Sélection de la langue

Search

Sommaire du brevet 1156687 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 1156687
(21) Numéro de la demande: 1156687
(54) Titre français: BLOC REFRACTAIRE
(54) Titre anglais: REFRACTORY
Statut: Durée expirée - après l'octroi
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • C04B 35/58 (2006.01)
  • C04B 35/65 (2006.01)
(72) Inventeurs :
  • WINKELBAUER, HOWARD M. (Etats-Unis d'Amérique)
  • PETRAK, DANIEL R. (Etats-Unis d'Amérique)
  • KLEEB, THOMAS R. (Etats-Unis d'Amérique)
  • WANG, KE-CHIN (Etats-Unis d'Amérique)
(73) Titulaires :
  • DRESSER INDUSTRIES, INC.
(71) Demandeurs :
  • DRESSER INDUSTRIES, INC. (Etats-Unis d'Amérique)
(74) Agent: MACRAE & CO.
(74) Co-agent:
(45) Délivré: 1983-11-08
(22) Date de dépôt: 1981-04-29
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Non

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
149,610 (Etats-Unis d'Amérique) 1980-05-14

Abrégés

Abrégé anglais


Abstract of the Disclosure
A means for producing nitride bonded refractory
shapes, in situ, by mixing an aluminum metal powder,
relatively pure silica, crude clay and a refractory
aggregate. The mixes are pressed into shapes and burned at
elevated temperatures in a nitriding atmosphere to form the
bond.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


-7-
The embodiments of the invention in which an
exclusive property or privilege is claimed are defined as
follows:
1. A method for producing nitride bonded
refractory shapes, in situ, comprising mixing, by weight,
from about 1 to 25% aluminum, about 1 to 15% substantially
pure silica, about 1 to 5% crude clay and the balance a
refractory brickmaking size graded refractory aggregate,
pressing said mixes into refractory shapes, and burning the
shapes at an elevated temperature in a nitriding atmosphere
for a time sufficient to form the nitride bond.
2. Method of claim 1 in which the refractory
aggregate is selected from the group consisting of calcined
fireclay, fused mullite, synthetic alumina and magnesium
aluminate spinel.
3. Method of claim 1 in which the aluminum
comprises, by weight, 3 to 13%, the substantially pure
silica comprises, by weight, about 4 to 13%, and the crude
clay comprises, by weight, about 1 to 2% of the mix.
4. Method of claim 1 in which the shapes are
burned at a temperature between about 1090 and 1750°C.
5. Method of claim 1 in which the nitriding
atmosphere is selected from the group consisting of gaseous
nitrogen, industrial annealing gas and ammonia gas.
6. A nitride bonded refractory shape made from a
batch consisting essentially, by weight, of about 1 to 25%
aluminum, about 1 to 25% substantially pure silica, about 1
to 5% crude clay, and the balance a refractory aggregate.
7. Shape of claim 6, in which the refractory
aggregate is selected from the group consisting of calcined
fireclay, fused mullite, synthetic alumina and magnesium
aluminate spinel.
8. Shape of claim 6 in which the aluminum
comprises, by weight, about 3 to 13%, the substantially pure
silica comprises, by weight, about 4 to 13% and the crude
clay comprises, by weight, about 1 to 2% of the batch.

9. Shape of claim 6 in which the nitride bond is
at least one bond selected from the group consisting of beta
prime sialon, silicon oxynitride, beta silicon nitride,
alpha silicon nitride and magnesium sialon.
10. A refractory batch for producing nitride bonded
refractory shapes, consisting essentially, by weight, of
between about 1 to 25% aluminum, hetween about 1 to 25%
substantially pure silica, between about 1 to 5% crude
clay, and the balance a refractory aggregate.
11. Batch of claim 10 in which the refractory aggregate
is selected from the group consisting of calcined fireclay,
fused mullite, synthetic alumina and magnesium aluminate
spinel.
12. Batch of claim 10 in which the aluminum comprises,
by weight, between about 3 to 13%, the substantially pure
silica comprises, by weight, between about 4 to 13% and the
crude clay comprises, by weight, between about 1 to 2% of
the batch.

