Sélection de la langue

Search

Sommaire du brevet 2029727 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Demande de brevet: (11) CA 2029727
(54) Titre français: PROCEDE DE FABRICATION DE COMPOSITES EN POLYSTYRENE RENFORCES DE FIBRE CELLULOSIQUE CARACTERISE PAR L'UTILISATION DE LIGNINE/DE MELANGE DE LIGNINE ET MATERIAUX DE LIAISON A BASE D'ISOCYANATE
(54) Titre anglais: PROCESS FOR PRODUCTION OF CELLULOSE FIBER FILLED-POLYSTYRENE COMPOSITES CHARACTERIZED BY LIGNIN/MIXTURE OF LIGNIN AND ISOCYANATE BONDING AGENTS
Statut: Réputée abandonnée et au-delà du délai pour le rétablissement - en attente de la réponse à l’avis de communication rejetée
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • C08L 1/02 (2006.01)
  • C08J 5/06 (2006.01)
  • C08L 25/06 (2006.01)
  • C08L 51/02 (2006.01)
  • D06M 15/233 (2006.01)
(72) Inventeurs :
  • DEBESH, CHANDRA MALDAS (Canada)
  • KOKTA, BOHUSLAV V. (Canada)
(73) Titulaires :
  • CHANDRA MALDAS DEBESH
  • BOHUSLAV V. KOKTA
(71) Demandeurs :
  • CHANDRA MALDAS DEBESH (Canada)
  • BOHUSLAV V. KOKTA (Canada)
(74) Agent:
(74) Co-agent:
(45) Délivré:
(22) Date de dépôt: 1990-11-13
(41) Mise à la disponibilité du public: 1992-05-14
Requête d'examen: 1997-08-06
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Non

(30) Données de priorité de la demande: S.O.

Abrégés

Abrégé anglais


ABSTRACT
Under study were the method of preparation of composites comprising
polystyrene and cellulose fiber using a coupling agent, such as lignin, or the
mixtures of coupling agents, e.g. lignin and isocyanate. An alternative method for
incorporating cellulosic fibers into polystyrene matrix is also provided by precoating
the fibers with a compatible polymer and a single coupling agent or the mixture of
coupling agents.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CLAIMS
1. A composite comprising from 1 to 50% by weight of discontinuous cellulose
fibers dispersed in a matrix from 1-95% by weight of polystyrene being bonded
to each other by reaction with 0.5 to 10% by weight of bonding agent and
comprising from 0 to 50% by weight of plasticizer and from 0-40% by weight
of inorganic filler.
2. The composite as defined in claim 1 wherein the bonding agent is lignin.
3. The composite as defined in claim 1 wherein the cellulosic fiber is selected
from softwood pulp or hardwood pulp or mixture of hardwood and softwood
pulp or sawdust or wood flour.
4. The composite as defined in claim 1 wherein the cellulosic fiber is selected
from non-wood plants, e.g. bagasse, nutshells, corn cobs, jute and the like.
5. The composite as defined in claim 1 wherein the inorganic filler material is
selected from mica, talc, calcium carbonate, silica, glass fibers, asbestos or
wollastonite.
6. A composite comprising from 1 to 50% by weight of discontinuous cellulose
fibers dispersed in a matrix from 1-95% by weight of polystyrene being bonded
to each other by reaction with 0.5 to 10% by weight of mixtures of bonding
agents and comprising from 0-50% by weight of plasticizer and from 0-40% by
weight of inorganic filler.
11

7. The composite as defined in claim 6 wherein the bonding agents are various
weight ratios of lignin and linear poly[methylene (polyphenyl isocyanate)].
8. The composite as defined in claim 6 wherein the cellulosic fiber is selected
from softwood pulp or hardwood pulp or mixture of hardwood and softwood
pulp or sawdust or wood flour.
9. The composite as defined in claim 6 wherein the cellulosic fiber is selected
from non-wood plants, e.g. bagasse, nutshells, corn cobs, jute and the like.
10. The composite as defined in claim 6 wherein the inorganic filler material isselected from mica, talc, calcium carbonate, silica, glass fibers, asbestos or
wollastonite.
11. A treated discontinuous cellulosic fibers comprising from 1 to 25% by weight of
polystyrene to each other by reaction with 0.5 to 10% by weight of bonding
agent.
12. The treated fiber as defined in claim 11 wherein the bonding agent is lignin.
13. The treated fiber as defined in claim 11 wherein the cellulosic fiber is selected
from softwood pulp or hardwood pulp or mixture of hardwood and softwood
pulp or sawdust or wood flour.
14. The treated fiber as defined in claim 11 wherein the cellulosic fiber is selected
from non-wood plants, e.g. bagasse, nutshells, corn cobs, jute and the like.
12

