Sélection de la langue

Search

Sommaire du brevet 2184900 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 2184900
(54) Titre français: GUIDE D'ONDE OPTIQUE A POINTES FLEXIBLES
(54) Titre anglais: OPTICAL WAVEGUIDE WITH FLEXIBLE TIPS
Statut: Périmé et au-delà du délai pour l’annulation
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • A61N 5/00 (2006.01)
  • F21V 8/00 (2006.01)
  • G02B 6/00 (2006.01)
(72) Inventeurs :
  • DOIRON, DANIEL R. (Etats-Unis d'Amérique)
  • NARCISO, HUGH L., JR. (Etats-Unis d'Amérique)
(73) Titulaires :
  • PDT SYSTEMS, INC.
(71) Demandeurs :
  • PDT SYSTEMS, INC. (Etats-Unis d'Amérique)
(74) Agent: SMART & BIGGAR LP
(74) Co-agent:
(45) Délivré: 2003-12-30
(86) Date de dépôt PCT: 1993-10-07
(87) Mise à la disponibilité du public: 1995-04-13
Requête d'examen: 2000-06-07
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Oui
(86) Numéro de la demande PCT: PCT/US1993/009656
(87) Numéro de publication internationale PCT: WO 1995009574
(85) Entrée nationale: 1996-09-05

(30) Données de priorité de la demande: S.O.

Abrégés

Abrégé français

Pointe flexible (10), destinée à un cathéter à usage médical, apte à transmettre la lumière et dont les dimensions lui permettent de passer à travers des éléments tubulaires extrêmement petits. La pointe flexible, qui est de préférence composée d'un élastomère en silicone transparent (13), est fixée à l'extrémité d'une fibre optique classique. Selon un mode préféré de réalisation, la pointe comprend une âme (11) en silicone, entourée d'une gaine (12) dont l'indice de réfraction est inférieure à celle de l'âme (11), permettant ainsi une réflexion interne. La pointe flexible est pourvue d'une enveloppe externe (13) qui a deux fonctions: (a) elle confère une intégrité structurale à la pointe; et (b) elle sert à renforcer la liaison entre la pointe flexible et la fibre optique contre laquelle elle vient en butée. La pointe (10) permet d'apporter une intensité de lumière comparable à celle d'une fibre de verre de grande dimension et d'un diamètre d'âme équivalent mais présente une flexibilité supérieure par rapport à une telle fibre. Elle est ainsi suffisamment flexible pour pénétrer dans des éléments tubulaires sinueux tout en retenant les aptitudes de transmission de lumière des guides d'ondes optiques en fibre de verre relativement peu flexibles et de même diamètre.


Abrégé anglais


A flexible tip (10) for a medical catheter suit-
able for the transmission of light and dimensionned
to pass through extremely small tubular members
is described. The flexible tip, preferably made of
optically transparent silicone elastomer (13), is af-
fixed to the terminal end of a conventional optical
fiber. In a preferred embodiment, the flexible tip
comprises a central silicone core (11) surrounded
by a cladding (12) having an index of refraction
less than that of the core (11), permitting internal
reflection. The flexible tip is provided with an outer
jacket (13) which serves two purposes: (1) it pro-
vides structural integrity for the tip; and (2) it re-
inforces the union between the flexible tip and the
optical fiber to which it is abutted. The tip (10) en-
ables the delivery of a comparable amount of light
as a large glass fiber of equal core diameter but pos-
sesses much greater flexibility. The tip (10) has the
flexibility to be able to enter tortuous tubular mem-
bers while retaining the light transmitting capabili-
ties of relatively inflexible glass optical waveguides
of the same diameter.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CLAIMS
What I claim is:
1. An optical waveguide for conducting light from a light
source to a target, said waveguide comprising:
(a) a fiber optic portion having a proximal and a
distal end and a first light conducting core
consisting of a first core material coextensive with
said fiber optic portion; and
(b) a tip portion comprising a light conducting
second core having a proximal and distal end, the
proximal end of said second core being in optical
communication with the distal end of said first core
and wherein the second core material is more flexible
than said first core material.
2. A medical catheter for coveying light energy from a
source of said light energy to a tissue undergoing light
treatment, the catheter comprising:
(a) a fiber optic portion having a proximal and
distal end and a light transmitting first core
coextensive therewith; and
(b) a tip portion, said tip portion comprising a
light-transmitting second core having a proximal and
distal end, said second core consisting of a
substantially transparent elastomer having a
11

