Sélection de la langue

Search

Sommaire du brevet 2283482 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Demande de brevet: (11) CA 2283482
(54) Titre français: COMPOSITIONS POLYMERES OLEFINIQUES CONTENANT DES RETARDATEURS DE RETICULATION AU CARBOXYLATE METALLIQUE
(54) Titre anglais: OLEFIN POLYMER COMPOSITIONS CONTAINING METAL CARBOXYLATE CROSS-LINKING RETARDERS
Statut: Réputée abandonnée et au-delà du délai pour le rétablissement - en attente de la réponse à l’avis de communication rejetée
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • C8K 5/098 (2006.01)
  • C8L 23/04 (2006.01)
  • C8L 23/08 (2006.01)
  • C8L 23/16 (2006.01)
(72) Inventeurs :
  • ARJUNAN, PALANISAMY (Etats-Unis d'Amérique)
(73) Titulaires :
  • EXXONMOBIL CHEMICAL PATENTS INC.
(71) Demandeurs :
  • EXXONMOBIL CHEMICAL PATENTS INC. (Etats-Unis d'Amérique)
(74) Agent: BORDEN LADNER GERVAIS LLP
(74) Co-agent:
(45) Délivré:
(86) Date de dépôt PCT: 1998-02-23
(87) Mise à la disponibilité du public: 1998-10-01
Requête d'examen: 2003-02-24
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Oui
(86) Numéro de la demande PCT: PCT/US1998/003504
(87) Numéro de publication internationale PCT: US1998003504
(85) Entrée nationale: 1999-09-01

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
08/823,739 (Etats-Unis d'Amérique) 1997-03-25

Abrégés

Abrégé français

L'invention concerne des compositions polymères comprenant un copolymère d'éthylène à basse densité, linéaire, contenant environ 1 à 30 % mol de comonomère alpha-oléfinique et présentant une résistance améliorée à la réticulation durant le procédé de thermoformage. Le copolymère d'éthylène présente une distribution étroite de la composition en ramification de chaînes comme l'indique l'indice de largeur de distribution de la composition d'au moins 50 % et ce copolymère est stabilisé afin d'inhiber la réticulation durant le thermoformage par addition d'une quantité efficace d'un carboxylate métallique d'un acide carboxylique en C¿1?-C¿22?.


Abrégé anglais


Polymer composition comprising a linear low density ethylene copolymer
containing about 1-30 mol % of alpha-olefin comonomer and having improved
resistance to cross-linking during thermoforming are provided. The ethylene
copolymer has a narrow compositional distribution of chain branching as
reflected by compositional distribution breadth index of at least 50 % and is
stabilized to inhibit cross-linking during thermoforming by the addition of an
effective amount of a metal carboxylate of C1-C22 carboxylic acid.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


-16-
CLAIMS
1. A polymer composition consisting of:
a) a linea low density ethylene polymer containing from 1-30 mol% of at
least one alpha-olefin comonomer and having an average molecular
weight distribution Mw/Mn of ~ 3 and a compositional distribution
breadth index of at least 50%; and
b) at least one metal carboxylate of a C1-C22 saturated or unsaturated
carboxylic acid, said metal carboxylate present in said composition in an
amount sufficient to inhibit crosslinking of said composition when said
composition is heated under conditions of shear at a temperature above
the melting point of said ethylene polymer; and
c) optionally one or more compounds of the following group; antioxidant
(stabilizer) materials, commonly applied adjuvant materials, additional
decomposition inhibitors, free radical scavengers.
2. The composition of claim 1 wherein said ethylene polymer has a
compositional
distribution breadth index of greater than 60%.
3. The composition of claims 1 or 2 wherein said ethylene polymer has a
compositional distribution breadth index of greater than 70%.
4. The composition of claims 1-3 wherein said comonomer comprises at least one
C3-C12 alpha-olefin.
5. The composition of claims 1-4 wherein said ethylene polymer has an Mw/Mn
of less than 3Ø