15. A composite comprising from 1 to 50% by weight of discontinuous treated
cellulose fibers as defined in claims 11 to 14, dispersed in a matrix from 1-
95% by weight of polystyrene and comprising from 0-50% by weight of
plasticizer and from 0-40% by weight of inorganic filler.
16. The composite as defined in claim 15 wherein the inorganic filler material is
selected from mica, talc, calcium carbonate, silica, glass fibers, asbestos or
wollastone.
17. A treated discontinuous cellulosic fibers comprising from 1 to 25% by weight of
polystyrene to each other by reaction with 0.5 to 10% by weight of mixtures of
various weight ratios of bonding agents.
18. The treated fiber as defined in claim 17 wherein the bonding agents are lignin
and linear polymethylene polyphenyl isocyanate.
19. The treated fiber as defined in claim 18 wherein the cellulosic fiber is selected
from softwood pulp or hardwood pulp or mixture of hardwood and softwood
pulp or sawdust or wood flour.
20. The treated fiber as defined in claim 18 wherein the cellulosic fiber is selected
from non-wood plants, e.g. bagasse, nutshells, corn cobs, jute and the like.
21. A composite comprising from 1 to 50% by weight of discontinuous treated
cellulose fibers as defined in claims 18 to 20, dispersed in a matrix from 1-
95% by weight of polystyrene and comprising from 0-50% by weight of
plasticizer and from 0-40% by weight of inorganic filler.
13

22. The composite as defined in claim 21 wherein the inorganic filler material is
selected from mica, talc, calcium carbonate, silica, glass fibers, asbestos or
wollastone.
23. A compression molding made from a composite according to any of claims 1-5
or 6-10 or 15 or 21.
24. An injection molding made from a composite according to any of claims 1-5 or 6-10 or 15 or 21.
14

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


7 2 '7
BACKGIROUNl) OF THE INVENTION
This invention relates to a process for bonding of cellulosic fiber with a matrix
of polystyrene by using a single coulping agent or a mixtures of coupling agants ancl
0to composite systems obtained thereby. More specifically, it r~lates to such
reinforced thermoplastic composites which have good mechanical properties and are
derived from readily available cheap component.
The published literature includes a number of proposals which teach the
various way of dispersing and compatibilizing discontinuous cellulose fibers in
20thermoplastic matrix. Duchateau, France Patant number 2,471,274 used wood fibers
having diameter of 0.1 to about 1mm length as the filler of PE or PS composites.Gueret, France Patent number 2,413,20~ described the injection molding of
PP-sawdust composites by the control of pre- and post-pot temperatures at
increased levels (up to 210C).
Nakabayashi, Japan Patent Kokai number 233,134/8~ prepared uncoated
reclaimed paper and PP composites.
Duperrier, France Patent number 2,563,462 prepared composite product from
wood particles or the like and thermoplastic binder by a screw-type extruder process
40to produce a rod or bar of composite materials.
Hamed, lu'.S Patent number 3,943,079 described the pretreatment of cellulose
fibers with a plastic polymer and a lubricant.
Varteressian described that sawdust wood chips, or similar particle materials
can be mixed with a solution of plastic (e.g. PS) in a solvent (e.g. trichloroethylene),
5 and the resulting composition is subjected to heat treatment to evaporate andrecover the solvent, and then to molding. The resulting product can be used as aconstruction material or as a fuel.
Goettler, U.S. Patent number 4,376,144 showed advantageous to combine the
bonding agent, like isocyanate, with the cellulose fibers in a pre-treament step of

~ ~ ~ e3~ ~
cellulose-PVC composites.
Kokta, U.K. Patent number 2,193,503 adopted the post-coating procedura of
the cellulose fiber with polystyrene and isocyanate bonding agent before mixing the
cellulose fiber with polystyrene composites.
Lund, U.S. Patent number 4,241,133 mixed elongated woo~ flakes with a
binder (e.g. a polyisocyanate), formed into a mat and hot-pressecl to forrn an
elongat~d structural member such as a builcling beam, post, or the like.
Fujimura, Japan Patent Kokai number I37,243/78 described that a cellulosic
material, e.g. straw, which has been acetylated with gaseous acetic anhydride is a
2 o good reinforcing filler for polyethylene.
Hishida, IJ.K. Patent number 2,090,503 described the surface coating of jute
fibers with various coupling agents, e.g. stearate, silane, titanate, acrylics and so on,
and prepared the composites of polypropylene and polystyrene.
Gaylord, U.S. Patent number 3,485,777 showed the compatibilization of grafted
cellulose fibers with polyvinyl chloride or polymethylmethacrylate matrices.
Gaylord, U.S. Patent number 3,645,939 also showed good compatibilization of
plastics, like polyethylene, polyvinyl chloride or acrylic rubber with cellulose by
precoating the fibers with a thermoplastic, ethylenically unsaturated carboxylic acid
or anhydride and a free radical initiator.
Dainippon Ink and Chemical Inc., Japan Patent Kokai number 79,064/85
described the use of copolymer of maleic anhydride, phthalic anhydride, and the like
- and banzoyl peroxide, as a good prepreg with ~ood blocking registance on
decorative laminated sheets.
Pleska, France patent number 2,456,133 showed that a mixture of polyolefin
fibril and polyolefin grafted with a polar monomer (e.g. maleic anhydride) exhibited
good compatibility with cellulose fibers.
Coran et al., U.S. Patent number 4,323,625 prepared the composites comprise
discontinuous celiuiose fibers mixed with certain modified polymer, which have