flexibility greater than said first core, the proximal
end of said second core being in optical communication
with said distal end of said first core, and wherein
said proximal end of said tip portion is affixed to
the distal end of said optical fiber portion of said
catheter.
3. The medical catheter of Claim 2 further comprising
an outer sheath surrounding said second core.
4. The medical catheter of Claim 3 further comprising
a layer of cladding interposed between said elastomeric second
core and said outer sheath.
5. The medical catheter of Claim 4 wherein said
cladding consists of silicone elastomer.
6. The medical catheter of Claim 2 wherein said
elastomer comprises optically transparent silicone.
7. The optical waveguide of claim 2 further
comprising a pointed terminus, affixed to said distal end of said
tip portion.
8. The optical waveguide of claim 2 further
comprising a rounded terminus affixed to said distal end of said
tip portion.
9. The optical waveguide of claim 2 further
comprising a focusing lens affixed to the distal end of said tip
portion.
10. A medical catheter for conveying light energy from
12

a source of said light energy to a tissue undergoing light
treatment, the catheter comprising:
(a) a fiber optic portion having a proximal and
distal end and a light transmitting first core
coextensive with said fiber optic portion; and
(b) a tip portion comprising a light-transmitting
second core consisting of a substantially transparent
elastomer having a proximal and distal end, said
proximal end of second core being in optical
communication with said distal end of said first core,
and wherein a space is interposed between said
proximal end of said tip portion and the distal end of
said optical fiber portion of said catheter.
11. The medical catheter of claim 10 wherein said space is
filled with a material having an index of refraction intermediate
to the index of refraction of said first and second cores.
13

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


wo 95/09571 2 1 ~ 4 9 o o PCT~S93,096~
OPTICAL WAVEGUIDE WITH FLEXIBLE TIPS
1 BACKGROUND OF THE INVENTION
2 1. Field of the Invention
3 The invention relates generally to the field of
4 interventional optical catheters and, more specifically, to a
flexible terminus or tip for transluminal surgical catheters and
6 the like.
7 2. Prior Art
8 The use of energy delivered from a light source, for
g example, a laser, for surgical and industrial applications is
well documented. Typically, optical waveguides such as silica
11 optical fibers (alternatively referred to herein as "fiber
12 optics") are used to deliver light energy to internal areas of
13 the human body not readily aCc~cc~ directly by the light source.
14 A growing number of procedures, such as laparoscopic
lS cholecystectomy, laparoscopic appendectomy, lithotripsy of
16 calculi of the biliary, salivary and urinary tracts, and a host
17 of other light energy surgeries require flexible fiber optics to
18 access and deliver substantial energy to the treatment sight.
19 Often, fiber optics which are flexible enough to access
deep, tortuous internal areas of the body are so small in
21 diameter that they lack the rigidity required to push them
22 through the lumen and/or excessive energy density in the fiber
23 causes damage to the fiber rendering such thin fiber optics
24 impractical. Moreover, transmitting higher powers, on the
order of 10 or more watts, is inefficient in small fibers due to

W095/0957~ 2 1 8 4 9 00 PCT~S93/096~6
1 the difficulty of coupling. Energy density at the fiber optic
2 tip is the total energy delivered divided by the cross sectional
3 area of the optical fiber.
4 High energy densities cause undesired damage to the tip of
the fiber. The solution to this problem, with present
6 technology, is either using larger core diameter optical fibers,
7 which while reducing the energy densi~y, substantially reduces
8 the flexibility (doubling the core size reduces the flexibility
9 fourfold), or using a bundle of small core diameter fiber optics
creating a large ~LU~O~ ~ion of dead space- Dead space, as used
11 herein, refers to the portion of the cross sectional area of a
12 fiber optic catheter which does not transmit light energy.
13 Large core fiber optics permit the relatively efficient
14 coupling of energy from an external source into the fiber; even
if the source is divergent. This is not true of small core
16 fibers. the coupling efficiency of large cores together with
17 their rigidity enables them to be readily advanced through a
18 straight lumen and conduct a large amount of light energy to the
19 tip. The disadvantage is that the tip lacks the flexibility to
follow a tortuous path.
21 With conventional laser catheter tips heat buildup is a
22 significant problem. Sapphire or another expensive heat-stable
23 material is frequently used at the tip of such catheters to
24 prevent heat-induced fracturing and subsequent disintegration.
Laser surgery is conveniently done by using a flexible quartz

