Sélection de la langue

Search

Sommaire du brevet 2231102 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Demande de brevet: (11) CA 2231102
(54) Titre français: PROFILE COMPOSITE UTILISE COMME ISOLANT THERMIQUE
(54) Titre anglais: HEAT-INSULATED COMPOSITE PROFILED SECTION
Statut: Réputée abandonnée et au-delà du délai pour le rétablissement - en attente de la réponse à l’avis de communication rejetée
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • E06B 3/26 (2006.01)
  • E06B 3/263 (2006.01)
  • F16S 3/02 (2006.01)
(72) Inventeurs :
  • SCHULZ, HARALD (Allemagne)
(73) Titulaires :
  • NORSK HYDRO A.S.
(71) Demandeurs :
  • NORSK HYDRO A.S. (Norvège)
(74) Agent: KIRBY EADES GALE BAKER
(74) Co-agent:
(45) Délivré:
(86) Date de dépôt PCT: 1996-09-05
(87) Mise à la disponibilité du public: 1997-03-13
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Oui
(86) Numéro de la demande PCT: PCT/DE1996/001652
(87) Numéro de publication internationale PCT: WO 1997009504
(85) Entrée nationale: 1998-03-04

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
195 32 772.1 (Allemagne) 1995-09-05

Abrégés

Abrégé français

L'invention a pour objet un profilé composite utilisé comme isolant thermique, présentant une traverse isolante (6) deux parois de limitation (6.1, 6.2) sensiblement parallèles, formant un espace creux entre elles. Ces parois peuvent être réunies entre elles par au moins une entretoise (10). En partant d'une épaisseur de paroi s = 0,5 mm et d'une conductibilité thermique lambda = 0.35 W/mK des parois de limitation (6.1, 6.2), la largeur (D) de la traverse isolante est déterminée comme étant égale, respectivement, à 20 mm, lorsqu'on cherche à obtenir une résistance d'isolation comprise, pour cette traverse isolante, entre 0.15 m?2¿K/W et 0,30 m?2¿K/W, à 30 mm, pour une résistance d'isolation de 0,25 m?2¿K/W à 0,50 m?2¿K/W, à 40 mm, pour une résistance d'isolation de 0,35 m?2¿K/W à 0,65 m?2¿K/W, à 50 mm, pour une résistance d'isolation de 0,40 m?2¿K/W à 0,80 m?2¿K/W. La largeur (d) de l'espace creux ou chambre creuse est alors inférieure ou égale à la largeur (D) de la traverse isolante, et supérieure ou égale au tiers de la largeur (D) de cette traverse, pour autant que la hauteur de cet espace ou de cette chambre (11) soit inférieure ou égale à 5 mm. Pour une hauteur de l'espace creux ou de la chambre creuse supérieure à 5 mm et jusqu'à 20 mm, et avec au moins une entretoise (10), le rapport de la hauteur (h) à la largeur (d) est supérieur ou égal à 0,2 et inférieur ou égal à 5. Lorsque l'épaisseur de paroi (s) varie entre 0,25 et 1,0 mm, il y aura lieu de tenir compte, pour la variation de la résistance d'isolation en fonction de l'épaisseur de paroi (s), conformément à la relation R(s)=R(s=0,25 mm)+(s - 0,25)/0,25 * delta R, d'une valeur delta R comprise entre 0,025 et 0,05. Un accroissement de la conductibilité thermique des parois (6.1, 6.2) de 10 % dans un intervalle compris entre 0,15 W/mK et 0,40 W/mK entraîne une diminution de la résistance d'isolation de 2 à 4 %, dont on tiendra compte en fonction des grandeurs initialement choisies.