-17-
6. The composition of claims 1-5 wherein said ethylene polymer is produced by
copolymerizing a mixture of ethylene and said at least one alpha-olefin
comonomer in
the presence of a metallocene transition metal catalyst having the formula
(CY)m
MR n R1p wherein CY is a substituted or unsubstituted cyclopentadienyl ring; M
is a
Group IVB or VB transition metal; R and R1 are independently selected from
halogen,
hydrocarbyl or hydrocarboxyl groups having 1-20 carbon atoms; m = 1-3, n = 0-
3, p =
0-3 and the sum of m+n+p equals the oxidation state of m.
7. The composition of claims 1-6 wherein said metal carboxylate contains 2-18
carbon atoms.
8. The composition of claims 1-7 wherein said metal is a Group I to Group III
metal of the Periodic Table.
9. The composition of claim 8 wherein sand metal is zinc.
10. The composition of claim 9 wherein said metal carboxylate comprises zinc
acetate.
11. The composition of claim 9 wherein said metal carboxylate comprises zinc
stearate.
12. The composition of claims 1-11 wherein said metal carboxylate is present
in
said composition at a level of from 0.005 up to 1 wt%, based on the weight of
said
ethylene polymer.
13. The composition of claim 12 wherein said metal carboxylate is present in
said
composition at a level of from 0.01 up to 0.5 wt.%.

-18-
14. The composition of claims 1-13 wherein said ethylene polymer has a duty in
the range of from 0,9 to 0.94 g/cm3.
15. The composition of claim 1-14 further containing an effective amount of an
antioxidant selected from the group consisting of phenolics, phosphates,
phosphonites
and mixtures thereof.
16. The composition of claim 15 wherein paid antioxidant comprises a hindered
phenol.
17. The composition of claim 15 wherein said antioxidant comprises a
phosphate.
18. The process for thermoforming s polymer composition comprising:
a) forming a composition comprising of a linear low density ethylene
polymer containing from 1-30 mol% of at least one alpha-olefin
comonomer and having an average molecular weight distribution
Mw/Mn of ~ 3 and a compositional distribution breadth index of at
lease 50%, and at least 0.005 wt.%, based on the weight of said
ethylene polymer, of a metal carboxylate of a C1-C18 carboxylic acid;

and optionally one or more compounds of the following group:
antioxidant (stabilizer) materials, commonly applied adjuvant materials,
additional decomposition inhibitors, free radical scavengers;
b) thermoforming said composition to form a shaped article at a
temperature above the melting point of said ethylene polymer under
mixing conditions of shear sufficient to cause scission of at least some
of the polymer chairs of said ethylene polymer; and
c) recovering said shaped article.

-19-
19. The process of claim 18 wherein said composition is thermoformed at a
temperature in the range of porn 140 °C to 350 °C.

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 02283482 1999-09-O1
WO 98!42777 PCT/US98/03504
-1-
BACKCTROLTND OF THE INVENTION
Field of the Invention
The invention relates to linear low density ethylene polymer compositions
stabilized
to inhibit crosslinking during melt processing.
Description of the Related Art
Various types of polyethylene are known in the art. Low density polyethylene
("LDPE") is generally prepared at high pressure using free radical initiators
and
typically has a density in the range of 0.915-0.940 g/cm3. LDPE is also known
as
"branched" polyethylene because of the relatively large number of long chain
branches extending from the main polymer backbone.
High density polyethylene {"HDPE") usually has a density in the range of
greater
2 0 than 0.940 to 0.960 g/cm3. HDPE is prepared using a coordination catalyst
e.g.,
Ziegler-Natty type catalysts, at low, moderate or high pressures. HDPE is
generally
linear without any substantial side chain branching, and is a substantially a
crystalline polymer.
2 5 Linear low density polyethylene ("LLDPE") is generally prepared in the
same
. manner as HDPE, but incorporates a relatively minor amount of alpha-olefin
comonomer such as butene, hexene or octene to introduce enough short chain
' branches into the otherwise linear polymer to reduce the density of the
resultant
polymer into the range of that of LDPE. Introducing larger concentrations of
3 0 comonomer can also reduce the density of the ethylene copolymers into the
0.900 to