woss/oss7~ 2 1 8 4 q U O PCT~S93/096~
1 fiber for transmitting the laser energy, usually from a Nd:YAG
2 laser source, to the tissue undergoing treatment. In a typical
3 laser surgery system the end or tip of the silica fiber optic
4 serves as the probe for radiating the tissue to effect incision
or coagulation thereof. With some fiber optic tips it is
6 desirable to hold the tip away from direct contact with the
7 tissue to avoid fouling of the fiber and, importantly, to avoid
8 heat damage to the fiber end. Non-contact laser systems
g employing a light transmitting member at the output end of the
fiber to focus or otherwise alter the radiation characteristics
11 of the fiber have also been ~pG~ed, for example, by Enderly in
12 U.S. Patent 4,273,109, and by Daikuzono in U.S. Patent 4,736,743.
13 Microlenses may also be employed to distribute the light exiting
14 the catheter. The problem with the foregoing termini for laser
catheters is that they lack the flexibility to enter small
16 tortuous tubular members such as blood vessels, vas deferens,
17 ureters and so forth.
18 SU~MA~Y OF THE lNv~:Nl~loN
19 It is an object of this invention to provide a minimally
invasive medical, light transmitting catheter having the light
21 transmitting capability of a large core conventional silica fiber
22 dimensioned to fit within very small tubular members but having
23 much greater flexibility at the distal end that a comparable
24 silica fiber optic.
It is yet another object of this invention to provide a tip

woss/0957~ 2 1 8 4 q 00 PCT~S93/096~6
1 having substantially the same light transmitting capabilities as
2 silica tips having a much larger diameter while exhibiting
3 greater flexibility at the tip than can be achieved with silica.
4 It is still another object of this invention to provide a
transluminal catheter for conducting light from a source to a
6 distal target which has the advantages of a large core silica
7 fiber for coupling light from a source into the fiber and
8 permitting advancement of the catheter through the lumen and
9 having a tip which has the flexibility of a small core silica
fiber.
11 It is yet another object of this invention to provide a
12 flexible tip for a medical light delivery catheter of a
13 composition amenable to being formed in many different geometries
14 or configurations.
These and other objects of the invention will soon become
16 apparent as we turn now to the descriptions of the preferred
17 embodiment.
18 BRIEF DESCRIPTION OF THE DRAWINGS
19 Figure 1 is a perspective view of the tip of the catheter
of the present invention.
21 Figure 2 is a partially cutaway view of the tip of Figure
22 1.
23 Figure 3 is a longitll~; nA 1 cutaway view of the catheter of
24 the present invention with a first preferred embodiment of the
tip in place.

woss/0957~ 2 1 8 4 ~ O O PCT~Sg3/096~fi
1 Figure 4 is a longitudinal cutaway view of the catheter of
2 the present invention with a second preferred embodiment of the
3 diffuser tip in place.
4 Figure 5 is another longitudinal, cross sectional view of
an embodiment of the catheter of the current invention with the
6 core of the flexible tip spaced from the core of the optical
7 fiber.
8 Figure 6 is the same as Figure 5 except a cladding surrounds
9 the core material of the tip.
Figure 7 is a partially cutaway schematic view of an
11 embodiment of the invention used with a divergent light source.
12 Figure 8 shows the embodiment of Figure 7 with the flexible
13 tip fitted with a terminus configured as (a) a pointed probe, (b)
14 a rounded smooth terminus, and (c) a focusing lens.
DESCRIPTION OF THE PREFERRED EMBODIMENT
16 A flexible tip for use with the invasive catheter of the
17 present invention is shown in Figure 1, generally indicated at
18 10. The central core 11 of the flexible tip 10 is made from an
19 optically transmissive material such as silicone, silicone
copolymer, or any variety of elastomers. Surrounding the central
21 core 11 is a cladding layer 12, again fabricated from silicone,
22 silicone copolymer or elastomer. The cladding layer 12 and the
23 core 11 are specifically chosen for their refractive indices.
24 The refractive index of the cladding 12, which may be a length
of tubing, is preferably less than the refractive index of the

