Sélection de la langue

Search

Sommaire du brevet 2302501 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Demande de brevet: (11) CA 2302501
(54) Titre français: SYSTEME DE TRANSMISSION DE DONNEES AVEC STATIONS RELAIS INSTALLEES ENTRE UNE STATION SOURCE ET UNE STATION CIBLE
(54) Titre anglais: DATA TRANSMISSION SYSTEM WITH RELAY STATIONS BETWEEN A SOURCE STATION AND A TARGET STATION
Statut: Réputée abandonnée et au-delà du délai pour le rétablissement - en attente de la réponse à l’avis de communication rejetée
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • H04B 07/155 (2006.01)
  • H04L 12/44 (2006.01)
(72) Inventeurs :
  • HOSEIT, WINRICH (Allemagne)
  • MECKELBURG, HANS-JURGEN (Allemagne)
(73) Titulaires :
  • DIRC TECHNOLOGIE GMBH & CO. KG
(71) Demandeurs :
  • DIRC TECHNOLOGIE GMBH & CO. KG (Allemagne)
(74) Agent: SMART & BIGGAR LP
(74) Co-agent:
(45) Délivré:
(86) Date de dépôt PCT: 1998-08-27
(87) Mise à la disponibilité du public: 1999-03-11
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Oui
(86) Numéro de la demande PCT: PCT/EP1998/005451
(87) Numéro de publication internationale PCT: EP1998005451
(85) Entrée nationale: 2000-02-28

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
197 37 897.8 (Allemagne) 1997-08-29

Abrégés

Abrégé français

Selon l'invention, un système de transmission de données numérique décentralisé présente de nombreuses stations réparties, qui peuvent effectuer un échange de donnés uniquement avec des stations voisines. Les stations se trouvant entre une station source et une station cible font fonction de stations relais. La transmission d'une station à l'autre s'effectue à chaque fois sur des canaux différents. Dans chaque station est effectuée une conversion des signaux reçus par un canal de réception, sur un canal d'émission différent de ce dernier. La conversion d'un train de bits ou de symboles arrivant sur le canal de réception s'effectue symbole par symbole ou bit par bit, de sorte que les données sont transmises en flux continu, sans apparition de retards importants lors de la conversion, comme cela se produit lors de la transmission par paquets. Une matrice de couplage (KM) est utilisée pour la conversion. Chaque canal (C1...Cn) est divisé en une pluralité de canaux secondaires (CH-1...CH-8). L'affectation des canaux s'effectue de sorte que chaque station utilise, pour l'émission, si possible uniquement les canaux secondaires (SC1...SC8) situés dans le même canal.


Abrégé anglais


A decentralized digital data transmission system has
a large number of distributed stations which can only engage
in direct data communication with neighbouring stations.
Stations located between a source station and a target
station function as relay stations. Station to station transmission
occurs in each case on different channels. In each
station signals received by a reception channel are converted
onto a different transmission channel. Conversion
of a bit flow or symbol flow arriving at said reception channel
is carried out on a bit-by-bit or symbol-by-symbol basis
so that data is transmitted in a continuous flow without
long delays occurring during conversion as is the case for
transmission of data packets. A coupling matrix (KM) is
used for conversion. Each channel (C1...Cn) is divided into
a plurality of sub-channels (CH-1...CH-8). Transmission
channels are allocated in such a way that each station uses
wherever possible only sub-channels (SC1...SC8) located
in the same channel.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


10
CLAIMS
1. Data transmission system with distributed stations (S)
which can only engage in direct data communication with
neighbouring stations on selectable transmission channels,
where a symbol flow consisting of consecutive symbols
is transmitted via the channel and where stations
located between a source station and a target station
function as relay stations,
characterised in that
the signals received at each station (S) are converted
from the respective reception channel to a different
transmission channel, the conversion of the symbol flow
arriving on the reception channel to the transmission
channel taking place symbol-by-symbol.
2. Data transmission system as per Claim 1, characterised in
that the transmission channels are divided into sub-channels
(SC), each of which is suitable for transmitting a
symbol flow, and that the symbols of all sub-channels
(SC1...SC8) of a transmission channel are transmitted
synchronously.
3. Data transmission system as per Claim 2, characterised in
that bits (A, B, C) are added to the synchronously transmitted
symbol positions of the sub-channels (SC1...SC8)
of a channel based on the information contents of these
symbol positions, where error detection and/or error
correction is carried out at the receiving station.
4. Data transmission system as per Claim 2 or 3, characterised
in that error detection and/or error correction is
carried out on each individual sub-channel via a predefined
number of symbol positions.

