Sélection de la langue

Search

Sommaire du brevet 1290747 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 1290747
(21) Numéro de la demande: 1290747
(54) Titre français: METHODE ET DISPOSITIF POUR ENGENDRER DES CONTRAINTES DE CISAILLEMENT PRECISES POUR DES PAROIS
(54) Titre anglais: METHOD AND APPARATUS TO GENERATE PRECISELY-DEFINED WALL SHEARING STRESSES
Statut: Périmé et au-delà du délai pour l’annulation
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • E2D 1/00 (2006.01)
  • G1N 13/00 (2006.01)
  • G1N 33/24 (2006.01)
(72) Inventeurs :
  • GUST, GISELHER R. (Etats-Unis d'Amérique)
(73) Titulaires :
  • HYDRO DATA, INC.
(71) Demandeurs :
  • HYDRO DATA, INC. (Etats-Unis d'Amérique)
(74) Agent: GOWLING WLG (CANADA) LLP
(74) Co-agent:
(45) Délivré: 1991-10-15
(22) Date de dépôt: 1988-05-19
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Non

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
P 3717969.1 (Allemagne) 1987-05-27

Abrégés

Abrégé anglais


METHOD AND APPARATUS TO GENERATE PRECISELY-
DEFINED WALL SHEARING STRESSES
ABSTRACT
A method and apparatus is provided to generate over a
confined space precisely defined distributions of the magnitude
of the wall shearing stresses in a substrate/fluid boundary
layer. A fluid flow is rotated around a center axis is the
confined space. Simultaneously a defined fluid volume is removed
in the rotational axis of the flow per unit time and recirculated
or replenished through return openings in the lid or sidewall.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


Having thus described the invention, what is claimed and
desired to be secured by Letters Patent is:
1. Method of generating wall shearing stress fields of exact
magnitude at a substrate/fluid interface with exact time
histories, comprising employing a rotating disk within a confined
space containing a substrate beneath a fluid column to generate
a fluid flow moving rotationally around a center axis of the
confined space with simultaneous suctional removal of a metered
fluid in the center axis and replacement of fluid in the confined
space.
2. Method according to Claim 1, wherein the substrate is a
sediment and the fluid is sea water, and the sediment/water
interface is investigated in respect to physical, chemical,
sedimentological and biological processes.
3. Method according to Claim 1 wherein the removed fluid is-
recirculated through a pump to the confined space.
4. Method according to Claim 1 wherein the disk diameter is
slightly smaller than the inside diameter of the confined space.
5. Method according to Claim 1 wherein the disk edge has a
circumscribing descending skirt.
6. Method according to Claim 1 wherein the substrate is a
microbiological medium and the fluid is compatible - with
microbiological life forms.
7. Method according to Claim 1 wherein the removed metered fluid
is collected and replaced in the confined space with a fluid from

an alternate source in the same quantity as the fluid collected.
8. Method of generating wall shearing stress fields of exact
magnitude in a substrate/fluid interface comprising:
a. mounting a rotatable disk within a confined space
containing a substrate with an overlying column of
fluid
b. turning the disk within the fluid while simultaneously
sucking fluid through an opening in the center of the
disk, and
c. recirculating the fluid sucked from the confined space,
back to the confined spare through a hole in a lid
forming a top of the confined space.
9. Apparatus for the generation of wall shearing stress fields
of exact magnitude at a substrate/fluid interface comprising,
- a housing sealed on top by a lid and having side walls,
- a stirrer device attached to the lid such that its axis
is aligned with the housing side wall and whose outer
diameter is smaller than the inner diameter of the housing,
- a hollow stem positioned centrally in the lid which is
free to rotate but is sealed and drives the stirrer device,
through which fluid is removed from a space confined by the
housing,
- a first pump to remove the fluid through the hollow stem,
and
- a return opening to the confined space to receive
16

replacement fluid to maintain fluid volume.
10. Apparatus according to Claim 9, wherein the stirrer
apparatus is shaped as a flat disk.
11. Apparatus according to Claim 9, wherein the stirrer has a
disk-type shape with a skirt aligned parallel with the housing
side walls at a specified distance from the side walls.
12. Apparatus according to Claim 9, wherein the hollow stem and
the return opening pierce the lid and are connected is a
recirculation loop with a pump.
13. Apparatus according to Claim 12, wherein the recirculation
loop is integrated into an industrial manufacturing process.
14. Apparatus according to Claim 9, wherein the housing has a
circular shape in cross section.
15. Apparatus according to Claim 9, wherein the housing has an
elliptical shape in cross section.
16. Apparatus according to Claim 9, wherein the housing is open
at the bottom for field investigations.
17. Apparatus according to Claim 9, wherein the housing is
equipped with a sealed bottom for laboratory investigations.
18. Apparatus according to Claim 17, wherein the bottom can be
pushed sidewise into the housing.
19. Apparatus according to Claim 17, wherein the bottom is
equipped with a receptacle for a core sample, inserted from
beneath, and forming, when inserted, a flush interface with the
substrate surface.
17