woss/0957~ 2 1 8 4 9 00 PCT~S93/096~
1 core 11. Correctly choosing the refractive indices of the
2 materials will insure total internal reflection of the light
3 energy while also controlling the solid angle of the exiting
4 light energy (not shown). The tip 10 shown in Figure 1 is
abutted to a single fiber (not shown) or fiber bundle (not shown)
6 to receive the light from the optical fiber(s) (not shown) and
7 ultimately to deliver the light energy to the treatment site.
8 The tip core 11 and the cladding 12 are held in position relative
g to the fiber optic (not shown) by a structural tube 13 made with
flexible elastomeric material such as Teflon~ or polyurethane.
11
12 Figure 2 is a cut away view of the tip of Figure 1. It is
13 clear that the optically transmissive tip core 11 is suLLouded
14 by a cladding layer 12 which in turn is ~LLoul.ded by a
structural tube 13 made of flexible elastomeric material. The
16 outer tube 13 may, of course, be made from a variety of flexible
17 elastomers including Teflon~ and polyethylene. The catheter of
18 the present invention, showing the flexible tip abutted to the
19 terminus of the fiber optic is shown in Figure 3. The catheter,
generally indicated at numeral 30, has a fiber optic portion 34
21 abutted to the flexible tip portion 10. The fiber optic portion
22 34 of the catheter 30 comprises a fiber central core 31
23 surrounded by a cladding 32. The core 31 and cl~;ng 32 are
24 enclosed in a jacket 33. The distal tip, or terminus, 35 of the
optical fiber portion 34 is abutted against the tip core 11 of

-
woss/0957~ 2 1 8 4 ~ o o PCT~S93~96~6
1 the flexible tip 10. The tip core 11 is surrounded by tip an
2 outer sheath 13. Treatment light (not shown) exits the tip of
3 the catheter 30 in Figure 3 in the forward direction towards the
4 right. The flexible tip 10 may also include a cladding 12
surrounding the tip core 11 as shown in emhoAiment 40 in Figure
6 4.
7 A second preferred embodiment of the catheter of the present
8 is generally indicated at 50 in Figure 5. In this embodiment the
9 distal tip 35 of the optical fiber portion 34 is spaced from the
flexible tip core 11 of the tip portion 10 by means of a liquid
11 or gas-filled space 51. The fluid gap 51 allows greater power
12 handling capabilities by substantially reducing the power density
13 of the transmissive core 11/fluid gap 51 interface compared to
14 the transmissive core 11/fiber optic 31 interface. The fluid
space 51 may be filled with a gas or a fluid.
16 Figure 6 shows yet another emhoAiment 60 of the catheter
17 shown in Figure 5 except that the flexible tip has a cladding
18 material 12 surrolln~inq the flexible tip core ll of the flexible
19 tip 10.
It is important that the fiber optic core 31 retain its
21 cladding 32 during fabrication of the catheter. If the cladding
22 32 is stripped from around the core 31 of the fiber optic 34, the
23 catheter will be vulnerable to breakage at the point where the
24 cladding has been stripped from the core. The material chosen
for the fiber optic core is less elastic of flexible than the

W095/0957~ 2 1 8 4 ~ 00 PCT~S93/09656
1 material chosen for the core of the flexible tip.
2 The advantage of combining a large core silica fiber with
3 an elastomer tip is seen by looking now to Figure 7. Divergent
4 light 70 from a divergent source such as a diode laser 71 readily
enters the large core 75 of the silica fiber 72 which conducts
6 the light to the core 78 of the flexible elastomeric tip 74.
7 optically transparent silicone rubber is preferably employed as
8 a material of choice for the tip 74 due to its biocompatibility.
g The index of refraction of the material comprising the flexible
tip 74 is preferably close to that of the core 75 of the fiber
11 optic. Alternatively, the space 51 in the embodiment shown in
12 Figures 5 and 6 may be filled with a optically transparent
13 material having an index of refraction between the index of the
14 tip core 74 and the fiber core 75. The relative stiffness of the
large diameter silica core 75, enh~ceA by the presence of
16 cladding jacket 76 and outer sheath 77, permits advancement of
17 the catheter through constricted tubular tissue but has a large
18 minimum radius of curvature A. The silicone core tip 74, being
19 relatively short compared to the silica core fiber optic 72
portion, is pushed ahead of the fiber portion 72 during
21 advancement. The silicone core tip, being more flexible, has a
22 much smaller minimum radius curvature, shown at B in Figure 7,
23 enabling it to track sharp turns, guiding the silicone core
24 portion 72 during advancement. The silicone core tip 74 and the
silica core 75 of the fiber optic portion 72 of the waveguide

