Sélection de la langue

Search

Sommaire du brevet 2320988 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Demande de brevet: (11) CA 2320988
(54) Titre français: COMPOSITION NANOCOMPOSITE POLYMERE
(54) Titre anglais: POLYMER NANOCOMPOSITE COMPOSITION
Statut: Réputée abandonnée et au-delà du délai pour le rétablissement - en attente de la réponse à l’avis de communication rejetée
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • C08J 05/10 (2006.01)
  • C08K 03/34 (2006.01)
  • C08K 09/04 (2006.01)
  • C08L 77/00 (2006.01)
(72) Inventeurs :
  • GOETTLER, LLOYD A. (Etats-Unis d'Amérique)
  • LYSEK, BRUCE A. (Etats-Unis d'Amérique)
  • POWELL, CLOIS E. (Etats-Unis d'Amérique)
(73) Titulaires :
  • SOLUTIA INC.
(71) Demandeurs :
  • SOLUTIA INC. (Etats-Unis d'Amérique)
(74) Agent: OSLER, HOSKIN & HARCOURT LLP
(74) Co-agent:
(45) Délivré:
(86) Date de dépôt PCT: 1998-02-13
(87) Mise à la disponibilité du public: 1999-08-19
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Oui
(86) Numéro de la demande PCT: PCT/US1998/002768
(87) Numéro de publication internationale PCT: US1998002768
(85) Entrée nationale: 2000-08-11

(30) Données de priorité de la demande: S.O.

Abrégés

Abrégé français

L'invention concerne une composition nanocomposite polymère d'un polyamide et d'un silicate traité, ledit silicate traité comprenant un matériau à base de silicate traité avec au moins un ion ammonium de formule ?+¿NR¿1?R¿2?R¿3?R¿4?, dans laquelle R¿1?, R¿2?, R¿3? et R¿4? sont indépendamment sélectionnés dans un groupe formé d'hydrocarbure en C¿1?-C¿4? saturé ou insaturé, un hydrocarbure substitué et un hydrocarbure ramifié ou dans laquelle R¿1? et R¿2? forment un éther N,N-cyclique et éventuellement un des R¿1?, R¿2?, R¿3? et R¿4? désigne un hydrogène.


Abrégé anglais


A polymer nanocomposite composition of a polyamide and a treated silicate,
wherein the treated silicate includes a silicate material treated with at
least one ammonium ion of the formula: +NR1R2R3R4 wherein R1, R2, R3 and R4
are independently selected from a group consisting of a saturated or
unsaturated C1 to C22 hydrocarbon, substituted hydrocarbon and branched
hydrocarbon, or where R1 and R2 form a N,N-cyclic ether, and optionally, one
of R1, R2, R3 and R4 is hydrogen.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


Claims:
1. A polymer nanocomposite composition comprising:
(1) a polyamide, and
(2) treated silicate, wherein
said silicate material comprises silicate material treated with
at least one ammonium ion of the formula:
+NR1R2R3R4
wherein R1, R2, R3 and R4 are independently selected from a
group consisting of a saturated or unsaturated C1 to C22
hydrocarbon, substituted hydrocarbon and branched hydrocarbon,
and where R1 and R2 form a N,N-cyclic ether; wherein,
optionally, one of R1, R2, R3 and R4 is hydrogen;
wherein the milliequivalents of treatment per 100 g of
silicate of the treated silicate is from about 10
milliequivalents/100 g below the cation exchange capacity of the
untreated silicate to about 30 milliequivalents/100 g above the
cation exchange capacity of the untreated silicate; and
wherein the nanocomposite polyamide material demonstrates,
when tested, an improvement in tensile modulus and flexural
modulus, without a substantial decrease in tensile strength,
when compared with that of the polyamide without the layered
silicate.
2. The composition of claim 1, wherein the polyamide is
selected from the group consisting of nylon 6, nylon 6,6, nylon
53

4,6, nylon 6,9, nylon 6,10, nylon 6,12, nylon 11, nylon 12,
amorphous nylons, aromatic nylons and their copolymers.
3. The composition of claim 1, wherein the polyamide is
nylon 6,6 and its copolyers.
4. The composition of claim 1, wherein said treated
silicate is a layered silicate selected from the group
consisting of montmorillonite, nontronite, beidellite,
volkonskoite, natural or synthetic hectorite, saponite,
sauconite, magadite and kenyaite.
5. The composition of claim 1, wherein said treated
silicate is a fibrous, chain-like silicates selected from the
group consisting of chain-like materials, sepiolite and
attapulgite.
6. The composition of claim 1, wherein the composition
includes at least one additive selected from the group
consisting of surfactant, nucleating agent, coupling agent,
filler, plasticizer, impact modifier, chain extender,
compatibilizer, colorant, lubricant, antistatic agent, pigment
and fire retardant.
7. The composition of claim 6, wherein the coupling
agent is a silane.
8. The composition of claim 7, wherein the silane
coupling agent is gamma-aminopropyltriethoxysilane.
54

9. The composition of claim e, wherein the silane
coupling.agent concentration in the polymer composite is in the
range of about 0.5 to 5 weight % of the layered silicate.
10. The composition of claim 1, wherein R1 is selected
from the group consisting of hydrogenated tallow, unsaturated
tallow or a hydrocarbon having at least 6 carbons and R2, R3 and
R4 independently have from one to twelve carbons.
11. The composition of claim 1, wherein the ammonium
ions are quaternary ammonium ions selected from the group
consisting of dimethyldi (hydrogenated tallow) ammonium,
dimethylbenzyl hydrogenated tallow ammonium, dimethyl
(ethylhexyl) hydrogenated tallow ammonium, trimethyl
hydrogenated tallow ammonium, methylbenzyldi (hydrogenated
tallow) ammonium, N,N-2-cyclobutoxydi (hydrogenated tallow)
ammonium, trimethyl tallow ammonium, methyldihydroxyethyl tallow
ammonium and octadecylmethyldihydroxyethyl ammonium, and
mixtures thereof.
12. The composition of claim 1, wherein the ammonium
ions are quaternary ammonium ions selected from the group
consisting of dimethyldi (hydrogenated tallow) ammonium,
dimethyl (ethylhexyl) hydrogenated tallow ammonium,
dimethybenzyl hydrogenated tallow ammonium, methyldihydroxyethyl
tallow ammonium, and mixtures thereof.
55

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
POLYMER NANOCOMPOSITE COMPOSITION
Field of the Invention
This invention relates to a nanocomposite material
comprising a polyamide matrix having dispersed therein a treated
silicate. More particularly, this invention relates to a
nanocomposite material having dispersed therein a silicate
material treated with at least one ammonium ion.
Background of the Invention
International Application WO 93/04118 discloses a process
of preparing a polymer nanocomposite having platelet particles
dispersed therein. The process involves melt-processing the
polymer with a swellable and polymer-compatible intercalated
layered material and subjecting it to a shear rate sufficient to
dissociate the layers. The layered material is compatibilized
with one or more "effective swelling/compatibilizing agents"
having a silane function or an onium nation function.
International Application WO 93/04117 discloses a process
of preparing a polymer nanocomposite having platelet particles
dispersed therein, where the polymer and the swellable and
polymer-compatible intercalated layered material are melt-
processed. The layered material is compatibilized with one or
more "effective swelling/compatibilizing agents" selected from
primary ammonium, secondary ammonium and quaternary phosphonium
ions. The selected swelling/compatibilizing agents "...render
their surfaces more organophilic than those compatibilized by
tertiary and quaternary ammonium ion complexes...", facilitate
exfoliation, resulting in less shear in mixing and less
decomposition of the polymer, and heat stabilize the composite
more than other cations (such as quaternary ammonium cation)
swelling/compatibilizing agents.
1

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
International Patent Application WO 94/22430 discloses a
nanocomposite composition having a polymer matrix comprising at
least one gamma phase polyamide, and dispersed in the polyamide
is a matrix of a nanometer-scale particulate material. The
addition of the particulate material to nylon 6 resulted in an
improvement of flexural modules and flexural strength (from 7 to
35%), when compared to.unfilled nylon 6. The addition of the
particulate material to nylon 6,6 resulted in very little
improvement (1 to 3%) of flexural modules and flexural strength
when compared to unfilled nylon 6,6.
International Patent Application WO 93/10098 discloses a
polymer composite made by melt-processing a polymer with
swellable and polymer-compatible intercalated layered material
comprising layers having reactive organo- silane species
covalently bonded to their surfaces.
International Patent Application WO 95/14733 discloses a
method of producing a polymer composite that does not demonstrate
melting or glass transition by melt-processing a polymer with a
layered gallery-containing crystalline silicate. The examples
include intercalated sodium silicate and a crystalline
polyethylene oxide), montmorillonite intercalated with a
quaternary ammonium and polystyrene, and montmorillonite
intercalated with a quaternary ammonium and nylon 6.
None of the above references, alone or in combination,
disclose the present invention, as claimed.
Summary of the Invention
This invention relates to a polymer nanocomposite
composition suitable for automotive, electronic, film and fiber
applications, where a combination of tensile strength, tensile
modules and flexural modules are required. Additionally, the
claimed polymer nanocomposite composition also has a desirable
surface appearance, toughness, ductility and dimensional
2

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
stability. The composition processes well and tolerates a wide
range of molding conditions.
Such polymer nanocomposite composition comprises a
polyamide and a treated silicate, wherein the treated silicate
includes a silicate material treated with at least one ammonium
ion of the formula:
+N RiR2R3R9
wherein:
R1, R2, R3 and R9 are independently selected from a group
consisting of a saturated or unsaturated C1 to Czz hydrocarbon,
substituted hydrocarbon and branched hydrocarbon, or where R1 and
RZ form a N,N-cyclic ether. Examples include saturated or
unsaturated alkyls, including alkylenes; substituted alkyls such
as hydroxyalkyls, alkoxyalkyls, alkoxys, amino alkyls, acid
alkyls, halogenated alkyls, sulfonated alkyls, nitrated alkyls
and the like; branched alkyls; aryls and substituted aryls, such
as alkylaryls, alkyoxyaryls, alkylhydroxyaryls, alkylalkoxyaryls
and the like. Optionally, one of R1, R2, R3 and R4 is hydrogen.
The milligrams of treatment per 100 grams of silicate (MER) of
the treated silicate, described in more detail below, is from
about 10 milliequivalents/100 g below the cation exchange
capacity of the untreated silicate to about 30
milliequivalents/100 g above the cation exchange capacity of the
untreated silicate. The composite polymer matrix material
demonstrates, when tested, an improvement in tensile modulus and
flexural modulus, without a substantial decrease in tensile
strength, when compared to that of the polymer without the
treated silicate. As utilized herein, "substantial decrease"
means a decrease exceeding the statistically determined
deviations.
The present invention further relates to a process to
prepare the above polymer nanocomposite composition comprising
forming a flowable mixture of a polyamide and a treated silicate
3

