Sélection de la langue

Search

Sommaire du brevet 2251448 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 2251448
(54) Titre français: CIRCUIT D'ALIMENTATION DE SECOURS
(54) Titre anglais: BACKUP POWER CIRCUIT
Statut: Durée expirée - au-delà du délai suivant l'octroi
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • H02J 9/00 (2006.01)
  • G06F 1/30 (2006.01)
  • G07G 1/00 (2006.01)
  • G07G 1/14 (2006.01)
  • H02J 9/06 (2006.01)
(72) Inventeurs :
  • QUANG, TRAN (Canada)
(73) Titulaires :
  • IVI CHECKMATE LTD.
(71) Demandeurs :
  • IVI CHECKMATE LTD. (Canada)
(74) Agent: DENNISON ASSOCIATES
(74) Co-agent:
(45) Délivré: 2006-05-16
(22) Date de dépôt: 1998-10-22
(41) Mise à la disponibilité du public: 2000-04-22
Requête d'examen: 2003-09-23
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Non

(30) Données de priorité de la demande: S.O.

Abrégés

Abrégé français

Circuit d'alimentation de secours offrant une alimentation de secours à une borne, afin de parer à toute éventualité de panne d'électricité provenant de la source principale d'alimentation. Sur la borne, la source principale d'alimentation est reliée à un circuit d'alimentation qui génère deux signaux de tension utilisés par les différents circuits qui s'y trouvent. Le circuit d'alimentation de secours stocke de manière sélective l'énergie du plus fort signal de tension et fournit l'énergie stockée au circuit d'alimentation lorsqu'il y a panne de courant au niveau de la source principale d'alimentation, ce qui permet au circuit d'alimentation de générer le signal de tension plus faible.


Abrégé anglais

A backup power circuit provides reserve power to a terminal device in the event of loss of power from the main power source. In the terminal device, the main power source is connected to a power circuit which generates two different voltage signals used by different circuits therein. The backup power circuit selectively stores energy from the higher voltage signal and supplies the stored energy to the power circuit when the main power fails, thereby allowing the power circuit to generate the lower voltage signal.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


-14-
THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE RIGHT AND
PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A backup power circuit for a terminal device, said terminal
device having a main functional circuit operating at a first
voltage, a second functional circuit operating at a second
higher voltage and a power circuit comprising transformer means
to transform an input voltage from an input source to said first
and second higher voltages, said backup power circuit comprising
capacitative means associated with said second higher voltage
for storing energy from said second higher voltage and a
discharge circuit for selectively causing said capacitative
means to store said energy from said second higher voltage when
said input voltage source is producing sufficient voltage for
said main functional circuit or discharge said energy to a node
at either an input tap on said transformer or said main
functional circuit when said input is not producing said
sufficient voltage for said main functional circuit.
2. The backup power circuit as claimed in claim 1 wherein said
discharge circuit discharges said stored energy to an input of
said transformer in response to voltage conditions at said input
of said transformer.
3. The backup power circuit as claimed in claim 1 wherein said
discharge circuit discharges said stored energy to said main
functional circuit in response to voltage conditions at said
main functional circuit.

-15-
4. The backup power circuit as claimed in claim 1 wherein said
capacitative means comprises a capacitor of less than 6,000 µF.
5. The backup power circuit as claimed in claim 1 wherein said
second output voltage is between approximately 20 to 60 volts.
6. The backup power circuit as claimed in claim 1 wherein said
first output voltage is between approximately 2 to 5 volts.
7. The backup power circuit as claimed in claim 1 wherein said
backup power circuit provides sufficient power to said first
functional circuit for a minimum of 200 ms.
8. A backup power circuit for a terminal device, said terminal
device having a main functional circuit operating at a first
voltage, a display circuit operating at a second higher voltage
and a power circuit comprising a transformer to convert an input
voltage from an input voltage source to said first and second
higher voltages, said backup power circuit comprising a
capacitor associated with said second higher voltage for storing
energy from said second higher voltage and a discharge circuit
for selectively causing said capacitor to store said energy from
said second higher voltage when said input voltage is
sufficiently present or discharge said energy to an electrical
node in said terminal device when said input voltage is not
sufficiently present.