CA 02283482 1999-09-O1
WO 98!42777 PCT/US98/03504
-2-
0.915 g/cm range of very low density polyethylene (VLDPE) and in the
"plastomer
range" (i.e. 0.88-0.90 g/cm3).
The Ziegler/Natta coordination catalysts used to copolymerize ethylene and the
alpha-olefin generally produce an LLDPE with a relatively broad weight
molecular
weight distribution, i.e., Mw/Mn greater than about 3. Such LLDPE's also have
relatively broad compositions in that the proportion of alpha-olefin comonomer
molecules incorporated into the polymer molecules vanes. Generally, the lower
molecular weight polymer molecules contain a relatively higher proportion of
the
alpha-olefin comonomer than the higher molecular weight polymer molecules.
A polyethylene such as LLDPE having a broad molecular weight distribution is
undesirable in many respects, depending on the desired end use application.
For
example, LLDPE resins known in the prior art containing relatively high
molecular
weight molecules are subject to orientation which results in anisotropic
properties in
the machine versus transverse direction of a fabrication process. On the other
hand,
LLDPE resins containing relatively lower molecular weight molecules, in which
the
comonomer is invariably concentrated, tend to exhibit high block and tackiness
in
fabricated films. These lower molecular weight, highly branched molecules
2 o interfere with the proper function of certain additives compounded in the
resin,
increase the percentage of extractable polymer, and increase fouling in the
polymerization plant. The relatively high alpha-olefin comonomer content of
these
low molecular weight polymer molecules causes such polymer molecules to be
generally amorphous and to exude to the surface of fabricated parts, thereby
2 5 producing an undesirable sticky surface.
Prior art polyethylenes such as LLDPE also generally tend to have a very
broad,
non-uniform distribution of comonomer content, i.e., some polymer molecules
have
a relatively high alpha-olefin comonomer content while others have a
relatively low
3 0 content. Generally, the polymer molecules of low comonomer content are
relatively
r , . . ..

CA 02283482 1999-09-O1
WO 98/42777 PCT/US98/03504
-3-
more crystalline and have a high melting temperature, whereas the high
comonomer
content polymer molecules are more amorphous and melt at a lower temperature.
The presence of a higher melting component is disadvantageous in many
. applications, for example where softness or clarity is desired. On the other
hand, the
presence of a lower melting component frequently results in a high quantity of
extractables, which limit food contact applications.
Recently, a new class of LLDPE polymers has been developed based upon
copolymers of ethylene and a minor content of at least one alpha-olefin
comonomer.
These polymers are prepared preferably using a rnetallocene transition metal
catalyst and exhibit an average molecular weight distribution (Mw/Mn) of < 3
and a
compositional distribution breadth index (CDBI) of at least SO%. These
copolymers
and their method of preparation are more particularly disclosed in US Patent
5,382,631, the complete disclosure of which is incorporated herein by
reference.
One of the main distinctions which differentiates the newer LLDPE materials
from
the LLDPE of the prior art is that the branching alpha-olefin comonomer tends
to be
more uniformly and randomly distributed along the polymer chain rather than
concentrated in the lower molecular weight fractions of chain molecules as is
the
2 o case with prior art LLDPE described above. Because of this more uniform
comonomer distribution and a narrow molecular weight distribution, the newer
LLDPE materials avoid many of the disadvantages of conventional LLDPE
materials as described above, particularly when used to prepare films for
packaging
applications.
It has been observed, however, that the metallocene-polymerized LLDPE polymers
tend to have a higher susceptibility towards molecular crosslinking when
subjected
' to thermoform shearing forces, e.g. extrusion, than the conventional LLDPE
materials such as prepared using Ziegler/Natta transition metal catalyst
systems.
3 0 This crosslinking phenomena is reflected by gels present in extruded film
and by a

CA 02283482 1999-09-O1
WO 98/42777 PCTlUS98/03504
decrease in the melt index of the polymer after extension. It is believed that
this
phenomena is caused by the organometallic structures of the metallocene
catalyst
residues and their silica supports present in the LLDPE polymer, from which
free
radicals can be generated under the high heat conditions of extrusion. Whereas
thermal degradation processes in conventional LLDPE tends to produce more low
molecular weight species which serve to plasticize the polymer, the thermal
degradation processes in metailocene polymerized LLDPE tends to favor
increased
crosslinking of the molecular chains, likely because the short chain branches
are
more randomly spaced along the polymer chains and thus less susceptible to
1 o scission.
Accordingly, it is a primary object of this invention to provide linear low
density
ethylene polymer compositions which are stabilized to inhibit crosslinking of
the
molecular chains when subjected to shear conditions encountered during
thermoforming.
The invention provides a composition comprising a mixture of (a) a linear low
density ethylene polymer containing from about 1-30 mol% of at least one alpha-
olefin comonomer and having an average molecular weight distribution Mw/Mn of
_< 3 and a compositional distribution breadth index of at least 50%; and (b}
at least
one metal carboxylate of a Ci to C~ saturated or unsaturated carboxylic acid,
said
metal carboxylate present in said composition in an amount sufficient to
inhibit
2 5 crosslinking of said composition when said composition is heated under
conditions
of shear at a temperature above the melting point of said ethylene polymer.
The invention also provides a process for melt processing a polymer
composition
comprising: (a) forming a composition comprising a mixture of a linear low
density
ethylene polymer containing from about 1-30 mol% of at least one alpha-olefin
r ,.

