this type
must be heat~treated at 1800F for about 30 minutes, ~ollowed
by slow cooling in air, to provide sufficient ductility for
margin burnishing, and the increased labor cost arising from
this processing tends to cancel the reduced cost of a non-
precious alloy. Some other alloys exhibit satisfactory
ductility (over 5% elongation as cast), but microscopic
carbides and intermetallics in the alloy result in more
difficult and ~ime-consuming shaping and polishing as
compared to castings of precious alloys.
The new alloy of this invention overcomes these dis-
advantages of known nickel alloys, while maintaining theadvantages of these materials as described above.
Summary of the Invention
This invention relates to the use of non-precious alloys
characterized by high nickel-chrome content, and by the
inclusion of molybd4num, columbium plus tantalum, at least
one element selected from the rare-earth family, and other
lesser components to provide thermal-expansion characteristics
closely matched to commercially available dental porcelains,
excellent bonding characteristics to these porcelains, good
2 ductility, and easy ~haping and polishing characteristics.

~147988
- 4A -
Thus the present invention provides a non-precious
metal base for a dental restoration, comprising:
a body of a stainless metal alloy configured for
intraoral installation, the alloy comprising about:
58 to 68 percent nickel, 18 to 23 percent chromium,
6 to 10 percent molybdenum, 1 to 4 percent columbium plus
tantalum, and 0.01 to 5 percent of at least one rare-earth
element selected from the group consisting of lanthanum, cerium,
praseodymium, neodymium, samarium, gadolinium, and dysprosium,
all by weight.
D~scri tion of the Preferred Emobdiments
P
The non-precious dental alloy of one aspect of
this invention has the following elemental components (percen-
tages are by weight):

11~7~88
1 Element Acceptable Range (%)
Nickel 58 - 68
Chromium 18 - 23
Molybdenum 6 - 10
Columbium plus
5 tantalum 1 - 4
One or more rare-earth
elements 0.01 - 5
Iron 0.02 - 2
Silicon 0.01 - 0.5
10 Manganese 0.01 - 0.4
Titanium 0.01 - 0.2
Aluminum 0.01 - 1.0
Carbon 0.01 - 0.1
The relatively high chromium content of the alloy,
and the use of molybdenum,provide satisfactory corrosion
resistance when the alloy is exposed to mouth fluids. The
ranges specified for other elemental components are important
to insure proper formation of carbide in the alloy (tantalum,
columbium, titanium and chromium), for precipitation of the
gamma-prime phase (aluminum and titanium), and for solid-
solution hardening (molybedenum), these factors all contributing
to strength and desired ductility of the final cast alloy.
Nickel, chromium and molybdenum are the primary determinants
of the thermal-expansion properties of the alloy, though the
other components play some role in this characteristic. One
or more rare-earth elements (defined as those ele~ents with
atomic numbers from 57 through 71 in the periodic chart of
elements3 and the use of aluminum, contribute to the ease of
shaping and polishing the alloy, and provide good melting and
casting characteristics. Beryllium and tin are avoided in
formulating the alloy.
_5_

124'':RRP ~1479~8
1 The componcnts are ~lloyed by induction melting under
argon, and rare-earth elements are the last addition to the
melt. The molten alloy is cast into small slugs or pellets
for convenient remelting when the alloy is subsequently cast
into a dental prosthesis.
Conventional techniques are used to make a finished
dental restoration with the alloy. A ceramic ~old is prepared
using the usual lost-wax or burnout-plastic methods. The
alloy is then melted (a torch fed with propane at 10 psi
and oxygen at 20 psi is used to achieve a 2360 - 2450F
melting range of the alloy) and poured in the mold which is
mounted in a centrifugal casting machine. After cooling, the
mold is broken away and the casting is cleaned, trimmed,
polished and finished in preparation for application of
porcelain by the usual firing techniques.
Polishing of the alloy is done with conventional
equipment such as a Shofu Brownie and Greenie rubber wheel.
The casting is brought to a high luster with an Abbott-
Robinson brush (used with polishing compound) and Black's
felt wheels impregnated with tin oxide.
The alloys of this invention are particularly well
matched to the thermal properties of commercially available
dental porcelains such as distributed by Vita Zahnfabrik
under the trademark VMR-68, distributed by Dentsply
International, Inc. under the trademark BIOBOND and
those distributed by Ceramco Division of Johnson & Johnson.
These above-named dental porcelains generally form a strong
bond to the metal alloy casting of the present invention.
3~