20. Apparatus according to Claim 9 wherein a filter device is
interposed before the return opening to collect particulate
matter.
18

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


07~7
EST~IQD ANI:) APPARATU~ RAl!E P~CIJ3~h~INEI)
WALL B~ ,INt3 ~'rR~J3
BAC~GROUN~ OF THE INVENTION
1. Field of the Invention
The i~vention relates to methods and apparatus for causing
the mi~ing o~ ubstances and fluids at interfaces with Yarying
density ~radi~nts. ~ore parti~ularly-the invention describes a
method of gen~rating precisely-defined wall she~ring stresses at
a substrate/fluid interface, especially those of a sediment/~ater
inter~ace within a confinod space, to~ther with an apparatuq to
reali~e this method.
2. Description of the Prior Art
- Wall shearinq ~tresses play a pivot~l role in
hydrodynamical, sedimentologi~al, biological, geochemical, and
engineering processes and their control at substrate/fluid
iater~aces. The inv~stigatio~ of sediment/water boundary layers
i~ rivers, lakes, and o~eans i~ of great importanc~; ~.9., the
determination of the vertical e~change ~flux) of chemic~l
substances betwee~ ~ediment and overlyiny wat~r, or the
determination of porewater concentration profiles as ~ell as the
r~serYoir capacity of sediments for chemical sub~tance~ in~ludin~
adsorb0d pollut~rlt~. The latter ~:oncerns waste disposal, pathways
o~ toxirl and ~nvironmental health. In ord~r to achieve

3-2~07~:~
realistic results in these areas, it is mandatory to establish
quantitatively the link between the studiPd process and the wall
shearing stres~es at the substrate/fluid interface. To achieve
thi~ ~oal a flow pattern in the ~luid has to be generated which
produces precisely known wal 1 shearing stresses in the
~ubstrate/fluid boundary layer.
The generation of a boundary layer structure homogeneous
over a relatively large surface area betwee~ a substrate and
overlyins fluid with a resulting spatially homogeneous
distribution o:E the wal 1 shearing stress over the whol e area can
be relevant also for industrial prc~cessing and manufacturing
techniques, especially in microbiological manufacturing
te~hniques, titration processes, sur~ace ~oatings, and others.
It is also useful in establlshing the best possibl~ growth
enviro~ment for bacterial cultures or to optimize their exudates.-
The invention has thus the task to find an engineeringprocedure a~ well as an apparatus which permits the generation of
precisely defined wall shearing stress fields in a
substrate/fluid bou~dary layer ~ithin a confined measuring volume
for steady and variable time histories.
"Precisely defined" wall shearing stresses means that their
mag~itude generated at any point and time on the surface of the
s-~bstrate in th~ ~onfined measuriny volume is known within a
measurin~ uncertainty (mean error) of less th~n 10~. Depending
o~ desired application, these distributio~s ~an have different

~ ~ ~ O 7 4.~
spatial and temporal features as hereafter sho~n.
SUMMAR~ OF THE INVENTION
The invention provides an engineerin~ method and apparatus
for generating an a~ial-symmetric rotation of ~luid while
simultaneously remoYing a defined fluid volume in the center of
a rotational a~is and causing it to be recirculated or collected
with sllbstitut~d fl~lid volume returned to the me~suring volume
instead.
The apparatus to a~hieve this goal consists of a housi~g in
th~ form of a large diameter tube closed on top with a lid.
Beneath this lid a stirrer i9 inserted in the center with its
diameter small er than the inner diameter of the housing. The
stirrer is attached to a rotating hollow axis~ through which
fluid is remov~d from th~ enclosed measuring volumP, circulated
by a pump and returned to the closed measuring volume through at
least one return opening in the lid or elsewhere. D~pending on
applicatio~, the bottom of the apparatus is either open (field
deployment) so that the substrate/fluid int~rface is that of the
original sediment or it is s~aled a~d the interface is that of an
i~s~rted s~diment cor2 or of a~y other desired substrate surface.
BRIEF DESCRIPTION OF THE ~WING5
The invention may be best understood by those having
ordinary skill in the art by reference to the followin~ detailed
description when considered i~ conjunction with the açcompanying
drawings in which:

