Sélection de la langue

Search

Sommaire du brevet 1334784 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 1334784
(21) Numéro de la demande: 1334784
(54) Titre français: PROCEDE DE PRODUCTION D'AMMONIAQUE A PARTIR DE GAZ NATUREL
(54) Titre anglais: PROCESS FOR THE PRODUCTION OF AMMONIA FROM NATURAL GAS
Statut: Périmé et au-delà du délai pour l’annulation
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • C01B 3/02 (2006.01)
  • C01B 3/38 (2006.01)
(72) Inventeurs :
  • HERBORT, HANS-JOACHIM (Allemagne)
  • PETERS, CLAUS (Allemagne)
(73) Titulaires :
  • UHDE GMBH
(71) Demandeurs :
  • UHDE GMBH (Allemagne)
(74) Agent: SMART & BIGGAR LP
(74) Co-agent:
(45) Délivré: 1995-03-21
(22) Date de dépôt: 1988-06-10
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Non

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
P 37 19 780.0 (Allemagne) 1987-06-13

Abrégés

Abrégé anglais


The invention relates to a process for the production
of ammonia from natural gas, liquified petroleum gas, naphtha or
hydrogen-bearing gases, using a combined autothermic reforming
process and feeding a separate oxygen stream and a separate
stream of pre-heated air to the system. The aim of the inven-
tion is to design an economical and simple configuration which
reduces the oxygen requirement substantially.
The aim of the invention is achieved by implementing
various process steps some of which are already known and by
combining them in such a manner that, in addition to the
atmospheric oxygen, a separate oxygen stream with a min. O2
concentration of 50% is admixed, the concentrated O2 stream
being pre-heated to a max. temperature of 250°C and the atmos-
pheric air stream to approx. 450 to 900°C, and the H2/N2 ratio
required at the outlet of the reforming section being adjusted
with the aid of the atmospheric air stream and the make-up
oxygen stream.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


9
THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. Process for producing ammonia from natural gas,
liquified petroleum gas, naphtha or a hydrogen-bearing gas, and
preheated air and a separate oxygen stream in a combined auto-
thermic reforming process which process comprises controlling the
H2/N2 ratio at the outlet of a reforming section by adjusting the
amount of (a) a separate oxygen stream with a minimum oxygen
content of 50% preheated to a maximum temperature of 250°C and (b)
an atmospheric air stream preheated to a temperature of 450-900°C
at the start of reformation.
2. Process according to claim 1, wherein the difference
between the inlet temperature of a mixture of steam and hydro-
carbons and the outlet temperature of the reformed stream is set
to a value of < 150°C.
3. Process according to claim 1, wherein supply of the
concentrated oxygen stream is controlled as a function of the
content of impurities measured at the outlet of the final process
step.
4. Process according to claim 1, 2 or 3, wherein at least
one process step selected from desulphurization of feedstock,
conversion of CO to CO2, CO2 separation, separation of ammonia or
hydrogen from synthesis gas and return to a related main stream,
is implemented upstream or downstream of autothermic reformation.
5. Process according to claim 1, 2 or 3, wherein the
temperature of the atmospheric air stream is maintained at a

-10-
constant value of approximately 700°C and the oxygen stream
at ambient temperature.
6. Process according to claim 1, 2 or 3, wherein
methane content is controlled at the outlet of a reforming
section in order to obtain 0.2 to 3% by volume.
7. Process according to claim 1, 2 or 3, wherein methane
content is controlled at the outlet of a reforming section to
obtain 1.3% by volume.
8. Process according to claim 1, 2 or 3, wherein the
H2/N2 ratio in a synthesis gas is set to 2.1 - 2.9.
9. Process according to claim 1, 2 or 3, wherein
fuel gas is fed to a partial oxidation section of a reforming
stage.
10. Process according to claim 1, 2 or 3, wherein the
H2O/C ratio of all streams fed to a reformer is maintained at
a value of < 2.75, further steam being added to the gas stream
flowing from a reforming section.
11. Process according to claim 1, 2 or 3, wherein the
amount of N2 fed to a reformer is smaller than the quantity
required stoichiometrically for NH3 formation in synthesis gas,

-11-
an oxygen-bearing nitrogen stream being added in a selective
CO oxidation section upstream of CO separation in order to
adjust the required H2/N2 ratio.
12. Process according to claim 1, 2 or 3, wherein the
amount of N2 fed to a reformer is larger than the quantity
required stoichiometrically for NH3 formation in synthesis gas,
the required H2/N2 ratio being adjusted in a low-temperature
purification section.
13. Process according to claim 1, 2 or 3, wherein the
NH3 from a synthesis loop gas is at least partly absorbed with
water and the loop gas is subsequently dried.
14. Process according to claim 1, 2 or 3, wherein NH3
from a synthesis loop gas is at least partially absorbed with
water and the loop gas is subsequently dried, said NH3 being
desorbed by process waste heat or a hot process gas stream.