-16-
9. A backup power circuit for a terminal device, said terminal
device having a main functional circuit operating at a first
voltage between 2 and 5 volts, a display circuit operating at a
second voltage between 25 and 40 volts and a power circuit
comprising a transformer to convert an input voltage from an
input voltage source to said first and second voltages, said
backup power circuit comprising a capacitor associated with said
second voltage for storing energy tapped from said second
voltage and a discharge circuit for selectively causing said
capacitor to store said energy from said second voltage when
said input voltage source is producing a sufficient voltage for
said main functional circuit or discharge said energy to a node
at either an input tap on said transformer or said main
functional circuit when said input voltage source is not
producing said sufficient voltage for said main functional
circuit.

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 02251448 1998-10-22
TITLE: BACKUP POWER CIRCUIT
FIELD OF THE INVENTION
The invention relates to a backup power circuit
providing temporary power to circuits in an electronic
communications terminal device when the main power signal is
lost.
BACKGROUND OF THE INVENTION
Terminal devices are located at remote sites and
exchange data with a central computer system. Common examples
of such devices include Point-of-Sale (POS) terminals,
electronic fund transfer (EFT) devices, electronic banking
machines and digital communications equipment (DCEs).
Terminal devices are generally powered by electricity
provided at the remote site generated by a power adapter. If
power is interrupted while the device is performing a critical
task, such as modifying data or transferring data to other
equipment, the validity and reliability of the task is
compromised.
As such, terminal devices typically have built-in backup
power circuits providing temporary reserve power to the
essential circuits in the device when main power is lost. The
temporary power enables the devices to complete at least the

CA 02251448 1998-10-22
-2-
critical processes before all power is lost. Conventional
methods for supplying temporary power use circuits having large
voltage supplies and capacitance devices located at the power
input side of the terminal device. These circuits require
expensive voltage supplies and capacitors.
SUMMARY OF THE INVENTION
The present invention provides a backup power circuit for a
terminal device, such as a POS terminal, EFT or DCE. Generally,
the terminal device has at least a main functional circuit
operating at a first voltage, a second functional circuit
operating at a second higher voltage and a power circuit which
provides at least the two voltages. The main functional circuit
contains the main control electronics for the terminal. The
second functional circuit provides the display electronics for
the terminal. The power circuit transforms an input voltage
from an input power source to provide the two voltages for the
functional circuits.
The backup power circuit is connected to the second
voltage and has an energy storage device to store energy from
the second voltage and a discharge circuit connected to the
power circuit. The backup power circuit stores energy from the
second voltage when the input voltage source is producing enough
voltage for the main functional circuit to operate; the backup
power circuit discharges the stored energy to the power circuit

CA 02251448 1998-10-22
-3-
through the discharge circuit when the main functional circuit
is not being provided with sufficient voltage to operate.
It is an aspect of the invention to provide a backup power
circuit supplying temporary power to a terminal device. It is a
further aspect of the invention to detect when the main power to
the device is lost and then to provide a backup power
automatically.
It is a further aspect of the invention to provide a backup
power in an economical manner.
BRIEF DESCRIPTION OF THE DRAWINGS
Preferred embodiments of the invention are shown in the
drawings, wherein:
FIG. 1 is a circuit diagram showing a power supply
circuit of a terminal device with the backup power circuit
feeding into the power circuit of the device;
FIG. 2 is a circuit diagram showing a power supply
circuit of a terminal device with a backup power circuit feeding
into the main electronics circuit of the device;
FIG. 3 shows a voltage vs. time graph of a terminal
device with a backup power circuit operating in a loss-of-power
situation; and
FIG. 4 shows a voltage vs. time graph of a terminal
device with a backup power circuit operating in a "brown-out"
situation.

