Sélection de la langue

Search

Sommaire du brevet 1197069 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 1197069
(21) Numéro de la demande: 1197069
(54) Titre français: METHODE DE PREPARATION DE POUDRE DE DIOXYDE D'URANIUM APTE AU FRITTAGE
(54) Titre anglais: METHOD FOR PREPARING A SINTERABLE URANIUM DIOXIDE POWDER
Statut: Durée expirée - après l'octroi
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • C01G 43/025 (2006.01)
  • G21C 3/62 (2006.01)
(72) Inventeurs :
  • THORNTON, THOMAS A. (Etats-Unis d'Amérique)
  • HOLADAY, VELDON D., JR. (Etats-Unis d'Amérique)
(73) Titulaires :
  • THE BABCOCK & WILCOX COMPANY
(71) Demandeurs :
(74) Agent: SMART & BIGGAR LP
(74) Co-agent:
(45) Délivré: 1985-11-26
(22) Date de dépôt: 1982-09-10
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Non

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
06/301,267 (Etats-Unis d'Amérique) 1981-09-11

Abrégés

Abrégé anglais


METHOD FOR PREPARING A SINTERABLE URANIUM DIOXIDE POWDER
ABSTRACT OF THE DISCLOSURE
The invention discloses an improved method for
preparing a sinterable uranium dioxide powder for use and
preparation of nuclear fuel wherein microwaves heat a start-
ing material comprising a compound selected from uranyl
nitrate hexahydrate, ammonium diuranate and ammonium uranyl
carbonate for a sufficient period to decompose the starting
compound; continuing to heat the decomposed compound in a
microwave induction furnace in reducing atmosphere until
the decomposed compound further decomposes to uranium dioxide
powder. The powder is then cooled in a reducing atmosphere.
The method may be practiced in a number of different
atmospheres, such as an oxidizing atmosphere or a reducing
atmosphere, to meet specific products needs. Desirable
temperature ranges for practicing the invention are also
practiced.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. An improved method for preparing a sinterable uranium
dioxide powder for use in nuclear fuel preparation comprising
the steps of:
selecting a starting material comprising a compound
selected from the group consisting of uranyl nitrate
hexahydrate, ammonium diuranate and ammonium uranyl carbonate;
heating the starting compound in a microwave induction
furnace for a period of time sufficient to decompose said
starting compound, thereby yielding a decomposed compound in
the range of from UO3 to U3O8;
heating the decomposed compound at a temperature range
of about 450 to 550°C. in a microwave induction furnace in a
reducing atmosphere for a period of time sufficient to reduce
the decomposed compound to uranium dioxide powder; and
cooling the uranium dioxide powder to about room
temperature in a reducing atmosphere.
2. The method according to claim 1 wherein the first named
heating is conducted in an oxidizing atmosphere.
3. The method according to claim 1 wherein the first named
heating is conducted in a mixed air-steam atmosphere.
4. The method according to claim 1 wherein the first named
heating is conducted in an inert atmosphere.
5. The method according to claim 1 wherein the starting
material is uranyl nitrate hexahydrate and wherein the first
named heating is conducted at a temperature in the range of
about 400 to 600°C.
6. The method according to claim 1 wherein the starting
material comprises a compound selected from the group
consisting of ammonium diuranate and ammonium uranyl
carbonate, and wherein the first named heating is conducted
at a temperature in the range of about 350 to 450°C.

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


~9~7~6g
BACKGROUND OF THE INVENTION
The present invention relates to an improved method
for preparing a sinterable uranium dio~ide powder for use
in nuclear fuel preparation and, more particularly, to
the preparation of a sinterable uranium dioxide powder by
microwave radiation in a microwave induction furnace.
Uranium dioxide is the fuel most commonly used in
present day nuclear power reactors. Generally, uranium
dioxide powder is pressed and ~intered to form pellets
which are loaded into and sealed in slender, hollow metal
tubes called fuel rods. It is a plurality of such fuel
rods that establishes an accumulation of fissionable
material in sufficient concentration to support sustained
fission reactions within the core of a nuclear power re-
actor.
A num~er of techniques have been developed for pre-
pariny a sinterable uranium dioxide powder, generally the
starting compound in a nuclear fuel pellet preparation
process, the most common of which involves the decomposi-
tion and reduction of ammonium diuranate or the ADU method.ADU is produced by precipitation from a solution of uranyl
fluoride by the addition of ammonia and the ADU formed in
this manner has a very fine particle size which carries
through to uranium dioxide powder after thermal drying,
decomposition and reduction in an electrical resistance
furnace, radiant heat transfer dryer, kiln or a co~bina-
tion thereof.
Another common method for the manufacture of uranium
dioxide powder is the ammonium urànyl carbonate or AUC
method. The AUC is produced by precipitation from a solu-
tion of uranyl fluoride by the simultaneous addition of
NH3 and CO2; the RUC precipitated thereby is separatéd
t'q' ~h