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


1 334784
1 27046-14
Process for the productlon of ammonia from natural gas
The invention relates to a process for the production
of ammonia from natural gas, liquified petroleum gas, naphtha or
hydrogen-bearing gases, using a combined autothermic reformlng
process and feeding a separate oxygen stream and a separate
stream of pre-heated air to the system.
The known steam reforming processes for ammonia
production can be divided into two main groups, i.e. processes
using at least a part of the endothermic steam reforming step in
a fired reactor where flue gas forms also at elevated pressures,
and processes in which an entirely autothermic primary and
secondary steam reforming takes place with the aid of partial
oxidation of the treated gas stream.
The first group also lncludes processes using imported
heated gas, for instance helium instead of the flue gas stream.
Processes in which a partial oxidation with only one
catalytic steam reforming section upstream or downstream of or
parallel to sald oxldation takes place, are not discussed
because their configuration differs considerably from the
processes covered in this application. Typical processes of
this type have been disproved in DE-OS 32 45 088 and 33 43 114.
Processes of the flrst group in whlch at least a part
of the catalytic steam reforming takes place in a fired reactor
where flue gas forms, are for lnstance descrlbed in EP O
093 502. DE-OS 24 12 841 is typical for sald processes using
imported hot gas instead of flue gas.

2 ~ ~47~4 27046-14
The inventlon relates to a process of the second group
in which an entirely autothermic primary and secondary steam
reformlng takes place wlth the ald of partlal oxldatlon of the
treated gas stream.
Other state-of-the-art processes of this type are for
instance described ln GB-A Z 153 382, US patent 4 666 680, DE-OS
35 32 413 and in the paper "Ammonla plant safety", volume 4,
page 64 by Takeshl Mlyasugi et al.
The process descrlbed ln GB 2 153 382 and US patent 4
666 680 uses oxygen or oxygen-rlch alr wlth a mln. 2 content of
25 %, or preferably 35 %, for the generatlon of ammonla synthe-
sls gas. The major economic aspect of thls process is the quan-
tity of oxygen added to the alr whlle malntainlng the requlred
H2/N2 ratlo and the resldual methane content ln the synthesls
gas. Hence, sald quantlty of oxygen and the oxidatlon of a
certain part of the gas stream from the prlmary reforming
sectlon are crucial for the economy of said process. When the
requlred composltlon of the gas leavlng the devlces described ln
the above mentloned patents and the other process parameters are
constant, the oxygen requlrement depends on the followlng:
a) the difference between the temperature of the lnlet
gas mixture containlng hydrocarbons and steam and the
temperature of the reformed gas stream from the above
devlce;
b) the temperature of the oxidlzlng agent admlxed ln the
partlal oxldatlon sectlon.
The temperature dlfference under a) can easlly be
~-~r optlmlzed from the economlc vlew-polnt but the temperature under

- 1 33~
2a 27046-14
b) can only be lnfluenced to a certain extent ln vlew of the
large oxldatlon potentlal (2 25 ./. 40 % by vol.) of the oxldl-
zing agent. Moreover, heatlng requlres expenslve oxygen-compat-
lble materlals. In ~B 2 153 382 lt is suggested that steam be
added to the oxygen-rlch air to overcome these difflcultles but
lt is obvious that make-up nitrogen and heat are withdrawn from
the reactor, thus reducing the heat potential required for high
process temperatures.
The aim of the invention ls to find an economical and
simple process configuration permittlng ammonla productlon wlth
the ald of a comblned autothermlc steam reformlng, thereby
conslderably reduclng the oxygen requlrement and the lnput gas
quantity.
~,