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
material and dissociating (as that term is described in more
detail below) at least about 50o but not all of the treated
silicate. The treated silicate is a silicate material treated
with at least one ammonium ion of the formula:
+N R1RZR3R9
wherein:
R1, R2, R3 and Rq are independently selected from a group
consisting of a saturated or unsaturated C1 to C22 hydrocarbon,
substituted hydrocarbon and branched hydrocarbon, or where R1 and
RZ form a N,N-cyclic ether. Examples include saturated or
unsaturated alkyls, including alkylenes; substituted alkyls such
as hydroxyalkyls, alkoxyalkyls, alkoxys, amino alkyls, acid
alkyls, halogenated alkyls, sulfonated alkyls, nitrated alkyls
and the like; branched alkyls: aryls and substituted aryls, such
as alkylaryls, alkyoxyaryls, alkylhydroxyaryls, alkylalkoxyaryls
and the like. Optionally, one of R1, R2, R3 and R4 is hydrogen.
The milligrams of treatment per 100 grams of silicate (MER) of
the treated silicate, described in more detail below, is from
about 10 milliequivalents/100 g below the cation exchange
capacity of the untreated silicate to about 30
milliequivalents/100 g above the cation exchange capacity of the
untreated silicate. The composite polymer matrix material
demonstrates, when tested, an improvement in tensile modulus and
flexural modulus, without a significant decrease in tensile
strength, when compared to that of the polymer without the
treated silicate.
Description of the Preferred Embodiments
of the Invention
Polyamides of the present invention are synthetic linear
polycarbonamides characterized by the presence of recurring
carbonamide groups as an integral part of the polymer chain which
are separated from one another by at least two carbon atoms.
Polyamides of this type include polymers, generally known in the
4

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
art as nylons, which can be obtained from diamines and dibasic
acids having the recurring unit represented by the general
formula
-NHCORsCOHNR6-
in which Rs is an alkylene group of at least 2 carbon atoms,
preferably from about 2 to about 11 or arylene having at least
about 6 carbon atoms, preferably about 6 to about 17 carbon
atoms; and R6 is selected from Rs and aryl groups. Also,
included are copolyamides, terpolyamides and the like obtained by
known methods, for example, by condensation of hexamethylene
diamine and a mixture of dibasic acids consisting of terephthalic
acid and adipic acid. Polyamides of the above description are
well-known in the art and include, for example,
poly(hexamethylene adipamide) (nylon 6,6), poly(hexamethylene
sebacamide) (nylon 6,10), poly(hexamethylene isophthalamide),
poly(hexamethylene terephthalamide), poly(heptamethylene
pimelamide) (nylon 7,7), poly(octamethylene suberamide) (nylon
8,8), poly(nonamethylene azelamide) (nylon 9,9), poly
(decamethylene sebacamide) (nylon 10,9), poly(decamethylene
sebacamide) (nylon 10,10), poly[bis(4-amino cyclohexyl)methane-
1,10-decanecarboxamide)], poly(m-xylene adipamide), polyp-xylene
sebacamide), poly(2,2,2-trimethyl hexamethylene terephthalamide),
poly(piperazine sebacamide), polyp-phenylene terephthalamide),
poly(metaphenylene isophthalamide), and copolymers and
terpolymers of the above polymers. Additional polyamides include
nylon 4,6, nylon 6,9, nylon 6,10, nylon 6,12, nylon 11, nylon 12,
amorphous nylons, aromatic nylons and their copolymers.
Other useful polyamides are those formed by polymerization
of amino acids and derivatives thereof, as for example, lactams.
Illustrative of these useful polyamides are poly(caprolactam)
(nylon 6), poly(4-aminobutyric acid) (nylon 4), poly(7-
aminoheptanoic acid) (nylon 7), poly(8-aminooctanoic acid) (nylon
8), poly(9-aminononanoic acid) (nylon 9), poly(10-aminodecanoic
5

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
acid) (nylon 10), poly(11-aminoundecanoic acid) (nylon 11),
poly(12-aminodocecanoic acid) (nylon 12;) and the like.
The preferred polyamide is Vydyne~ nylon, which is
poly(hexamethylene adipamide) (nylon 6,6), which gives a
composite with the desired combination of tensile strength,
tensile modulus and flexural modulus for the applications
contemplated herein (Vydyne~ is a registered trademark of
Solutia, Inc.).
The preferred molecular weight of the polyamide is in the
range of 30,000 to 80,000 D (weight average) with a more
preferred molecular weight of at least 40,000 D (weight average).
Increasing the weight average molecular weight of the polyamide
from about 35,000 to 55,000 D results in an unexpected increase
in toughness as indicated by the notched izod impact test.
Whereas an increase in the weight average molecular weight of
from about 35,000 to 55,000 D in the polyamide neat results in a
small increase in toughness, the same increase in molecular
weight in the nanocomposite results about twice the increase in
toughness. Therefore, the increase in toughness is enhanced in
the nanocomposite when compared to that of the polyamide neat.
In a preferred embodiment, the polyamide has an amine end
group/acid end group ratio greater than one (1). More
preferably, the concentration of amine end groups is at least 10
mole ~ greater than the concentration of the carboxylic acid end
groups. In an even more preferred embodiment, the polyamide has
a concentration of amine end groups at .least 20 mole o greater
than the concentration of the carboxylic acid end groups, and in
a most preferred embodiment, the polyamide has a concentration of
amine end groups at least 30 mole °s greater than the
concentration of the carboxylic acid end groups. In another
embodiment, the concentration of amine end groups is essentially
equal to the concentration of carboxylic acid end groups.
6

CA 02320988 2000-08-11
WO 99/41299 PCT/US98J02768
Among the preferred embodiments is nylon 6, nylon 6,6,
blends thereof and copolymers thereof. The range of ratios of
the nylon 6/nylon 6,6 in the blends is from about 1/100 to 100/1.
Preferably, the range is from about 1/10 to 10/1. The range of
ratios of the nylon 6/nylon 6,6 in the copolymers is about 1/100
to 100/1. Preferably, the range is from about 1/10 to 10/1.
Optionally, the nanocomposite composition comprises at
least one additional polymer. Examples of suitable polymers
include polyethyleneoxide, polycarbonate, polyethylene,
polypropylene, polystyrene-acrylonitrile), poly(acrylonitrile-
butadiene-styrene), polyethylene terephthalate), poly(butylene
terephthalate), poly(trimethylene terephthalate), polyethylene
naphthalate), polyethylene terephthalate-co-cyclohexane
dimethanol terephthalate), polysulphone, poly(phenylene oxide) or
poly(phenylene ether), poly(hydroxybenzoic acid-co-ethylene
terephthalate), poly(hydroxybenzoic acid-co-hydroxynaphthenic
acid), poly(esteramide), poly(etherimide), poly(phenylene
sulfide), poly(phenylene terephthalamide).
The mixture may include various optional components which
are additives commonly employed with polymers. Such optional
components include surfactants, nucleating agents, coupling
agents, fillers, impact modifiers, chain extenders, plasticizers,
compatibilizers, colorants, mold release lubricants, antistatic
agents, pigments, fire retardants, and the like.
Suitable examples of fillers include carbon fiber, glass
fiber, kaolin clay, wollastonite and talc. Suitable examples of
compatibilizers include acid-modified hydrocarbon polymer, such
as malefic anhydride-grafted propylethylene, malefic anhydride-
grafted polypropylene, malefic anhydride-grafted ethylenebutylene-
styrene block copolymer. Suitable examples of mold release
lubricant includes alkyl amine, stearamide, and di-or tri-
aluminum stearate.
7

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
Suitable examples of impact modifiers include ethylene-
propylene rubber, ethylene-propylene dime rubber, methacrylate-
butadiene-styrene (with core-shell morphology),
poly(butylacrylate) with or without carboxyl modification,
polyethylene acrylate), polyethylene methylacrylate),
polyethylene acrylic acid), polyethylene acrylate) ionomers,
polyethylene methacrylate acrylic acid) terpolymer,
polystyrene-butadiene)block copolymers, polystyrene-butadiene-
styrene)block terpolymers, polystyrene-ethylene/butylene-
styrene) block terpolymers and polystyrene-ethylene/butylene-
styrene carboxylate) block terpolymers.
Silane coupling agents are well-known in the art and are
useful in the present invention. Examples of suitable coupling
agents include octadecyltrimethoxysilane, gamma-
aminopropyltriethoxysilane, gamma-aminopropyltrimethoxysilane,
gamma-aminopropylphenyldimethoxysilane, gamma-glycidoxypropyl
tripropoxysilane, 3,3-epoxycyclohexylethyl trimethoxysilane,
gamma-proprionamido trithoxysilane, N-trimethoxysilylpropyl-
N(beta-aminoethyl) amine, trimethoxysilylundecylamine,
trimethoxysilyl-2-chloromethylphenylethane,
trimethoxysilylethylphenylsulfonylazide, N-trimethoxysilylpropyl-
N,N,N-trimethylammonium chloride,
N-(trimethoxysilylpropyl)-N-methyl-N,N-diallylammonium chloride,
trimethoxysilylpropylcinnamate, 3-mercaptopropyl
trimethoxysilane, 3-isocyanatopropyltriethoxysilane, and the
like. The preferred silane is gamma-aminopropyltriethoxysilane.
The silane coupling agent is optionally added to the polymer
composite in the range of about 0.5 to 5 weight % of the layered
silicate. The preferred concentration range of silane coupling
agent is about 1 to 3 weight o of the layered silicate in the
composite.
In one embodiment, the nanocomposite composition further
comprises a composition wherein an acid end group of the
8

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
polyamide is bonded to a surface of the treated layered silicate
by a silane coupling agent.
The silicate materials of the present invention are
selected from the group consisting of layered silicates and
fibrous, chain-like silicates, and include phyllosilicates.
Examples of fibrous, chain-like silicates include chain-like
minerals, for example sepiolite and attapulgite, with sepiolite
being preferred. Such silicates are described, for example, in
Japanese Patent Application Kokoku 6-84435 published October 26,
1994. Examples of layered silicates include layered smectite
clay minerals such as montmorillonite, nontronite, beidellite,
volkonskoite, Laponite~ synthetic hectorite, natural hectorite,
saponite, sauconite, magadiite, and kenyaite; vermiculite; and
the like. Other useful materials include layered illite minerals
such as ledikite and admixtures of illites with one or more of
the clay minerals named above. The preferred layered silicates
are the smectite clay minerals such as montmorillonite,
nontronite, beidellite, volkonskoite, Laponite~ synthetic
hectorite, natural hectorite, saponite, sauconite, magadite, and
kenyaite.
The layered silicate materials suitable for use in the
present invention are well-known in the art, and are sometimes
referred to as "swellable layered material". A further
description of the claimed layered silicates and the platelets
formed when melt processed with the polyamide is found in
International Patent Application WO 93/04117, which is hereby
incorporated by reference. The layered silicate materials
typically have planar layers arrayed in a coherent, coplanar
structure, where the bonding within the layers is stronger than
the bonding between the layers such that the materials exhibit
increased interlayer spacing when treated.
The layered silicate materials require treatment as
described in more detail below with the subject ammonium ion to
9