2~2~
methylol phenolic group grafted thereto in presence of a bonding agent, like
isocyanate.
Hse, U.S. Patent number 4,209,433 describecl the preparation of particle board
using as binder a composition including a phenolic compound and a polyisocyanate.
Improved tolerance of the binder to wood were achieved by applying the
n
polyisocyanate to the wood were achieved by applying the polyisocyanate to the
wood material prior to applying the phenolic resin.
Janiga, U.S. Patent number 4,701,383 prepared sructural materials, such as
particle or like, using an improved lignosulfonate-phenol-formaldehycle resin as a
20 binder or adhesive. Lgnosulphonate, which was obtained from spend sulfite liquor
(SSL) or sulfite black liquor frorn alkaline pulping is mixed with phenol and HCHO.
Eldin, Canadian Patent number 1,192,398 describes both or~anic and inorganic
fibers composites prepreg coated with two different rssins, like maleic acid
(derivatives)/hydrantoin vinylether copolymers.
Kokta, U.K. Patent numbers 2,192,397; 2,192,398 and 2,203,743 described the
precoating of cellulose fibers with a compati~le polymer in presence of silane or
isocyanate couplin~ agents and the composites of polyvinyl chloride or polyetylene
and coated fibers.
Beshay, U.S. Patent number 4,717,742 reported the silane graHed cellulose
pulp and polyethylene composites.
Kansai Kogyo Co. Ltd., Japan Patent Kokai number 217,552/83 prepared
extruded composites containing PP, wood flour and citric acid ester to give a
composite sheet with high flexural strength and high heat distortion tempera~ure.
Lachowicz et at., U.S. Patent number 4,107,110 described that o~-cellulose
fibers, coated with graft coplymer comprising 1,2-polybutadine to which an acylate
such as butylmethacrylate is grafted could be used in reinforcing of PE and other
plastic compositions.

2~?~72ri
SUMMARY C)F THE IIIVENTION
It has now been found that the dispersion of discontinuous cellulose fibers in
polystyrene rnatrix can be promoted by incorporating therewith a oertain bonding
0 agent or the mixture of bonding agents.
It has been also found that cellulose fibers, when coated with polymer give
better adhesion when incorporated with polystyrene matrix if the polymer coatingincludes a smal! amount of certain bonding agent or the mixtur~ of bondin~ agents.
According to present invention, composites are made of discontinuous cellulose
20 fibers dispersed in a polystyrene matrix which include a bonding agent which is
organosolv lignin (OSL).
The invention includes composites are made of discontinuous cellulose fibers
dispersed in polystyrene matrix in the presence of the mixture of OSL and
poly[methylene (polyphenyl isocyanate)~ (PMPPIC) of the formula:
N=C=O N=C-O N=C-O
~3 CH2--_ [3 CH2- [~?= 2.7)
The bonding a~ent has been found to be effective at low concentrations as low
as 0.5 parts by weight on 100 parts of the polystyrene in the matrix.
The invention also includss treated cellulosic fibers pre-coatecl with polystyrene
in the presence of small amount of OSL and ~PMPPIC).
3ETAILED DESCPIIPTIC)N OF THE INVENTION
The ceilulosic material used in the invention includes cellulosic fibers derived
from softwood or/and hardwood pulps, e.g. chemical or mechanical or chemi-