12 l:~RP ~ ~ ~7988
1 The alloys are also useful in making removable dental
appliances such as orthodontic retainers. The relative
softness of the alloys avoids surface damage to natural
teeth over which the appliance is fitted, and the alloys
are sufficiently ductile to permit hand shaping for interim
or final alignment of the appliance. Utility of the invention
is thus not limited to appliances on which porcelain is fired.
Strength, elongation and modulus of elasticity are
tested by using an Instron tensile instrument. Vickers
hardness is obtained by testing specimens of the alloy with
a microhardness tester with diamond indenter. Thermal
expansion coefficients are measured with a dilatometer.
These tests and instruments are well known to those skilled
in the art.
Typical properties of the alloy of this invention as
cast are as follows:
~ltimate tensile strength 75,000 psi
Yield strength (0.2~ offset) 54,000 psi
Modulus of elasticity 27 X lO psi
Elongation 8 percent
Vickers hardness 200
Thermal expansion coefficient 14 -6 -l
The following examples further illustrate the invention
and some of the tests which have been made in evaluatin~ the
invention, and are not intended to be limiting. The figures
shown are element percentages by weight.
-7-

12~ :R~P 1147988
1 Example 1 Example 2 Example 3
Nickel 63.06 60.54 62.80
Chromium 21.60 20.74 21.76
Molybdenum 8.40 8.06 8.45
Dysprosium 1.00 5.00 0
Neodymium 0 0 1.00
Columbium plus
Tantalum 3.80 3.64 3.85
Iron 1.25 1.20 1.25
Silicon 0.35 0.33 0.34
Manganese 0.28 0.27 0.27
Aluminum 0.10 0.10 0.12
Titanium 0.10 0.07 0.10
Carbon 0.06 0.05 0.06
Alloys of Examples 1 through 3 melt similarly to precious alloys,
and form only very thin layers of oxide which cover the molten
alloy pool. These alloys are easy to shape and to polish, and
exhibitgood ductility forburnishing the margins of castings.

12 4 31: T~T~I' ~L1479~38
1 Ex~lml)lc 4 Exam~lc 5 Example 6
Nickel 60.62 62.37 64.18
Chromium 21.12 20.87 21.22
Molybdenum 8.12 8.26 8.34
Samarium 5.00 0 0
Praseodymium 0 3.00 0
Gadolinium 0 0 0.50
Columbium plus
Tantalum 3.11 3.42 3.71
Iron ~.23 1.24 1.20
Silicon 0.32 0.32 0.30
Manganese 0.25 0.28 0.29
Aluminum 0.10 0.11 0.13
Titanium 0.08 0.07 0.09
Carbon 0.05 0.06 0.04
Alloys of these examples are melted easlly and are ductile.
These alloys are not shaped and polished as easily as alloys
of Examples 1 through 3.

12 4 31: RRP ~L147g88
1 E~mple 7 Example 8 Example 9
Nickel 60.01 62.99 62.46
Chromium 21.00 21.60 21.63
Molybdenum 8.20 8.40 8.40
Cerium 2.50 0.50 0.50
Lanthanum 1.50 0.50 0.50
Neodymium 0.70 0
Praseodymium 0.30 0 0
Tin 0 0 0.60
10 Columbium plus
Tantalum 3.72 3.80 3.80
Iron 1.23 1.25 1.25
Silicon 0.32 0.35 0.35
Manqanese 0.26 0.28 0.28
Aluminum 0.12 0.17 0.07
Titanium 0.09 0.10 0.10
Carbon 0.05 0.06 0.06
Alloys of Example 7 through 9 are ductile. Alloys of Example
7 and 8 are very easy to shape and polish. The alloy of
Example 9 which contains tin is difficult to shape and polish.
Alloys of Example 7 through 9 when melted form a molten mass
covered by a somewhat thicker oxide as compared to alloys
of Example 1 through 3.
-10-

Dessin représentatif

Désolé, le dessin représentatif concernant le document de brevet no 1147988 est introuvable.

États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : CIB expirée 2020-01-01
Inactive : CIB de MCD 2006-03-11
Inactive : Périmé (brevet sous l'ancienne loi) date de péremption possible la plus tardive 2000-06-14
Accordé par délivrance 1983-06-14

Historique d'abandonnement

Il n'y a pas d'historique d'abandonnement

Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
BRISTOL-MYERS SQUIBB COMPANY
Titulaires antérieures au dossier
MIN H. TSAI
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Abrégé 1994-01-10 1 26
Revendications 1994-01-10 2 43
Dessins 1994-01-10 1 6
Description 1994-01-10 10 257