Sélection de la langue

Search

Sommaire du brevet 2159463 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Demande de brevet: (11) CA 2159463
(54) Titre français: AIMANT PERMANENT COMPRENANT DU BORE, DE L'HYDROGENE, UN METAL, DES METAUX DES TERRES RARES ET SON PROCEDE DE PRODUCTION
(54) Titre anglais: RARE EARTH ELEMENT-METAL-HYDROGEN-BORON PERMANENT MAGNET AND METHOD OF PRODUCTION
Statut: Réputée abandonnée et au-delà du délai pour le rétablissement - en attente de la réponse à l’avis de communication rejetée
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • H01F 01/057 (2006.01)
  • C22C 32/00 (2006.01)
(72) Inventeurs :
  • BOGATIN, JACOB G. (Etats-Unis d'Amérique)
  • BELOV, ANDREY (Hongrie)
(73) Titulaires :
  • YBM TECHNOLOGIES, INC.
(71) Demandeurs :
  • YBM TECHNOLOGIES, INC. (Etats-Unis d'Amérique)
(74) Agent: SMART & BIGGAR LP
(74) Co-agent:
(45) Délivré:
(86) Date de dépôt PCT: 1994-10-11
(87) Mise à la disponibilité du public: 1995-08-10
Requête d'examen: 1997-06-25
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Oui
(86) Numéro de la demande PCT: PCT/US1994/011526
(87) Numéro de publication internationale PCT: US1994011526
(85) Entrée nationale: 1995-09-28

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
08/191,999 (Etats-Unis d'Amérique) 1994-02-04

Abrégés

Abrégé français

L'invention se rapporte à un aimant permanent comprenant, en pourcentage atomique, entre 10 et 24 % de R; entre 2 et 28 % de bore, entre 0,1 et 18,12 % d'hydrogène; le reste étant M. R représente au moins un élément sélectionné parmi La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y et Sc, et M représente au moins un métal sélectionné parmi Fe, Co, Ni, Li, Be, Mg, Ae, Si, Ti, V, Cr, Mn, Cu, Zn, Ga, Ge, Zn, Nb, Mo, Ru, Rh, Pd, Ag, Sb, Te, Mf, Ta, W, Re, Os, Ir, Pt, Au, et Bi. L'invention se rapporte également à un procédé de production d'aimants comprenant, du bore, de l'hydrogène, du métal, des métaux, des terres rares, dans lequel les matériaux magnétiques sont traités dans une atmosphère présentant des pressions partielles de gaz contenant de l'hydrogène, à des températures inférieures à la température de transformation de phase des hybrides métalliques-métaux des terres rares avant l'étape de frittage.


Abrégé anglais


A permanent magnet is provided which is comprised of, by atomic percent: 10-24
% R; 2-28 % boron, 0.1-18.12 % hydrogen; and balance being M. R is at least
one element selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm,
Yb, Lu, Y and Sc, and M is at least one metal selected from Fe, Co, Ni, Li,
Be, Mg, Ae, Si, Ti, V, Cr, Mn, Cu, Zn, Ga, Ge, Zn, Nb, Mo, Ru, Rh, Pd, Ag, Sb,
Te, Mf, Ta, W, Re, Os, Ir, Pt, Au, and Bi. A process for producing the rare
earth element-metal-hydrogen boron magnets is also disclosed wherein the
magnetic materials are treated in an atmosphere having partial pressures of
hydrogen containing gas at temperatures below the phase transformation
temperature of the rare earth element-metal hybrides prior to sintering.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CLAIMS
What is claimed as the invention is:
1. A permanent magnet characterized by atomic percent:
10-24% R;
2 - 28% boron;
0.1 - 18.12% hydrogen; and
balance being M,
characterized in that R is at least one element selected
from group consisting of: La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb,
Dy, Ho, Er, Tm, Yb, Lu, Y and Sc, and
characterized in that M is at least one metal selected from
group consisting of: Fe, Co, Ni, Li, Be, Mg, Ae, Si, Ti, V, Cr,
Mn, Cu, Zn, Ga Ge, Zn, Nb, Mo, Ru, Rh, Pd, Ag, Sb, Te, Mf, Ta,
W, Re, Os, Ir, Pt, Au, and Bi.
2. A permanent magnet as claimed in Claim 1, characterized
in that hydrogen is 0.5 - 1.94 atomic percent.
3. A permanent magnet as claimed in Claim 1, characterized
in that hydrogen is 0.85 - 1.25 atomic percent.
4. A permanent magnet as claimed in Claim 1, characterized
in that M is Fe.
5. A permanent magnet as claimed in Claim 1, characterized
in that R is a combination of Nd and Dy.
6. A method of producing a permanent magnet characterized
by the steps of:
providing, in compacted form from powders, alloys, green
compact or permanent magnets, a sample comprising at least one
rare earth element, at least one metal and boron;
heating the compacted sample in a vacuum to a temperature
sufficient to outgass the sample;
after outgassing, supplying a partial pressure of hydrogen
containing gas to the sample;
heating the sample in said hydrogen containing gas to a
temperature below the phase transformation temperature of the
metal hydride until the required hydrogen concentration in the
sample is attained;