Abrégé anglais


The invention concerns a heat-insulated composite profiled section comprising
an insulation weg (6) having two substantially parallel delimiting walls (6.1,
6.2) which form a cavity therebetween. The delimiting walls (6.1, 6.2) can be
interconnected by at least one transverse web (10). From an initial wall
thickness s = 0.5 mm and a heat conductivity .lambda. = 0.35 W/mK of the
delimiting walls (6.1, 6.2), the width (D) of the insulation web is set at 20
mm in oder to achieve thermal insulance of the insulation web in the range of
from 0.15 m2K/W to 0.30 m2K/W, 30 mm for thermal insulance in the range of
from 0.25 m2K/W to 0.50 m2K/W, 40 mm for thermal insulance in the range of
from 0.35 m2K/W to 0.65 m2K/W, and 50 mm for thermal insulance in the range of
from 0.40 m2K/W to 0.80 m2K/W. Therefore, the width (d) of the cavity or
hollow chamber is less than or equal to the width (D) of the insulation web
and greater than or equal to one third of the width (D) of the insulation web,
provided the height of the cavity or hollow chamber (11) is less than or equal
to 5 mm. If the height of the cavity or hollow chamber is between 5 mm and 20
mm and at least one transverse web (10) is present, the ratio of height (h) to
width (d) is greater than or equal to 0.2 and less than or equal to 5. For a
variation in the wall thickness (s) of between 0.25 mm and 1.0 mm, a
dependency of the thermal insulance on the wall thickness (s) according to the
relation: R(s)=R(s=0.25 mm) + (s - 0.25)/0.25 * .DELTA.R, with the value of
.DELTA.R ranging from 0.025 to 0.05, has to be taken into account. Increasing
the heat conductivity of the delimiting walls (6.1, 6.2) by 10 % in the range
of from 0.15 W/mK to 0.40 W/mK reduces the thermal insulance by between 2 and
4 %, which is to be taken into account accordingly for the dimensions
initially selected.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


12
Claims:
1. A heat-insulated composite profiled section especially
intended for windows, doors, façade walls etc.,
consisting of outer and inner metal profiles (3, 4)
connected and spaced apart via at least one insulating
web (6) with connector profiles (5), with the connector
profiles (5) engaging in grooves in the metal profiles
(3, 4) and the insulating web (6) having two essentially
parallel boundary walls (6.1, 6.2) forming a cavity in
between them and permitting transverse webs (10) to be
positioned transversely between, thus dividing the cavity
within the insulating web (6) into a number of hollow
chambers positioned successively between the metal
profiles (3, 4), characterized in that -- starting from a
wall thickness s=0.5 mm and a thermal conductivity lambda
= 0.35 W/mK in the boundary walls 6.1, 6.2 -- the width
(D) of the insulating web is set at 20 mm to provide a
thermal insulance in the insulating web of 0.15 m2K/W to
0.30 m2K/W, at 30 mm to provide a thermal insulance of
0.25 m2K/W to 0.50 m2K/W, at 40 mm to provide a thermal
insulance of 0.35 m2K/W to 0.65 m2K/W, and at 50 mm to
provide a thermal insulance of 0.40 m2K/W to 0.80 m2K/W,
the width (d) of the cavity or the hollow chambers
similarly measured along the distance between the metal
profiles (3, 4) being less than or equal to the width (D)
of the insulating web and greater than or equal to one
third of the width (D) of the insulating web, provided
that the height of the cavity or the hollow chambers (11)
is less than or equal to 5 mm, and --- if the height of
the cavity or the hollow chambers is more than 5 mm and
does not exceed 20 mm and at least one transverse web
(10) is present -- the ratio of height (h) to width (d)
being greater than or equal to 0.2 and less than or equal
to 5 and in addition the wall thickness (s) being within
the range 0.25-1.0 mm, with the dependence of the

13
thermal insulance oh the wall thickness (s) given by the
equation
R(s)=R(s=0.25 mm) + (s - 0.25)/0.25 * delta R
with values for delta R ranging from 0.025 to 0.05, and
with a 10% increase in the thermal conductivity of the
boundary walls (6.1, 6.2) in the range 0.15-0.40 W/mK
producing a 2% to 4% reduction in thermal insulance.
2. A heat-insulated composite profile section as in Claim 1
characterized in that, given a height of the cavity or
the hollow chambers (11) exceeding 5 mm and not exceeding
20 mm and with at least one transverse web (10) present
the ratio of height (h) to width (d) is greater than or
equal to 0.5 and less than or equal to 2.
3. A heat-insulated composite profile section, especially
for windows, doors, facade walls, etc., consisting of
outer and inner metal profiles (3, 4) connected and
spaced apart via at least one insulating web (6) with
connector profiles (5), with the connector profiles (5)
engaging in grooves in the metal profiles (3, 4) and the
insulating web (6) having two essentially parallel
boundary walls (6.1, 6.2) forming a cavity between them
and permitting transverse webs (10) to be positioned
transversely between them, thus dividing the cavity
within the insulating web (6) into a number of hollow
chambers (11) positioned successively between the metal
profiles (3, 4), characterized in that given for the
insulating web (6) a height (H) and a width (D) measured
along the distance between the metal profiles (3, 4)
which are determined by static or constructional
considerations and the wall thickness (s) and the thermal
conductivity lambda of the boundary walls, the aspect
ratio height (h) to width (d) measured along the distance
between the metal profiles (3, 4) in the cavity or hollow
chamber is selected so that the thermal insulance R
calculated by the equation