CA 02283482 1999-09-O1
WO 98/42?77 PCT/US98/03504
-5-
comonomer and having an average molecular weight distribution Mw/Mn of _< 3
and
a compositional distribution breadth index of at least 50%, and at least about
0.005
wt.%, based on the weight of said ethylene polymer, of a metal carboxylate of
a C,-
Cu carboxylic acid; (b) thermoforming said composition to form a shaped
article at
a temperature above the melting point of said ethylene polymer under mixing
conditions of shear sufficient to cause scission of at least some of the
polymer chains
of said ethylene polymer; and (c) recovering said shaped article.
Shaped articles, e.g. films, prepared by mixing and shaping the polymer
composition
1 o of this invention exhibit a lower degree of crosslinking as evidenced by
less gel
formation in the extruded film and a higher polymer melt index after
thermoforming
than an otherwise identical composition which is free of the metal carboxylate
stabilizer.
DETAILED DESCRIPTION OF THE INVENTION
Prior to a detailed discussion of this invention, it should be pointed out
that it is
known in the art to include minor quantities of various metal carboxylates
into
polyethylene compositions to enhance various physical properties of the
composition or films prepared therefrom. For example, US Patent 4,454,281
discloses low density ethylene copolymer compositions containing a combination
of
metal salt of a fatty acid and an antiblocking agent, present to improve the
optical
properties of extruded film. A similar composition containing a combination of
a
dibenzylidene sorbitol and a metal stearate is disclosed in EPA 0 091 612. In
2 5 addition, molded articles prepared from polyethylene and exhibiting
improved
~ surface gloss and low haze and containing minor amounts of a mixture of a
metal
salt of a C~-C~ fatty acid and a metal salt of an aromatic carboxylic acid are
' disclosed in UK Patent 1,338,142. However, none of these or other prior art
publications disclose the use of metal carboxylates in combination with the
LLDPE
3 o polymers of this invention to inhibit crosslinking of the polymer when
heated under

CA 02283482 1999-09-O1
WO 98/42777 PCT/US98/03504
-6-
conditions of temperature and shear such as encountered during extrusion of
the
polymer composition.
The linear low density ethylene (LLDPE) polymer component of the present
invention is a copolymer (interpolymer) of from about 70-99 mol% of ethylene
and
from about 1-30 mol% of one or more alpha olefin comonomers, said polymer
having a density in the range of from about 0.9 to about 0.94 g/cm3. The
preferred
alpha-olefin content of the ethylene polymer lies in the range of from about 2-
15
mol%.
The molecular weight of the LLDPE component may range from 1,000 to 1,000,000
or more depending on the particular end use, preferably 104-105, and
especially
2x104-5x105. As used herein, the terms "average molecular weight" and
"molecular
weight" refer to weight average molecular weight unless otherwise indicated.
The
linear polyethylene component preferably has a narrow molecular weight
distribution (MWD). By "narrow MWD" is meant that the ratio of the weight
average molecular weight (MW) to the number average molecular weight (M~ is
less
than or equal to 3Ø Particularly preferred are the linear polyethylene
components
having a very narrow MWD, i.e. M,ylM" less than or equal to 2.5, and
especially less
2 o than or equal to 2Ø Molecular weight distributions of ethylene
interpolymers are
readily determined by techniques known in the art, such as, for example, size
exclusion or gel permeation chromatography.
The linear polyethylene component preferably has a composition distribution
(CD)
such that the composition distribution breadth index (CDBI) is at least 50%,
more
preferably greater than about 60% and most preferably greater than about 70%.
CDBI is a measure of composition distribution, and is defined as the weight
percent
of the copolymer molecules having a comonomer content within 50% (that is, 25%
3 0 on each side) of the median total molar comonomer content. The CDBI of a
~.~.. 1 , _.