7 2 r~J
mechanical or refiner or stone groundwood or thermo-mechanical or chemithermo-
mechanical or ~xplosion or low yield or high yield or ultla high yield pulp, nut shells,
corn cobs, rice hulls, vegitable fibers, certain bambootype reeds, grasses, bagasse,
cotton, rayon (regenerated cellulose), sawdust, wood flour, wood shavings and the
l 0 like.
Preferred are cellulose fibers derived from woocl sawdust, wood flour, wood
pulps, e.g. mechanical pulps or ohemi-thermomechanical aspen pulps. There are
many available types of wood pulp which may be classified according to where they
were derived by chemical or mechanical or thermal treatments as well as known in20 the pulp and paper industry. Waste pulp and/or recycled pulp can also be used. The
fibers have an aspect ratio (length divided by diameter~ ranging from 2 to ~ forsawdust, wood flour as well as for mechanical pulps, and 15 to 50 for cherni-
mechanical and chemi-thermomechanical pulps, and 50 to 150 for low yield chemical
pulps (e.g. kraft, soda or bisulfite).
In some instances, it is desirable to use mixtures of fibers having widely
different aspect ratios.
The polymer contained in the matrix is described as being "polystyrene" and
inoludes both polys~yrene polymer and copolymer of a major proportion of
polystyrsne with minor proportion of other vinyl polymer. The polymer "polystyrene"
includes polystyrene of different densities as well as different propoltion of crystallin0
and amorphous fractions.
Lignin coupling agent used in the practice of this invention is milled wood lignin
(MWL)I acid hydrolysis linin (AHL), Kraft lignin (KL)I steam explosion lignin (SEL)
50 and organosolv lignin (OSL). A more detailed compilation of lignin which may be
used is set ~orth at pages 921 to 930 of "J. Agric. Food Chem.", vol. 31, No. 5
(Glasser et al. 1983)1 the disclosure of which is incorporated herein by reference.
The organosolv Ignin which is identified as OSL, is the preferred coupling agent.
The lignosu3fonatel such as relatively pure lignosulfonate or may contain a

2~2~2~
substantial quantity of up to about 80% impurities, may also be used.
The isocyanate coupling agent of the invention is linear poly{methylene-
(polyphenyl isocyanate)}, which is identi~ied as PMPPIG. The PMPPIC can be of
low, medium or high viscosity depending on degree of polymerization, can be in
l0 analytical as well as technical grade. Other di-isocanatas, e.g. toluene di-isocyanate,
may also be used.
Lignin is known as a natural wood binder. The attachment of lignin and its
derivatives to hydroxy-rich surface of lignocellulosic materials has proven a
convenient way to increase the strength of reconstructed fiber and particle materials
0 (Glasser et al. 19~2).
It is reported (Glasser et al. 1982) that lignin and hydroxy propylatecl lignin
derivatives can react with diisocyanate in the pr0sence of cellulose fiber. Hydroxy
propylated lignin derivatives are capable of contributing equal or even greater
strength to relignified fiber composites than does polymeric isocyanate alone.
The bonding agent is used in the composites of the invention in sufficient
amount to achieve an adhesive bond between the thermoplastics and the cellulosicbased fibers. This amount can be as little as 0.5% by weight of thermoplastic, up to
10% by weight or more, on the same basis. The amount of bonding agent required
40 can also be expected to vary with the amount of cellulosic fiber present.
The coupling agent can be incorporated into the composites of the invention by
mixing the coupling agent therewith, before or at the same time the fibers are
combined with the polystyrene and other ingredients.
The coupling agent can be used either as it is or in solution in a convenient,
5 compatible, non-reactlve solvent in order to facilitate dispersion of the reactive
material throughout the composites. If the bonding agent is added in solvent
solution, the solvent will usually be removed prior to the final shapin~ of the
compound. In case when plasticizer solution form of bonding agent is employed, this
step is unnecessary.

2~727
The bonding agent may be also at first incorporated by mixing with 5 to 15
parts by weight of polystyrene basecl on total polystyrene weight, than mixed with
cellulosic fibers on roll mill; the precoated cellulosic fiber may ba than re-mixed with
the rest of polymeric matrix. The bondin~ agent may be incorporat~d totaly in the
l~) pre-mixing stage or it can also be added to remaining polymer befor~ fiber addition.
The polymer is mixed with cellulose flblqr to form a composite usually in an
internal mixer, extruder or in a roll mill. A,dditional ingredients, such as fillers,
plasticizers, stabilizers, colorants, etc., can also be added at this point. Inorganic
fillers material may be selected from mica, talc, glass fibers, etc.
The following specific examples illustrate the use of lignin or mixture of lignin
and PMPPIC) for cellulose fibers.
EXAMPLE I
High impact polystyrene (PS 525) was supplied by Polysar Limited, Sarnia,
3U
Ontario, Canada.
Organosolv lignin (ALCELL) was supplied by Repap Technologies Inc., Valley
Forge, Pennsylvania, U.S.A.
Hardwood species aspen (Populus tremuloides Michx) was used in the form of
chemithermomechanical pulp (CTMP). CTMP was prepared in a Sund Defibrator an
have the properties as described in U.K. Patent number 2,193,503 to Kokta.
Both sawdust aspen and sawdust spruce fibers were used as the filler. Chips
for making sawdust and CTMP aspen pulp were dried in an air circulating oven at
55C for 48 hours and then ~round to a mesh size 60 mixture: 60.5%, mesh 60;
20.2%, mesh 80;15.5%, mesh 100; and 3.5%, mesh 200, with a Granu Grinder, C.
W. Brabender, Instruments Inc., U.S.A.