wo 9s/09s7~ 2 1 8 4 9 00 PCT~S93109656
1 form a high coupling efficiency union 73. This union 73 can
2 conveniently be made by ext~nAing the sheath (not shown) surround
3 the silica core portion beyond the silica core portion and
4 filling the sheath with uncured silicone followed by curing.
Figure 8 shows the emh~iment of the flexible tipped
6 waveguide of Figure 7 with a variety of flexible tip terminus
7 configurations. Since the flexible tip 74 is elastomeric, it
8 readily bonds to various other plastics. Figure 8(a) shows the
9 flexible tip 74 with a pointed terminus 81 suitable for
interstitial use. A rounded or beveled terminus 82 (Figure 8(b)
11 is useful for intraluminal use. Figure 8(c) shows a focusing
12 lens 83 affixed to the flexible tip 74. The termini 81-83 may
13 be fabricated from any transparent material or they may be opaque
14 if the light reaching the flexible tip 74 tip need not exit the
tip in the forward direction.
16 It will be appreciated that, while a preferred emho~iment
17 of the invention has been described herein, various modifications
18 will suggest themselves to those skilled in the art. For
19 example, variations in materials may be required for certain
industrial applications. The essential feature of the invention
21 is the placement of a flexible tip on a relatively rigid, large
22 core optical fiber to confer the advantages of both materials to
23 a combination product while minimizing their disadvantages.
24 Rigid, large core fibers having relatively inflexible cores
comprising a transparent material other than silica such as a

wogs/09571 2 1 8 4 9 ~ PCT~S93/09656
1 plastic may be used. Flexible elastomers other than silicone may
2 also be used for the tip. These and other modifications that may
3 suggest themselves to those skilled in the art are considered to
4 be within the spirit and scope of the present invention as set
forth in the following claims.

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : CIB désactivée 2011-07-29
Le délai pour l'annulation est expiré 2006-10-10
Lettre envoyée 2005-10-07
Accordé par délivrance 2003-12-30
Inactive : Page couverture publiée 2003-12-29
Inactive : Taxe finale reçue 2003-07-21
Préoctroi 2003-07-21
Un avis d'acceptation est envoyé 2003-01-20
Lettre envoyée 2003-01-20
Un avis d'acceptation est envoyé 2003-01-20
Inactive : Approuvée aux fins d'acceptation (AFA) 2003-01-07
Inactive : CIB attribuée 2002-10-23
Inactive : CIB en 1re position 2002-10-23
Inactive : CIB attribuée 2002-10-23
Inactive : Grandeur de l'entité changée 2000-06-30
Lettre envoyée 2000-06-30
Inactive : Renseign. sur l'état - Complets dès date d'ent. journ. 2000-06-30
Inactive : Dem. traitée sur TS dès date d'ent. journal 2000-06-30
Toutes les exigences pour l'examen - jugée conforme 2000-06-07
Exigences pour une requête d'examen - jugée conforme 2000-06-07
Demande publiée (accessible au public) 1995-04-13

Historique d'abandonnement

Il n'y a pas d'historique d'abandonnement

Taxes périodiques

Le dernier paiement a été reçu le 2003-10-07

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
TM (demande, 4e anniv.) - petite 04 1997-10-07 1997-09-26
TM (demande, 5e anniv.) - petite 05 1998-10-07 1998-09-30
TM (demande, 6e anniv.) - petite 06 1999-10-07 1999-08-27
TM (demande, 7e anniv.) - petite 07 2000-10-09 2000-05-31
Requête d'examen - générale 2000-06-07
TM (demande, 8e anniv.) - générale 08 2001-10-08 2001-08-17
TM (demande, 9e anniv.) - générale 09 2002-10-07 2002-10-04
Taxe finale - générale 2003-07-21
TM (demande, 10e anniv.) - générale 10 2003-10-07 2003-10-07
TM (brevet, 11e anniv.) - générale 2004-10-07 2004-09-23
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
PDT SYSTEMS, INC.
Titulaires antérieures au dossier
DANIEL R. DOIRON
HUGH L., JR. NARCISO
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Dessin représentatif 1997-10-20 1 7
Dessin représentatif 2002-10-24 1 7
Page couverture 2003-11-25 1 44
Dessins 1995-04-13 3 70
Description 1995-04-13 10 358
Abrégé 1995-04-13 1 49
Page couverture 1997-01-21 1 14
Revendications 1995-04-13 3 87
Rappel - requête d'examen 2000-06-08 1 115
Accusé de réception de la requête d'examen 2000-06-30 1 177
Avis du commissaire - Demande jugée acceptable 2003-01-20 1 160
Avis concernant la taxe de maintien 2005-12-05 1 172
PCT 1996-09-05 7 231
Correspondance 2003-07-21 1 30
Taxes 2003-10-07 1 37
Taxes 2002-10-04 1 35
Taxes 1996-10-08 1 23
Taxes 1996-09-05 1 58