CA 02251448 1998-10-22
-4-
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring to Figure 1, a feedback electrical circuit for a
terminal device embodying the invention is shown. Power circuit
1 operates in the following manner. A DC power adapter
(typically 9 Volts DC at 650 mA) provides an input DC voltage at
node 7. Transformer 2 receives the input voltage at node 3.
Two output voltage taps are provided; the first produces 5
volts at node 19 and the second produces 40 volts at node 5.
The voltage at node 19 is conditioned by LC circuit 15 to
produce the 5 volt supply at node 4. The voltage is regulated
by the feedback path comprising connection 28, diode 26 and
transistor 27, which control the switching frequency of
transistor 29. The 5 volt supply provides power for the main
functional circuit 16 of the terminal device, including
microprocessor 17; the 40 volt supply provides the power for the
second functional circuit of the terminal device, including
display electronics 18. AC voltage tap 14 provides the display
filament in display electronics 18 with power. Backup power
circuit 6 provides the backup voltage for the circuit, consuming
less than 10 watts of power.
It can be appreciated that the terminal device and the
circuits therein can be designed to operate at other voltages.
Typically, the input voltage is between 9 and 12 volts at 500 to
1000 mA; the typical voltage required for the electronics

CA 02251448 1998-10-22
-5-
connected to node 4 is between 3 to 5 volts; the voltage
required for the driver of the display is between 30 and 40
volts, and the voltage for the display filament is 4.5 volts
rms.
In the circuit of Figure 1, backup power circuit 6 takes
power from the 40 volt supply at node 5. By taking power from
the highest available voltage in the circuit, the storage power
of the backup power circuit is maximized. When backup power
circuit 6 is activated, the backup output voltage is fed back to
node 3, the input of transformer 2.
The main components of backup power circuit 6 are capacitor
8, diode 9 and transistor 10. Capacitor 8 stores energy from
the 40 volt power supply and provides the backup energy for
electrical circuit 1; in this embodiment, it has a nominal
capacitance of 4400 ~F. Transistor 10 acts as a current source
that provides the discharge of energy stored in the capacitor.
Diode 9 provides the voltage regulation of the back up power at
the emitter of transistor 10. It can be appreciated that
different component value can be utilized for capacitor 8, diode
9 and transistor 10 to effect different voltage, transient
response, timing or storage characteristics of the backup power.
It can further be appreciated that the output from backup
circuit 6 may be fed to an intermediary circuit which is, in
turn, connected to node 3.

CA 02251448 1998-10-22
-6-
Backup circuit 6 operates in two modes: a charging mode
and a discharging mode. In the charging mode, circuit 1 is
operating under sufficient power supply conditions. Diode 11
rectifies the voltage received from node 5 and prevents any
reverse flow of energy through it. Resistor 12 limits the
current flowing to the backup circuit. Capacitor 8 stores the
voltage passed through resistor 12. The discharge path for the
energy stored in capacitor 8 is connected to the input tap of
transformer 2 at node 3. However, in order to capacitor 8 to
maintain its charge, it is necessary to break the discharge path
circuit. As such, transistor 10 cannot be conducting. In this
operating mode, there are 5 volts at node 4 and 40 volts at node
5, approximately 7.8 volts at node 3 and 7.2 volts at the
cathode of diode 9. As such, the base-emitter junction of
transistor 10 is reversed biased.
When there is a power failure, the voltage at node 3 drops
from the originally supplied 9 volts. Output power at node 3
can disappear within 1 to 3 ms of the loss of the input power
source. The backup circuit detects the loss of power and
switches to discharging mode.
In discharging mode, the discharge circuit path connected
to capacitor 8 must be completed. This occurs when the base-
emitter junction of transistor 10 becomes forward biased. In
circuit 10, the voltage at node 3 must drop to approximately 6.6
volts to forward bias transistor 10. Afterwards, capacitor 8
discharges through transistor 10 to node 3. In turn, the