14
R=2.08*(D/100)[1.43]-0.1+P*f(lambda)*f (5) *f(h/d) and
P=a]0+[a]1[*H+a]2[*H[2]+a]3[*H[3]+a]4[*H[4]
lies within the range of a maximum, the coefficients
being
a]0[=-0.06898+5.19*10[4]*D[-4.171],
a]1[=+0.2005-21 86*D[-1.531],
a]2[=+0.0425-0.00174*D for D<30 or
a]2[=+0.0292-0.0013*D for D>=30,
a]3[=-1.384*10[-3]+8.125*10[-7]*D[2.268],
a]4[=+4.632*10[-5]-3.528*10[-7]*D[1.47] and the
correcting functions being
f(lambda)=1.27-0.807*lambda[1.04],
f(s)=1.324-0.458*s[0.5] and
f(h/d)=(1-0.015*((h/d)-2.5) [2].
4. A heat-insulated composite profiled section as in
Claims 1 through 3, characterized in that the aspect
ratio of the vertical height (h) to the horizontal width
(b) of the cavity or the hollow chambers (11) is
determined in such a way that, allowing for the expected
temperatures on the outer and inner metal profiles (3, 4)
the square or the product of this aspect ratio,
multiplied by the Rayleigh number (Rah), is less than the
numerical value 72.
5. A heat-insulated composite profiled section as in
Claims 1 through 4, characterized in that the number of
hollow chambers (11) depends on the width and height of
the insulating web and the specified aspect ratio of the
hollow chambers.
6. A heat-insulated composite profiled section as in
Claims 1 through 5, characterized in that the thickness
of each of the boundary walls (6.1, 6.2) lies in the
range 0.4-1.0 mm.
7. A heat-insulated composite profiled section as in

Claim 6, characterized in that the insulating web has
three hollow chambers and the geometric ratio for the
outer contour of the insulating strip (width D and height
H) lies within the interval
1.3*D - 0.022*D2 < 4.14*D - 0.088*D2.
8. A heat-insulated composite profiled section as in one of
Claims 1 through 7, characterized in that the thermal
conductivity of the boundary walls (6.1, 6.2) lies
between 0.17 and 0.35 W/(mK).
9. A heat-insulated composite profiled section as in one of
Claims 1 through 8, characterized in that the selected
width of the boundary walls (6.1, 6.2) which determines
the distance between the metal profiles (3, 4) depends on
the wall thickness in such a manner that the specific
heat flow q0, i.e. the heat flow through a 1 m long strip
for which delta T = 1 K, which flows over the boundary
walls (6.1, 6.2), remains less than 0.02 watts.
10. A heat-insulated composite profiled section as in one of
Claims 1 through 9, characterized in that the selected
thickness of the boundary walls (6.1, 6.2) and/or the
thermal conductivity of the boundary walls (6.1, 6.2)
selected within the specified interval are small enough
for the width of the boundary walls (6.1, 6.2) to lie
within the range 20-50 mm.
11. A heat-insulated composite profiled section as in one of
Claims 1 through 10, characterized in that the clearance
of the boundary walls (6.1, 6.2) lies within the range
1-15 mm.
12. A heat-insulated composite profiled section as in one of
Claims 1 through 10, characterized in that the clearance
of the boundary walls (6.1, 6.2) lies in the range
5-10 mm.