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 02302501 2000-02-28
1
PCT/EP 98/05451
DATA TRANSMISSION SYSTEM WITH RELAY STATIONS BETWEEN A
SOURCE STATION AND A TARGET STATION
The invention relates to a data transmission system for the
digital transmission of data, including voice data.
A decentralised data transmission network with numerous dis-
tributed stations is known from DE 33 37 648 C2, in which
direct data communication takes place only between neighbou-
ring stations. The transmission path from a source station to
a target station is defined by a special routing system and
the data are then transmitted from station to station in both
directions on different channels. In this context, each of the
stations transmits on a single channel, which is used only for
linking exactly two stations. This, however, requires a corre-
spondingly adapted data rate.
Packet-oriented data transmission between the stations of a
data transmission network is also known from the Internet. In
this case, data are grouped in packets and these packets are
transmitted separately via the most favourable transmission
path in each case. This kind of packet transmission causes
considerable delays, which are at least equivalent to the time
required to transmit one packet. Due to the associated delays,
packet transmission of this kind is unfavourable for a tele-
phone system. The delays would accumulate in accordance with
the number of stations involved in transmission, particularly
in a decentralised data transmission network which uses sta-
tion-to-station transmission.
The object of the invention is to design a decentralised digi-
tal data transmission system which enables the use of diffe-
rent transmission channels between two stations and greatly
minimises delays at the same time.

CA 02302501 2000-02-28
2
According to the invention, the object is solved by the featu-
res specified in Patent Claim 1.
The data transmission system according to the invention is
characterised in that the signals received at each station are
converted symbol-by-symbol from the reception channels to at
least one different transmission channel. This means that each
symbol flow coming in on a reception channel is converted to
the transmission channels. This process is similar to forming
information packets consisting of a single symbol. In the
simplest case, a symbol is one bit. However, it can also con-
sist of a number of related bits, such as the eight bits re-
presenting a letter symbol. During a transmission, the number
of bits per symbol position is constant within a sub-channel.
The number of bits per symbol is defined at the beginning of
transmission, depending on the required or desired degree of
transmission quality. Symbol-by-symbol conversion means that
only a delay equivalent to one symbol position of the symbol
flow is required at each station. This delay is related to the
fact that the symbol string on the incoming channels and the
outgoing channels is normally not synchronised, meaning that
a certain waiting time is required before the outgoing signal
can be transmitted in synchrony with the transmission chan-
nels. This delay, however, is minimal. In practice, it amounts
to roughly one to two symbol positions. The delays of the
individual stations accumulate. As a result of the minimal
delay at each individual station, the resulting total delay of
the transmission path is still acceptable.
According to a preferred configuration of the invention, the
transmission channels are divided into sub-channels, each of
which is suitable for transmitting a symbol flow and where the
symbols of all sub-channels of a transmission channel are
transmitted synchronously. This means that each station can
receive incoming signals on all channels. The outgoing sub-
channels can be transmitted in concentrated fashion on a sing-
le channel or a few selected ones. The symbol positions of all
sub-channels are transmitted synchronously on each channel,