~l29v7a~7
FIG. 1 is a oross-sectional elevation view of one particular
~eature of the inventio~.
FIG. 2 is a cross secti~nal elevation Yiew of a second
feature ~f the invention.
FIG. 3 is a top plan YieW of a circular housing of the
invention.
FIG. 4 is a top plan view of an elliptical housing of the
invention.
FIG. 5 is a ~ross sectional ~levati~n view of a third
feature of the invention.
FIG. 6 is a view of the device of FIG. 1 with a bottom
sealing member.
DETAILED DESCRIPTION OF THE INVENTION
The apparatus 11 of FIG. 1 consists of a circular housir.g 12
which is open at the bottom and closed by a lid 10 on top. Lid
10 is connected to housin~ 12 via a hinge 26 which permits a
hinged-type openin~ and closin~.
Beneath lid 10 a stirrer device 14 is attached which
co~sists of a circular disk 20. Disk 20 is conneeted to a hollow
stem 16 which can rDtate freely in the lid 10 y~t is sealed. The
stem 16 is dri~en by a drive wheel 28 attaohed ~utside the lid
10 .
The hollow rotating st2m 16 is ~oupled to a polyvinyl
chloride or like plastic tubing 60 which leads to a pump 24,
whose outlet side is connected to a return openin~ 18 located

~2~7~7
close to the ~enter of the lid 10.
Apparatus 11 can have a bot~om mernber 29 when used to
collect microbiological matter growing in a culture mediwn. See
FIG. 6. In the apparatus 11 or 11a the stirrer devi~e 14 or 14a
is ronnected to a stai~less Ateel tub~3 62 which in turn leads to
the tubirl~ 60. The connection of stirrer device 14 or 14a to
the steel tube 62 is made by inside 64 and outside 66 O-rings.
An acrylic ~ounter-nut 68 ~ecures disk 20 at the end of stem 16.
Slass ~al l bearings 70 separate the drive whe~l 28 ~rom the top
~eali~g blo~k 72 usually made out of T~FLON. Brace 74 prevents
st~el tube 62 from tur~ing.
Wh~n turning the hollow a~is 16 via the drive ~heel 28 by
means of a~ AC motor and variable gear box (not shown), the
stirrer device 14 is also turning. This i~ turn yenerates a
fluid flow relative to the a~is of apparatus 11. The rotation of
the stirrer device 14 produces a rotati~g flo~ of the fluid
inside the confined volum~, with the velocity ~ector decreasing
i~ ma~nitude in radial direction ~rom th~ outer diameter to~ards
the center. The stirrer devi~e 14 thus gen~rates a non
homogeneous wall shearing stress at the ~ubstr~te/fluid interface
38 which decreases accordingly in ma~nitude from larger to
smaller radii. ~hen fluid 15 is removed simultaneously through
the hollow stem 16, a further flow componsnt is gen~rated which
increases from larger to smaller radii. With appro~riate
dim~sion~ ~see Example~ below) for the tube housing 12 nd
.. ... . .. . ..

l,X~
stirrer device 14, together with a proper combination of fluid
volume recirculatet per unit time and angular velocity of the
stirrer device 14 it is possible to generate a homogeneous flow
in magnitude (but not in direction). This in turn lead~ to a
spatially homogeneous field of ~ear-bottom velocity gr~dient~ ~nd
thus to a spati~lly homoge~eous magnitude of th~ wall shearing
stress at the substrate/fluid i~terface 3~ i~side the apparatus
11 between fluid 15 and substrate 17. Other combinations of
angular velocity of stirrer device 14 ~d center-removed
recirculated fluid produce i~creasing or de~rea~ing radi~l wall
sheari~g stress distributio~s. The~e alternate combinations ar~
desirable for selected applications.
Th~ individual applications can be yrouped i~to laboratory
devices and ~ield devices, and within these groups as either flux
chambers or samplers. I~ all cases the wall shearing stress
~ields can be either spatially homogeneous or inhomogen~ous,
with their time histories then beiny steady-state, stepfunctions
~rom high to low or from low to high or varia~le. The
combinations of angular velocity of the stirrer a~d simultaneous
fluid recirculation ~an be manually selected for the simple
temp~ral st~ady-state distributio~s. For ste~ functiDns in time,
or for variable time histories su~h as cycling in general or
tidal cycle simulations specifically, or for adjustment of the
wall shearing stress field i~side a chamb~r deployed in-situ to
values measured on the outside in the u~co~fined boundary layer
... . . . .