16
13. A heat-insulated composite profiled section as in one of
Claims 1 through 12, characterized in that the transverse
web (10) is aligned at right angles to the boundary walls
(6.1, 6.2) and is firmly attached to them
14. A heat-insulated composite profiled section as in one of
Claims 1 through 12, characterized in that the angle
between the transverse web (10) and the boundary walls
(6.1, 6.2) lies in the range 75-105 degrees.
15. A heat-insulated composite profiled section as in one of
Claims 1 through 14, characterized in that the thickness
of the two boundary walls (6.1, 6.2) lies in the range
0.5-0.8 mm.
16. A heat-insulated composite profiled section as in one of
Claims 1 through 15, characterized in that the connector
profiles (5) are positioned symmetrically (axially) to
the insulating web (6).

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 02231102 1998-03-04
HEAT-INSULATED COMPOSITE PROFILED SECTION
The invention relates to a heat-insulated composite profiled
section especially intended for windows, doors, façade walls
etc , consisting of outer and inner metal profiles connected
and spaced apart from each other via at least one insulating
web with connector profiles. The connector profiles engage in
grooves in the metal profiles and the insulating web has two
essentially parallel boundary walls forming a cavity between
them, and permitting transverse webs to be positioned between
lo them, thus dividing the cavity within the insulating web into
several hollow chambers positioned successively between the
metal profiles
Heat-insulated composite profiled sections of thi,s type are
known, for example, from DE 42 38 750, in which the insulating
web or webs ensure the thermal separation of the outer and
inner metal profiles.
Care must be taken when deciding on the dimensions of the
insulating webs to ensure that heat can be transferred from
the warmer to the colder metal profile in three different
ways, i.e. conduction, radiation or convection. All of these
three transfer mechanisms usually operate at the same time.
In the case of conduction thermal energy is conveyed directly
between immediately neighbouring portions of stable bodies or
immobile liquids or gases. The quantity of heat conducted in
the present case is determined by the proportion of heat
flowing both over the boundary walls and over the still air
inside the cavity or the hollow chambers and inside the
airspace adjoining the insulating web on the outside. The
proportion of heat flowing over the insulating web is
influenced essentially by the thickness and the width of the
boundary walls and the thermal conductivity of the material.
However, the mechanical magnitudes (stability, thickness,
thickness of the walls, width) also determine the mechanical

CA 02231102 1998-03-04
properties of the insulating web which forms a statically
load-bearing spacer. Consequently, there are as a rule for
static reasons limits (wall thickness, width) to further
reduction of conductivity.
In the case of radiation no transfer medium is required and
therefore the dimensions of the insulating web do not matter
unless allowance has to be made for shadow, reflections or
similar influences on the radiation through the insulating
web.
In the case of convection thermal energy is conveyed to flows
of liquids, gases or vapours by conduction or in some cases by
radiation and convected by the flow. Since the heat conductor
loses thickness when it receives thermal energy and becomes
buoyant in consequence the heat transfer itself causes a flow
of heat which is termed free convection.
It has been shown that the shape of the insulating web has
considerable influence on the proportion of heat convected,
and therefore the purpose of the present invention is to
improve the design of the insulating web in composite profiled
sections of the type referred to above in such a way that the
convection, and therefore the proportion of heat convected, is
restricted to such a value that the heat transfer which it
determines is of the same magnitude as simple thermal
conduction in still air while at the same time and in parallel
the radiation exchange (heat transfer by long-wave infrared
radiation) is reduced. This should achieve a heat loss
reduction of about 30~ as compared with the existing state of
the technology.
The purpose of the invention is achieved as follows:
- starting from a wall thickness s=0.5 mm and a thermal
conductivity lambda = 0.35 W/mK in the boundary walls - the
width (D) of the insulating web measured along the space
between the metal profiles is set at 20 mm to provide a