CA 02302501 2000-02-28
3
which consists of a pre-defined number of sub-channels. Each
sub-channel supports unidirectional data flow. The data arrive
at the station on each sub-channel of the entire channel sy-
stem in a continuous data flow, without being divided into
"frames" or "packets". Consequently, the data flow does not
require headers or any other defining elements. Rather, each
symbol of the data flow is converted to the sub-channel selec-
ted for transmission within a very short time after reception
and transmitted synchronously with the transmission channel.
The sub-channels are allocated to a transmission channel bet
ween two stations such that the transmission frequency range
is dynamically adapted to the information content to be trans
mitted. This means that the number of sub-channels per channel
is variable.
Preferably, allocation for transmitting envisaged channels
occurs at a station in such a way that all transmitting sub-
channels of this station are located within just a few chan-
nels. This considerably reduces the number of channels to be
used. In this context, it must be borne in mind that, if a
station is transmitting on a channel, this channel cannot be
used by neighbouring stations, in order to avoid interference
or other disturbances . Even if a station uses only one sub-
channel of a channel, the entire channel is reserved for this
station. Therefore, all connections which run through a speci-
fic station are preferably distributed over sub-channels all
contained in the same channel.
In a preferred configuration of the invention, appropriate
error correction bits are added to the contents of the syn-
chronously transmitted symbol positions of the sub-channels of
a channel, and error correction is carried out at the recei-
ving station, in order to reduce the probability of error in
the data link. Known methods can be used for error correction,
such as the FEC method (Forward Error Correction) or the ARQ
method (Automatic Re-transmission Request). The special featu-
re in the present case is that the contents of the synchro-

CA 02302501 2000-02-28
4
nously transmitted symbol positions of the sub-channels of a
channel are used for error correction, where completely inde-
pendent information contents flow in the sub-channels. This
means that error correction is carried out on the basis of
bits which are associated with different information and which
merely happen to be located at the synchronous positions of
the channel.
The use of an error correction method is only sensible if a
bit error ratio of less than roughly 10-3 is to be achieved.
Simple error detection is adequate for higher bit error ra-
tios, in order to at least obtain information on the quality
of the connection between the two participating stations.
Error detection of this kind can be provided by a redundant
error control element (e. g. parity bit), this error control
element being added to the synchronously transmitted symbol
positions of all sub-channels of a channel. It is alternative-
ly or additionally possible, after each transmission of a pre-
defined number of symbol positions of a sub-channel, to gene-
rate an error detection bit for each sub-channel, which corre-
sponds to the consecutive information contents of this sub-
channel, error detection being carried out at the receiving
station.
A practical example of the invention is described in more
detail below based on the drawings.
The drawings show the following:
Fig. 1 A diagram of part of the data transmission system
showing the distributed stations,
Fig. 2 An example of a connection from a source station to
a target station,
Fig. 3 A coupling matrix for frequency conversion at each
station,

CA 02302501 2000-02-28
Fig. 4 An example of data flows running through the coup-
ling matrix shown in Fig. 3, and
Fig. 5 A diagram of the consecutive symbol positions in a
5 channel with error correction bits and error detec
tion bits.
The data transmission system consists of numerous distributed
stations S, where each station represents a subscriber posi-
tion. Each station contains transmitting and receiving equip-
ment. Two frequency bands of 12.8 MHz each are available for
radio transmission of the data. The two frequency bands are
separated from one another by duplex spacing. One frequency
band is designated as the uplink and the other as the down-
link. In order to establish a connection, a channel in the
uplink is used for the connection in the one direction and a
channel in the downlink for the connection in the other direc-
tion, so that the two directions are completely decoupled from
one another in terms of frequency.
In this practical example, the two frequency bands of 12.8 MHz
bandwidth each are divided into a total of 1,280 channels with
a width of 20 kHz. Some of these channels are used as informa-
tion channels for establishing a connection and for other
purposes. Each station can receive on any of the available
channels and transmit on any of the available channels.
In Fig. 1, it is assumed that a connection is to be establis-
hed between a source station S61 and a target station 565.
This connection runs via stations S60 and 563, which act as
relay stations. In addition, a connection from station S62 to
Station S64 is relayed by station 560.
In the example of an established connection shown in Fig. 2,
data transmission from S61 takes place on channel C1, data
transmission from S60 to S63 on channel C25 and data trans-
mission from S63 to target station S65 on channel C12. Station
560, which is given special consideration in this example,