11
replacing the hydrogen containing gas with argon, and
thereafter sintering the sample for the time necessary to obtain
the desired density of the magnet; and
after sintering, reducing the partial pressure of argon and
lowering the temperature surrounding the magnet to 300- - 900-C
for 1 - 3 hours, whereby formation and treatment of the hydrogen
containing permanent magnet is complete.
7. A method of producing a permanent magnet as claimed in
Claim 6, characterized in that:
said compacted sample is outgassed at 200°C in a vacuum of
10-6 Torr;
said partial pressure of said hydrogen containing gas ranges
from 0.5 - 5 Torr;
said sample is heated in said hydrogen containing gas to
950°C and held for 30 minutes;
said hydrogen containing gas is replaced with a partial
pressure of argon of 5"Hg and the sample is sintered at 1090°C
for three hours; and
after sintering, the partial pressure of argon is reduced
to 1"Hg and the temperature surrounding the magnet is lowered to
900°C for 1 hour, and thereafter the temperature is lowered to
650°C for two additional hours while maintaining a partial
pressure of argon of 1"Hg.
8. A method of forming a permanent magnet as claimed in
Claim 7, characterized in that the hydrogen containing gas has
a partial pressure of 0.75 - 1.5 Torr.

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


~lss~6a
~ WO95/21452 PCT~94/llS26
RARE EARTH ~T~M~NT-METAL-HYDROGEN-BORON
P~MANENT MAGNET AND METHOD OF PRODUCTTON
Field Of The Invention
This invention generally relates to magnetic materials and,
more particularly, to rare earth element-contAining powders and
permanent magnets which contain hydrogen, and a process for
producing the same.
Bac~y-o~-ld Art
Permanent magnet materials currently in use include alnico,
hard ferrite and rare earth element-cobalt magnets. Rec~tly,
new magnetic materials have been i~lL~oduced cont~;n;ng iron,
various rare earth elements and boron. Such magnets have been
prepared from melt quenched ribbons and also by the powder
metallurgy t~chn;que of compacting and sintering, which was
previously employed to produce samarium cobalt magnets.
Suggestions in the prior art for rare earth element
permanent magnets and proceC-c~c for producing the same include:
U.S. Pat. No. 4,597,938. Matsuura et al. which discloses a
process for producing permanent magnet materials of the Fe-B-R
type by: preparing a~metallic powder having a mean particle size
of 0.3-80 microns and a composition consisting essentially of,
in atomic percent, 8-30% R representing at least one of the rare
earth elements inclusive of Y, 2 to 28% B and the balance Fe;
compacting and sintering the resultant body at a temperature of
900- - 1200- C in a reducing or non-oxidizing atmosphere. Co up
to 50 atomic percent may be present. Additional elements M (Ti,
Ni, Bi, V, Bb, Ta, Cr, Mo, W, Mn, Al, Sb, Ge, Sn, Zr, Hf) may be
present. The process is applicable for anisotropic an isotropic
magnet materials. Additionally, U.S. Pat. No. 4,684,406,
Matsuura et al., discloses a certain sintered permanent magnet
material of the Fe-B-R type, which is prepared by the aforesaid
process.
Also, U.S. Pat. No. 4,601,8~ Yamamoto et al. teaches
permanent magnet materials of th~ Fe-B-R type produced by:
preparing a metallic powder having a mean particle size of 0.3-80
micro.-i~ and a composition of, in atomic percent, 8-30~ R
representing at least one of the rare earth elements inclusive
of Y, 2-28% B and the balance Fe; compacting: sintering at a