CA 02231102 1998-03-04
thermal insulance in the insulating web of 0.15 m[2]K/W to
0.30 m[2]K/W, at 30 mm to provide a thermal insulance of
0.25 m[2]K/W to 0.50 m[2]K/W, at 40 mm to provide a thermal
insulance of 0.35 m[2]K/W to 0 65 m[2]K/W, and at 50 mm to
5 provide a thermal insulance of 0.40 m[2]K/W to 0.80 m[2]K/W,
the width (d) of the cavity or the hollow chambers similarly
measured along the distance between the metal profiles being
less than or equal to the width (D) of the insulating web and
greater than or equal to one third of the width (D) of the
insulating web provided that the height of the cavity or the
hollow chambers is smaller than or equal to 5 mm. If the
height of the cavity or khe hollow chamber is more than 5 mm
and does not exceed 20 mm and at least one transverse web is
present the proportion of height (h) to width (d) of the
hollow chamber is greater than or equal to 0.2 and less than
or equal to 5, and the wall thickness (s) is between 0.25 mm
and 1.0 mm, where the dependence of the thermal insulance on
the wall thickness (s) is given by the equation
R(s)=R(s=0, 25 mm) + (s - 0.25)/0.25 * delta R
with values for delta R ranging from 0.025 to 0.05, and where
a 10~ increase in the thermal conductivity of the boundary
walls ranging from 0.15 W/mK to 0.40 W/mK produces a 2~ to 4
reduction in thermal insulance. Intermediate values in the
equation between the interval of the thermal insulance and the
width (D) of the insulation web can be interpolated linearly.
Conditions will be still more favourable if, with the height
of the cavity or hollow chamber measuring over 5 mm and not
more than 20 mm and with at least one transverse web present,
the ratio of the height (h) to the width (d) is greater than
or equal to 0.5 and is l,ess than or equal to 2.
The basic purpose of the invention can be achieved in a
comparable manner if, given that the insulating web has a
height (H) and a width (D) measured along the space between
the metal profiles which determined by static or
constructional considerations and that the wall thickness is

CA 02231102 1998-03-04
(s) and that the thermal conductivity of the boundary walls is
lambda, the aspect ratio o~ the height (h) to the width (d) in
the cavity or hollow chamber measured along the space between
the metal profiles is selected so that the thermal insulance R
calculated by the equation
R=2.08*(D/100)[1.43]-O.l+P*f(lambda)*f(s)*f(h/d) and
P=a]O[+a]l[*H+a]2[*H[2]+a]3[*H[3]+a]4*[*H~4]
lies within the range o~ a maximum, the coefficients being
a]0[=-0.06898+5.19*10[4]*D[-4.171],
a]1[=+0.2005-21.86*D[-1.531],
a]2[=+0.0425-0.00174*D for D<30 and a]2[=~0.0292-0.0013*D
for D>=30,
a]3[=-1.384*10[-3]+8.125*10[-7]*D[2.268],
a]4[=+4.632*10[-5]-3.528*10[-7]*D[1.47] and the correcting
functions being f(lambda)=1.27-0.807*1ambda[1.04],
~(s)=1.324-0.458*s[0.5] and f(h/d)=(1-0.015*((h/d)-2.5)[2].
In particular, the aspect ratio of the vertical height (h) to
the horizontal width (d) o~ the cavity or the hollow chambers
can be such that, allowing for the expected temperatures on
the outer and inner metal profiles, the square of this aspect
ratio multiplied by the Rayleigh number (Rah) is less than the
numerical value 72.
The dimensionless Rayleigh number (Rah) is the product of the
Grashof number and the Prandtl number which characterizes
solely the properties o~ the ~luid in the enclosed cavity;
for air it can be assumed that this number is Pr=0.71.
The magnitude of the Grashof number is a measure o~ the heat
trans~erred by convection from the warm to the cold side of
the cavity or hollow chambers. If the geometry of the
insulating web, that is to say, the aspect ratio h/d o~ the
cavity or the hollow chambers is so selected with allowance
for the expected temperatures that the product of the square
of the aspect ratio and the Rayleigh number remains less than
the numerical value 72 this will ensure that the convection in
the cavity or the hollow chambers is sufficiently limited for

CA 02231102 1998-03-04
the heat transfer to be of the same magnitude as in the case
o~ pure heat conduction ~in still air.
In a preferred embodiment of the invention the number of
hollow chambers can be determined by the width and height o~
the insulating web and the specified aspect ratio.
It has in addition been ~ound advantageous for the thickness
of each of the two boundary walls to be in the range 0.4 mm to
1.0 mm.
A preferred embodiment of the invention is characterized by
the ~act that the insulating web has three hollow chambers and
the geometric ratio for the external contour of the insulating
strip (width D and height H) lies within the interval
1.3*D - 0.022*D2 < H < 4.14*D -0.088*D2.
For the purposes of this invention it has also been found
bene~icial i~ the heat conductivity L of the boundary walls is
between 0.17 and 0.35 W/(mK). It is also recommended that the
selected width of the boundary walls which determines the
spacing between the metal pro~iles should be made dependent on
the wall thickness in such a way that the specific heat flow
qO, that is the heat ~low through a strip 1 meter long with
delta T = 1 K, which ~lows over the boundary walls, is always
less than 0.02 W.
The advantages thus obtained are essentially as follows: an
insulating web designed in accordance with the indicated
criteria will permit both optimum thermal insulation and a
satisfactory adjustment of the achievable stability of the
insulating webs. These dimensions are also based on the
finding that the materials to be used for the insulating webs,
especially PVC, polypropylene and polyamide, have in that
order an increasing thermal conductivity. In order to
increase the mechanical stability o~ these materials