CA 02302501 2000-02-28
6
also transmits on channel C25 for stations S61 and 564.
Routing, i.e. selection of the stations through which the
connection is to be established, and selection of the channels
are handled by way of a dialogue conducted between the parti-
cipating stations. Routing (path-finding) and establishment of
the connection are not the object of the present invention.
Figure 3 shows a coupling matrix KM, which is contained in
each station. For reasons of simplicity, each symbol position
represented by a box is assumed to consist of one bit in this
practical example.
Each station contains a channel register CR-1...CR-n for every
channel C1.:.Cn. Channel register CR-1 contains eight informa-
tion symbol positions 1...8, where each of the symbol posi-
tions corresponds to one sub-channel SC. Thus, channel C1 is
divided into eight sub-channels 1...8. Each sub-channel has a
bandwidth of 20 kHz, where the frequencies of all sub-channels
1-8 are consecutive. A unidirectional data link can be estab-
lished over one sub-channel SC.
Figure 3 shows the time-slot patterns for sub-channels 4 and
5 of channel C1, in which symbols are transmitted to channel
register 1. Transmission takes place at a frequency of 20 kHz
in a continuous symbol flow.
The synchronously received symbols (in this case: bits) of the
sub-channels of a channel enter a receiving register ER1...ERn
and are transmitted from there to the respective channel regi-
ster CR-l...CR-n with a delay of two symbol durations. Channel
registers CR-1 ...CR-n are each associated with the columns of
the coupling matrix. The coupling matrix has n rows and m
columns, where each row and each column is assigned to a dif-
ferent sub-channel and a different frequency. The rows of
coupling matrix KM each correspond to one sub-channel or
transmitting frequency. Each channel has one channel register
CR-1...CR-n, which contains one symbol position for each sub-

CA 02302501 2000-02-28
7
channel 1...8. The symbol positions of all transmission-side
channel registers are associated with the rows of coupling
matrix KM. Each transmission-side channel register CR-l...CR-n
is assigned a transmission register SR1...SRn.
Coupling matrix KM is of integrated circuit design, where
corresponding control signals can connect the nodes to the
intersections of a row and a column. The associated node re-
mains connected during connection.
In the practical example shown, it is assumed that the infor-
mation received on sub-channel No. 1 of channel C1 is to be
relayed on sub-channel No. 2 of channel 25. There is a connec-
ted node KP at the associated intersection of the coupling
matrix, so that the bit located in position No. 1 of receiving
channel register CR-1 is transmitted to position No. 2 of
transmitting channel register CR-25 for channel C25.
In the same way, the signals received on sub-channel No. 4 of
channel C2 are transmitted to sub-channel No. 6 of channel C25
and sent out on this channel.
Figure 4 shows an example of the timing of signals received on
the sub-channels of channels C1, C2 and C3. At the associated
station, such as station S60 in Figs. 1 and 2, the signals
received there and intended for relaying are converted to
channel C25. For station S60, a dialogue with the neighbouring
stations previously determined that channel C25 is available
for data transmission.
As Fig. 2 shows for the selected practical example, station
S60 receives the data from station S61 on channel Cl which it
is supposed to relay to station 563. Consequently, these data
are converted to channel C25 at station S60. At station 563,
the same data are converted to another channel, such as C12,
and transmitted to target station 565.
In the selected example, station S60 considered here receives

CA 02302501 2000-02-28
8
signals from station S62 on channel C2. These signals are to
be relayed to station 564. Channel C25 is again selected for
this purpose. Finally, signals are also to be transmitted from
station S60 to station.S6l, for which purpose another sub-
s channel of channel C25 is selected. Everything station S60
transmits is on channel C25, but on different sub-channels.
Figure 4 shows the conversion of the data at station S60,
which were received by stations S61 and S62 on channels C1 and
C2. These data are converted to channel C25, but to different
sub-channels. In this context, the time axis is designated as
"t" in each case. The top line of Fig. 4 shows that the symbol
positions transmitted on channels C1, C2 and C3 are delayed
relative to one another by a maximum of the duration of one
symbol position. For this reason, the data are retained in
channel register CR-1...CR-n (Fig. 3) until the associated
symbol position has been received for all channels. Conversion
to the outgoing channels is then carried out simultaneously in
coupling matrix KM.
In addition to the symbol positions of sub-channels 1...8,
which transmit the information, three other bit positions have
been added to each channel for error correction bits A, B, C.
The contents of these additional bit positions are analysed in
receiving register ER1...ERn and used to correct errors in the
information bits received simultaneously on one channel. Only
the corrected information bits are entered in the correspon-
ding channel register CR-l...CR-n.
In transmission registers SRl...SRn, error detection bits A,
B, C are added to the eight information symbols of a channel,
before the entire bit volume is transmitted. These error de-
tection bits are generated by an error detection algorithm in
accordance with the contents of the information symbol posi-
tions. After receiving the entire signal, error correction is
performed in the same way using the algorithm.