CA 02251448 1998-10-22
_7_
voltage produced by backup circuit 6 provides output voltage to
nodes 4 and 5, which, in turn, power main electronics 16 and
display electronics 18.
As capacitor 8 discharges, its stored voltage drops from
its initial 40 volt charge. The voltage is conditioned by zener
diode 9 and transistor 10 to provide node 3 with a regulated
voltage of 6.6 volts. The capacitance of capacitor 8 has been
selected to provide approximately 200 ms of backup power. It
can be appreciated that modifications may be made to backup
circuit 6 to vary the amount of backup power provided. If
shorter backup times are sufficient, then smaller and less
expensive capacitors can be used. If longer backup times are
required, larger capacitors may be used.
As the amount of backup power is limited, when a failure of
the main power supply occurs, main electronics 17 must recognize
the power failure and perform emergency power-loss shutdown
routines within at least the 200 ms backup power window. Such
routines may include completing pending transactions and
communications and saving system state to non-volatile memory or
reset the system.
Reset circuit 13 detects when the voltage stored in
capacitor 8 to falls below a predetermined value. Afterwards,
after a preset time window, a reset signal is activated, to
reset microprocessor 17. In this circuit, the reset signal is
generated 250 ms after the initial loss of power.

CA 02251448 1998-10-22
_g_
When power is restored, the 9 volt power supply once again
produces sufficient voltage to provide the required voltages at
nodes 4 and 5. As the voltage rises above 6.6 volts at node 3,
transistor 10 will become reversed biased, thereby breaking the
discharge path circuit between backup circuit 6 and node 3. At
that time, the voltage at node 5 can recharge capacitor 8.
Figure 3 shows a voltage-time graph of voltages at selected
nodes in the circuit in Figure 1 when main power is lost. Graph
20 represents the voltage supplied by a DC power supply. Graph
21 represents the voltage stored in capacitor 8. Graph 22
represents the voltage at node 4; graph 23 represents the reset
signal. At time 24, the circuit has been operating for at least
50 ms; Graph 22 shows 5 volts; graph 21 shows approximately 36
volts. In this example, immediately before time 24, power from
the voltage supply is lost. Around time 24, graph 20 shows a
decline in the voltage provided by the voltage supply. The
decline in the voltage activates backup circuit 6, thereby
causing capacitor 8 to provide backup power to the circuit.
Graph 21 shows that after time 24, the voltage in capacitor 8
decays. Note that the power supplied by backup circuit 6 allows
transformer to maintain 5 volts at node 4 for more than 200 ms,
indicated by the relatively stable signal shown in graph 22.
Referring to graph 25, 250 ms after the loss of power from the
voltage supply, the reset signal is activated.

CA 02251448 1998-10-22
-9-
Figure 4 shows another voltage-time graph of voltages at
nodes in the circuit shown in Figure 1 in a power "brown-out"
condition. The nodes represented in Figure 3 are also
represented in Figure 4; reference numbers in Figures 4 share
those with Figure 3, but with an "a" suffix. In Figure 4 at
time 24a, the circuit has been operating for at least 50 ms;
Graph 22a shows 5 volts on node 4; graph 21a shows capacitor 8
charged to approximately 36 volts. Just before time 24a, power
from the voltage supply is lost.
Here, a "brown-out" lasts for 143 ms. Full power is lost
just before point 24a and power is restored at point 25a.
During the "brown-out", energy stored in capacitor 8 provides
backup power to the circuit. At point 21a, voltage at capacitor
8 is 36 volts. This decays to 22 volts by point 25a. V~hen
input power is restored at point 25a, capacitor 8 stops
discharging and recharges to 36 volts. Throughout the entire
timespan, graph 22a shows that node 4 always provides 5 volts to
the electronics circuits. Graph 23a indicates that the system
reset signal is not initiated.
Figure 2 shows another embodiment of the invention wherein
the backup circuit provides a fed forward voltage connected
directly to the main electronics power rail. Where appropriate,
reference numbers for similar components found in Figure 1 and
Figure 2 have been repeated. Such references in Figure 2 have
an additional suffix "a" attached.