1 3~47~4 27046-l4
The inventlon Provldes a process for produclng ammonia
from natural gas, llqulfled petroleum gas, naphtha or a hydrogen-
hearlng gas ln a comblned autothermlc reformlng process whlch
process provldes that ln addltlon to an atmospherlc oxygen-
contalning alr stream, a separate oxygen stream wlth a mlnlmum
oxygen content of 50% ls admlxed, the separate oxygen stream belng
pre-heated to a maxlmum temperature of 250C and the atmospherlc
alr stream to approxlmately 450-900C, and the H2/N2 ratlo
requlred at the outlet of the reformlng sectlon belng ad~usted
wlth the ald of the atmospherlc alr stream and/or make-up oxygen
stream at the start of reformatlon.
In varlous preferred embodlments of the lnventlon:
(a) the dlfference between the lnlet temperature of a mlxture of
steam and hydrocarbons and the outlet temperature of the reformed
stream ls set to a value of c 150C;
(b) supply of the concentrated oxygen stream ls controlled as a
functlon of the content of lmpurltles measured at the outlet of
the flnal process step;
(c) desulphurlzatlon of feedstock, converslon of C0 to C02, C02
separatlon, separatlon of ammonla or hydrogen from synthesls gas
and return to a related maln stream can be lmplemented upstream or
downstream of autothermlc reformatlon;
~d) the temperature of the atmosphere alr stream ls malntalned at
a constant value of approxlmately 700C and the oxygen stream at
amblent temperature;
(e) methane content ls controlled at the outlet of a reformlng
sectlon ln order to obtaln 0.2-3% by volume (preferably 1.3%);
t
~.~

-4- 1 334784 27046-14
(f) the H2/N2 ratio in synthesis gas is set to 2.1 - 2.9;
(g) imported fuel gas is fed to a partial oxidation
section of a reforming stage;
(h) the H2O/C ratio of all streams fed to a reformer is
maintained at a value of < 2.75, further steam being added
to the gas stream flowing from a reforming section;
(i) the amount of N2 fed to a reformer is smaller than
the quantity required stoichiometrically for NH3 formation in
synthesis gas, an oxygen-bearing nitrogen stream being added in
a selective CO oxidation section upstream of CO separation in
order to adjust the required H2/N2 ratio;
/q rqe ~~
, (j) the amount of N2 fed to a reformer is sm~lcr than
the quantity required stoichiometrically for NH3 formation in
synthesis gas, the required H2/N2 ratio being adjusted ~s a low
temperature purification section.
The preferred embodiments offer further advantages.
For instance, the make-up oxygen stream which contains more
than 50~ oxygen depending on the oxygen source, is heated to a
maximum temperature of 250 C. Said temperature should preferably
correspond to the compressor outlet temperature but this oxygen
stream may also be pre-heated with the aid of steam condensat-
on .
The air is preferably heated at 450 - 900 C which
is higher than the temperature of the reformed gas at the outlet
of the autothermic section. The air can be heated by various
methods but preferably by burning synthesis waste or tail gas in

5- 1 3 3 4 7 8 4 27046-l4
a superheater.
This high pre-heating temperature of the air stream
which is voluminous compared with the oxygen stream, permits
a substantial reduction of the overall oxygen requirement for
the process and, consequently, it leads to savings in the supply
of a concentrated oxygen stream and to lower input quantities
of hydrocarbons.
It is known that a very high pre-heating temperature
of the air stream may necessitate an overall supply of concentrat-
ed oxygen of less than 17% compared with approximately 40%
in the case of a higher overall oxygen requirement (for ammonia
production: GB 2 153 382). Particularly when using NH3 synthesis
catalysts of the new generation operating at a synthesis pre-
ssure of < 120 bar, the concentrated 2 stream may be omitted
because of the lower H2/N2 ratio required and the residual
methane content at the outlet of the

6 1 334784 27046-14
steam reformlng sections exclusively controlled with the aid of
the temperature of the pre-heated air at a constant H2/N2 ratio.
A further advantage of the process configuration
according to the invention is that the control of the two ma~or
process parameters, i.e. H2/N2 ratio and residual methane
content, can be managed with systems of simple deslgn and lower
degree of integration. The amount of concentrated 2 and the
temperature of the pre-heated air stream can be used indepen-
dently as control parameter for the residual methane content
while the amount of air is primarlly suitable for the control of
the H2/N2 ratlo.
It was found that it is possible to perform the cata-
lytic steam reforming at a H2O/C ratio which causes a deficit of
steam in the product gas stream which is subsequently treated in
a catalytic CO conversion, i.e. a deficit of steam for the
conversion. The consequences of said deficit are undesirable
secondary reactions which, inter alia, cause a formation of
hydrocarbons re-converted in the catalyst bed and a major pres-
sure drop in the conversion section, said phenomena impairing
the ammonia production.
Another advantage of the process configuration accor-
ding to the lnventlon ls that a low H2O/C ratlo ls adjusted ln
the autothermlc reformlng sectlon, thus favourably affectlng the
oxygen requirement, and that the additional amount of steam
required for the conversion ls added prlor to the conversion.
Therefore another advantage of this process is that no
high-temperature waste gas streams are avallable on the process
gas and flue gas sldes as ln the case of the conventional