q~
Preparation of the_cc~
Usually, a 25 gram mixture of cellulosic fiber (15-35% by weight of composite)
and polymer were mixed in the roll mill at 1 75C. After mixing 5-10 times, the
resulting mixtures were reground to mesh size 20. The mixtures were then molded
n (24 at a time) into shoulder-shapecl test specimens (ASTM D-638, Type V).
Standard molding conditions are: temperature, 175C; pressure during heating andcooling, 3.8 MPa; heating time, 20 min; cooling time, 15 min. Width and thickness of
each specimen were measured with the help of a micrometer.
20 Mechanical tests
The mechanical properties (e.g. tensile strength at yield point and the
corresponding elongation and energy as well tensile modulus at 0.1% strain) of all
the samples were measured with an Instron Tester (Model 4201) following ASTM D-
638 and mechanical properties were automatically calculated by a HP-86B computer.
The strain rate was 1.5 mm/min. The impact strength (Izod, un-notched) was tested
with an Impact Tester (Model TMI, No 43-01) of Tasting Machines Inc., U.S.A. Thesamples were tested after conditioning at 23iO.5~C and 50% R.H. for at least 18
hours in a controlled atmosphere. Mechanical properties were reported after taking
40 the statistical average of six measurements. The coefficients of variation 2.5-8.~%
were taken into account for each set of tests.
Mechanical properties of cellulosic fiber-filled PS 52~ composites, treated withlignin (0-10 weight percent based on composite used) are presented in Tables I and
Il. Properties of the composites are compared to that of virgin polystyrene as well as
50 to those filled with fibers without the use of lignin. It is obvious, that the mechanical
properties of polystyrene based composites improved compared to those of both the
original polymer and non-treated composites. For CTMP based composites strength
increased from 16.8 MPa (virgin PS) to 23.5 MPa in case of 25 weight percentage
of fiber addition and at 2 % level of lignin. In same time, the modulus has increased

2 l
from 1.4 GPa to 1.8 GPa; elongation from 1.5% to 2.4~/o and energy from 17.2 mJ
to 41.9 mJ. On the other hand, impact strength diminised comparod to that of virgin
polymer, but the same properties improved compared to that Qf non-trea~ed
composites. Mechanical properties of both sawdust aspen and sawdust spruce have
l0 shown the samilar general trend at 4% level of lignin.
EXAMPLE ll
The composites were prepared and evaluated as described in Example I but
polystyrene used at this time was high heat crystal polystyrene (PS 201) of Polysar
2 0 Limited of Canada. Mechanical properties are presented in Tables lll and IV. It
appears from these tables that mechanicai properties of lignin treated composites
increased in many cases for 15 weight % of fiber level compared to those of non-treated composites.
EXAMPLE lll
The composites were prepared and evaluated as described in Example I but
coupling agent used at this tirne was mixtures of lignin and PMPPIC. Properties are
presented in Tables V and Vl. These tables indicate that the proper'lies are
,~0 enhanced further thanks to the addition of PMPPIC cornpared to that of only lignin
treated composites.
EXAMPLE IV
The fibers were precoated with PS 201 (10 weight % of fiber) and lignin (4-8
50 weight % of fiber)/mixtures of lignin and PMPPIC (total 8 weight % of fiber) with th
help of a Laboratory Roll Mill (C.W. Brabender, Model No. 065) at 1 75C. The
mixtures were colected and mixed repeatedly 8-10 times for homogsneous coating.
Finally, the coated fiber were ground to mesh size 20. The cornposites of coated
cellulose fiber and PS 201 were prepared and evaluated as described in Example 1.

~ ~ ?, ~3~
Properties are presented in Tables Vll and Vlll. These tables reveal that the
properties of the composite materials improved due to such coating treatment
compared to those of virgin polymer and those of non-tre~ted composites.
Althougth the foregoing invention has been described in some details by the
lo way of illustration and example for purposes of clarity of understanding, it will be
obvious that certain changes and modifications may be practiced within the scope of
the appended claims.