- CA 02302501 2000-02-28
9
Figure 5 shows a channel's individual symbol positions in
relation to their timing, where the numbers 1...8 refer to the
information symbol positions and represent sub-channels. These
sub-channels have different frequencies. In Fig. 5, frequency
f increases from left to right with increasing ordinal number.
The three error correction bit positions A, B, C have been
added to the last sub-channel (channel "8").
In the practical example shown in Fig. 5, a total of eight
consecutive symbols in the channel is followed by an addi-
tional symbol position P, which contains a parity bit for each
sub-channel that also serves the purpose of error detection.
The addition of the error detection bits and the error correc-
tion bits, and the analysis of these bits on the basis of the
information content, are carried out separately for each
transmission link. These additional bits are not involved in
frequency conversion.
As an alternative to the practical example described above, in
which the assignment of the sub-channels to the frequencies is
fixed, the assignment of the sub-channels to the frequencies
can be changed after each symbol step. This makes it possible
to ensure that a disturbance cannot permanently interfere with
a sub-channel.

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Demande non rétablie avant l'échéance 2003-08-27
Le délai pour l'annulation est expiré 2003-08-27
Réputée abandonnée - omission de répondre à un avis sur les taxes pour le maintien en état 2002-08-27
Lettre envoyée 2002-01-18
Lettre envoyée 2002-01-18
Inactive : Transfert individuel 2001-12-03
Exigences de prorogation de délai pour l'accomplissement d'un acte - jugée conforme 2001-07-04
Lettre envoyée 2001-07-04
Inactive : Prorogation de délai lié aux transferts 2001-06-01
Inactive : Page couverture publiée 2000-05-15
Inactive : CIB en 1re position 2000-05-11
Inactive : CIB attribuée 2000-05-11
Inactive : Lettre de courtoisie - Preuve 2000-04-25
Inactive : Notice - Entrée phase nat. - Pas de RE 2000-04-20
Demande reçue - PCT 2000-04-18
Demande publiée (accessible au public) 1999-03-11

Historique d'abandonnement

Date d'abandonnement Raison Date de rétablissement
2002-08-27

Taxes périodiques

Le dernier paiement a été reçu le 2001-08-20

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
Taxe nationale de base - petite 2000-02-28
TM (demande, 2e anniv.) - petite 02 2000-08-28 2000-07-28
Prorogation de délai 2001-06-01
TM (demande, 3e anniv.) - petite 03 2001-08-27 2001-08-20
Enregistrement d'un document 2001-12-03
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
DIRC TECHNOLOGIE GMBH & CO. KG
Titulaires antérieures au dossier
HANS-JURGEN MECKELBURG
WINRICH HOSEIT
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document (Temporairement non-disponible). Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.

({010=Tous les documents, 020=Au moment du dépôt, 030=Au moment de la mise à la disponibilité du public, 040=À la délivrance, 050=Examen, 060=Correspondance reçue, 070=Divers, 080=Correspondance envoyée, 090=Paiement})


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Dessin représentatif 2000-05-14 1 16
Abrégé 2000-02-27 1 71
Description 2000-02-27 9 436
Revendications 2000-02-27 1 41
Rappel de taxe de maintien due 2000-04-30 1 111
Avis d'entree dans la phase nationale 2000-04-19 1 193
Demande de preuve ou de transfert manquant 2001-02-28 1 108
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 2002-01-17 1 113
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 2002-01-17 1 113
Courtoisie - Lettre d'abandon (taxe de maintien en état) 2002-09-23 1 182
Rappel - requête d'examen 2003-04-28 1 113
Correspondance 2000-04-19 1 15
PCT 2000-02-27 12 520
Correspondance 2001-05-31 1 65
Correspondance 2001-07-03 1 14
Taxes 2001-08-19 1 33
Taxes 2000-07-27 1 32