CA 02283482 1999-09-O1
WO 98/42777 PCT/US98103504
_'j_
copolymer is readily determined utilizing well known techniques for isolating
individual fractions of a sample of the copolymer. One such technique is
Temperature Rising Elution Fraction (TREF), as described in Wild et al., J.
Poly.
Sci., Poly. Phys. Ed., vol. 20, p. 441 (1982), which is incorporated herein by
reference.
To determine CDBI, a solubility distribution curve is first generated for the
copolymer. This may be accomplished using data acquired from TREF techniques
described above. This solubility distribution curve is a plot of the weight
fraction of
the copolymer that is solubilized as a function of temperature. This is
converted to a
weight fraction versus composition distribution curve. For the purpose of
simplifying the correlation of composition with elution temperature, the
weight
fractions less than 15,000 are ignored. These low weight fractions generally
represent a trivial portion of the polymer. The remainder of this description
and the
appended claims maintain this convention of ignoring weight fractions below
15,000
in the CDBI measurements.
From the weight fraction versus composition distribution curve the CDBI is
deternined by establishing what weight percent of the sample has comonomer
2 0 content within 25% each side of the median comonomer content. Further
details of
determining CDBI of a copolymer are known to those skilled in the art, see,
for
example, PCT Patent Application WO 93/03093, published February 18, 1993.
Unless otherwise indicated, terms such as "comonomer content", "average
2 5 comonomer content" and the like refer to the bulk comonomer content of the
indicated copolymer on a molar basis.
' The linear polyethylene of the invention may be prepared by the use of
activated
catalyst systems of the metallocene type known to provide narrow CD/MWD
resins.
3 0 Cyclopentadienylide catalyst systems using a metallocene complex in
conjunction

CA 02283482 1999-09-O1
WO 98/42777 PCT/US98/03504
_g_
with an alumoxane cocatalyst or reaction product thereof are suitable for
preparing
the polymer components utilized in the invention. Similarly, catalyst systems
with
ionizing cocatalysts capable of providing non-coordinating anions will also be
suitable in this regard. The metallocene catalyst may be represented by the
general
formula (CY)mMR"R'p wherein CY is a substituted or unsubstituted
cyclopentadienyl ring; M is a Group IVB, or VB transition metal; R and R' are
independently selected from halogen, hydrocarbyl groups, or hydrocarboxyl
groups
having 1-20 carbon atoms; m = 1-3, n = 0-3, p = 0-3, and the sum of m+n+p
equals
the oxidation state of M. Various forms of the catalyst system of the
metallocene
type may be used for polymerization to prepare the polymer components of the
present invention including those of the homogenous or the heterogenous,
supported
catalyst type wherein the catalyst and aiumoxane cocatalyst are together
supported
or reacted together onto an inert support for polymerization by gas-phase,
high
pressure, slurry, or solution polymerization.
A more complete description of these metallocene catalysts and their method of
preparation may be found in the above referenced US Patent 5,382,631, and also
in
US Patents 5,408,017, 5,470,927, 5,483,014 and WO 96/04319.
2 0 Metal carboxylates which are suitable as crosslinking retarders in this
invention
include metal salts of carboxylic acids having from 1 to about 22 carbon
atoms,
more preferably from 2 to about 18 carbon atoms. The number of carbon atoms
includes the carboxylic acid group. Typical acids are monocarboxylic saturated
or
unsaturated acids such as formic, acetic, heptylic, caprylic, capric, lauric,
pahnitic,
2 5 stearic and behenic acids as well as their unsaturated analogs such as
oleic and
ricinoleic acids. The carboxylic acid may also include aromatic acids such as
benzoic or naphthenic acid and their derivatives.
Suitable salt-forming cations include zinc, calcium, copper, cadmium,
aluminum,
3 0 sodium, potassium, nickel, magnesium, barium, lead and iron, most
preferably
~ i

CA 02283482 1999-09-O1
WO 98/42777 PCT/US98/03504
-9-
cations of Group I to Group III metals of the Periodic Table. The most
preferred
carboxylates include zinc acetate and zinc stearate.
a The quantity of metal carboxylate added to the ethylene polymer composition
to
hinder polymer crosslinking may generally range from about 0.005 up to about 1
wt.%, more preferably from about 0.01 up to about 0.5 wt.%, and most
preferably
from about 0.01 up to about 0.25 wt.%, based on the weight of the ethylene
polymer
present in the composition.
The composition of the invention may also include a blend of the LLDPE of the
invention with up to about 50 wt.%, based on total polymer content, of one or
more
different olefin polymers such as other low, medium or high density
polyethylenes,
polypropylene, copolymers of ethylene and propylene and like thermoplastics.
In a preferred embodiment of the invention, the composition also contains one
or
more antioxidant (stabilizer) materials, such as phenolic, phosphite or
phosphonite
antioxidants.
Suitable phenolic antioxidants which may be used include polyalkyl-substituted
2 0 phenols such as 2,6-di-t-butyl-p-cresol, octadecyl-3-(3',5'-di-t-butyl-4'-
hydroxyphenyl} propio-nate, octadecyl-(3,5-di-tert-butyl-4-hydroxyhydro-
cinnamate), 2,6-di-tert-butyl-4-me-thylphenol, tetrakis (methylene-3(3', 5'-di-
t-butyl-
4-hydroxyphenyl)propionate} meth-ane, 1,3,5-trimethyl-2,4,6-tris(3,5-di-t-
butyl-4-
hydroxybenzyl) benzene, 1,3,5-tris(3,5-di-t-butyl-4-hydroxybenzyl)
isocyanurate,
2 5 and n-octadecyl-8-(4'-hydroxy-3',5'-di-t-butylphenyl) propionate. These
phenolic
. antioxidants may be used either individually or in combination of two or
more
thereof.
Suitable phosphite and phosphonite stabilizers which can be used include alkyl
and
3 0 aryl phospites such as tri-n-octyl, tri-n-decyl and tri (mixed mono and
dinonyl