2~2~72~
REFERENICES
1. Gaylord, N.G., U.S. Patent, 3,485,777, Dec. 23, 1969.
2. Gaylord, N.G., U.S. Pa~ent, 3,645,939, Feb. 29, 1972.
3. Hamed, P., U.S. Patent, 3,943,079, Mar. 15, 1976.
4. Varteressian, (:i., France Patent, 2,291,021, June 11, 1976.
5. Imagawa, T. and Endo, N., U.S. Patent, 4,029,847, June. 14, 1977.
6. Lachowicz, D.R. and Holder, C.B., U.S. Patent, 4,107,110, Aug. 15, 197~.
7. Fujimura, T. and Suto, S.l., Japan PatenIt Kokai, 137,243/78, Nov. 30, 1978.
8. Gueret, J.L., France Patent, 2,413,205, July 27, 1979.
~. Hse, C.Y., U.S. Patent, 4,209,433, June 24,1980.
10. Pleska, J.P., France Patent, 2,456,133, Dec. 5, 1980.
11. Lund, A.E., Kruger, G.P., Nicholas, l).D. and Adams, R.D., U.S. Patent,
4,241,133, Dec. 23, 1980.
12. Duchateau, H., France Patent, 2,471,274, June 19, 1981.
13. Hishida, I., U.K. Patent, 2,090,849, Jul. 21, 1982.
14. Koran, A.Y., U.S. Patent, R., 4,323,62~, Apr. 6, 1982.
15. Glasser, W.G., Saraf, V.P. and Newman, W.H., J. Adhesion, 14, 233 (1982).
16. Goettler, L.A., U.S. Patent, 4,376,144, Mar. 8, 1983.
17. Coran A.Y. and Goettler, L.A., U.S. Patent, 4,414,2~7, Nov. 8, 1983.
18. Kansai Kogyo Co. Ltd., Japan Patent Kokai, 217,552/83, Dec. 17, 1983.
19. Dainippon Ink and Chemical Ino., Japan Patent Kokai, 79,064/85, May 4, 198~.
20. Eldin, S.H., Candian Patent, 1,192,102, Aug. 20, 1985.
21. Duperrier, P., France Patent, 2,563,462, Oct. 31, 1985.
22. Nakabayashi, H., Ishikawa, Y. and Matsubara, T., Japan Patent Kokai,
233,134/8~, Nov. 19, 198~.
23. Janiga, E.R., U.S. Patent, 4,701,383, C)ct. 20, 1987.
24. Beshay, A.D., IJ.S. Patent, 4,717,742, Jan. 5, 1988.
25. Kokta, B.V. and Beland, P., U.K. Patent, 2,192,398, Jan. 13, 1988.
26. Kokta, B.V., U.K. Patents: 2,192,397, Jan. 13, 1988; 2,193,503, Feb. 10, 1988;
2,203,743, Oct. 26,1988.

2 ~3 2 ~ r~
TABLEI
Composite Te~sile ~ensill! Impact
strength modulus str~ngth
Polym~r/ Lignin~ (HPa) (GPa) (J/m)
fiber lwt.%)
Weight % of ~iber: 15 25 35 15 25 35 15 25 35
PS 525 - 16.8 1.4 25.2
10 CTMP-A - 18.9 22.3 21.5 1.8 2.0 2.312.011.3 7.0
CTMP-A 2 20.0 23.5 18.4 1.6 1.8 1.811.013.9 10.4
CTMP-A 4 18.3 19.9 16.2 1.6 1.7 1.811.612.1 10.7
CTMP-A 7 17.7 19.3 15.8 1.5 1.7 1.911.410.1 8.4
CTMP-A 10 15.3 16.3 15.7 1.5 1.7 1.911.910.4 9.3
S.D.-A - 16.2 18.3 17.2 1.6 1.8 2.017.311.2 9.8
S.D.-A 4 17.3 17.5 16.1 1.4 1.5 1.610.511.5 g.7
20 S.D.-S - 17.2 18.~ 17.8 1.7 1.9 2.011.811.4 6.7
S.D.-S 4 17.8 18.9 15.5 1.4 1.4 1.610.4 9.9 9.2
~ By weight of composite.
S.D.: Sawdust. A: Aspen. S: spruce.
TABLE II
_
Composites ~longation Energy
1~ % ) (mJ)
Polymer/ Lignin~
fiber (wt.%)
Weight % of fiber: 15 25 35 15 25 35
.
PS 525 - 1.5 17.~
CTMP-A - 1.6 1.7 2.2 22.9 25.1 39.7
CTMP-A 2 3.1 2.4 1.2 49.7 41.9 12.6
CTMP-A 4 2.7 2.1 1.1 42.5 32.2 10.4
CTMP-A 7 2.5 1.4 1.0 37.4 16.4 9.3
50CTMP-A 10 1.1 1.1 1.0 11.1 9.8 9.3
S.D.-A - 1.6 1.7 1.6 17.0 20.7 19.2
S.D.-A 4 1.3 1.2 1.1 13.7 13.4 11.3
S.D.-S - 1.8 1.8 1.6 22.7 25.0 21.3
S.D.-S 4 1.4 1.8 1.4 16.5 23.5 17.0
__
By weight of composite.
S.D.: Sawdust. A: Aspen. S: spruce.