WO95/21452 PCT~94/11526 O
2 ~ 3
temperature of 900~ - 1200~ C.; and, thereafter, subjecting the
sintered bodies to heat treatment at a temperature lying between
the sintering temperature and 350Y C. Co and additional elements
M (Ti, Ni, Bi, V, Nb, Ta, Cr, Mo, W, Mn, Al, Sb, Ge, Sn, Zr, Hf)
may be present. Furthermore, U.S. Pat. No. 4,802,931, Croat,
discloses an alloy with hard magnetic properties having the basic
formula RE1x(TMlyBy)x~ In this formula, RE represents one or more
rare earth elements including scandium and~yttrium in Group IIIA
of the periodic table and the element~s from atomic number 57
(lanthanum) through 71 (lutetium). TM in this formula represents
a transition metal taken from the group consisting of iron or
iron mixed with cobalt, or iron and small amounts of other metals
such as nickel, chromium or manganese.
Another example of a rare earth element-iron-boron and rare
earth element-iron-boron hydride magnetic materials is presented
in U.S. Patent No. 4,663,066 to Fruchart et al. The Fruchart et
al. patent teaches a new hydrogen cont~;n;ng alloy which contains
H in an amount ranging from O.l - 5 atomic percent. The alloy
of Fruchart et al. is prepared by a process wherein the rare
earth element-iron-boron compound at room temperature is
hydrogenated under a hydrogen pressure above lO bar (lO x 105 Pa)
and below 500 bar (500 x 105 Pa). Following the hydrogenation
process, the compound is subjected to a dehydrogenation cycle by
subjecting it to temperatures ranging from 150-C to 600-C,
whereby all of the hydrogen is removed.
Still another example of a rare earth element-iron-boron
magnetic material is presented in U.S. Patent No. 4,588,439 to
Narasimhan et al., which describes a permanent magnet material
of rare earth element-iron-boron composition along with 6,000 -
35,000 ppm oxygen.
However, prior art attempts to manufacture permanent magnets
cont~i ni ng rare earth element-iron-boron compositions utilizing
powder metallurgy technology have suffered from substantial
shortcomings. In particular, these inventions teach that the
rare earth element-iron-boron magnetic material has a very high
selectivity to hydrogen. As a result, in commercial
applications, hydrogen which is present in a normally humid