CA 02231102 1998-03-04
aggregates are frequently incorporated into them which do
increase stability but also increase conductivity.
If the width selected for the boundary walls is small the load
on the insulating web will be small but at the same time the
thermal conduction will increase because o~ the short distance
between the two metal profiles. On the other hand the smaller
load makes it possible to work with smaller quantities of
aggregate and this will in turn reduce the thermal
conductivity.
The combination of parameters proposed in accordance with the
invention marks out the limits within which both optimum
thermal insulation and the required stability of the
insulation web are achieved. Even if the width of the
boundary walls is increased the resultant lessening of the
heat flow will because of the gain achieved be more than
compensated by the dimensions required for the hollow chambers
enclosing the air.
It is also proposed in connection with this invention that in
selecting the thickness of the boundary walls and/or the
thermal conductivity of the boundary walls these magnitudes be
small enough within the specified interval for the width of
the boundary walls to lie within the range 20-50 mm.
In addition, it has been ~ound advantageous in connection with
the invention for the clearance of the boundary walls to lie
within the range 1-15 mm. It is however especially beneficial
for the clearance of the boundary walls to lie within the
range 5-10 mm.
It is useful to align the transverse insulating web or webs at
right angles to the boundary walls and to secure them firmly
to the latter. It is however also possible in principle for
the angle between the transverse web and the boundary walls to
lie within the range 75-105 degrees.

CA 02231102 1998-03-04
In addition, ~or the purpose of optimizing- the parameters it
has been found advantageous for the thickness of the two
boundary walls to lie within the range 0 5-0.8 mm.
Lastly, a design of the invention with an additional advantage
is characterized by the fact that the connector profiles are
positioned symmetrically (axially) with respect to the
insulation web.
The invention is explained in detail below with reference to
the examples of embodiments shown in the drawings, as follows:
~0 Fig. 1 a single insulation web showing schematically how it
is used to find the basic dimensions,
Fig. 2 a composite profiled section shown in cross-section,
Fig. 3 another embodiment shown as in Fig. 2.
Fig. 1 shows in outline, for the heat-insulated composite
pro~iled section intended especially ~or windows, doors,
façade walls etc., the outer and inner metal profile 3, 4 and
the insulation web 6 with a connector profile 5 Oll each of its
two sides, connecting and spacing apart the two metal
profiles 3, 4.
The insulation web 6 has two essentially parallel boundary
walls 6.1, 6.2 forming a cavity between them, with transverse
webs 10 positioned transversely to the boundary walls 6.1, 6.2
and dividing the cavity within the insulation web 6 into
several hollow chambers positioned successively along the
length of the insulation web 6.
The heat transfer is calculated by appropriate procedures
which take account of the transfer mechanisms referred to in
the introduction. If the aspect ratio of the vertical height
(h) to the horizontal width (b) of the cavity or the hollow