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
provide the interlayer swelling and/or spacing required for the
performance of the treated silicate of the present invention. As
used herein the "inter layer spacing" refers to the distance
between the faces of the layers as they are assembled in the
treated material before any delamination (or exfoliation) takes
place. The preferred clay materials generally include interlayer
or exchangeable cations such as Li+, Na+, Ca+Z, K+, Mg+2 and the
like. In this state, these materials nave interlayer spacings
usually equal to or less than about 4 A and only delaminate to a
low extent in host polymer melts regardless of mixing. In the
claimed embodiments, the cationic treatment is a ammonium species
which is capable of exchanging with the interlayer cations such
as Li+, Na+, Ca+2, K+, Mg+2 and the like in order to improve
delamination of the layered silicate.
The treated silicate of the present invention is a
silicate material as described above which is treated with at
least one ammonium ion of the formula
+NR1R2R3R4.
wherein:
R1, R2, R3 and R9 are independently selected from a group
consisting of a saturated or unsaturated C1 to C22 hydrocarbon,
substituted hydrocarbon and branched hydrocarbon, or where R1 and
R2 form a N,N-cyclic ether. Examples include saturated or
unsaturated alkyls, including alkylenes; substituted alkyls such
as hydroxyalkyls, alkoxyalkyls, alkoxys, amino alkyls, acid
alkyls, halogenated alkyls, sulfonated alkyls, nitrated alkyls
and the like; branched alkyls; aryls and substituted aryls, such
as alkylaryls, alkyoxyaryls, alkylhydroxyaryls, alkylalkoxyaryls
and the like. Optionally, one of R1, RZ, R3 and R4 is hydrogen.
A mixture of two or more ammonium ions is contemplated by the
present invention.
In a preferred embodiment of the present invention, R1 is
selected from the group consisting of hydrogenated tallow,

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
unsaturated tallow or a hydrocarbon having at least 6 carbons,
and Rz, R3 and Rq independently have from one to eighteen carbons.
Tallow is composed predominantly of octadecyl chains with small
amounts of lower homologues, with an average of from 1 to 2
degrees of unsaturation. The approximate composition is 70o C18,
25 o Cls, 4s C14 and 1 o C12. In another preferred embodiment of the
present invention, R1 and R2 are independently selected from the
group consisting of hydrogenated tallow, unsaturated tallow or a
hydrocarbon having at least 6 carbons and R3 and R9 independently
have from one to twelve carbons.
Examples of suitable R1, R2, R3 and R9 groups are alkyl
such as methyl, ethyl, octyl, nonyl, tert-butyl, ethylhexyl,
neopentyl, isopropyl, sec-butyl, dodecyl and the like; alkenyl
such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 1-heptenyl,
1-octenyl and the like; cycloalkyl such as cyclohexyl,
cyclopentyl, cyclooctyl, cycloheptyl and the like; alkoxy such as
ethoxy; hydroxyalkyl; alkoxyalkyl such as methoxymethyl,
ethoxymethyl, butoxymethyl, propoxyethyl, pentoxybutyl and the
like; aryloxyalkyl and aryloxyaryl such as phenoxyphenyl,
phenoxymethyl, phenoxydecyl, phenoxyoctyl and the like; arylalkyl
such as benzyl, phenylethyl, 8-phenyloctyl, 10-phenyldecyl and
the like, alkylaryl such as 3-decylphenyl, 4-octylphenyl,
nonylphenyl and the like.
The preferred ammoniums used in treating the silicate
materials include oniums such as dimethyldi(hydrogenated tallow)
ammonium, dimethylbenzyl hydrogenated tallow ammonium,
dimethyl(ethylhexyl) hydrogenated tallow ammonium, trimethyl
hydrogenated tallow ammonium, methylbenzyldi(hydrogenated tallow)
ammonium, N,N-2-cyclobutoxydi(hydrogenated tallow) ammonium,
trimethyl tallow ammonium, methyldihydroxyethyl tallow ammonium,
octadecylmethyldihydroxyethyl ammonium, dimethyl(ethylhexyl)
hydrogenated tallow ammonium and mixtures thereof. Particularly
preferred ammoniums include quaternary ammoniums, for example,
11

CA 02320988 2000-08-11
WO 99/41299 PCTNS98/02768
dimethyldi(hydrogenated tallow) ammonium, dimethylbenzyl
hydrogenated tallow ammonium, methyldihydroxyethyl tallow
ammonium, octadecylmethyldihydroxyethyl ammonium,
dimethyl(ethylhexyl) hydrogenated tallow ammonium and mixtures
thereof.
The treatment with the ammonium ion(s), also called
"cationic treatments", may include introduction of the ions into
the silicate material by ion exchange. In the embodiment where
the silicate material is a layered silicate, the cationic
treatments may be introduced into the spaces between every layer,
nearly every layer, or a large fraction of the layers of the
layered material such that the resulting platelet layers comprise
less than about 20 particles in thickness. The platelet layers
are preferably less than about 8 particles in thickness, more
preferably less than about 5 particles in thickness, and most
preferably, about 1 or 2 particles in thickness.
The treated silicate has a MER of from about 10
milliequivalents/100 g below the cation exchange capacity of the
untreated silicate to about 30 milliequ.ivalents/100 g above the
cation exchange capacity of the untreated silicate. The MER is
the milliequivalents of treatment per 100 g of silicate. Each
untreated silicate has a cation exchange capacity, which is the
milliequivalents of cations available for exchange per 100 g of
silicate. For example, the cation exchange capacity of the
layered silicate montmorillonite can be about 95, and the
exchange capacity of sepiolite is in the range of about 25 to 40.
When the MER of the treated silicate substantially exceeds the
cation exchange capacity, there is an excess of cationic
treatment which may be available to react with the polyamide.
This excess may cause degradation of the properties of the
polyamide.
The higher the MER, the lower the concentration of
silicate in the treated silicate. Therefore, a first
12

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
nanocomposite sample may have a higher concentration of treated
silicate but a lower concentration of silicate, than a second
nanocomposite sample, because the first sample has a higher MER
than the second sample.
If the MER value of the treated silicate is substantially
less than its exchange capacity, for example about 85 MER for the
preferred montmorillonite, there is too little of the cationic
treatment to have a beneficial effect. If the MER exceeds about
125, the excess ammonium may be detrimental to the properties of
the nylon. Preferably, when the untreated montmorillonite has an
exchange capacity of 95, the treated layered silicate has a
cation exchange capacity of from about 85 to about 125.
The amount of treated silicate included in the composition
is in the range of about 0.1 to 12 weight o of the composite.
The concentration is adjusted to provide a composite polymer
matrix material which demonstrates, when tested, an increase in
tensile modulus and flexural modulus, without a decrease in
tensile strength. Preferably, the increase in tensile modulus
and flexural modulus is at least about 100. More preferably, the
increase in tensile modulus and flexural modulus is at least
about 200. Too little treated silicate fails to provide the
desired increase in tensile modulus and flexural modulus. Too
much treated silicate provides a polyamide composite with a
decreased tensile strength. Further, it may be desirable to have
the crystalline regions of the polyamide in the nanocomposite
composition be less than l.OUm.
The particle size of the treated silicate is such that
optimal contact between the polymer and the treated silicate is
facilitated. The range of particle size can vary from about 10
microns to about 100 microns. Preferably, the particle size is
in the range of from about 20 to 80 microns. Most preferably,
the particle size is below about 30 microns, such as those that
13

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
pass through 450 mesh screens, in that the resulting polymer
nanocomposite has improved performance properties.
Optionally, the silicate can be treated with a mixture of
one or more quaternary ammonium ions with one or more ammonium
ions of the formula
+N RaRbRcRd
wherein at least one of Ra, Rb and R~ is hydrogen (H) and Rd is
selected from a group consisting of a saturated or unsaturated C1
to Czz hydrocarbon, substituted hydrocarbon and branched
hydrocarbon. Examples include saturated or unsaturated alkyls,
including alkylenes; substituted alkyls such as hydroxyalkyls,
alkoxyalkyls, alkoxys, amino alkyls, acid alkyls, halogenated
alkyls, sulfonated alkyls, nitrated alkyls and the like; branched
alkyls; aryls and substituted aryls, such as alkylaryls,
alkyoxyaryls, alkylhydroxyaryls, alkylalkoxyaryls and the like.
As the definition of the Rd group for the ammonium ion above is
generally the same as the definition for the Ra group in the
ammonium ion, which in this embodiment is a quaternary ammonium,
the Examples set forth above for the R4 group are also exemplary
of the Rd group. Optionally, the Rd group further contains a
carboxylic acid moiety such that the ammonium ion
+NRaRbRcRa
is an amino acid, for example 12-aminolauric acid ammonium. In
this embodiment, it is particularly preferred that the amine end
groups/acid end groups ratio of the polyamide is greater than one
(1) .
A preferred mixture includes at least one of
dimethyldi(hydrogenated tallow) ammonium, methyl dihydroxyethyl
tallow ammonium and/or dimethyl(ethylhexyl) hydrogenated tallow
ammonium, either alone or in combination with 12-aminolauric acid
ammonium.
Optionally, the treated silicate can be further treated
with azine cationic dyes, such as nigrosines or anthracines.
14

CA 02320988 2000-08-11
WO 99/41299 PCTNS98/OZ768
Said cationic dyes would impart color-fastness and uniformity of
color in addition to increasing the intercalation of the polymer
molecules.
It is further desirable to have a polymer composite that
provides both the desired strength and flexibility, and yet is
lightweight. This is accomplished by minimizing the
concentration of treated silicate in the nanocomposite. The
preferred nanocomposite contains a concentration of treated
silicate of from about 0.1 to about 12.0 weight s of the
composite. The most preferred nanocomposite contains a
concentration of treated silicate of from about 0.5 to about 6.0
weight % of the composite.
In a first embodiment of the present invention, the
nanocomposite composition is prepared using a two step process.
One step includes forming a flowable mixture of the polyamide as
a polymer melt and the treated silicate material. The other step
includes dissociating at least 50o but not all of the treated
silicate material. The term "dissociating", as utilized herein,
means delaminating or separating treated silicate material into
submicron-scale structures comprising individual or small
multiple units. For the embodiment wherein layered silicates are
utilized this dissociating step includes delaminating the treated
silicate material into submicron scale platelets comprising
individual or small multiple layers. For the embodiment wherein
fibrous, chain-like silicates are utilized, this dissociating
step includes separating the treated silicate material into sub-
micron scale fibrous structures comprising individual or small
multiple units.
As referred to in the mixture forming step, a flowable
mixture is a mixture which is capable of dispersing dissociated
treated silicate material at the submicron scale. A polymer melt
is a melt processable polymer or mixture of polymers which has
been heated to a temperature sufficiently high to produce a

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
viscosity low enough for submicron scale mixing to occur. The
process temperature should be at least as high as the melting
point of the polyamide employed and below the degradation
temperature of the polyamide and of the organic treatment of the
silicate. The actual extruder temperature may be below the
melting point of the polyamide employed, because heat is
generated by the flow. The process temperature is high enough
that the polymer will remain in the polymer melt during the
conduct of the process. In the case of a crystalline polyamide,
that temperature is above the polymer's melting temperature. For
example, a typical nylon 6, having a melting point of about
225°C, can be melted in an extruder at any temperature equal to
or greater than about 225°C, as for example between about 225°C
and about 260°C. For nylon 6,6 a temperature of preferably from
about 260°C to about 320°C is normally employed.
Conventional methods can be employed to form the flowable
mixture. For example, the flowable mixture can be prepared
through use of conventional polymer and additive blending means,
in which the polymer is heated to a temperature sufficient to
form a polymer melt and combined with the desired amount of the
treated silicate material in a granulated or powdered form in a
suitable mixer, as for example an extruder, a Banbury~ type
mixer, a Brabender~ type mixer, Farrel~ continuous mixers, and
the like.
In one embodiment, the flowable mixture may be formed by
mixing the polyamide with a previously formed treated silicate-
containing concentrate. The concentrate includes the treated
silicate and a polymer carrier. The concentration of the treated
silicate material in the concentrate is selected to provide the
desired treated silicate concentration for the final
nanocomposite composition. Examples of suitable polymers for the
carrier polymer of the concentrate include polyamide, ethylene
propylene rubber, ethylene propylene diene rubber, ethylene-
16