WO95/21452 21~ 9 ~ 6 3 PCT~S94/11526
atmosphere is easily absorbed by the magnet alloy and causes the
disintegration thereof.
Objects Of The Invention
With regard to the above shortcomings which have heretofore
been apparent when rare earth element-iron-boron alloys are
subjected to hydrogenating conditions, it is an object of the
present invention to provide a permanent magnet of the type
comprising a rare earth element-metal( e.g.,iron)-hydrogen-boron
alloy which has high magnetic properties and elevated corrosion
resistance. It is a further object of the invention to provide
a process for preparing permanent magnets by treating a rare
earth element-metal-boron material, such as an alloy, powder,
green compact or permanent magnet material, in a hydrogen
atmosphere at a temperature below the phase transformation
temperatures of the rare earth element-metal hydrides, including
temperatures below room temperature.
SummarY Of The Invention
A permanent magnet is provided which is comprised of, atomic
percent: 10-24% R; 2 - 28% boron; 0.1-18.12% hydrogen; and
balance being M. R is at least one element selected from group
consisting of: La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er,
Tm, Yb, Lu, Y and Sc, and M is at least one metal selected from
group consisting of: Fe, Co, Ni, Li, Be, Mg, Ae, Si, Ti, V, Cr,
Mn, Cu, Zn, Ga Ge, Zn, Nb, Mo, Ru, Rh, Pd, Ag, Sb, Te, Mf, Ta,
W, Re, Os, Ir, Pt, Au, and Bi. The magnets pro~llc~ according
to the invention are permanent magnets contA in;ng from 0-l to
18.12 atomic percent hydrogen and have high magnetic properties,
e.g., residual induction (Br) up to 14.7 kG and maximum energy
product (BHmax) up to 52.5 MGOe. In addition, the permanent
magnets according to this invention have elevated corrosion
resistance.
In the preferred process for forming the rare earth element-
metal-hydrogen-boron magnets of the invention, one of the rare
earth elements or a combination thereof, the metal and boron, as
either the alloy, the powder form, green compact or as permanent
magnet material, are first compacted, if that has not already
been done. The compacted sample i8 heated to at least the

-
WO95/21452 ~1~9 4 ~ ~ PCT~S94111526
temperature necessary to achieve complete outgassing of the
sample and is maintained in a high vacuum until outgassing is
completed. Thereafter, a partial pressure of hydrogen-cont~n~ng
gas is applied to the sample and the sample is heated in the
hydrogen atmosphere to a temperature below the phase
transformation temperature of the meta~ hydride and held at that
temperature for the time n~ceS~ry to saturate the sample with
hydrogen and achieve the nec~ssary atomic percent of hydrogen in
the sample. At the end of this heating, the hydrogen is replaced
with argon, and the sample is thereafter heated again to the
sintering temperature for the time n~c~c~ry to achieve the
required density of the magnet. Following the sintering, the
resultant magnet is treate~ at 300-C to 900-C for approximately
three hours in a partial pressure of argon, wheLeu~on the
formation and treatment process is completed.
netailed Description Of The Preferred ~mbodiment
Other objects and many of the att~nA~nt advantages of the
instant invention will be readily appreciated as the same becomes
better understood by reference to the following detailed
description. In particular, this invention relates to permanent
magnets of the rare earth element-metal-hydrogen-boron type.
These magnets have been shown to have increased magnetic
properties as well as increased corrosion resistance. I n
the preferred embodiment, the permanent magnet is comprised of
l0 - 24 atomic percent of at least one rare earth element; 2 -
28 atomic percent boron; 0.l - 18.12 atomic percent hydrogen,
with the remaining balance being at least one metal. The rare
earth element (R) includes at least one element selected from La
Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, ~r, Tm, Yb, Lu, Y and Sc
or a combination thereof. The metal (M) includes at least one
element selected from the group consisting of: Fe, Co, Ni, Li,
Be, ~g, Ae, Si, Ti, V, Cr, Mn, Cu, Zn, Ga Ge, Zn, Nb, Mo, Ru, Rh,
Pd, Ag, Sb, Te, Mf, Ta, W, Re, Os, Ir, Pt, Au, and Bi, and is
preferably iron. r
The introduction of a selected amount of hydrogen into the
rare earth element-metal-boron crystal lattice forms a chemical
composition of rare earth element and metal hydrides which