CA 02231102 1998-03-04
chambers is varied it will be found that the proportion of the
passage of heat from the warmer to the colder metal profile,
attributable to convection in the hollow chambers 11, can be
reduced by an appropriate choice of aspect ratio to the point
where its proportion is insignificant in relation to the heat
conduction and heat radiation.
If the thermal insulance;for different widths of the
insulating web 6 is plotted against the height of the
insulating web a range appears in which the thermal insulance
has a maximum. This shows that if allowance is made ~or the
expected temperatures on the outer and inner metal profiles 3,
4 and a suitable aspect ratio is selected for the hollow
chambers the thermal insulation can be improved.
Moreover, by plotting the dependence of the thermal insulance
on the height of the insulation web ~or di~erent wall
thicknesses a maximum will be found for a given range of
values. Because of the changes in thermal conduction the
variation in the wall thickness will result as expected in a
change in total heat resistance; here too, however, the
influence of the proportion of convection can be detected.
This can be used to determine the dimensiGns of the insulating
web in the following manner:
starting from a wall thickness s=0.5 mm and a conductivity
lambda = 0.35 W/mK in the boundary walls 6.1, 6.2 the width
(D) of the insulating web is set at 20 mm to provide a thermal
insulance in the insulating web of 0.15 m2K/W to 0.30 m2K/W, at
30 mm to provide a thermal insulance of 0.25 m2K/W to 0.50
m2K/W, at 40 mm to provide a thermal insulance of 0.35 m2K/W to
0.65 m2K/W, and at 50 mm to provide a thermal insulance of 0.40
m2K/W to 0.80 m2K/W. The selected width (d) of the cavity or
the hollow chambers then becomes less than or equal to the
width (D) of the insulating web and greater than or equal to
one third o~ the width (D) of the insulating web provided that

CA 02231102 1998-03-04
the height of the cavity or the hollow chambers 11 is smaller
than or equal to 5 mm. If the height of the cavity or the
hollow chambers is more than 5 mm and does not exceed 20 mm
and at least one transverse web 10 is present the selected
ratio of height (h) to width (d) is greater than or equal'to
0.2 and less than or equal to 5. If the wall thickness (s) is
varied,between 0.25 mm and 1.0 mm, allowan,ce must be made for
a dependence o~ the thermal insulance on the wall thickness
(s) as given by the equation
R(s)=R(s=0, 25 mm) + (s - 0.25)/0.25 * delta R
with values ~or delta R ranging ~rom 0.025 to 0.05. A 10~
increase in the thermal ,conductivity of the boundary walls
(6.1, 6.2) ranging from 0.15 W/mK to 0.40 W/mK produces a 2
to 4~ reduction in thermal insulance, which must be allowed
for given the selected initial magnitudes referred to in the
introduction.
The procedure for determining the shape of the insulating web
can be continued in such a manner that the number of hollow
chambers 11 depends on the width and height o~ the insulating
web and the specified aspect ratio.
If the insulating web has three hollow chambers 11 the
calculation of the aspect ratio is simpli~ied: The geometric
ratio ~or the outer contour of the insulating strip
(width D and height H) will then lie within the interval
1.3*D - 0.022*D2 < H c 4.14*D - 0.088*D2. For a different
number of hollow chambers 11 appropriate intervals can be
plotted.
In the examples of embodiments shown in Fi,gures 2 and 3 the
composite profiled section is used with a window of which,
however, only the lower cross-section of the wing profile and
the screen frame profile are shown.
Both the screen ~rame profile 1 and the wi,ng pro~ile 2 are
designed as heat-insulated composite profile sections and

CA 02231102 1998-03-04
likewise consist of outer 3 and inner 4 metal profiles each
connected together via and spaced apart by insulating webs 6
provided with connector profiles 5. The connector pro~iles 5
are essentially dovetailed and engage precisely in grooves in
the metal profiles 3, 4.
The glass pane 7 itself is retained on the wing profile 2 over
glazed seals 8 by means of a glass strip 9.
The insulating webs 6 have two essentially parallel boundary
walls 6.1, 6.2 ~orming a cavity between them. The boundary
walls 6.1, 6.2 are connected together via a number of
transverse webs 10, the number of transverse webs 10 being
dependent on the limiting conditions explained above.
In the examples of embodiments shown in Figures 2 and 3 the
transverse web 10 is aligned at right angles to the boundary
walls 6.1, 6.2 and firmly attached to them. It is however
also possible to align such transverse webs 10 at an angle of
75-105 degrees to the boundary walls 6.1, 6.2, or even, i~
need be, at a still larger angle to them provided that this
does not significantly reduce the heat insulation.
The thickness of the boundary walls 6.1, 6.2 can lie in the
range 0.4-1 mm, the thicknesses o~ the two boundary walls 6.1,
6.2 being equal to each other. It has been found especially
advantageous ~or the thickness of the boundary walls 6.1, 6.2
to lie in the range 0.5-0.8 mm.
In selecting materials for the boundary walls 6.1, 6.2 it is
necessary to ensure a thermal conductivity L in the range
0.1-0.35 W/(mK). Care must be taken to see that the amount of
aggregates added to the material both increases its stability
and also its heat conductivity, and therefore a compromise
must be found within the interval proposed in accordance with
the invention and the thickness of the boundary walls 6.1, 6.2
which will however make it possible, given an appropriate