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
ethylacrylate, ethylene-ethylmethacrylate or ethylene
methacrylate. Examples include Iotek~ ionomer and Escor~ ATX
acid terpolymer, both available from Exxon. The polyamide
polymers suitable for the carrier polymer include nylons such as
nylon 6, nylon 6,6, nylon 4,6, nylon 6,a, nylon 6,10, nylon 6,12,
nylon 11, nylon 12, amorphous nylons, aromatic nylons and their
copolymers. The polymer of the carrier may be the same as or
different from the polyamide of the flowable mixture. For
example, both polymers may be a polyamide, particularly nylon
6,6, but may have the same or different molecular weight. The
preferred weight average molecular weight of the carrier polymer
of the concentrate is in the range of about 5,000 D to about
60,000 D. The most preferred range of the weight average
molecular weight for the carrier polymer is in the range of about
10,000 to about 40,000 D. In this embodiment, the dissociation
step of the present process, as described below, may occur at
least in part via the forming of the concentrate such that the
dissociation step may precede the step of forming the flowable
mixture. It is therefore understood that the process steps
(e. g., forming and dissociating) may occur sequentially without
regard to order, simultaneously or a combination thereof. In
the second step, the flowable mixture is sufficiently mixed to
form the dispersed nanocomposite structure of dissociated
silicate in the polymer melt, and it is thereafter cooled. The
silicate can be dissociated by being subjected to a shear having
an effective shear rate. As used herein, an effective shear rate
is a shear rate which is effective to aid in dissociation of the
silicate and provide a composition comprising a polyamide matrix
having silicate substantially homogeneously dispersed therein
without substantially breaking the individual units (e. g.,
platelets or fibrous chains).
Any method which can be used to apply a shear to a
flowable mixture or any polymer melt can be used. The shearing
17

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
action can be provided by any appropriate method, such as by
mechanical means, by thermal shock, by pressure alteration, or by
ultrasonics. Preferably, the flowable polymer mixture is sheared
by mechanical methods in which portions of the melt are caused to
flow past other portions of the mixture by use of mechanical
means such as stirrers, Banbury~ type mixers, Brabender~ type
mixers, Farrel~ continuous mixers, and extruders. Most
preferably, the mixture is subjected to multiple shearings. In
addition to the increased shear provided by multiple shearing,
increased residence time is also provided, which results in
improved performance properties. Another procedure employs
thermal shock in which shearing is achieved by alternatively
raising or lowering the temperature of the mixture causing
thermal expansions and resulting in internal stresses which cause
the shear. In still other procedures, shear is achieved by
sudden pressure changes in pressure alteration methods; by
ultrasonic techniques in which cavitation or resonant vibrations
which cause portions of the mixture to vibrate or to be excited
at different phases and thus subjected to shear. These methods
of shearing flowable polymer mixtures and polymer melts are
merely representative of useful methods, and any method known in
the art for shearing flowable polymer mixtures and polymer melts
may be used.
Shearing can be achieved by introducing the polymer
pellets at one end of the extruder (single or twin screw) and
receiving the sheared polymer at the other end of the extruder.
A preferred twin screw extruder is a co-rotating fully
intermeshing type, such as the ZSK series manufactured by Werner
and Pfleiderer Company. The layered silicate can be fed into the
twin screw extruder at the feed throat or at the downstream vent.
The preferred method is to feed the layered silicate at the
downstream vent, which produces a composite polymer with improved
performance properties.
18

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
Optionally, an additional processing step can be added,
such as solid state polymerization, wherein the compounded
pellets are held for several hours at a high temperature below
the melting point of the polymer. For example, typical solid
state polymerization conditions are heating the solid polymer in
the range of about 200 to 240°C for a period of from about two
(2) to five (5) hours. Said additional processing step results
in an increase in molecular weight and an improvement in
toughness, ductility and tensile strength of the nanocomposite.
Another optional processing step can be a heat treatment
step, where the composition is heated to improve intercalation of
the nylon molecules into the silicate structure. Said heat
treatment step is performed by heating the composition at a
temperature in the range of about 200 tc> 290°C for a period of
about two (2) to five (5} hours.
Another preferred continuous compounder is the Farrel
Continuous Mixer (FCM). For composites using Vydyne~ 21 nylon,
the preferred temperature of the melt is in the range from about
275 to 315°C, with the most preferred range being from about 275
to 295°C.
The polymer melt containing nano-dispersed dissociated
silicate material may also be formed by reactive extrusion in
which the silicate material is initially dispersed as aggregates
or at the nanoscale in a liquid or solid monomer and this monomer
is subsequently polymerized in an extruder or the like.
Alternatively, the polymer may be granulated and dry mixed with
the treated silicate material, and thereafter, the composition
may be heated in a mixer until the polymer is melted forming the
flowable mixture.
The process to form the nanocomposite is preferably
carried out in the absence of air, as for example in the presence
of an inert gas, such as argon, neon or nitrogen. The process
19

CA 02320988 2000-08-11
WO 99!41299 PCT/US98/02768
can be carried out in a batchwise or discontinuous fashion, as
for example, carrying out the process in a sealed container.
Alternatively, the process can be carried out in a continuous
fashion in a single processing zone, as for example, by use of an
extruder, from which air is largely excluded, or in a plurality
of such reaction zones in series or in parallel.
In another embodiment of the present invention, the
process to prepare a polymer nanocomposite composition comprises
forming a first flowable mixture of a polyamide, at least one
monomer, and a treated silicate material; dissociating at least
50o but not all of the treated silicate material and polymerizing
the monomer. It is to be understood that the polymerization step
can occur simultaneously or sequentially with one or more other
steps in the process of this embodiment. Preferably, at least
one monomer of the third embodiment includes monomers such as E
caprolactam, lauryllactam, and their corresponding lactones.
In yet another embodiment of the present invention,
the process to prepare a polymer nanocomposite composition
comprises forming a flowable mixture of a polyamide and a treated
silicate material; dissociating the at least about 50% but not
all of the treated silicate material; and adding an additional
amount of said polyamide, most preferably during said
dissociating step.
Each of the above embodiments of the process to prepare
the polymer nanocomposite composition can be followed by
additional steps or treatments, such as solid state
polymerization, or additional melt polymerization of the
composition by increasing the residence time in the mixer with
the removal of water condensation product.
The composition of the present invention can be made into,
but is not limited to, the form of a fiber, film or a molded
article.

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
Examples
The following examples are presented to further illustrate
the invention and do not limit the scope of the claims in any
manner.
All of the nylons used in the following examples are nylon
6,6. Unless otherwise indicated, the nylon used was nylon h,
manufactured by Solutia, Inc, and characterized in the Table of
Nylon Types, below. Unless otherwise indicated, all percents are
weight percent. The % clay is the total. weight of pristine clay
in the final composite, be it pristine or pre-treated. Tensile
strength and Young's Modulus are measured according to ASTM
method D638 and are reported in kpsi and MPa. Flexural modulus
is measured according to ASTM method D790 and is reported in kpsi
and MPa.
The runs numbered with a "-C" are control runs.
21

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
Table 1 of Clav Tvpes
All of the silicates listed below, unless otherwise
identified, are montmorillonites produced by Southern Clay
Products Inc. with a clay exchange capacity of about 95. The
treatments listed below are ammonium treatments. Items A-H are
controls while the items I-AA are examples of quaternary ammonium
treated silicates of the present invention.
Ammon i um
Item Treatment MER
A untreated --
B hectorite, untreated --
C dicyclohexyl 100
D 12-aminolauric acid 90
E dimethydi(hydrogenated tallow} 140
F dimethylbenzyl hydrogenated tallow 140
G dimethyldi(hydrogenated tallow} 140
H methylbenzyldi(hydrogenated tallow) 130
I trimethyl tallow 125
J dimethyldi(hydrogenated tallow) 80
K dimethyldi(hydrogenated tallow} 85
L trimethyl hydrogenated tallow 125
M dimethyl(ethylhexyl)
hydrogenated tallow 90
N dimethyl(ethylhexyl) hydrogenated tallow,
with wetting agent 90
0 dimethyl(ethylhexyl) hydrogenated tallow,
with wetting agent 90
P diethoxymethyl tallow 90
Q dimethyldi(hydrogenated tallow),
fine ground clay, with additional
processing 95
R octadecylmethyldiethoxy 95
S trimethyl Cz2 110
T dimethyldi(hydrogenated tallow),
better dispersing form 95
U dimethyldi(hydrogenated tallow),
processed 95
V item U, above, with to surfactant 95
W dimethyldi(hydrogenated tallow) 125
X dimethyldi(hydrogenated tallow), fine
ground clay 95
Y N,N-2-butoxydi(hydrogenated tallow) 90
Z dimethyldi(hydrogenated tallow) 95
22

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
AA dimethylbenzyl hydrogenated tallow 95
23

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
Table 2 of Clay Types
Items GG through NN are examples of montmorillonite,
unless otherwise indicated, treated with the blends of more than
one quaternary ammonium or of a quaternary ammonium and ammonium
of the present invention. Items 00 through TT are examples of
the tertiary ammonium silicates of the present invention.
Ammonium
Item Treatment MER
GG1 80/20 blend of sepiolite and smectite,
treated with 75/25 blend of methylbenzyldi(hydrogenated
tallow) and
dimethyldi(hydrogenated tallow) 45
HH 50/50 blend of 2-ethylhexyl, dimethyl
hydrogenated tallow and
dimethydi(hydrogenated tallow) 95
II 25/75 blend of 2-ethylhexyl, dimethyl
hydrogenated tallow and
dimethydi(hydrogenated tallow) 95
JJ 75/25 blend of 2-ethylhexyl, dimethyl
hydrogenated tallow and
dimethydi(hydrogenated tallow) 95
KK 10.5/89.5 blend of 12-aminolauric acid
and dimethydi(hydrogenated tallow) 95
LL 16/84 blend of 12-aminolauric acid and
dimethydi(hydrogenated tallow), 95
MM 5/95 blend of 12-aminolauric acid and
dimethydi(hydrogenated tallow) 95
NN 16/84 blend of 12-aminolauric acid and
dimethy(ethylhexyl)
hydrogenated tallow 95
00 dimethyl cocoa 95
PP dimethyl hydrogenated tallow 95
QQ dimethyl tallow 95
RR 2-ethylhexyl methyl hydrogenated tallow95
SS dimethyl hydrogenated tallow 95
TT dihydroxyethyl octadecyl 125
1 Patent Pending
24