WO95/21452 215 9 ~ 6 ~ PCT~S94/11526
results in the formation of the specific structure conditions in
grain bo~ln~ries that lead to the nucleating and growth of the
magnetic properties. The availability of hydrogen diffused
within the crystal lattice of the material makes it possible to
reduce the number of impurities and their harmful effects, thus
resulting in high corrosion resistance.
Permanent magnets comprising at least one of the rare earth
elements, at least one metal, hydrogen and boron have levels of
magnetic properties which would not exist without the inclusion
of hydrogen. The inclusion of hydrogen in the æelected amounts
disclosed herein has increases the level of magnetic properties,
particularly the residual induction and maximum energy product
which have been shown to be as high as 14.7 kG and 52.5 MGOe,
respectively. Furthermore the permanent magnets have shown
increased corrosion resistance; for example, after treatment one
of the permanent magnets prepared according to the present
invention in 95% relative humidity for 500 hours at 85-C, the
weight gain was less than 0.0008 g/cm2.
The permanent magnets according to the present invention
also have been shown to have good workability or formability,
which makes it possible to manufacture extremely small magnets
in the range of 0.5mm with good results. This must be compared
with the usual workability of such magnets without the inclusion
of the hydrogen component which are usually extremely brittle and
difficult to shape into such small sizes. Magnets according to
the present invention are far less brittle and are more easily
shAre~ into these desired smaller sizes.
In the preferred process for forming the rare earth element-
metal-hydrogen-boron magnets of the invention, the compounds are
prepared as follows. The rare earth element or a combination
thereof, the metal (or a combination thereof) and boron (provided
as either the alloy, a powder, a green compact or as a permanent
magnet) are first compacted, if that has not already been
achieved. The compacted ~ample is heated in a vacuum to the
temperature ~C~Cc~ry to obtain complete outgassing of the
sample. In this instance, the sample is heated to 200-C and held
for 45 minutes in a vacuum at l0-6 Torr. Thereafter, a partial

woss/21452 ~S ~ 4 ~ 3 PCT~S94/11526
pressure of hydrogen contA;ning gas is applied to the sample and
the sample is heated in the hydrogen con~;ning gas to a
temperature below the phase transformation temperature of the
metal hydride for the time necessary to saturate the sample with
hydrogen, i.e., achieve the nPcesC~ry atomic percent of hydrogen
in the sample. (As will be shown, the magnetic properties of the
resultant magnet can be varied with the;~atomic percent of
hydrogen ob~ A in the sample as a res~lt of varying the
partial pressure of the hydrogen cont~;ning gas.) In the present
invention, it is preferred to heat the sample to 950-C and hold
it for 30 minutes in the partial pressure hydrogen environment.
At the end of the 30 minutes, the hydrogen is replaced with argon
(preferably 5"Hg) and the sample is heated to the sintering
temperature for the time necessary to obtain the required density
in the finished magnet product. In the present embodiment, the
sample is subjected to the argon at 5"Hg and sintered at lO90-C
for three more hours. Following the sintering, the resultant
magnet is heat treated at temperatures between 300-C and 900-C
for up to three hours in a partial pressure of argon. In the
preferred embodiment, the sintered magnet is treated at 900-C for
l hour and at 6SO-C for two additional hours in a partial
pressure of argon of l"Hg. At the end of this final heat
treatment step, the permanent magnet formation and treatment is
complete.
The following examples were prepared according to the above
procedure. In each example, the starting rare earth element-
metal-boron powder contained, in weight percent: 31% Nd + 3% Dy,
l.1% boron and the balance was iron. The variable in each
example is the partial pressure of hydrogen used to treat the
compacted sample.
Exam~le l.
In the first example, the process was con~Ycted using a
hydrogen cont~;~i ng gas having a partial pressure 4 x 10-5 Torr.
The resulting hydrogen concentration in the magnets before
exposure to air was O.l at% (atomic percent.) The results of the
treatment with hydrogen at a partial pres8ure of 4 x 10-5 Torr
are set forth in Table l. Furthermore, the average weight gain