CA 02251448 1998-10-22
-10-
In Figure 2, power circuit 1a operates in the following
manner. A DC power adapter provides a DC voltage at node 7a.
Transformer 2a provides a 5 volt supply at node 4a and a 40 volt
supply at node 5a. The 5 volt supply provides power for main
electronics 16a, including microprocessor 17a; the 40 volt
supply provides the power for the display electronics 18a
associated with the terminal device. Backup power circuit 6a
provides the backup voltage for the circuit.
Backup power circuit 6a takes power from the 40 volt rail
at node 5a. V~hen backup power circuit 6a is activated, the
output voltage is fed forward to node 4a.
The main components of backup power circuit 6a are
capacitor 8a, diode 9a and transistor 10a. Capacitor 8a stores
energy from node 5a to provide backup energy for electrical
circuit 1a; in this embodiment, it has a nominal capacitance of
2200 ~.F. As the feed forward circuit is supplying power
directly to node 4a, the size of capacitor 8a is smaller than
capacitor 8 in Figure 1. Transistor 10a acts as a switch
controlling the discharge of voltage from capacitor 8a. Zener
diode 9a provides voltage regulation while transistor 10a acts
as a current source for backup circuit 6a. Again, different
component value can be utilized for capacitor 8a, diode 9a and
transistor 10 to effect different response characteristics. It
can further be appreciated that the output from backup circuit
6a may be fed to an intermediary circuit which is, in turn,
connected to node 4a.

CA 02251448 1999-07-20
-11-
Again, backup circuit 6a operates in two modes: a charging
mode and a discharging mode. In the charging mode, the voltage
from node 5a charges capacitor 8a. Diode 11a rectifies the
voltage of node 5a and blocks discharge of any energy stored in
capacitor 8a to node 5a. Resistor 12a limits the current
flowing to the capacitor 8a.
In the charging mode, it is necessary to break the
discharge path circuit for the charge stored in capacitor 8a.
As such, transistor 10a cannot be conducting. In this example,
zener diode 9a clamps the voltage at the base of transistor 10a
to 6.0 volts. As long as the voltage supply is operating to
produce 5 volts at node 4a, the voltage at the emitter of
transistor l0a would be approximately 5.6 volts, due to diode
30. In this situation, the emitter base junction of transistor
10a remains reverse biased.
In discharging mode, the discharge path from capacitor 8a
must be completed. After main power has been lost, the voltage
at node 4a falls from 5 volts. Consequently, the voltage at the
emitter of transistor 10a begins to fall. However, the voltage
at the base of transistor 10a remains at 6 volts because of
zener 9a. Transistor 10a becomes forward biased when the
voltage at the emitter of transistor 10a falls below
approximately 5.4 volts. Transistor 31 and double diodes at 32
provide a voltage drop of 0.5 volts across resistor 33. This
regulated voltage drop provides a constant current source of

CA 02251448 1999-07-20
-12-
approximately 2 mA to diode 9a. This provides improved voltage
regulation during the discharge of the energy stored in
capacitor 8. Thereafter, a discharge path is established from
capacitor 8a to node 4a. As such, capacitor 8a can then provide
a voltage to node 4a.
As capacitor 8a discharges, its stored voltage drops from
its initial 40 volt charge. The voltage is conditioned by zener
diode transistor 10a and diode 30 providing node 4a with a
regulated voltage of 4.8 volts. The capacitance of capacitor 8a
has been selected to provide approximately 200 ms of backup
power. It can be appreciated that modifications may be made to
backup circuit 6a to vary the amount of backup power provided.
When power is restored, the 9 volt power supply once again
produces sufficient voltage to provide the required voltages at
nodes 4a and 5a. At that point, transistor 10a becomes reverse
biased, thereby breaking the discharge path circuit. At that
time, capacitor 8a can recharge again.
Reset circuit 13a operates in a similar manner to reset
circuit 13.
Although various preferred embodiments of the present
invention have been described herein in detail, it can be
appreciated that the present invention is not restricted to what
is described above and shown in the drawings, but can be changed

CA 02251448 1998-10-22
-13-
or modified in many different way within the scope of the
invention defined in the attached claims.