0~74.7
digital electronics for driving pump a~d stirring device 14 are
required. Also needed is a computer program utilizing a pre-
established calibration matrix stored in a microprocessor to
select the required stirring /pumping rate combinatio~s.
In the feature show~ in FIG. 2, a skirt 22 is attached to a
shortened circular disk 20a which is aligned parallel with the
ide w~ll 40 o housing 12 but at a considerable distance from
it. It permits the introduction of probing devices 31 through
feed-through openings 30 in the lid 10 into the spac~ betwee~ the
skirt-equipped stirrer disk 20a and the housing side wall 40 such
that measurements can be taken of the fluid 15 a~d substrate 17
in the ~onf ined area . In this f~ature the invention uses the
Couette fl~w ~enerated ~etween the skirt 22 and the sidewall 40
of the housing to extend the stirrer device 14a by a liquid
addition all the ~ay to the sidewall 40, since the Couette flow
established in the ciraular gap 42 generates a constant fluid-
shearing stre~s in radial direction. This permits the boundary
layer at the substrate/fluid interface underneath this gap 42
area t~ sxperien~e the same magnitude of the wall shearing stress
a~ underneath the ~olid-material stirrin~ device 14a at smaller
radii. In this feature the stirrer device 14a i~ thus partly
solid material, partly fluid and generates the sam~ eff~ct
regardin~ the magnitude of the wall shearing stress as if a solid
disk 20 exte~ds to the sidewalls of the hou~in~ 12 as shown in
FI~. 1.

7~7
.
The shape of the disk 20 or 20a has to be selected based on
experiment~specific requirements. For example, it may be
necessary to use a disk with wedge-type radial cro~s section,
either converg~nt or divergent. Furthermore, the stirrer d~vice
14 or 14a can be foxmed by radially attached wings or blades.
Also, a perforated or a grid like disk is feasible. The stirrer
can even be shaped like a bell.
The tube housing 12 has a circul~r shape when a spatially
homogeneous wall shearing stress has to be generated at ~he
substrate/fluid interface. If a ~on-homogeneous wall shearing
stress field of known radial distribution has to be ~enerated at
th0 substrate/fluid interface instead, other cross-sectional, for
e~ample, elliptical shapes of the housing may be chosen.
Furthermore, precisely known inhomogeneous fields sf the
wall ~hearing stress increasing or decreasin~ in radial dir~ction
~an be ~enerated either by a different selection of ~he amount of
water volume removed centrally and recirculated per unit time or
by a different selection of the number of rotations of th~
stirrer per unit time compared to th combination ~etti~g of
^ctirri~g device revolutions and recircul~ted fluid volum2 per
minute for spatially homogeneous distributions.
When using the device as a laboratory simulator, it has to
b~ built in a way that it ca~ contain a substrat~ 17 of
approximately twenty cm d~pth with an overlying fluid 15 col~mn
of approximately ten cm hei~ht. Furthermore, a bottom lid 29 has