CA 02320988 2000-08-11
WO 99/41299 PC'T/US98/02768
Table of Nvlon Tvpes
Nylon Amine Ends Acid Ends Amine/Acid Mw
( 1000 D)
a 55 60 0.92 35
b 35 60 0.58 42
c 40 40 1.00 50
d 15 50 0.30 62
a 80 50 1.60 31
f 125 70 1.79 21
g 31 60 0.52 44
h 45 70 0.64 35
The amine ends and the acid ends are the equivalents of
unreacted amine and acid functional groups on the nylon. The MW
is the weight average molecular weight as measured in Daltons.
25

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
In Table 1, composites of four (4) different types of
treated clay are shown. The control examples using clays not
treated with ammoniums of the present invention show a general
decrease in tensile strength when compared to the preceding (i.e.
comparable) sample containing no clay (i.e., comparing 2-C, 3-C
and 4-C to 1-C and comparing 6-C, 7-C and 8-C to 5-C), with the
exception of control example 3-C which shows no change in tensile
strength when compared to 1-C.
Runs 1-C through 4-C were processed with a ZSK twin screw
extruder, and runs 5-C through 8-C were processed with a FCM
mixer.
26

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
~ U ~o u»o ~ o ~ M ~.n
ao 0o co 0o m a, o~ a~
~ H '-' N N N N N N N N
(n r-I O O O O O O O O
N ~C '~ ~rl ~ V' rl r-I V~ N M V' r-i
~ '~ (f) W In 61 M N M N N M l0 O r-I M OO 61 O 00
~ri ~ O ~ ~ N N ~ M l0 M CO M M M 00 M lfl M ~ M
d' ~.. ,~' .r V' ~ ~'
.1-~ N a~
~i
C"., '',.J ~rl rl O O O O O O O O
tn ~ -rl Qf l0 rl M M CO N a1 N
U: ~ "C3 (n W N 00 a1 r-1 l0 N r-I M ~ O d' ~' l0 01 O O
,>~ N O ~., ~ ~-1 N ~1' M l~ M 0~ M V~ M 01 M f~ M QO C
O ~3
E-~ ~ 't~
O N
U +~
.~I ~ M c~ ~ ~-I r o~ o ,-I
(n O 'r'I l13 ~ ~ N ~ ~ ~ M ~ l0 ~ tf7 ~ OD ~ v-1
~I fn W ~ O ~ t~ ~ O ~ OD ~ O l0 l0 O l0 r-1 M
N ~ t~. E ,-a a~ ,--m~ ~ ao ,--m ~ co ~ ~ ~ ~n ~ ~o
H tn .~G -- ,--a ~ ,-a -- ~--m- ~-t -- ~ -- ~ -- oo ,-~ ~ _.
U ~ >,
~ p
~ ~o O ~ . . O
M l0 f~ N OO
~N
rt a.
-1 ', I I
U E-~ I r.~ rt; OCl t U U G7
s~ U U U U U U U U
I i I 1 I I I I
f1,' rl N M C ~ l0 f~ 00
27

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
In Table 2, composites of four different treated
quaternary ammonium-treated clays with a MER exceeding 125 are
shown. The composites were processed using a ZSK mixer. All of
the control examples show a decrease in tensile strength when
compared to the preceding (corresponding) sample without clay.
28

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
~ n,
N rl ~ l0 l0 f~ l~ 01 tn l0 v-I t!7 CO ~ M 01 ~ f
U
r-I N N o 00 OD f~ f~ I~ OO CO 01 00 00 01 OO OO OD 00
E E-i N N N N N N N N N N N N N N N
"
is
S~
b
N
Q r-I O O O O O O O O O O O O O O
v x ~ -~-Io, ~n a~ uo 1~ ao mo ao ~o ,~ ~n ~n
ra
x Q '~ N a1 M N l0 OJ u~ [-I v--I N .-1 ~ ~ O M 01 61
(J) t~ l0 ~ e-i 61 f~ ~ rl I~ N 00 ~
W
W r-I O MNr-Id'rlN~MI~MOMcrM(~M~Mr-IMI~MOM~MMM~.I)
C2n.~
ff~ Lz.y, V' '-' l0 v V v V .r
.~C
v
S~
N
W N cn
-rl ~ O O O O O O O O O O O O O O
" -~.
f-.~,i (f) ~ GO M M O lp M 00 M 61 N rl M LC7 d'
., -ri I~ ~ O N M a1 O l0 O
J fd
~ 'ZS
ff)
~
~. V
' M OO O 61 N O r-i o0 M lfl M .-i O In ~ 00 ~'
' 01 f
~-rIN O C2~,~,~ N rl Wit' N N N M O M vl7 M M N 0~ ~ IO M N
M aI ~ rI M tn M N N ~
O 3 E- ~ c' -- ~o " ~' .. ,,~ ~- ,~ -- ,n ~- c ~- m --
x ~- m -- ,n -- m -- m -- m -- ~, -- m
U
r>3 N +~
U -r-I M CO Wit' ~1' N I~ Wit' 0~ l0 ri tn l0 '-I 61
f~
tl1 Q M 00 N lfl . l0 00 M l~ M l0 ,-~ . ~
-,...I . M . p . N
~
TS ~ ~I 00 l~ f~ f~ M M d' ~ 00 V' s-I f~ M M cr
U7 W l~ N rl N
N Q +~ ~ I~ l0 r-1 h O I~ O t~ lfl r-I l~ l.(l l.(7
Qa ~.' O I~ M O t~ O (~ N OO rl
H U7 e-I ~ 01 v r-i ~- v-1 v r-1 ~-- ~
.~G
v
N
H
M N V' lfl l0 00 O OO O 01 M
?, O O O O
((f .-. M ~' ~' Ol rl '-I l0 rl l0 OD t
U ~-'
rd C2,
-i ~ 1 I I I
U H I c~ I w w w 1 x x x x x x I w
U U U U U U U U U U U U U U
s~ U I I I 1 I I I 1 I I I I I I
I O r-1 N M ~' tn lfl t~ CO O1 O r-i N M
pG Ol r-I r"~ ~-I .-I r1 .-I r-i r-t r-I r-i N N
N N
29

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
In Table 3, composites prepared from thirteen (13)
different quaternary ammonium-treated clay processed with a FCM
compounder are shown. All of the composites except 35, 36 and
47, show an increase in tensile modulus and flexural modulus
without a decrease in tensile strength when compared with nylon
without the treated clay. However, taking into account the
standard deviation of samples 35, 36 and 47, the samples could
provide a tensile strength equal to or higher than that of their
controls.

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/OZ768
+.~ Gl~
-I E U O N M ,-I CO ~C7 lfl l0 tI7 ~O lfl ~ l0
O N o 00 01 01 01 00 CO OD OD 00 OD 00 N CO
~ E~ '-' N N N N N N N N N N N N N
~i
U N v~ op
_ _ _ _ _ _ _ p O
a _ _ _ _ _ _ _
r; .-. O O O O O O O O O O O N O N O O O
C ~ ~rl fa N C a1 M (~ V' l~ I~ V~ 0~ l0 O V~ 00 OD
O '17 fn ~ lfl O 01 (~ M M C l0 00 OD u~ 01 O N f~ r1 OD O ~ N d1 01 '--1 Q~ N
~ l0 ~~
~ O CL .~'~, M M M M M C N M ~f7 M N N I~ M ~ M M M t~ M N N M M O M r~-~ M
Ei
M
E OD CO
N ~ ~ ~ _ _ _ _ _ _ _ _ ~r o1
r-~ ~ _ _
~~ w~~i m-~ .~. O O O O O O O O O O O ~ O ~ O O O
O ~ a ~rl f0 00 N tn M M t~ M C' I~ 01 01 ~ lD Cf' .--I
H ~ 'D f~ 0.~ ~ O O O f~ u7 C' lD l0 r-1 M O 01 tn N M f~ .-I C C~ M rl v er
~f7 l0 u7 I
N O fy ~ ~' M OD ~r u7 c~ N M 01 c ~r M O M Op M u7 M O M l0 M M M N M M M
En ~ X C' v ~ v lfl ~- tn v tn '-' ~T
M O
_ _ _ _ u7 O
ri ~ _ _ _ _ _ _
l O ~ l~ M f~ O N I~ d' d1 OD d1 ~ Lnw tn tT l0
O fn O ~.i b l~ ~ ~ . l0 . v--i . O . ~, . ~ . Q, , ~ , r..~ . ~ . (v.~ . w~ .
O , O ,
~ ~ O ~ ~O ~ O ~ V' ~ M ~ 00 ~ O ~ u7 ~ 01 . M . p~ . ,-~~ . ap . M
~ CL W -I OD N oD ri QO N 00 N OD .-i (~ '-I 00 N OD .-1 I~ N O ~--I l1 O f~ '-
I i~ N OD v~-1 QO
a E-~ tn .se .--~ ~- .-~ '- ,~ ~- ,~ ~- ~, ,- .-t -- ,~ ~- ,~ -- .~1 -- ,~ --
,~ ,-- .-i -- ,~ -- ,~ -- ~,
a
~a -,
r1 dW O O 00 M ~ o~ l0 l~ lQ O M ~ M
U~- . . . . . . . o
M tn M tn O r-I O O r~~I O v-I M N M +I
~o a
U E~ i a~ w cn E-~ i H ~ ~ z i h h a a
U U
U
a ~r m ~ r o0 0~ o
+I
N M ~t~ tn lO t~ ap
N N N N N N M M M M M M M M M _,
31

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
m tmn mn u1 ,-~ ,-r
~ o ao co ao ao ao ~ 00 0~
E E-~ N N N N N N N N
"
N
r~
U
~. N
.-I -~ O O O O O O O O O
~ X ~ .-1 OD -~ N O v' d r
rIS
'
N~ D fn W C' N r ~ O rl l~ M N M ~ l0
N 00 01 Op M CO
~ -1 O Q. r M O M ~ M r M 00 M N M N
~ N r M M
w
--
Cy~~ x ~ -- ~.n -- v. -- Q. -- Q.
-- u~ -- c. -- ~r -- .r
'~E~
O~ N W r7
U,~rr ~ ., ._ .-. _. .,
.~ .-a 0 0 0 0 0 0 0 0 0
--
(n '~ O N ~ OD O OD lf7 lQ
O -r1 f~f
~ 'Zf N N M l0 01 rl ~ N ~ M l0 r
U~ W al N M ~ N
N O Ll.~ ~MNMCMrMrMC~c'r7lOM'-IM ~r
~
N H E x ~r -- m ~- v, -- C ~ '~, .-.
v ~ .r ~' .r ,n ~ ._.
(d~ ~ ~'
E1~ N +~
-ri C 00 a1 ~ 00 r-1 01 QO 1~.~ M
~
u) N rt oo r r o~ r~- ~ ,r) .
it ,--i . ~r
S.-1 fn ,--~ . p . p . ~ . ,--~ . M
W . ~ . M
~.N GL~ ~a~~ao~a~~oo~aoNOO~rNao,-it
., H v~ x ,.--, -- .-, -- ,~ --'-, ~-
-- r., -- ,-~ -- r-, -- ,-, --
.-, ,-
a
rt ..
-r o~ r r ao M to r cr r
U-- . . . . . . .
rl cr O N N ~' O r-1 tn
?~ N
roa
U H ~ 3 x x ~ ~ ~ a a
0
U
+i
o r-, N M ~r mo r
cx M ~r c ~r a v~ ~r ~r
32