- 1 334784
7 27046-14
primary and secondary steam reformlng. In fact, the waste heat
from the reforming section, conversion and synthesis is suffi-
cient to generate steam but superheating of steam with the aid
of process waste heat cannot be performed on an economical basis
for turbines.
It is of course possible to burn fossil fuels and/or
imported fuel gas in order to ensure efficient steam generation
and supply for the compressor in the process plant. A combined
steam and gas-turbine system is an alternative provided adequate
fuels are available. The process according to the invention
will be superior to any other process of this group if cheap
electrical energy can be used.
Said process permits low-cost production of saturated
steam which can be used as indicated below:
a) Installation of an absorption refrigerating system,
using the cryogenic potential for
- reducing the compressor capacity requirement by
cooling the gases to be compressed;
- operating a physical C02 separation;
- drying the gases;
- gas fractionation by the low-temperature method.
b) Partial or complete absorption of the ammonia in the
loop gas with the aid of water and single- or multi-
stage desorption using steam, the loop gas which
leaves the absorber and contains c1% by vol. NH3
being pre-cooled and then fed to a zeolite-operated
dryer prior to re-heating and recycling to the
converter. In this case, the loop-gas compressor is

- 8 l 334784 27046-14
installed between absorber and dryer, the dryers being
regenerated with a part stream of the dried loop gas.
All ammonia-bearlng streams are returned to the
absorption/desorption system.
Accordlng to a speclal embodlment of the lnventlon, it
is posslble to use part of the process heat for evaporating and
superheating at least a part stream of the ammonla liquor from
the absorber and to feed this stream to a turbine, the waste
steam from said turbine being piped to the ammonia separation
unit described under b). This turbine should be coupled to a
generator or, if required, to the loop compressor and/or NH3
compressor.
It is of course possible to use process steam directly
for desorption. Accordlng to another embodlment, the compressed
process alr ls also sultable for burning gas not obtained in the
primary steam reforming sectlon. If said gas is burnt outside
the partial oxidation section lt ls recommended that the process
steam be enriched by the necessary amount of oxygen prior to
burning the make-up gas and that the amount be selected so as to
permit the required pre-heating of the air. The product leaving
the combustion chamber thus has an oxygen content which approxi-
mates that of the ambient air. If purge gas from the synthesis
loop is used in this case, the synthesis gas has a higher argon
content which ls regarded as favourable for argon recovery.
The overall oxygen requirement in the autothermic
steam reforming sectlon can be further reduced by the followlng
method: The amount of nltrogen entrained into this section can
be decreased by reduclng the alr feed rate below the value

8a l 334784 27046-14
required for the specified H2/N2 ratio in the product synthesis
gas. Said ratlo would for lnstance be ad~usted with the aid of
a selective catalytic CO oxidation (SELECTOXO process) upstream
of the CO2 separatlon from the synthesls gas, an oxygen-bearlng
nitrogen stream belng partlcularly sultable in thls case. The
N2/H2 ratlo may also be ad~usted during the low-temperature
purlflcatlon of the synthesls gas.
, ~ ~

Dessin représentatif

Désolé, le dessin représentatif concernant le document de brevet no 1334784 est introuvable.

États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Le délai pour l'annulation est expiré 2003-03-21
Lettre envoyée 2002-03-21
Accordé par délivrance 1995-03-21

Historique d'abandonnement

Il n'y a pas d'historique d'abandonnement

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
TM (catégorie 1, 3e anniv.) - générale 1998-03-23 1998-02-25
TM (catégorie 1, 4e anniv.) - générale 1999-03-22 1999-02-24
TM (catégorie 1, 5e anniv.) - générale 2000-03-21 2000-03-01
TM (catégorie 1, 6e anniv.) - générale 2001-03-21 2001-03-08
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
UHDE GMBH
Titulaires antérieures au dossier
CLAUS PETERS
HANS-JOACHIM HERBORT
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Page couverture 1995-03-31 1 19
Revendications 1995-03-31 3 89
Abrégé 1995-03-31 1 30
Description 1995-03-31 10 343
Avis concernant la taxe de maintien 2002-04-18 1 179
Correspondance de la poursuite 1995-01-11 1 49
Correspondance de la poursuite 1994-08-16 2 57
Demande de l'examinateur 1994-06-30 2 60
Correspondance de la poursuite 1991-11-27 5 161
Demande de l'examinateur 1991-08-02 1 43
Correspondance de la poursuite 1988-08-09 1 35
Taxes 2001-03-08 1 38
Taxes 1997-02-27 1 44