TABLEIII ~ ~ 2 .~ ~ 2 7
Composite Tensile TensileImpact
strength ~odul~lsstrength
Polymer/ Lignin^(MP~) (GPa) (J/m)
fiber (wt.%)
Weight ~ of fiber: 15 25 35 15 25 35 15 25 35
I PS 201 - ~1.5 1.9 7.8
CTMP-A - 36.0 35.8 33.81.9 2.0 2.2 6.3 6.1 4.9
CTMP-A 4 38.9 35.0 33.01.6 1.7 1.8 5.9 5.7 5.4
S.D.-A - 35.6 32.6 30.62.2 2.3 2.4 6.9 6.6 6.2
S.D.-A ~ 38.~ 30.7 27.01.6 1.6 1.7 5.4 6.0 6.5
S.D.-S - 38.4 38.1 33.32.0 2.0 2.2 6.5 6.3 5.8
S.D.-S 4 39.3 32.4 27.31.6 1.7 1.8 5.5 6.7 5.7
_ .
^ By weight o~ composite.
S.D.: Sawdust. A: Aspen. S: spruce.
TABLE IV
Composites Elongation Energy
Polymer~ Lignin^
fiber ~Wt.%)
Weight % of fiber: 15 25 35 15 25 35
_
~ PS 201 - 3.3 80.5
CTMP-A - 2.7 2.6 2.2 63.7 57.9 44.1
CTMP-A 4 2.7 2.0 2.0 64.6 39.7 38.8
S.D.-A - 2.5 2.2 2.1 54.7 49.1 40.1
S.D.-A 4 2.5 1.9 1.4 56.2 32.4 20.8
S.D.-S - 2.8 2.7 2.3 71.0 66.9 51.6
S.D.-S 4 2.4 1.9 1.5 54.4 34.5 24.0
.
~ By weight of composite.
S.D.: Sawdust. A: Aspen. S: spruce.
/~

TABL~V 202972~
.. ... ...... . . .
Composite Tensile T~nsile Impact
str~ngth modulus strength
Polymer~ Lignin: (MPa) (GPa) (J/m)
fiber PMPPIC^ _ _ _
twt. ratio)
Weight ~ of fiber: 15 25 35 ]5 25 35 15 25 35
PS 525 - 16.8 1.4 25.2
CTMP-A - 18.9 22.3 21.5 1.8 2.02.3 12.0 11.3 7.0
CTMP-A 2:2 22.6 22.4 i902 1.4 1.51.5 12.9 13.0 10.2
CTMP-A 4:1 20.2 19.9 18.3 1.4 1.51.5 15.7 10.9 9.8
CTMP-A 4:3 21.2 19.5 19.0 1.5 1.51.5 11.6 11.7 9.9
CTNP-A 7:3 20.9 19.6 17.4 1.3 1.41.5 9.0 10.8 9.0
^ By weight of composite.
A: Aspen.
TABLE VI
.
Composites Elongation Energy
(%~ (mJ3
Polymer/ Lignin:
fiber PMPPIC
(wt. ratio3
Weight ~ of fiber~ 15 25 35 15 25 35
PS 525 - 1.5 17.2
CTMP-A - 1.6 1.7 2.2 22.9 25.1 39.7
CTMP-A 2:2 3.8 2.2 1.3 66.5 34.5 15.5
CTMP-A 4:1 2.8 2.0 1.3 44.1 27.7 13.7
CTMP-A 4:3 3.3 2.0 1.4 57.0 27.2 17.1
CTMP-A 7:3 3.2 1.8 1.3 51.0 24.6 1305
b By weight of composite.
A: Aspen.