CA 02283482 1999-09-O1
WO 98/42777 PCT/US98/03504
-10-
phenyl) phosphate, distearyl pentaerythritol diphosphite; tetrakis {2,4-t-
butylphenyl)-
4,4' biphenylene diphosphite; bas(2,4-di-t-butylphenyl)-pentaerythritol
diphosphite;
tris (2,4-di-t-butylphenyl) phosphate; and like materials. The most preferred
stabilizes are those having the formula:
c~
Ro-~a~ ~~-oK
0
wherein R is C2-C18 alkyl or alkyl-substituted phenyl. A particularly
preferred
phosphate is of the above formula wherein R is -CigH3~, marketed by Borg
Warner
l0 under the tradename WESTON~6I9, or WESTON~399. Mixtures of phenolic
and phosphate antioxidants may also be used.
The antioxidant is preferably added to the composition at a level of from
about 100
to about 5,000 parts per million, more preferably 150 to 2500 parts per
million,
15 based on the polymer content of the composition.
The composition may also contain one or more adjuvant materials which are
commonly employed in ethylene polymer-based extrudable compositions, including
plasticizers, fillers, pigments, lubricants, slip agents, processing aids,
dyes, pigments
2 0 and like materials.
The composition may also contain additional decomposition inhibitors or free
radical scavengers such as zinc or magnesium oxide, polyakylene glycol anti-
gelation agents such as polyethylene glycol or polypropylene glycol. These
2 5 components or combinations thereof may be generally present in the
composition at
Levels in the range of from about 0.01 to about 1 wt%, based on the weight of
the
polymer component of the composition.
These and other adjuvants, as well as the metal carboxylate, may be
incorporated
3 0 into the composition either at the time of polymer composition is
pelletized or by the
r i.

CA 02283482 1999-09-O1
WO 98!42777 PCTIUS98/03504
-11-
user as a separate additive package prior to the thermoforming of the
composition to
form shaped articles.
The polymer composition of this invention may be thermoformed to form shaped
articles such as films, containers and molded three dimensional articles by
well
known techniques such as blown film or cast film extrusion, uni- or biaxial
orientation, blow molding, injection molding or rotomolding. In these methods,
the
polymer composition is first mixed under conditions of shear in a suitable
mixing
device such as a screw extruder, Banbury mixer or Brabender~ plasticorder and
heated to a temperature above the melting point of the polymer components of
the
composition, generally in the range of about 140 °C up to about 350
°C, more
preferably from about 150 °C to about 300 °C. Tubular film may
be prepared using
an extruder/rnixer by passing the extrudate through an annular die in an
upward or
downward direction and the resulting tubular film expanded to the desired
extent
using a pressurized gas, cooled and flattened, followed by slitting to form a
film.
Other shaped articles such as bottles, lids and other molded shapes may be
prepared
by subjecting extrudate or molten polymer to well known injection molding,
blow
molding or rotomolding techniques.
2 0 The following examples are illustrative of the invention. Materials
identified in the
examples are as follows:
ECD 103 - a metailocene/alumoxane polymerized copolymer
of ethylene and about 3 mol% hexene - MI of 1.04
2 5 dg./min, density of 0.9169 g/cm3, and an ash of 274 ppm.
ECD 103' - a metallocenelalumoxane polymerized copolymer
of ethylene and about 3 mol% hexene - MI of 1.13
' dg./min, density of 0.9161 g/cm3, and an ash of 544 ppm.
LLDPE 3001 - ,~. Ziegler/Natta polymerized copolymer of
3 0 ethylene and about 3 mol% hexene - MI of