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : Périmé (brevet - nouvelle loi) 2018-10-22
Lettre envoyée 2007-11-22
Inactive : Lettre officielle 2007-10-25
Lettre envoyée 2007-09-24
Inactive : Lettre officielle 2006-10-27
Accordé par délivrance 2006-05-16
Inactive : Page couverture publiée 2006-05-15
Inactive : CIB de MCD 2006-03-12
Inactive : CIB de MCD 2006-03-12
Préoctroi 2006-03-06
Inactive : Taxe finale reçue 2006-03-06
Inactive : Supprimer l'abandon 2005-12-22
Inactive : Lettre officielle 2005-12-22
Réputée abandonnée - omission de répondre à un avis sur les taxes pour le maintien en état 2005-10-24
Un avis d'acceptation est envoyé 2005-09-09
Lettre envoyée 2005-09-09
Un avis d'acceptation est envoyé 2005-09-09
Inactive : Approuvée aux fins d'acceptation (AFA) 2005-07-27
Lettre envoyée 2003-10-16
Exigences pour une requête d'examen - jugée conforme 2003-09-23
Toutes les exigences pour l'examen - jugée conforme 2003-09-23
Requête d'examen reçue 2003-09-23
Inactive : Correspondance - Formalités 2000-07-19
Inactive : Incomplète 2000-07-10
Inactive : Page couverture publiée 2000-04-23
Demande publiée (accessible au public) 2000-04-22
Lettre envoyée 1999-08-13
Inactive : Transfert individuel 1999-07-20
Modification reçue - modification volontaire 1999-07-20
Symbole de classement modifié 1998-12-17
Inactive : CIB attribuée 1998-12-17
Inactive : CIB en 1re position 1998-12-17
Inactive : CIB attribuée 1998-12-17
Symbole de classement modifié 1998-12-17
Inactive : CIB attribuée 1998-12-17
Inactive : Certificat de dépôt - Sans RE (Anglais) 1998-12-03
Exigences de dépôt - jugé conforme 1998-12-03
Demande reçue - nationale ordinaire 1998-12-02

Historique d'abandonnement

Date d'abandonnement Raison Date de rétablissement
2005-10-24

Taxes périodiques

Le dernier paiement a été reçu le 2005-10-17

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
IVI CHECKMATE LTD.
Titulaires antérieures au dossier
TRAN QUANG
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Dessin représentatif 2000-04-10 1 11
Page couverture 2000-04-10 1 32
Description 1998-10-22 13 434
Abrégé 1998-10-22 1 15
Revendications 1998-10-22 3 99
Dessins 1998-10-22 4 86
Dessins 1999-07-20 4 69
Description 1999-07-20 13 438
Dessin représentatif 2006-04-19 1 10
Page couverture 2006-04-19 1 35
Certificat de dépôt (anglais) 1998-12-03 1 163
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 1999-08-13 1 139
Rappel de taxe de maintien due 2000-06-27 1 109
Rappel - requête d'examen 2003-06-25 1 112
Accusé de réception de la requête d'examen 2003-10-16 1 173
Avis du commissaire - Demande jugée acceptable 2005-09-09 1 161
Correspondance 1998-12-08 1 32
Correspondance 2000-07-10 1 11
Correspondance 2000-07-19 1 27
Correspondance 2005-12-22 1 13
Correspondance 2006-03-06 1 35
Correspondance 2006-10-27 1 16
Correspondance 2007-09-24 1 11
Correspondance 2007-10-25 1 16
Correspondance 2007-09-07 1 38
Correspondance 2007-11-22 1 12
Taxes 2007-10-09 2 51
Correspondance 2007-11-16 1 28