~2~)7~7
to be present which needs to be mov~ble sideways for sealing and
be removable when sediment cores are collected in the field.
For field investigations the apparatus 11b as seen in FIG. 5
has to be built such that it can be d~ployed in free-fall mode or
via cable from a vessel to land on the ocean floor. In this ca~e
no bottom lid 29 is ne~ssary t~ 3eal the apparatus 11b unles.
~ediment core~ are to be recovered after the measurement~.
The apparatu~ 11b in FIG. 5 is ~upp~rted by a superstruc~ure
45 in which i~ suspended apparatus 11b by bleeders 53. Disk 20b
i~ attached to the hollow stem 16b leading to ~ rosette sampl~r
42 with bas~ ~nd motor dr ve. The housing 12b has a sharp bottom
rim 44 to pene~rate the sea floor 17. A layer of marine snow 46
rests ~n the ~ea floor 17. Circumfsrentially attached bleeders
48 are employed for closing lid lOa whi~h h~s a reces3 50 for the
rotating disk 20b. Und~rwater housing 52 with gear bo~, drive
sha~t and motor rests on the lid 10a along with other equipment
such as underwater camera 54, pressure housing with electronics
56 and power pack SO. Vent holes or fluid replacemen~ holes 18a
are located on th~ circumference of recess 5D.
The su~erstructure 45 is lowered to the s~a floor by a cable
a~d thereafter housing 11b s~ttles usin~ ble~ders 53 until rim 44
is imbedded in the sea floor 17 to the depth of collar 55. The
bottom switch 58 u~derneath c~llar ~5 the~ a~tivates th~ clo~ing
of the lid via ble~d~rs 48. Switch 59 atta hed to lid 10a
actiYates upon closing of disk ~Ob which causes sea water
rot~tio~ in the now confined volume 15 for gen~ration of a wall

~ X 9 ~ 7 ~r~
shearing stress field. U~d~r it~ influence the marine ~now 46
accumulat2s in the center of apparatus 11b. A timed valve
activates suctio~ of fluid 15 through hollow ~tem 16b into the
rosette sampler. Additional samples are then activated through
electronicc 56 along witb the cam~ra 54. ~he super~tructure
returns to the surface for analysis of the ~amples after
completed ~ollection ~ycle.
The apparatus of this i~vention can ~e used for
investigation of either the eff2ct~ of precisely known wall
~hearing str~-~ses generated at the su~strate/fluid i~ter~ace by
o~rtain combinations of rotatio~l speed of ~he stirr~r device 14
a~d the amou~t of water removed simultaneou~ly through the center
stem 16 or 16a and reciroulated per unit time, or for sampling
the sediment particles a~d aygregates which might be eroded under
this wall shear ng stress. In the latter case, the pump
recirculation path xequires eguipment to filter out these
~edi~nt particle~ and a~gregates or to collect th0 ~luid. Such
devices filtering out sedime~t or aggregates eroded at a pre-set
bottom stress are also necessary when the task is to i~vestig3te
the remainin~ ~ediment/~orewater ~ystem.
The bottom material inside the devi~e can be an~ type of
finely grsund material ~ith porewater space or even a solid,
imp~rmeable plate either flat or with a rough sur~a~e.
8ubstrat~s for bacterial growth can also be employed.
1~

~ ~ ~ V ~ ~ 7
The fluid can be a~y chemical or chemical solution as long
as the materials of the design ensure its confinement.
Entrainment of porewater solutes, biomass and their e~udates
under selected bottom stre~s fields are also possible beyond
sediment entrainment studies with adequate filters or ~luid
samplers in the recirculation path. Thç recirculation path does
not ~eed to be closed. ~ater could be removed in controlled
volumes from the sealed housing through the hollow axis 16 and
fed to other proce~sing unit~, while the replacement fluid is
transported by another ~synchroni~ed) second pump into the
housin~ via one or several return openings. R~circulated or
replaced fluid can also provide a "spi~e" of fluid with new
characteristics, e.g. strongly reduci~g or with special chemicals
before returning to the enclosed fluid volume inside the
apparatus. Al~o, the ~ub~trate/fluid interface does not need to
be discontinuous, but can form a trong density gradient like in
fluid mud.
In FIG. 2, a ~eature is shown where the false bottom 32 of
the device is equipped with a receptacle 34 for ~ sediment core
liner 36 sealed at the ~Qttom. The diameter of the receptacle 34
is thus smaller than the radius of the false ~ottom plate 32. In
this feature it is possible to investigate reco~ered sediment
cores in a simple manner i~ a laboratory, either on land or
shipborne.
The proposed device is especially well adapted for
investigations o~ processes at th~ sedimen~/water interface of
11