CA 02283482 1999-09-O1
WO 98/42777 PCT/US98/03504
-12-
0.88 dg/min, density of 0.9187 g/cm3, and an ash of 367 ppm.
IRGANOX~ 1076 - octadecyl - 3-(3',5'-ditert-butyl-4'-
hyroxyphenyl) propionate.
W-399 - phosphite
PEG - polyethylene glycol (anti gelation agent)
PPA - fluoroelastomer (processing agent)
l0 A series of 12 different formulations as described in Table 1 were prepared
by
mixing the indicated ingredients in a small scale Brabenderd plasticorder at
250 °C
for the times indicated in Table 1. The resulting blends were evaluated for
Melt
Index (MI - ASTM 1238 - Cond. E), Flow Index (HIvuJZ - ASTM 1238 - Cond F),
Melt Index Ratio (MIR - Flow Index/Melt Index) and Swell Ratio (SR), which is
a
measure of the diameter of the polymer strand extruded in the MI measurement
and
is inversely proportional to the melt index.
..

CA 02283482 1999-09-O1
WO 98/42777 PCT/US98/03504
-13-
NO. MIXTURE WEIGHT TEMP. TIME MI HMI MIR SR
(G) C (MIN)
1 ECD (50+.05)250 10 0.07 8.46 120.85 0.09
103 + Zn0
2 ECD (50+.05)250 75 0.24 30.80 126.75 0.12
103 + Zn0
3 ECD (50+.05)250 10 0.34 20.20 59.41 0.10
103 + ZnAc
4 ECD (50+.05)250 75 0.61 48.66 79.77 0.12
103 + ZnAc
5 ECD (50+.05)250 10 0.55 18.81 33.59 0.10
103'+ Zn0
6 ECD (50+.05)250 75 0.55 36.33 66.05 0.13
103'+ Zn0
7 ECD (50+.05)250 10 1.31 90.60 69.16 0.10
103'+ ZnAc
B ECD (50+.05)250 75 1.51 99.66 66.00 0.14
103'+ ZnAc
9 LLDPE (50+.05)250 10 0.31 26.64 85.93 0.10
3001 +
Zn0
10 LLDPE (50+.05)250 75 2.20 106.08 48.60 0.12
3001 +
Zn0
11 LLDPE (50+.05)250 10 0.71 44.16 62.18 0.11
3001 +
2nAc
12 LLDPE (50+.05)250 75 2.17 106.08 48.88 0.11
3001+ZnAc
Formulations 1-2, 5-6 and 9-10 contain zinc oxide (Zn0) which is a known
additive
for minimizing the formation of free radical groups, while formulations 3-4, 7-
8 and
11-12 contain zinc acetate, an additive within the scope of the invention.
Comparison of the met index and melt flow properties show that the
compositions
based on the metallocene polymerized ethylene polymer containing the zinc
acetate
additive exhibit an increase in melt index and melt flow properties which is
indicative of a reduced crosslinking propensity under the conditions of shear
mixing.

CA 02283482 1999-09-O1
WO 98/42777 PCT/US98/03504
-14-
This effect is less predominant with respect to samples 11 and 12 as compared
with
samples 9 and 10 which each contain a Ziegler/Natta polymerized ethylene
polymer.
A series of 19 different formulations each containing 50 g of ECD-103
polyethylene
and other components in the quantities listed in Table 2 were processed in a
Brandender~ plasticorder at 250 °C for the times indicated in Table 2.
Sample 13
reflects the properties of unprocessed virgin ECD-103, whereas samples 14 and
15
are processed controls containing no additives. The Irganox~ 1076, W-399 and
indicated zinc salts were added as an additive package in the quantities
listed in the
table prior to mixing. Samples 16 and 17 also contained 200 ppm of PEG and 800
ppm of PPA.
The data showed a synergistic effect with respect to the use of the additive
package
components Irganox~ 1076 and W 399 used in combination with zinc acetate or
zinc stearate as compared with formulations which did not contain this
combination
of ingredients or which contained ZnO, as reflected by a comparison of the
melt
index values of samples 18, 19, 28 and 29 with samples 16 and 17, as well as a
2 0 comparison of the melt index values of samples 22, 23, 30 and 31 with
samples 26-
27.