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


6G~7
REFRACTORY
Silicon nitride, aluminum nitride and aluminum
oxide in the form of fine powders when thoroughly and
uniformly mixed in suitable proportions r and he~ted at
elevated temperatures, can provide ceramics which have
relatively good high temperature properties and application
in excess of 1400C. Nitride compounds referred to as
sialon compounds have been synthesized by mixing alpha
and/or beta silicon nitride with alpha and/or gamma alumina
powder. Sialon generally means an intimate dispersion of
alumina oxide throughout a silicon nitride matrix. It is
believed that upon sintering, the material becomes a solid
solution of aluminum oxide in silicon nitride. The letters
which make up the term "sialon" are the letters taken from
the chemical abbreviation for the elements therein, that is,
silicon, aluminum, oxy~en and nitrogen.
Considerable effort has been directed to the
development of ceramic articles containing 80~ and more of
silicon nitride, silicon oxynitride and/or sialon. These
articles consist predominantly of single phase nitrides and
display good thermal shock resistance, strength and
corrosion resistance. Little information exists in the
utilization of these nitride phases as the bonding agent in
conventional refractories. Several limitiny factors which
have retarded large scale development of nitride bonded
refractories include the high cost of purchased silicon
~" . ~ . ~, . . :
: , . ~, ~ ,. ,

- 1 ~56687
,
~2--
-- nitride, the instability of certain oxynitrides at high
temperature, and the hydrolizing tendency of possible
starting materials, such as, aluminum nitride and magnesium
nitride. To overcome these obstacles, it would be
advantageous to form, in situ, nitride phases by the
addition of a single metallic metal powder which can react
with gaseous nitrogen to produce a crystalline nitride phase
capable of ceramic bonding to relatively ine~pensive
refractory grains. This approach will greatly lower the
cost of nitride articles and couple the distinct advantages
o nitride compounds to the established advantages of
conventional refractory grains.
It is an object of the present invention to
produce nitride bonded refractories with improved physical
lS properties compared to refractories made with the addition
of two or more reactive metal powders.
Another object of the invention is to join a
sialon and other nitride phases with conventional refractory
grains which are typically bonded by oxides which can be
readily decomposed by certain metals to provide properties,
such as, non-wetability by molten metals, resistance to
chlorine attack and low thermal expansion.
A further object of the invention is to provide
nitride bonded refractories having improved porosity and
relatively good room temperature and elevated temperature
strength.
In accordance with the present invention, there is
provided a method for producing nitride bonded refractory
shapes in situ. A mixture is prepared comprising about 1 to
25~, by weight, aluminum, about 1 to- 25%, bY
weight, substantially pure silica, about 1 to 5~ crude clay,
and the balance a refractory brick making size graded
refractory aggregate. The mixes are pressed into refractory
shapes and burned at elevated temperatures in a nitriding
atmosphere to form the nitride bond~
In a preferred embodimentr the aluminum comprises
about 3 to 13%, the substantially pure silica comprises
about 4 to 13% and the crude clay comprises ahout 1 to 2~,
by weight, of the mix. The shapes are preferably burned at

3--
a temperature between about lO90 and 1750C and the
nitriding atmosphere is composed of either gaseous nitrogen,
industrial annealing gas, or ammonia gas. The refractory
aggregate is preferably selected from calcined fireclay,
fused mullite, synthetic alumina and magnesium alumina
spinel.
In a nitrogen atmosphere, at elevated
temperatures, aluminum reduces silica forming silicon,
alumina, aluminum nitride and gamma aluminum oxynitride.
With additional treatment at elevated tempera-tures, silicon
is nitrided to form beta silicon nitride and the alumina,
aluminum nitride and aluminum oxynitride enters into the
silicon nitride structure as a solid solution to form beta
prime sialon. During firing it is always possible that
minor levels of oxygen may enter into the chamber confinin~
the refractories. In such an event, the forma~ion of a pure
beta prime sialon is hampered and the so-called "X", "J" or
aluminum nitride polytypes may also form.
During nitriding, the metallic phase undergoes a
gas-metal reaction and forms minute crystals surrounding the
metal nucleus. Maintaining a hold during the firing process
ensures drainage of the metal from the nucleus through the
pores of the crystalline mat which allows additional
nitridization of the metal. During the end of the hold
period, true ceramic bonding is achieved with the coarse
refractory grains by virtue of their solubility in the
nitride phases.
To successfully achieve nitridization and also an
economical firing schedule, it is preferred that the
starting metal powder be as fine as possible. Generally,
the aluminum powder should have an average particle diameter
of about 34 microns with 90% of the particles being finer
than 70 microns. The silica used in the mixes may have one
or more ranges of particle size. For instance~ extremely
fine silica can be used which has an average particle
diameter of less than about 1 micron. However,
incorporation of large quantities of this exceedingly fine
material to a refractory mix, often results in pressing
difficulties. It is advantageous to add the very fine
::
:
,