7~
from the mother li~uor by filtering and washing, and the
uranium dioxide powder is formed by thermal decomposition
of the AUC and subsequent reduction of the resulting U3O8
to UO2 in a reducing atmosphere. The thermal decomposition
of the AUC and the reduction of the oxide into uranium
dioxide powder in hydro~en or other reducin~ ~as is nor-
mally carried out in an electrical resistance furnace or
in two such units, such as the so-called vortex-bed
furnaces.
Still another method for the manufacture o uranium
dioxide powder is the ura~yl nitrate hexahydrate or UNH
method. The UNH method proceeds by starting with uranyl
nitrate hexahydrate,UO2(NO3)2.6H2O, then heating and de-
composing the compound in an electrical resistance furnace
to form UO3, oxides of nitro~en and water vapor. The UO3
is then heated in an electrical resistance furnace in a
hydrogen reducing atmosphere to form uranium dioxide pow-
der and water vapor.
The prior art processes for preparing uranium dioxide
powder have in common the use of standard electrical resis-
tance or combustion-fired heating furnaces during the
decomposition and reduction steps, that i5, the decomposi-
tion to UO3 or U3O8 followed by reduction to uranium di-
oxide powder. Alternatively, uranium bearin~ compounds
are processed primarily utilizing radiant heat transfer
dryers and kilns. It is the object of the present inven-
tion to replace the conventionallv used electrical resis-
tance furnace, radiant heat transfer dryer and kiln with
microwave induction furnaces.
Heretofore, microwave induction has been used as a
heating mechanism almost entirely via the susceptance of
the water molecule to microwave radiation, that is, the
use of microwaves for the heating of materials has been
centred on the effects that microwaves have on water

~g~9
molecules. Microwaves cause rapid changes in the polariza-
tion of the water molecule, thereby generating heat. The
invention herein described discloses that uranyl nitrate
hexahydrate, ammonium diuranate and ammonium uranyl carbo-
nate also suscept to microwave radiation, generating heat.Accordingly, the electrical resistance furnace, radiant
heat transfer dryer and kiln, above discussed, can be
replaced by microwave induction furnaces during the prepa-
ration of uranium dioxide powdervia the ADU, AUC and UNH
powder preparation processes.
The present invention overcomes many of the short-
comings of the prior art heating devices by decreasing
material heatup time, allowing a greater range of process-
ing temperatures, shortening processing times, lowering
fluoride impurity levels, improving the ease in handling
gelatinous ADU or AUC filter cakes, conserving energy by
generating heat entirely within the target material, find-
ing greater utility in remote locations required for nuclear
fuel processing and providing a ceramically active, sinter-
able uranium dioxide powder product.
SUMMARY OF THE INVENTION
The present invention relates to an improved methodfor preparing a sinterable uranium dioxide powder for use
in nuclear fuel preparation utilizing the concept of micro-
wave radiation in a microwave induction furnace. Typically,a starting compound is selected from the group consisting
of uranyl nitrate hexahydrate, ammonium diuranate and
ammonium uranyl carbonate. The selected starting compound
is then heated in a microwave induction furnace for a
period of time sufficient for compound decomposition. The
decomposed compound is then heated in a microwave induction
furnace in a reducing atmosphere for a period of time suf-
ficient to reduce the decomposed compound to uranium dioxide
powder, after which, the uranium dioxide powder is cooled

6~
in a reducing atmosphere. After cooling, the powder is
available for use in a nuclear fuel preparation process.
The various features of novelty which characterize
the invention are pointed out with particularity in the
claims annexed to and forming a part of this disclosure.
E`or a better understanding of the invention, i~s operating
advantages and specific results obtained by its use,
reference should be made to the descriptive mattex in
which there is illustrated and described a typical embodi-
ment of the invention.
DETAILED DESCRIPTION OF T~IE PP~EFERRED EMBODIMENT
A sinterable uranium dioxide powder to be used in anuclear fuel preparation process is produced by first
selecting a commercially available starting material from
the compound group of uranyl nitrate hexahydrate, ammonium
diuranate and ammonium uranyl carbonate. The selected start-
ing material or compound is then heated in a microwave induc-
tion furnace for a period of time sufficient to decompose
the material, the composition of which may have a uranium
oxide stoichiometric range of from UO3 to U3O8. The pre-
ferred decomposition end product is U3O8 and the decompo-
sition may be conducted in either an oxidizing, air, 2'
or the like, mixed air-stream, or an inert atmosphere.
The decomposition step is conducted at a heating tempera-
ture in the range of about 400 to 600C when uranyl nit-
rate hexahydrate is selected as the starting compound.
The decomposition heating temperature is conducted in the
ranye of about 350 to 450C when either ammonium diuranate
or ammonium uranyl carbonate is selected as the starting
compound. The decomposed compound is then heated in a
microwave induction furnace in a reducing atmosphere con-
sisting essentially of a hydrogen-nitrogen gas mix~ure, or
the like, for a period of time sufficient to reduce the
decomposed compound to uranium dioxide powder; the