2~2~727
TABLE VII
coating Tensile Tensil~3 Impact
compositions^ strenth modulus strength
~wt.96) Fiber (MPa) ((;Pa ) ~ J/m )
A B C _ _ ____
Weight 96`0f ~iber: 15 25 35 15 25 35 15 25 35
10PS~01 41.5 1.9 7.8
- - - D 36.0 35.8 33.8 1.9 2.0 2.2 6.3 6.1 4.9
8 - D 41.7 ~1.6 31.2 2.0 2.2 ~.2 5.5 6.5 5.7
4 4 D 42.4 44.3 31.5 1.8 2.0 2.2 7.4 7.3 6.0
- - - E 35.6 32.6 30.6 2.2 2.3 2.4 6.9 6.6 6.2
8 - E 38.6 38.5 29.1 2.û 2.2 2.3 5.7 5.9 6.5
4 4 E 36.5 37.4 39.9 1.7 1.9 2.1 6.1 6.6 5.4
- - F 38.4 38.1 33.3 2.0 2.0 2.2 6.5 6.3 5.8
8 - F 40.5 43.7 37.9 1.7 1.8 2.1 5.5 6.5 5.9
4 4 F 36.6 41.3 42.1 1.7 1.8 2.1 6.3 7.3 5.6
By weight of fiber. A: PS 201. B: Lignin. C: PMPPIC.
D: CTMP aspen. E: Sawdust aspen. F: Sawdust spruce.
TABI,E VIII
Coating FiberElongation Energy
composil:ions~ (%) ~m;r)
O . .
A B C
Weight % of fiber- 15 ~5 35 15 25 35
PS 201 3.3 80.5
- - - D 2.72.6 2.2 63.757.9 44.1
8 - D 2.82.5 1.7 68.261.4 30.9
4 4 D 2.62.6 1.7 62.564.9 30.4
50_ _ - E 2.52.2 2.1 54.749.1 40.1
8 - E 2.62.3 1.6 58.352.3 26.2
4 4 E 2.32.2 2.2 49.246.8 44.2
- - - F 2.82.7 2.3 71.066.3 51.6
8 - F 2.73.1 2.2 67.584.4 48.3
4 4 F 2.72.3 2.1 62.652.5 40.2
By weight of fiber. A: PS 201. B: Lignin. Co PMPPIC.
D: CTMP aspe~. E: Sawdust aspen. F: Sawdust spruce.

Dessin représentatif

Désolé, le dessin représentatif concernant le document de brevet no 2029727 est introuvable.

États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : CIB de MCD 2006-03-11
Demande non rétablie avant l'échéance 2003-09-12
Inactive : Morte - Aucune rép. dem. par.30(2) Règles 2003-09-12
Inactive : Abandon. - Aucune rép dem par.30(2) Règles 2002-09-12
Inactive : Dem. de l'examinateur par.30(2) Règles 2002-03-12
Lettre envoyée 2001-01-31
Exigences de rétablissement - réputé conforme pour tous les motifs d'abandon 2001-01-17
Réputée abandonnée - omission de répondre à un avis sur les taxes pour le maintien en état 2000-11-14
Inactive : Acc. réc. RE - Pas de dem. doc. d'antériorité 1997-09-08
Inactive : Renseign. sur l'état - Complets dès date d'ent. journ. 1997-09-08
Inactive : Dem. traitée sur TS dès date d'ent. journal 1997-09-08
Toutes les exigences pour l'examen - jugée conforme 1997-08-06
Exigences pour une requête d'examen - jugée conforme 1997-08-06
Demande publiée (accessible au public) 1992-05-14

Historique d'abandonnement

Date d'abandonnement Raison Date de rétablissement
2000-11-14

Taxes périodiques

Le dernier paiement a été reçu le 2002-08-30

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
TM (demande, 8e anniv.) - petite 08 1998-11-13 1997-07-30
Requête d'examen - petite 1997-08-06
TM (demande, 9e anniv.) - petite 09 1999-11-15 1999-09-07
TM (demande, 10e anniv.) - petite 10 2000-11-14 2001-01-17
Rétablissement 2001-01-17
TM (demande, 11e anniv.) - petite 11 2001-11-13 2001-10-09
TM (demande, 12e anniv.) - petite 12 2002-11-13 2002-08-30
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
CHANDRA MALDAS DEBESH
BOHUSLAV V. KOKTA
Titulaires antérieures au dossier
S.O.
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Abrégé 1994-04-04 1 11
Page couverture 1994-04-04 1 18
Description 1994-04-04 15 522
Revendications 1994-04-04 4 96
Accusé de réception de la requête d'examen 1997-09-08 1 173
Rappel - requête d'examen 1997-07-13 1 117
Avis de rappel: Taxes de maintien 1999-08-17 1 130
Avis de rappel: Taxes de maintien 2000-08-15 1 119
Courtoisie - Lettre d'abandon (taxe de maintien en état) 2000-12-12 1 183
Avis de retablissement 2001-01-31 1 169
Avis de rappel: Taxes de maintien 2001-08-14 1 131
Avis de rappel: Taxes de maintien 2002-08-14 1 118
Courtoisie - Lettre d'abandon (R30(2)) 2002-11-21 1 166
Avis de rappel: Taxes de maintien 2003-08-14 1 115
Correspondance 1994-09-19 4 200
Taxes 2001-01-17 1 32
Taxes 2001-10-09 1 22
Taxes 2002-08-30 1 23
Taxes 1992-10-29 2 69
Taxes 1995-03-20 1 61
Taxes 1994-08-08 1 79
Correspondance 1993-04-08 1 23
Taxes 1995-08-22 1 61
Taxes 1993-10-25 1 52
Taxes 1996-07-26 1 42
Taxes 1992-10-29 1 43