~ ~ ~g~7
--4--
silica with a coarser form of silica to obtain the large
amount of silica needed in the mix. The crude clay should
be balanced between coarse and fine particle size.
It is also preferred that the reactive material
not exceed about 20% of the mix for economlc reasons. ~lso,
larger quantities do not result in articles with materially
improved physical properties.
In the following examples, illustrated below,
aluminum powder was mixed with silica, crude clay and either
calcined fireclay, fused mullite, synthetic alumina or
magnesium aluminate spinel. A solution of dextrin and/or
lignin li~uor and water was used as a temporary binder. The
mixes were formed into shapes by power pressing to about
18,000 psi. The brick were then fired in the presence of
flowing nitrogen to a temperature of about 2600F with a
holding time of about four hours. Mixes were also prepared
containing a combination of both aluminum and silicon metal
powders~ The overall results indicated that the mixes made
with only a single metal addition were stronger at elevated
temperatures and less porous than mixes made with the two
metal additions. The various bonding phases are also shown
in Table I.
,
. ~ .

1 ~6687
.5.
,~
o ~
U~ ~ o o ~ o o ,1 ~;
t` .,, I . . ., I o
~ o
~ G)
,~ ~
o~ ~ o o ~ ~,
~ ~ I~ o CO ~ ,1 o
N I 9 (~ N I l` t` 1` $ rl (,~
~1 ~I N
H d~¦ I ~ I I ~9~) I 1-1 1` ~ N CO $ rl ~
~ 1 ~ D h~rl
N N N m ~ u~
m
~¢ t~ D ~ N I t` ~ C~ $~rl
f) N
o\ ~r) O ~ ~3 ~
~) I ~I) h --l
~I N m ~ rn
o\ ~r o o ~ ~ ~
r-- ~ o ~ ~
m ~ u~
o\ ~ ~ ~ N
h ~1 ~ U~ h h 0
~,1 ,1 ~$ ,$ ~a o ~ ~ o s:~
:~H ~1 ~1 0
~1 0 E3 ~1 0 1~ N ~ O E~ .4
~ a) U~ h' (d~ O ~ O O ~ h ~
H ~1 ~ ~ (ll rl ~) 5-l rl rl ~ t~ 0 ~1
O 1~') 0
~ ' . , ~ ' ::
,, ''
;,, ~ .

~ 15~87
-6- s
In the above mixes, the refractory aggregate was
sized such that about 7 to 20% was retained on a 10 mesh
screen, about 23 to 36~ was ~10+28 mesh, about 15 to 19% was
-28+65 mesh, about 7 to 10~ was -65+200 mesh and about 30 to
35~ passed a 200 mesh screen. All of the above mesh sizes
are based upon the Tyler standard series.
As to the raw materials used above, the aluminum
powder was pure aluminum metal, and the silica analyzed in
excess of 98% SiO2. The refractory aggregate used in the
examples have the approximate chemical analysis as shown in
Table II below.
TABLE II
Magnesium
Calcined Crude Fused Synthetic Aluminate
Fireclay Clay Mullite Alumina Spinel
SiO2 47.3%62.9% 22.9 0.1~ 0.2%
A12O3 49.233.5 76.4 99.6 69.0
Tio2 204 2.1 0.1 0.01 0.04
Fe2O3 1.0 1.0 0.3 0.2 0.09
CaO 0.020.2 - 0.04 0.54
MgO 0.040.3 - 0.04 30.1
Alk. 0.080.5 0.35 0.05
All of the chemical analyses are based on an oxide analysis.
,.
.

Dessin représentatif

Désolé, le dessin représentatif concernant le document de brevet no 1156687 est introuvable.

États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : CIB de MCD 2006-03-11
Inactive : Périmé (brevet sous l'ancienne loi) date de péremption possible la plus tardive 2000-11-08
Accordé par délivrance 1983-11-08

Historique d'abandonnement

Il n'y a pas d'historique d'abandonnement

Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
DRESSER INDUSTRIES, INC.
Titulaires antérieures au dossier
DANIEL R. PETRAK
HOWARD M. WINKELBAUER
KE-CHIN WANG
THOMAS R. KLEEB
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document (Temporairement non-disponible). Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.

({010=Tous les documents, 020=Au moment du dépôt, 030=Au moment de la mise à la disponibilité du public, 040=À la délivrance, 050=Examen, 060=Correspondance reçue, 070=Divers, 080=Correspondance envoyée, 090=Paiement})


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Abrégé 1994-03-01 1 13
Revendications 1994-03-01 2 70
Dessins 1994-03-01 1 10
Description 1994-03-01 6 210