CA 02283482 1999-09-O1
WO 98!42777 PCT/US98/03504
-15-
No. Irganox W399 Zinc Time MI HIHI MFR SR
1076 ppm Salt mins g/ming/min
ppm
ppm
13 -- -- - -- 1.05 18.6 17.7 0.0895
14 -- -- - 5 0.12 9.3 77.5 0.095
15 -- -- - 10 0.06 8.7 145.0 0.087
,
16 1500 1500 - 5 0.96 16.16 16.83 0.087
17 1500 1500 - 10 0.59 16.12 27.32 0.105
18 1500 1500 ZnAc: 5 1.37 23.58 17.21 0.09
1000
19 1500 1500 ZnAC: 10 1.49 25.34 17.01 0.09
1000
20 500 500 ZnAC: 5 1.12 21.92 19.57 0.10
1000
21 500 500 ZnAC: 10 1.39 26.44 19.02 0.10
1000
22 500 500 ZnAc: 5 1.24 22.16 17.87 0.10
500
23 500 500 ZnAc: 10 1.27 22.06 20.85 0.10
500
24 1500 1500 ZnO: 5 1.27 21.36 17.07 0.088
1000
25 1500 1500 ZnO: 10 1.25 21.06 16.85 0.096
1000
26 500 500 ZnO: 5 1.12 20.87 18.62 0.102
500
27 500 500 ZnO: 10 0.76 20.24 26.63 0.107
500
28 1500 1500 ZnSt: 5 1.35 23.46 17.38 0.087
1000
29 1500 1500 ZnSt: 10 1.32 23.86 18.08 0.087
loco
30 500 500 ZnSt: 5 1.2 21.92 18.27 0.088
500
31 500 500 ZnSt: 10 1.3 26.54 20.42 0.096
500
note : All blends contained 50 g of ECD-103 copolymer and were processed at
250 °C.

Dessin représentatif

Désolé, le dessin représentatif concernant le document de brevet no 2283482 est introuvable.

États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : CIB de MCD 2006-03-12
Inactive : CIB de MCD 2006-03-12
Demande non rétablie avant l'échéance 2005-02-23
Le délai pour l'annulation est expiré 2005-02-23
Réputée abandonnée - omission de répondre à un avis sur les taxes pour le maintien en état 2004-02-23
Lettre envoyée 2003-03-25
Toutes les exigences pour l'examen - jugée conforme 2003-02-24
Exigences pour une requête d'examen - jugée conforme 2003-02-24
Requête d'examen reçue 2003-02-24
Lettre envoyée 2001-05-28
Lettre envoyée 2000-09-28
Inactive : Transfert individuel 2000-08-31
Inactive : Page couverture publiée 1999-11-15
Inactive : CIB attribuée 1999-11-02
Inactive : CIB en 1re position 1999-11-02
Inactive : Lettre de courtoisie - Preuve 1999-10-19
Inactive : Notice - Entrée phase nat. - Pas de RE 1999-10-14
Demande reçue - PCT 1999-10-13
Demande publiée (accessible au public) 1998-10-01

Historique d'abandonnement

Date d'abandonnement Raison Date de rétablissement
2004-02-23

Taxes périodiques

Le dernier paiement a été reçu le 2003-01-07

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
Taxe nationale de base - générale 1999-09-01
Enregistrement d'un document 1999-09-01
TM (demande, 2e anniv.) - générale 02 2000-02-23 2000-01-21
TM (demande, 3e anniv.) - générale 03 2001-02-23 2001-01-23
Enregistrement d'un document 2001-04-19
TM (demande, 4e anniv.) - générale 04 2002-02-25 2001-12-20
TM (demande, 5e anniv.) - générale 05 2003-02-24 2003-01-07
Requête d'examen - générale 2003-02-24
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
EXXONMOBIL CHEMICAL PATENTS INC.
Titulaires antérieures au dossier
PALANISAMY ARJUNAN
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document (Temporairement non-disponible). Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(yyyy-mm-dd) 
Nombre de pages   Taille de l'image (Ko) 
Abrégé 1999-08-31 1 40
Description 1999-08-31 15 645
Revendications 1999-08-31 4 113
Page couverture 1999-11-14 1 39
Rappel de taxe de maintien due 1999-10-25 1 111
Avis d'entree dans la phase nationale 1999-10-13 1 193
Demande de preuve ou de transfert manquant 2000-09-04 1 110
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 2000-09-27 1 120
Rappel - requête d'examen 2002-10-23 1 115
Accusé de réception de la requête d'examen 2003-03-24 1 185
Courtoisie - Lettre d'abandon (taxe de maintien en état) 2004-04-18 1 175
Correspondance 1999-10-13 1 15
PCT 1999-08-31 17 473