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
In Table 4, composites are prepared from eight (8)
different quaternary ammonium-treated clay processed with a ZSK
twin screw extruder are shown. All of the composites show an
increase in tensile modulus and flexural modulus without a
decrease in tensile strength when compared to samples without
treated clay.
33

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
rl ~ y n ~ r r r r r mo ~n
O O o a0 b OD QO OD OO CO CO OD OD
'-' N N N N N N N N N N
r-~
U
.-. ,-. ~ .... .-. ~ ,-.
0 0 0 0 0 0 0 0 o 0
x ~ -.~ a~ o ~ oo to ~o N o~ o
~o
-
D !n W .-1 d1 l0 M N l0 N ~' O N O N Wit'
N C' N Ol O lD e-i lD
O r-I O MNr MMMOMrMrMdIMMNNMNM
G1E
Lu E .~G ~r ~- a -- i.n .~ ~n ~ c. ~ Q.
- ~. v. .r ~r .~ u~ -- u~ --
Ei
o 0 0 0 0 0
-.~ .~-I 0 0 0 0
t0O ~ ~ -r~l Ol M l0 U7 N O OJ V' ~ aO
f0
'
H D fO W lfl O O M M r c' M 0~ tI7 N N aD
~ M C OW I7 l0 ~p tty
~ Cdr ~ d' ~''~ O M d' M OD M O M lD M
00 M N N N M v-I M
H g ..x ~r ~ ~r mn ~- cw- ~n -- v. ~- c'
~ -- cr -- u7 -- u~ ---
-rl C C' v-~I N M r v-f M 01 l0 O
--
O f~ N -ri ~ r O l0 ~ l0 ~ O r-1 .
(0 r-i
C ~.1 . d1 . ,-1 . M . p . p~ . O . 01
fO I1 . N . M
N 1.~ .-i r ~-I 0~ N 0~ .-~ OD rl r rl
(1, ~ OW -i r N dD N O N OD
H cn ~e ,-a --
--
.-~ dw r ~ c~ ~ o~ O m O
U--
O r-1 C N Q' r1 a' O r r
?, N
~a a
I I
U E~ I E E 2 Z O O I
U U
C I I
00 61 O ~ N M v' W p r
C~ ~r ~r W W n u~ ~ u7
34

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
.-I~~j rrrr oo~ooomo~aooo~
~ N o ao a~ 00 0o ao m ao a~ 00 00 0o a~ ao
E H " N N N N N N N N N N N N N
r~
U
.O ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ O O O O O O O O O O O O O
'LS O x O ~.-I f0 01 ~l7 V' M N oD ~ 61 M l0 r '-1 v-i
O ~' O 'O N LL v-1 a1 M M O r ~ CD a1 r u~ O of 01 v~ '--i C 01 l~ r-I u~ ~ a1
O N M
~ r-1 O Cl. ~ M N 00 M C~ M t1~ M M M G~ M l0 M O C N N iI7 M .-1 f~ r ~ N c~
~ G4 ~ .~C -- c -- ~r ~-- y -- u7 -- u~ -- ~r ~.- m ~- ~o ~- ~r ~- c' -- u~ ~-
u~ ~,. to v
.,~ H
N S.-i
x a~
o ~ a~ v~ -.~ x
U .~ ~ ~ ., ~ ~ .., ~ ~ ~ ~ ~ .-. .~-. ...
-rl r-I -~- O O O O O O O O O O O O O
~ ~ m ~ ~.~ rtf ao a~ N r a~ oo O r M ao ~ r N aG
d' O C T3 fn CL In O l~ N O O Ll7 01 ~ 00 O 00 l0 N M Ol M 01 r M C II7 01 In
N Q' (/) .Yr
N O O. ~ C' M r M l0 V~ r M lD M M M O ~ r M N N 00 M e--a M ~f7 cr pp ~ N ~
N ~ E-~ E .k C' C' ~ ~ ~ v ~ ~ c' ~- l0 ~ ,~ ~- C~ ~ C' .-.. ~ .~ lp ~. r ~ N
E~ ~ N +~ ~ pn
l CT ~ ~ .-. ~ _ _ _ _ ~ O ~
~rl >r .-. p ,~ ,~ v~ o~ ,~-mr ~o W r ~ u) r M ~o r-~a u~ o ~r r v~
fn N ~rl Q3 ~ ~ d0 ~ l0 . ,-~ . M . M . r . N . ~ . ~p . ~p . ~p . ~ .T' ~-I
O G S-1 ~ a, . O . N . O . M . Q. . p . ,-..~ . pp . ~ . O . p . O . lp
N .1.1 CL W--I OD ~~-I OD ~--I OJ N 00 N OD ,-I r ~~-I 00 v-I r v--1 r r-1 OD
r-i 0~ r1 OD N 00
a E-W) x ~ -- ,--i -- ,-i -- ,-~ -- .-, -- r-, -- ,-i -- ,-r -- ,-r -- ,-i --
,-r -- ,-~~ -- ~ -- o
vo 0
a~
~ a~
~a
m --
.-i oW ,-1 N M M 01 ~ O ~ ~ ~ x b
U ~-- . . . . . . ~ r",i N
O N ~ ~ ~ O C~ l0 O M l~ ri ri
O W
O
r-I ~, 1 ... cv I I fn
~ H ~ ~ ~ ~ ~ I x x I a a a a
c~ b
a
v
cv
o s~
U U U U -rl
I I N .J~
00 ~ o ,-, N M W uo r ao o~ o ~ E-~
x m ~n mo ~ mo ~o ~ ~ mo r .. N

CA 02320988 2000-08-11
WO 99/41299 PCTNS98/02768
r-I .~.,a-I N N N
U
N N o OD 00 OD 00
N N N N
N
r-1
U
.-. .-.
rl ~ 0 0 0 o
~C ~ ao ~ o~
-r-I
r~
O -O l0 O I~ M O
U7 W tn M o0
r-I O d' M OO M N
C1 Fa M tl7 M
s~~ G4 ~ ~r ~- cr --
.x -- ~r7 -- ~n
--
'~Ei
+~
O N m
.-t ~ ~ ..r .--.
.-.
-r1 ~-1 O o 0 0
~ 'Zj O1 rl N OD
(n W N dD N N
N O Q., ~ M ~ M l0
~ M rl ~
E-~ ~
,~ _-
H~ N +~
-r-I d1 N ~ M
S~ --
UI N M ~1 N ~
-r-I
(CS
'
f-I (~ (~ l0 d'
a.e 01
C,
N 1~ ~--t f~ N OD
f.~.W N OO rl l~
., H v7 ,-i ,- ~, --
,~ -- ,~ ~ ,~ ~-
rl o M l0
ow O
U v
UH I
U
I
y-I N M C
!' ~ r
36

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
In Table 5, the following four (4) nylon 6,6 products were
used to prepare composites: nylon d, nylon c, nylon b, nylon h,
shown in the Table of Nylon Types. The nylons are presented
above in order of decreasing average molecular weight. The
composites were processed using a ZSK twin screw extruder.
All composites show an increase in tensile modules and
flexural modules without a decrease in tensile strength when
compared to samples without treated clay.
37

CA 02320988 2000-08-11
WO 99/41299 PGT/US98/02768
-I o o~ ~ ao o~ ao r~
m N o ~ ~ ao 00 0o ao ao ao
~ [-a v N N N N N N N N
S~
O N
~I a
z H -~ -~ v v ~ .~ .,~
0 0 0 0 0 0 0 0
x ~ .~ ~ ao t~ ,~ o ,~ 00 00 0~
N -t~ cn w o ~ ~ oo ~n o t' o ~r o ~o r- o ~ oo to
.-1 O L~ ~ M N ~ M M M f~ cr M M d' M M N N M
f~., E x ~- ~r mn -- v~ ,-- m ,-- ~r -- ,~ -~ ~, ,-- ~ --
N
N m
H
-rl r-I O O O o 0 o O O
G v1 ~ -ri l~ lD ~ ~r ~--lr ~--I ~
t0
O ~.. 'b t~ 61 O r-1 N I~ O cr In
fn W OD al al L(7 O l0 O
~ r-1 N O f~ N N O Wit' O N ~' ~' O N
~ lO M M M ~ M
-
H E .x ~ ..' ~' ~. u~
~ z V ~r' ,.. ~p .... ~' ~ ~p
'~ d' _' ,~
x
H ~ a~ +~
_ _ _ _ _ _ _ _
-I ~ d,
-rl C".. c O C' M V~ N ~ ~'
S~i (n N -r-IM a' l0 ~ ~ 4 ,-~
(~ ~p
rtS S~ ~-1 00 l0 O l~ O M lD
In W O
N .IJ '-I l~ N 00 rl CO N OW -i
Or ~ O() N dO v--1 IW -1 OO
H u7 .sG '--y- ~--~ -- r-I -- ~--1
-- --
M l~ M .-1
~ ~o
U -- o r o ~ o t~ o t~
?, N
ra fl.~
r--1 ?~ I I I I
U H I a I a I a I a
U U U U
I I I I
u~ lq f~ 00 01 O r-1 N
~ O
38

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
In Table 6, composites using polymer blends of nylon h and
nylon b were made. One blend, example 85, was made by preparing
a clay concentrate in nylon h, such as control sample 83-C, and
then blending the concentrate with a second polymer, such as b.
The second blend, example 86, was made by preparing a clay
concentrate of nylon b, and blending in the nylon h. The
composites were processed using a ZSK twin screw extruder.
39

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
.N i~,
I-I ~ U o rl rl r-i N
~ N o a~ oo ao co ao
~ E-t '-' N N N N N
O N .-~ N
r-~ Q
\ \
z H ~ x .s~
.-, 0 0 0 0 0
x ~ -~ r~ o o~ o ~ c~
O '~ (f) W N O t~ I~ 01 OO Ol lD O
--I O C~~ N~~'MV'MNM~M
Cs-~ ~ .x -- t~ '-mt7 -- ~n ~- u~ ~- ~n ~..
N cO
O O
-r1 rl O O O O O
U7 ~ -ri rl ~' rW 17 I~ ~ \
~
~ '~ f~ W l~ N N M .-I O o
O !1 M N 00 O
N O ~ N u~ rl V' 01 V'
~ rl ~ 00 Wit'
H~.~G~- pvl0v~17v~p~-,n~-
r~
.~z
C 3 3
-
'
'
-rl 00 tn ~ N N
S..
~
tl) N I~ 01 N M M
-r-I
~
~ S-1 t~ M N ~' ~f7
(n W ~I7
N +~ C~ W-1 00 N 00 N OD ~~ 'Zf
~ N OD
N CO .~C I~ '-- n-I ---
-- rt ~-' r-1 --
N O
r-~ r-~
O O
'~ -i
(~ ~. . .-1 M O1 (~
r-I o\o O
N l~ f ~ l0
4.a 4~
O O
O O
>, N
r0 f2,
f~-~N
U H O~ Oi O~ d O~
tr ~s
N N
3 3
U
M ~' tn l0 L'
~
C~ 00 CO OO OO 00 N