WO95/2l452 2 1 S 9 ~ 6 3 PCT~594/ll526
of the magnet after exposure to a relative humidity of 95% at
85C for 500 hours was 0.015 g/cm2
Table 1
Residual Coercive M~;mum
Induction Force Energy Product
J Number Br fkG) Hc (kOe) Hci (kOe) BH (MGOe) HYdro~en
HN-l 11.85 9.58 15.86 30.94 0.1 at%
HN-2 11.42 10.1 16.02 30.21 0.1 at%
HN-3 11.60 9.96 14.63 30.44 0.1 at%
HN-4 11.25 9.42 15.94 30.35 0.1 at%
HN-5 12.09 9.85 16.43 31.76 0.1 at%
Example 2.
In the second example, the samples were subjected to a
hydrogen contAi n; ng gas having a partial pressure of 0.5 Torr.
As set forth in Table 2, the hydrogen concentration in the
magnets of the second example, before exposure to air, ranged
from 0.41 - 0.54 at~ (atomic percent). Furthermore, the average
weight gain after exposure to a relative humidity of 95% at 85-C
for 500 hours was 0.0009 g/cm2.
Table 2
Number Rr (kG) Hc (kOe) Hci -(kOe) BH (MGOe~ HYdroqen
H5-1 12.72 10.65 14.44 34.12 0.41 at%
H5-2 12.45 10.81 15.33 34.02 0.49 at%
H5-3 12.41 10.65 15.03 35.I1 0.52 at%
H5-4 12.72 10.89 14.19 36.24 0.54 at~
H5-5 12.68 10.12 14.83 35.12 0.51 at%
ple 3.
In the third example, the samples were sub~ected to a
hydrogen contAi n; ng gas having a partial pressure of 0.75 Torr.
As set forth in Table 3, the hydrogen ro~ntration on the
magnets before exposure to air ranged from 0.78 - 0.88 at%
(atomic percent). Furthermore, the average weight gain after
.re to a relative humidity of 95% at 85-C for 500 hours was
0. 0011 g/cm2.

WO9S/~l452 215 9 4~ 3 PCT~594Jl152C ~
Table 3
Number Br (kG) Hc fkOe) Hci (kOe) BH (MGOe) Hydroaen
H10-1 13.64 12.25 13.82 42.22 0.85 at%
H10-2 13.78 12.44 13.66 44.88 0.79 at%
H10-3 13.66 12.28 14.01 42.39 0.86 at%
H10-4 13.48 12.03 14.23 32.81 0.78 at%
H10-5 13.71 12.41 14.11 45.01 0.88 at%
~mple 4.
In the fourth example, the samples were subjected to a
hydrogen cont~;ning gas having a partial pressure of 1.1 Torr.
As set forth in Table 4, the hydrogen conc~ntration on the
magnets before exposure to air ranged from 1.20 - 1.29 at%
(atomic percent). Furthermore, the average weight gain after
exposure to a relative humidity of 95% at 85-C for 500 hours was
0.0025 g/cm2.
Table 4
Number Br (kG) Hc (kOe) Hci (kOe) BH (MGOe~ HYdrogen
H14-1 12.84 11.44 14.01 35.86 1.29 at%
H14-2 12.78 11.25 13.98 35.54 1.21 at%
H14-3 12.81 11.64 14.12 36.39 1.20 at%
H14-4 12.89 11.36 15.11 36.95 1.29 at%
H14-5 12.92 11.51 14.98 37.02 1.22 at%
ExamPle 5.
In the fifth example, the samples were subjected to a
hydrogen cont~;n;ng gas having a partial pressure of 1.5 Torr.
set forth in Table 5, the hydrogen co~ce~tration on the magnets
before exposure to air ranged from 1.94 - 2.02 at% (atomic
percent). Furthermore, the average weight gain after exposure
to a relative humidity of 95% at 85-C for 500 hours was 0.0032
g/cm2