~ 74 7
natural water systems. However, a wide variety of additional
applications is po~sible. For example, in microbiological
manufacturing ~rocedures it is desirable that microbiologic
populations, whose metabolic products are harvested, are ~xposed
to a controlled and precisely known flo~ velocity and thus wall
shear1ng stress. Other examples can be found in proc~ss
e~gineering, espe~ially when a well defined vertical flux of
materials has to be achieved ~etween ~ fluid ~nd a substrate.
This latter case bears relevanGe for ~urf~ce coati~gs.
For the fluid it is not necessary to be water. It even may
be air or other ~ases, carrying atomized metals, aerosols or be
other diluted two-phase systems o which one phase is se$tling on
the substrate surface in rates controlled by the wall shearing
stress.
EX~MPL~S 1-8
Particular examples of an apparatus utili~ing the inv ntion
are described below. In each of the below listed examples the
apparatus 11 has the foil~wing dimensions:
diameter of housing: 30 cm
housing height: 35 cm
sul:strats depth: 25 cm
water hei~ht from interface to lid: 10 cm
total ~onfi~ed water volume: 7 litr~
total confined ~edimerlt vol~uTe: 18 litres (depending on
insertion technigue)
12

~ 7 ~ 7
disk with skirt, diameter: 20 cm
disk with skirt, length: 4.5 cm
The following combin~tions of stirrer rotations/fluid volume
recirculation shown below generate homogeneous wall shearing
stresses (expressed by the friction velocity u* = (~ ~
where ~ = fluid de~sity) of defined magnitude over the
interfacial ar~a with errors <10% for above dimsnsions:
friction velocity u* rotation of disk fluid volume
(in cm/s) with ~kirt recirculated
(in cm /min)
(1) G.22 5 rev. in 67 sec. 95
(2) 0.30 6 rev. in 67.5 secO150
t3) 0.37 7 rev. in 60 5ec. 365
(4) 0.50 13 rev. in 58 s0c. 195
(5) 0.54 13 rev. in 60 ~ec. 424
(6) 0.69 20 rev. in 60 sec. 230
(7) 0.75 23 rev. in 60 sec. 290
(8) 1.00 ~ 30 rev. in 60 sec. 680
u* = friction velocity
= wall shearing stress
~ p = fluid density
EX~MPLES 9 - 12
E~amples producing homogeneous and inhomo~eneous wall
shearing stresses of defi~ed ma~itude over the interfacial area
f~r an apparatus with 12 cm diameter a~d 5 cm water depth:
u* (cm/s) rotation of flat disk 1uid volume
recirculat~d
~cm Imin~
13

~ ~ 9 V ~ ~7
(9) homogeneous, 0.25 10 rev. in 60 sec. 67
(10) homogeneous, 0.4 17.2 rev. in 60 sec. 90
(11) maximum at outside 17.3 rev . in 60 sec. no pumping radius: 0.45
minimum at centær:
0.13
(12) minimum at outside 17.1 rev. in 60 sec. 1000
radius: 0.3
maximum at
center 2.2
14

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : CIB expirée 2022-01-01
Inactive : CIB de MCD 2006-03-11
Inactive : CIB de MCD 2006-03-11
Inactive : CIB de MCD 2006-03-11
Le délai pour l'annulation est expiré 2004-10-15
Lettre envoyée 2003-10-15
Accordé par délivrance 1991-10-15

Historique d'abandonnement

Il n'y a pas d'historique d'abandonnement

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
TM (catégorie 1, 6e anniv.) - petite 1997-10-15 1997-09-04
TM (catégorie 1, 7e anniv.) - petite 1998-10-15 1998-09-22
TM (catégorie 1, 8e anniv.) - petite 1999-10-15 1999-09-09
TM (catégorie 1, 9e anniv.) - petite 2000-10-16 2000-09-13
TM (catégorie 1, 10e anniv.) - petite 2001-10-15 2001-10-01
TM (catégorie 1, 11e anniv.) - petite 2002-10-15 2002-10-08
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
HYDRO DATA, INC.
Titulaires antérieures au dossier
GISELHER R. GUST
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document (Temporairement non-disponible). Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.

({010=Tous les documents, 020=Au moment du dépôt, 030=Au moment de la mise à la disponibilité du public, 040=À la délivrance, 050=Examen, 060=Correspondance reçue, 070=Divers, 080=Correspondance envoyée, 090=Paiement})


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Abrégé 1993-10-22 1 18
Revendications 1993-10-22 4 105
Dessins 1993-10-22 3 86
Description 1993-10-22 14 472
Dessin représentatif 2000-07-25 1 16
Avis concernant la taxe de maintien 2003-12-09 1 174
Taxes 1998-09-21 1 34
Taxes 1999-09-08 1 28
Taxes 1997-09-03 1 33
Taxes 2000-09-12 1 28
Taxes 1995-09-04 1 38
Taxes 1996-09-04 1 31
Taxes 1993-08-03 1 34
Taxes 1994-08-16 1 36