6~
reduction step is conducted at a heating temperature in
the range of about 450 to 550C notwithstanding -the start-
ing material selected from the aforementioned compound
group. The uranium dioxide powder i5 then cooled in a
reducing atmosphere to approximately room temperature.
After cooling the powder is read~ for use in a muclear
fuel preparation process.
Uranyl nitrate hexahydrate, ammonium diuranate and
ammonium uranyl carbonate were each subjected to microwave
radiation in a microwave induction furnace at approximately
2450 MHz, the frequency of the standard kitchen-type micro-
~ave oven, to determine the susceptance of each compound
to microwave radiation. It should be understood thak,
while a conventional microwave oven was selected for use
because of its ready availability, other microwave induc
tion fuxnaces operating at different frequencies would
also be operable. Additionally, one oven or a plurality
of ovens could be used for the decomposition and reduction
processes. Each uranium compound readily suscepted, heat-
ing rapidly. Other materials, however, such as niobia,alumina, silica, and graphite, when exposed to microwave
radiation, while suscepting, did not exhibit the rapid
heating found to be characteristic of the above compounds
of uranium.
Uranyl nitrate hexahydrate crystals suscepted to
microwave radiation in a microwave induction furnace in
an oxidizing atmosphere by first forming a liquid as the
hydrated water molecules were released, then decomposing
in a 400 to 600C temperature range, progressively drying,
releasing nitrous oxide gas and water ~apor and forming
uranium trioxide (UO3). The UO3 was then heated to a
temperature in the 450 to 500C range in a microwave
induction furnace in a reducing atmosphere wherein water
vapor was released and the UO3 was reduced to uranium di-
oxide powder which was then cooled in the reducing

70~
atmosphere to about room temperature.
Ammonium diuranate, available as a filter cake,suscepted to microwave radiation in a microwave induction
furnace in an oxidizing atmosphere by first releasing
water and drying in the microwave field and then by de-
composing in a 350 to 450~C temperature range, releasing
ammonia gas and water vapor and forming U3O8. The U3O8
was then heated to a temperature in the 450 to 550C
range in a microwave induction furnace in a reducing
atmosphere wherein water vapor was released and the U3O8
was reduced to uranium dioxide powder which was then
cooled in the reducing atmosphere to about room teperature.
Ammonium uranyl carbonate, subjected to the condi-
tions imposed upon ammonium diuranate, decomposed in much
the same manner as did the ammonium diuranate, releasing
gases of ammonia and water vapor with the additional
release of carbon dioxide gas and forming U3O8. The reduc-
tion of U3O8 to uranium dioxide powder, followed by cooling,
proceeded as did the reduction and cooling of ammonium di-
uranate.
Uranyl nitrate hexahydrate, ammonium diuranate andammonium uranyl carbonate decomposition and reduc-tion in
a microwave induction furnace or furnaces is accomplished
in processing times on the order of minutes rather than
the hours customarily associated with the use of conven-
tional electrical resistance furnacesO Additionally, the
processing of a glossy or gelatinous filter cake does not
hinder the microwave decomposition-reduction processes,
the presence of such cakes lengthen process times in
conventional furnaces and effect finished product ~uality.
Uranyl nitrate he~ahydrate, ammonium diuranate and ammoni-
um uranyl carbonate processes in a microwave field
produce a finished product o~ sinterable uranium dioxide
powder suitable for use in a nuclear fuel preparation
process.

~9~
While in accordance with the provisions of the
statutes there is herein illustrated and described a
specific embodiment of the invention, those skilled in
the art will understand that changes may be made in the
form of the invention covered by the claims, and that
certain features of the invention may sometimes be used
to advantage without corresponding use of the other
features.

Dessin représentatif

Désolé, le dessin représentatif concernant le document de brevet no 1197069 est introuvable.

États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : CIB de MCD 2006-03-11
Inactive : Périmé (brevet sous l'ancienne loi) date de péremption possible la plus tardive 2002-11-26
Accordé par délivrance 1985-11-26

Historique d'abandonnement

Il n'y a pas d'historique d'abandonnement

Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
THE BABCOCK & WILCOX COMPANY
Titulaires antérieures au dossier
THOMAS A. THORNTON
VELDON D., JR. HOLADAY
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Page couverture 1993-06-21 1 16
Abrégé 1993-06-21 1 23
Revendications 1993-06-21 1 41
Dessins 1993-06-21 1 8
Description 1993-06-21 7 278