CA 02320988 2000-08-11
WO 99/41299 PC'T/US98/02768
In Table 7, a concentrate of the treated clay and a
polymer other than a polyamide is let down, or diluted with the
nylon h. The controls are a mixture of the polymer neat and
nylon h.
41

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
+~ C1.
~
r M r ,--i
N N o ao 00 0o a~
~ H '-' N N N N
0o r o0
sa
O N N N N
~ -~ ~ N N
O ~ ~'10~~ r r .-1 rl '~ ~ N N
-I .~ ~ -- O o r r
.t--~ N N ~ ~
O
O 0.r ~ ~ r r ,-i ,--i ~ o~
-r-I (n
rl O O O O O O O C7
.(', '.x', M ~' l0 N '-i N !~ lS7
'~ -rl
(a
3 ~ '~ U7 N N r-i 00 O tl~ rW --I 01
~ N r O Wit' ~' r-I N
O .-i O N N ~-1 N r N ~ M r-i N M
(2, ~ M ~ N r fYl
Ca Ezi ~ M v Q' '-' M '-' ~' '~-' M l-I
.x' v ~- ~' ... M ...- ~I' ~
1~ O
N
a a~ u~
-,~ ~I 0 0 0 0 0 0 0 0
-.
r 1.~ U7 ~ -rl OO M N l0 ~?' N M lfl ~ N
(U
'
(U ~ N ~ N r-I M r N N N ~' l0
t~ ~ ~ O O l0 t!~ ~
3-~ N O Cl, r N ~ M 01 N r M tn N M M
~ 00 N r-I M +~
H ~ .~ M v d v M '- ~, ~ M ~ d. ~- ~
~ M ~- ~ ~-
.C7~ O
rtfU ~ -r-I-r-I
H ~ N +~
O rI ~
r
U -~ C ~ r mo ao ~ o~ o~ o~
~ O
U1 N -ri 61 lfl C' fn ~ r N .
fI1 ~
N
S-1 ~ S-I V' tn 01 dp r-i N r O l0 ~G
~ W l0 ~ ~ N
. M
O N .N ~~ l0 l0 O r O r l4 . ~ . l0
O r
H va .~ o, -- o, -- ~ -- .~ -- oo ~ x
-- -- a, -- o, -- ,~ --
o H
H
H
O
b
3 3
~0 ~ u7 .-1 ~ N
'C3
1-> r-I o1~ . . ,
O U -- O ~o O r o r O r
H N N
U
>, N ~'' >''
-I ~ 1 I I I O O
U H I N I N 1 N I N
S~
N O
O O
U U U U
OD al O r-I N M V~ u~
fx ao 00 ~ o~ 01 ~ 01 a1 ~' H
N N
42

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
The runs in Table 8 vary the feed points for processing
the nylon with the treated clay. The clay was fed into the ZSK
twin screw extruder at the throat or downstream of the throat.
The nylon used was a copolymer of 80% nylon 6,6 and 20°s nylon 6.
93

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
0 0 0 o i~ o
N N o Wt7 mn ~ u7 u7 uwo
N N N N N N N N N
N ~ ~
U r-I O O O O O O O O O
o x ~ -.~ r~ 00 ri l0 N r-I O ~-I N 00
sa a~'t7 mw ~o~~romoo~or~o~nmoaoov~a~~r
LL ~-I O Q, ~ OD r1 01 N r N r N r N r N O N ~ N ~ N
f.~..~ ~ .~G -~ N '-' M v M v M v c~ ~- M ~- v' V M ~- M ~-
W 1.a
N t~1 p
~ ~ ~ ~ ~ ~ ~ ~
O -rl ri O O O O O O O O O
~-
~ 1-I U1 ~ -rl O Wit' r M 01 l0 N O 61 y~~ y,~
f~
~ 'b fJ1 l0 lD OO N ~ M r N O M O ~' ~-I ~ p
W l0 M N O M
~ z N O f~ r N lO M 00 M l0 M d1 M O M N x -O .O
E M l0 M Q1 M
M ~ ~. ~. ~, ~. ~. '. ~ ~ ~ '~ Q7
~ .,. Q, ~ ~. .r
s~ a
O
rd 3
~ +~ ~ ~ ~ ~ N
C rl ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ f-
~
U
-r-) -rl ~ OO C' ll~ r N lW -I V' r ~ w w
~
O ~ N-r-I n r oo ~ o~ ~ ao ~o oo O O
W
f~ S-1 N M ~' N ~ M ~ M d ~ !.-I
U7 W
N .IJ O r O r O r O r O r O r O r O
Q., ~ r O r
'C3 H c!) ~ ~- ,r-i --- ,.~ -- ,~ -- ~ 3 rtS '~
x -- -- ,-i -- ,~ ,-- ,-i -- ~-i r~
--
O O ~
~-t S-I
N
w x
+~ +~ x
N N
w w
-'~ ~
w O O ~ M
f(j .w T ~ Ol d' r OO OO N 4-1
O r p~ O O
O
Sa r-I o\o
t0 U '-' O ~ 117 N M ~ V M V'
(f~ ~
rIf>~ O ~
C O ri3
O ~ s-a ~
~ s-a O
~ fa ~
+~ fa
m m ,~
~ w ~w w+~w
~
O 3 O O
O 3
~ ' ~
f - v~ 23 m m
cn -
L3
U H I of a a a a a a
a~a a~ a a
a a~ a~
w w 4--~ w
b -o
~ ~~,~>~ >~~>~
0 0 0 0 0
0 0 0
r-iU .-I U U
U rI r-1
U ~
O
~
p
~
~
~'
p
f O ~-I N M c1' z ~ z cn tn
~ z z
~ r o0 0~ 0 0 0 0 o
(Y.., 61 Ol 61 al t-i r-I rl rl c-1 r1N r'1 t0 o7
v~ I~
47
44

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
In Table 9, composites are prepared from eight (8)
different quaternary ammonium/ammonium blend-treated silicates.
The composites are processed using a ZSK twin screw extruder.
Taking into account the standard deviations of the tensile
strength measurements, all of the samples show an increase in
tensile modulus and flex modulus without a decrease in tensile
strength. Samples 125 through 135 show the effect of varying the
nylon type.

CA 02320988 2000-08-11
WO 99!41299 PCT/US98l02768
M ~o uW o ~mrmo
N N o u~ ~ oo ao co 0o ao 00
N N N N N N N N
r0 U7 00
r-I ~ ~ N ~
U I-I O O O O O O O O O
~ -rl O 01 lfl l0 l1J l0 l0 M O
~
'(~ ~ 'L7 O rl 00 ~1 a1 l~ 01 Ol u~ l~
VI ~ 01 N N M M t~ f
N rl O ~ M f~ M N N M N N ~' M 00
~ ~ l~ M M M M
+~ f~ ~ v ~-- u7 -- ~r .~ ~ ~- ~ ..~
x " -- ~r -- ~y, ,.. ,n ..,
N
C-,N rn
~ 1 H ~ ~ ~ ~
~ ~.-I O O O O O O O O O
.-1
~
~'.,V1 '~ V' r-1 01 CO '-1 r-I l~ C
-r-I ~C
fd
~ L," "~ In rl l0 ~-I 00 In N O 00
N U7 W M r-1 l0 N O N N
.-iN O Cdr ~ M 01 ~' lfl M lD M lO M I~
~. M l~ M M C M
L74 E-i ~ ~' .r ,n ~ ~' .r ~ ~ ,n .r
x '-' ~ d, ~ ~, ~ ~ ..,.,
N
~r~
r-I ~ ~ ~ ~ ~
O ~rl G; l0 l17 M V~., C~ QD W -I M .
U~ O ~' f~ ~ OD O 00 01 ~f7 4-1
-r-I C' u~
((f
S-I VI 00 Q' d1 v-I 00 N r-i N
~ Q1
N ~ Cl~ ~-I f~ M a1 rl f1 N 00 rl OW
~ IW -I o~ t-1 -1 QO f-1 i~
N Cn r-t v r-I W -1 V ~-1 v H v H
X ~- "-' r-I W -I v ~-I v
~
+I
!~
W
O
l4 M N M l0 O M !~
~ . . . .
-I d~ O ~ O e-i ~ N ~ N Wit' -,..t
UV
O
'~
-r1
>, N
1 c~ 1 x x H H ~7 ~
U E-~ I C7 I x x H H h h c~S
O
r1
~
*
U U va
i * t
tn lSJ f~ 00 O r-I N M
61
O O O O O ~-1 rl ,-I r1
LY., r-1 r-I rl r-I '-I r-t r-I r-1 *
rl .~
46

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
+~ R,
~-I ~ U r r OD r N N N
O N o 00 OD 00 OD OD OD 00
~E-~'-'NNNNNCVN
N
M
b ~ ~ ~ ~ .
r-i '.3 .-. N .-. ~. N ~ .-. N ~ ~ N
U ~ ~ O O O O O O O O O O O
Tf >C ~ -rl !~ 01 0o O N v' M N ~-I N O o0
N T3 N T3 ~ ~ ~ r >n N r O ~.t~ r r ~ r t0 N CO 01 M M
r-I O fl,,~ ONrM Mr-IM MAIM MIOMIOMNct' C'
-rl fLi
+~ N
N O
O E-~ N a1 M ~~ ~r
U m-I ~ ., u7 .-. .-. ~.r~ ~ .-. m .., .-. ~ .-.
-rl ~-I o 0 0 0 0 o 0 0 0 0 0
. G m ~ -~~ ~ M c~ ~ u»n ~ r ~r o ~ ao
a1 N ~ T3 in W -1 dO O N ~' O C' r O M l0 r OI N W N OI
rl N O >:1, W -I N r M M O M M o0 M M N N N M r M
N G4 E-W X '-' ~, wr ~ ~. ,~ .r ~ ~, .r _. Q. .
.~ E~
V~ C' al p
H -~ N +~ of ~r N
C .-1 b'~ .-. ~ .--. ..., ~ ~ ~ ~ .. ..., t~ ..
O -r-i ~ N MH N ON ~ Mrs dl O 01 OI~ Ol
(n N -rl (~ N ~ ~ ~ Ol ~ lfl ~ O ~ u7 ~ O ~ l0 ~ l0 ~ lD ~ M ~ N ~~ al O
l-1 (0 W ~ r ~ a1 ~ ~ ~ O ~ t!7 ~ d1 ~ ~ ~ O ~ l0 ~ l0 ~ r N N C' l0
N +~ ~., W -I r ~-1 r O r ~-1 00 r-I r '-I r ~-1 r ~ 00 N 0~ N 00 '-I r
H c~ .x -- ~--m- ,~ ,- ~ -- ~ '- ,~ -- ~ -- ,-i -- ~ '- ~~ ~- ,~ -- ,--m- ,-I
o 0 0
+I +I +I +I
W 4-I 4~ 4-I
O O O O
o~ N ~r r N m.m.n ~
O O O O
U ow o N ~ M ~o M ~o o M ~o ao -
r» tzs ra rd
-r-I -r-I -.~ -r-I
r~ L~ ~ 5 ~ P
.-~ ~, I x x a a ~ E I z z z ~ a~ v a~
UH I x x a a ~ E I z z z ~ar~a
b~-~-rs
>~ s~ ~ ~
bb~~
,
r0 rtS r0
I I
~r W o r ao of o ,~ N M ~r u7 vW n cn
~ N N N N N
(li r-i rl 1-1 rl rl 1-I 1-I t"I r-I t-I v-I r1 N M v~
47