~ WO95/21452 215 9 ~ 6 ~ PCT~S94/11526
T~ble 5
Number Br (kG) Hc (kOe) Hci (kOe) BH (~GOe) HYdrogen
H60-1 11.65 9.44 16.05 29.85 1.98 at%
H60-2 11.04 9.56 15.86 29.84 2.02 at%
H60-3 11.84 9.88 16.19 30.04 1.98 at%
H60-4 11.25 9.76 15.94 29.05 1.99 at%
H60-5 11.93 10.08 16.25 30.80 1.94 at%
Example 6.
In the fifth example, the samples were subjected to a
hydrogen cont~in;ng gas having a partial pressure of 5 Torr. As
set forth in Table 6, the hydrogen concentration on the magnets
before exposure to air ranged from 17.98 - 18.12 at% (atomic
percent). Furthermore, the average weight gain after exposure
to a relative humidity of 95% at 85-C for 500 hours was 0.0051
g/cm2.
Table 6
Number Br rkG) Hc (kOe) Hci (kOe) BH (MGOe) Hydroaen
H80-1 6.44 4.84 6.84 9.12 18.02 at%
H80-2 7.25 5.25 7.18 12.1 18.11 at%
H80-3 6.99 5.12 6.8311.24 18.00 at%
H80-4 6.77 4.12 6.04 9.88 17.98 at%
H80-5 6.45 5.03 7.22 8.11 18.12 at%
As can be seen from the foregoing data, the increase
in hydrogen in the rare earth element-metal-hydrogen-boron magnet
material according to the process of the present invention
results in increased magnetic properties and improved corrosion
reæistance.
Without further elaboration, the foregoing will so fully
illustrate our invention that others may, by applying current for
r~Lu~e knowledge, adopt the same for use under various
r conditions.

Dessin représentatif

Désolé, le dessin représentatif concernant le document de brevet no 2159463 est introuvable.

États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : CIB de MCD 2006-03-12
Demande non rétablie avant l'échéance 2001-07-13
Inactive : Morte - Taxe finale impayée 2001-07-13
Réputée abandonnée - omission de répondre à un avis sur les taxes pour le maintien en état 2000-10-11
Réputée abandonnée - les conditions pour l'octroi - jugée non conforme 2000-07-13
Un avis d'acceptation est envoyé 2000-01-13
Lettre envoyée 2000-01-13
Un avis d'acceptation est envoyé 2000-01-13
Inactive : Approuvée aux fins d'acceptation (AFA) 1999-12-07
Modification reçue - modification volontaire 1999-06-24
Inactive : Dem. de l'examinateur par.30(2) Règles 1999-03-26
Inactive : Acc. réc. RE - Pas de dem. doc. d'antériorité 1997-08-19
Inactive : Dem. traitée sur TS dès date d'ent. journal 1997-08-13
Inactive : Renseign. sur l'état - Complets dès date d'ent. journ. 1997-08-13
Toutes les exigences pour l'examen - jugée conforme 1997-06-25
Exigences pour une requête d'examen - jugée conforme 1997-06-25
Demande publiée (accessible au public) 1995-08-10

Historique d'abandonnement

Date d'abandonnement Raison Date de rétablissement
2000-10-11
2000-07-13

Taxes périodiques

Le dernier paiement a été reçu le 1999-10-08

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
Requête d'examen - petite 1997-06-25
TM (demande, 3e anniv.) - petite 03 1997-10-14 1997-10-01
TM (demande, 4e anniv.) - petite 04 1998-10-13 1998-09-02
TM (demande, 5e anniv.) - petite 05 1999-10-12 1999-10-08
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
YBM TECHNOLOGIES, INC.
Titulaires antérieures au dossier
ANDREY BELOV
JACOB G. BOGATIN
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Description 1995-08-09 9 474
Abrégé 1995-08-09 1 45
Revendications 1995-08-09 2 81
Revendications 1999-06-23 2 79
Accusé de réception de la requête d'examen 1997-08-18 1 173
Avis du commissaire - Demande jugée acceptable 2000-01-12 1 166
Courtoisie - Lettre d'abandon (AA) 2000-08-23 1 170
Courtoisie - Lettre d'abandon (taxe de maintien en état) 2000-11-07 1 183
Taxes 1998-09-01 1 40
PCT 1995-09-27 3 83
Taxes 1997-09-30 1 46
Taxes 1999-10-07 1 27
Taxes 1996-10-01 1 42