CA 02231102 1998-03-04
width and thickness of the boundary walls 6.1, 6.2, for the
specific heat flow qO, i.e. the heat flow through a 1 m long
strip for which delta T = 1 K, flowing over the boundary walls
6.1, 6.2, remains less than 0.02 watts. As excessive width in
the boundary walls 6.1, 6.2 produces an increased load the
thickness selected for the boundary walls 6.1, 6.2 and/or the
selected thermal conductivity selected for them in the within
the specified interval must be small enough for the width of
the boundary walls 6.1, 6.2 to lie in the range 20-50 mm.
In the example of an embodiment shown in E'igure 2 the
connector profiles 5 are positioned symmetrically, i.e.
axially, to the insulating web 6. It is however possible to
position the connector pro~iles 5 asymmetrically to the
insulating web 6, especially when using insulating webs 6 with
boundary walls 6.1, 6.2 spaced comparatively far apart. An
example of this is shown in Figure 3, in which the two
insulating webs 6 in the screen frame profile 1 and the upper
insulating web in the wing profile 2 are designed in the
manner just described. It is also possibl.e in this case to
increase still further the distance o~ the boundary walls 6.2
of the insulating webs 6 in the screen fra.me profile 1 from
the boundary walls 6.1.

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : CIB de MCD 2006-03-12
Demande non rétablie avant l'échéance 2004-09-07
Inactive : Morte - RE jamais faite 2004-09-07
Réputée abandonnée - omission de répondre à un avis sur les taxes pour le maintien en état 2004-09-07
Inactive : Abandon.-RE+surtaxe impayées-Corr envoyée 2003-09-05
Inactive : CIB attribuée 1998-06-04
Inactive : CIB attribuée 1998-06-04
Inactive : CIB en 1re position 1998-06-04
Symbole de classement modifié 1998-06-04
Inactive : Transfert individuel 1998-06-02
Inactive : Lettre de courtoisie - Preuve 1998-05-26
Inactive : Notice - Entrée phase nat. - Pas de RE 1998-05-22
Demande reçue - PCT 1998-05-20
Demande publiée (accessible au public) 1997-03-13

Historique d'abandonnement

Date d'abandonnement Raison Date de rétablissement
2004-09-07

Taxes périodiques

Le dernier paiement a été reçu le 2003-08-19

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
Taxe nationale de base - générale 1998-03-04
Enregistrement d'un document 1998-03-04
TM (demande, 2e anniv.) - générale 02 1998-09-08 1998-07-09
TM (demande, 3e anniv.) - générale 03 1999-09-06 1999-08-16
TM (demande, 4e anniv.) - générale 04 2000-09-05 2000-08-15
TM (demande, 5e anniv.) - générale 05 2001-09-05 2001-08-17
TM (demande, 6e anniv.) - générale 06 2002-09-05 2002-08-16
TM (demande, 7e anniv.) - générale 07 2003-09-05 2003-08-19
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
NORSK HYDRO A.S.
Titulaires antérieures au dossier
HARALD SCHULZ
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Dessin représentatif 1998-06-05 1 14
Description 1998-03-04 11 513
Abrégé 1998-03-04 2 55
Revendications 1998-03-04 5 197
Dessins 1998-03-04 3 74
Page couverture 1998-06-05 2 103
Rappel de taxe de maintien due 1998-05-21 1 111
Avis d'entree dans la phase nationale 1998-05-22 1 193
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 1998-08-21 1 140
Rappel - requête d'examen 2003-05-06 1 113
Courtoisie - Lettre d'abandon (requête d'examen) 2003-11-17 1 166
Courtoisie - Lettre d'abandon (taxe de maintien en état) 2004-11-02 1 176
Rapport d'examen préliminaire international 1998-03-04 14 534
Correspondance 1998-05-26 1 29
PCT 1998-04-06 7 190