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
~ !~
.-1 ~ OO U7 u) ~C7 N O l0 01 lfl N l0
U
N O o Wo 00 ,-I ~ r r ~ r o0 00
~ H '-' N N N M N N N N N N N
r'I ~ --
U .-I o 0 0 0 0 0 0 0 0 0 0
T~ 9C ~ -~ N N M l0 cr a1 V~ M ~-I ~ M
~
p '~ fn r-i M 00 r-I ~I' v--I 00 N ~-1 O lQ
~ Q' r 00 Ol O 61 u~ r 00 M ~
r-1 O 00 M Ol Wit' ~ M .-I V ~ M O M ~ M
C~ E M M O M ~ M ~' d
t~.J..~Gu ~ .~G V~ ,- ,~ -- Wit' .... ~p ~ ~, ~ ,n
-- .r u~ ~ d, ~- u~ ~.. ,n ~ ~p --
-rlQS
t~~
OH N m
UI .-i ~
"t'$-r-~ r-I O O O O O O O O O O O
U7 ~ -r1 r .-I N ~r 01 01 r-i 01 ~-I O o0
t0
01~ ~ 'L3 OD M O ~f' N M 00 ~ d' 01 ~ M r 01
fn ~ V a1 O M O O tn M
r-IN O , OD M d d' 00 M tf~ V M N Ol M <O M
~F. M N o0 M 00 ~ M ~
pf.~H ~ X d, " ~p '-' ~' '' ~p " ~' '-' Wit'
'-' _' ~ " ~r -- cr ~ u7 -- ~ ~..
H-.-1N +~
.-I b~ --.
O -ri 1~ r v-I l!J r l0 ~ M V C N
W N-r-I r ~ ~ r ~ ~ ao ao ,-I u~ c
rt
1-I U1 O N 00 O 00 M OD r-I M l0
W u7
p ~.J -I OD r-1 OD '-1 r '-I 00 rl r N a0
, y N OO r1 CO N OO N 00 N o0
H cl) ri v r-1 v rI W -I v f-I v rl v ~-1
-.~G ~- rl ~-'..j ..-- ~ ~- ~ --
v
?, ~ ~ r o N M o0
~ s~
~
r-i o~ O ao O 00 O r-I d O N ~1' ~ O O
O O
?, N ~ !~
>~
!~
~ ~' ' ~'
' '
I z I z I z z I z z z
U H 1 z I ~ I z 2 I z z z
a~ a~
a~
a~
r
U U U U
'~-'
I ~-1 I N I (~ (~ I c c a,
tn l0 r 00 01 O .-I N M C tn
N N N N N M M M M M M M M
M ~
Qi rl r~ r-I rl ~ r-1 r-I rl ~~ r-i r-1 ,--,
N r'1
a
48

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
In Table 10, composites are prepared from six (6)
different tertiary ammonium-treated silicates. The composites
are processed using a ZSK twin screw extruder. Taking into
effect the standard deviation of the tensile strength
measurements, all of the samples show an increase in tensile
modulus and flex modulus without a decrease in tensile strength.
49

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
.aJ C.L
-I ~ ~ r r ~ r o M r
U
o~ ~ o~ ao ao m
~ H '-' N N N N N N N C'J
01
U ~ ~N ~
o O O O o o o O o
~
s ~ N ~ ~ r ~r ,~ M c
x ~ -~I
p.~ l0 '-I 00 Ol ~ r 01 r 00 ~ Q' l0
O r ct' v-i al
r-t O tn M l0 M 'd' M ~' M rl M M M M
Q"'~,' 01 M r M
O
O
~H
N u1
-1 ~ ~
~ ~. ~ ~ ~ ~
--I -rl rl O O O O O O O O O
S~-~ (O ~ lfl ap l0 In 00 r r O tn
-rl
~
,~ C: "(~ M O r-i O 00 O M a1 M l0 M Lf~
(d U7 W O 00 tl~ r O
Hp N O Cl, ~!' M 01 Wit' 00 Wit' r M M M M
~ ~C M O M OD ~'
~ H E x ~' " ~ '-' ,n '-' ,,n -' m --
'-'
a~ ~
~ p, ~ _. ~ ~ ~ ~r ~ ~ ~ ~
-~t ~ ~r r o M u~~, ~t o ,-i a~
~
U7 N r-f O 61 00 d' C31 l0 N
-rl M
(>y
~ t-1 M d1 61 ao ~ N o c' ~'
fn LL
N +~ N OO M 00 N OD N OD N d0 rl QO
, ~ ~-I CO N 00 N 00
O H c!~
.x --
H
+I
O
?, V' 01 t--I ~ .-I r N
O
r-I oW O ~ V' ~' C' M O N l'J
U v
~-1
?, N
ra p,
p
rl ?, t O W Q1 f~ C!7 I H H
U H I O ~ Ot fx U7 I H H
b
N
U U
i I
y o r m o~ o ~-t N M ~a
M M M M ~ ct Wit'
rW -I w-I v-I r-1 c-I r~ e--1 r-1

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
In Table 11, samples 147, 150, 152, 154 and 156 are
subjected to solid state polymerization, A dramatic improvement
is noted in the tensile strength and elongation.
51

CA 02320988 2000-08-11
WO 99/41299 PCT/US98/02768
0 0
~ ~ U
+-~ CL
co ~mn ~mn u~ umn o 0
N N o ~ ~ lfl OD rl ~-I !~ I~ 9 I 00 0o M
N N N N M M N N I I N N
N
O U
I t~ ~ I
G O
O -r1 'Q
r~ 1-W' W N Co '-1 01 0~ ~' U- I~ Oo u~ t~1 ri
W ~ . . . . . . . . . . . . O U
01 N M M N N OO O N O t!7 O
~o N M M ~J' ~W -1 N
0
O "O
N r-I
_ _ _ _ _ _ _ _ _ _ _ _ N O
-I O O O O O O O O O O O O
(n ~C '.3 -ri c0 N N V~ M l0 !'~ 00 al ~ 00 M l0
Q "O !n W ~i M 00 r-i O M V' r-1 CO N M u~ O 01 l0 O 01 a1 ~~ 01 Op (~ M u~ ~
O r-I O Ll~ ~ ~ M ~ d' M d' ~ M ~ C' l0 V' M N V' M l0 M f~ M M M r-I M O
-.-1 w ~ x "' d' ''' ~n "r ~p _' ~' ''' ~ ~.' ~ " V, ''' ~' ~ ~ ~ ,n '.' u~ ~-
~ _- .fl N
r>3 '-I
~--I .rl
f'-I N (n ~ O
r1 'J -rl rl O O O O O O O O O O O O ~ ~ 'JY
.~ tn '.~" ~rl (17 t~ r-1 W N ~' O r-i f~ O v-'I Oo M .,..I
N fn ~ 'L~ (n 0.i OO M O d~ 01 I~ N M CO Ln rl l1 rl 01 ap 01 O M l0 l~ O OD
V~ l0
[-~ f~ N O (1, ~ GAD M C~ V' OD Wit' oo M u~ ~ OD V~ N N N N N d' M M lfl M N
M ~ w N
N E-~EaG''~ ~''''~p"~"~'"~"~"d'"~'"~'"'~",n'.',n" N ~
U .rl N
w a~ .~.~
r-I tr -, -- ,-. -- -, -- ~ .~ .-. ~ .-. ,
-rl .~.. ~- I~ rl d1 lfl f~ d1 l0 t~ N d1 O C' ~ Q U
fn O -rl f!3 t~ ~ 61 ~ N ~ Q' ~ t~ ~ 01 ~ d' ~ tn ~ lfl ~ l~ ~ f~ ~ 01 ~ O ~.
O
C ~-I V1 0.i ~ O ~ N ~ I~ ~ OD ~ O ~ W ~ 00 ~ 01 ~ d~ ~ ~ ~ 00 ~ 01 a ~ .LJ
N +~ LL W-I 00 r-I OD d' 01 e-i E~ r-I 0~ M 01 v-1 I~ rl I~ M ~1 M 01 N 00 N
00 ~ O
~..1 H
~ 01~
~N
r-W -1 r-I r-I r-1 ~--I 61 01 -d . rt1
N -
ri 0~ O OD OD O 00 00 O O l!~ Ln M M ~ O I~ O
U " O .~
O 3 O O
I z z I z z I I z z z z
UH I z z I z z I I z z z z -~ ~ ~no0
Q N
_~ '-1 r-1
O
U U U j~ 'V .~ ~ '~ .N
1 ~ I ,.-~ 1 ~ .-, N
W n lfl I~ 00 01 O .-I N M V' tn l0
~r ~ ~ ~r m mn ~mn umn ~ ~ rt rt
~I ,~ ~ ~I ,~ N ~n cn
52

Dessin représentatif

Désolé, le dessin représentatif concernant le document de brevet no 2320988 est introuvable.

États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : Regroupement d'agents 2013-10-29
Inactive : CIB de MCD 2006-03-12
Demande non rétablie avant l'échéance 2004-02-13
Le délai pour l'annulation est expiré 2004-02-13
Réputée abandonnée - omission de répondre à un avis sur les taxes pour le maintien en état 2003-02-13
Inactive : Abandon.-RE+surtaxe impayées-Corr envoyée 2003-02-13
Lettre envoyée 2001-03-16
Lettre envoyée 2001-03-16
Lettre envoyée 2001-03-16
Inactive : Transfert individuel 2001-02-19
Inactive : Page couverture publiée 2000-12-01
Inactive : CIB en 1re position 2000-11-19
Inactive : Lettre de courtoisie - Preuve 2000-11-07
Inactive : Notice - Entrée phase nat. - Pas de RE 2000-11-01
Demande reçue - PCT 2000-10-27
Demande publiée (accessible au public) 1999-08-19

Historique d'abandonnement

Date d'abandonnement Raison Date de rétablissement
2003-02-13

Taxes périodiques

Le dernier paiement a été reçu le 2002-01-24

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
Taxe nationale de base - générale 2000-08-11
TM (demande, 2e anniv.) - générale 02 2000-02-14 2000-08-11
TM (demande, 3e anniv.) - générale 03 2001-02-13 2001-02-13
Enregistrement d'un document 2001-02-19
TM (demande, 4e anniv.) - générale 04 2002-02-13 2002-01-24
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
SOLUTIA INC.
Titulaires antérieures au dossier
BRUCE A. LYSEK
CLOIS E. POWELL
LLOYD A. GOETTLER
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Description 2000-08-10 52 1 589
Abrégé 2000-08-10 1 45
Revendications 2000-08-10 3 87
Avis d'entree dans la phase nationale 2000-10-31 1 193
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 2001-03-15 1 113
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 2001-03-15 1 113
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 2001-03-15 1 113
Rappel - requête d'examen 2002-10-15 1 115
Courtoisie - Lettre d'abandon (taxe de maintien en état) 2003-03-12 1 178
Courtoisie - Lettre d'abandon (requête d'examen) 2003-04-23 1 167
Correspondance 2000-10-30 1 24
PCT 2000-08-10 19 674
Taxes 2002-01-23 1 52
Taxes 2001-02-12 1 56