Sélection de la langue

Search

Sommaire du brevet 2330352 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Demande de brevet: (11) CA 2330352
(54) Titre français: METAUX DURS REFRACTAIRES EN POUDRE ENTRANT DANS LA FABRICATION D'ELECTRODES
(54) Titre anglais: REFRACTORY HARD METALS IN POWDER FORM FOR USE IN THE MANUFACTURE OF ELECTRODES
Statut: Réputée abandonnée et au-delà du délai pour le rétablissement - en attente de la réponse à l’avis de communication rejetée
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • C04B 35/58 (2006.01)
  • C01B 32/921 (2017.01)
  • C01B 35/04 (2006.01)
  • C04B 35/56 (2006.01)
  • C04B 35/622 (2006.01)
  • C25C 3/12 (2006.01)
(72) Inventeurs :
  • BOILY, SABIN (Canada)
  • BLOUIN, MARCO (Canada)
(73) Titulaires :
  • GROUPE MINUTIA INC.
(71) Demandeurs :
  • GROUPE MINUTIA INC. (Canada)
(74) Agent: NORTON ROSE FULBRIGHT CANADA LLP/S.E.N.C.R.L., S.R.L.
(74) Co-agent:
(45) Délivré:
(22) Date de dépôt: 2001-01-05
(41) Mise à la disponibilité du public: 2002-07-05
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Non

(30) Données de priorité de la demande: S.O.

Abrégés

Abrégé anglais


The invention relates to a refractory hard metal in powder form
comprising particles having an average particle size of 0.1 to 30 µm and
each
formed of an agglomerate of refractory hard metals of the formula:
A x B y X z (I)
wherein A is a transition metal, B is a metal selected from the group
consisting of
zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum,
manganese, tungsten and cobalt, X is boron or carbon, x ranges from 0.1 to 3,
y
ranges from 0 to 3 and z from 1 to 6. The refractory hard metal in powder form
according to the invention is suitable for use in the manufacture of
electrodes by
thermal deposition or powder metallurgy.
-15-

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


The embodiments of the invention in which an exclusive property or privilege
is
claimed are defined as follows:
1. A refractory hard metal in powder form comprising particles
having an average particle size of 0.1 to 30 µm and each formed of an
agglomerate of refractory hard metals of the formula:
A x B y X z (I)
wherein A is a transition metal, B is a metal selected from the group
consisting
of zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum,
manganese, tungsten and cobalt, X is boron or carbon, x ranges from 0.1 to 3,
y
ranges from 0 to 3 and z from 1 to 6.
2. A refractory hard metal in powder form according to claim 1,
wherein A is a transition metal selected from the group consisting of
titanium,
chromium, zirconium and vanadium.
3. A refractory hard metal in powder form according to claim 2,
wherein A is titanium, X is boron and y is 0.
4. A refractory hard metal in powder form according to claim 3,
wherein x is 1 and z is 1.8.
5. A refractory hard metal in powder form according to claim 3,
wherein x is 1 and z is 2.
6. A refractory hard metal in powder form according to claim 3,
wherein x is 1 and z is 2.2.
7. A refractory hard metal in powder form according to claim 2,
wherein A is titanium, X is carbon and y is 0.
-9-

8. A refractory hard metal in powder form according to claim 8,
wherein x is 1 and z is 1.
9. A refractory hard metal in powder form according to claim 2,
wherein A is titanium, B is zirconium or hafnium, X is boron and y is other
than 0.
10. A refractory hard metal in powder form according to claim 9,
wherein B is zirconium, x is 0.5, y is 0.5 and z is 2.
11. A refractory hard metal in powder form according to claim 9,
wherein B is zirconium, x is 0.9, y is 0.1 and z is 2.
12. A refractory hard metal in powder form according to claim 2,
wherein B is hafnium, x is 0.5, y is 0.5 and z is 2.
13. A refractory hard metal in powder form according to claim 2,
wherein A is zirconium, B is vanadium, X is boron and y is other than 0.
14. A refractory hard metal in powder form according to claim 13,
wherein x is 0.8, y is 0.2 and z is 2.
15. A refractory hard metal in powder form according to claim 1,
wherein said average particle size ranges from 1 to 5 µm.
16. A process for producing a refractory hard metal in powder form
as defined in claim 1, comprising the steps of:
-10-

a) providing a first reagent selected from the group consisting of
transition metals and transition metal-containing compounds;
b) providing a second reagent selected from the group consisting of
boron, boron-containing compounds, carbon and carbon-containing
compounds;
c) providing an optional third reagent selected from the group
consisting of zirconium, zirconium-containing compounds, hafnium, hafnium-
containing compounds, vanadium, vanadium-containing compounds, niobium,
niobium-containing compounds, chromium, chromium-containing compounds,
molybdenum, molybdenum-containing compounds, manganese, manganese-
containing compounds, tungsten, tungsten-containing compounds, cobalt and
cobalt-containing compounds; and
d) subjecting said first, second and third reagents to high-energy
ball milling to cause solid state reaction therebetween and formation of
particles having an average particle size of 0.1 to 30 µm, each particle
being
formed of an agglomerate of grains with each grain comprising a nanocrystal
of a refractory hard metal of the formula (I) as defined in claim 1.
17. A process according to claim 16, wherein said first reagent
comprises a transition metal selected from the group consisting of titanium,
chromium, zirconium and vanadium.
18. A process according to claim 17, wherein said transition metal is
titanium.
19. A process according to claim 16, wherein said first reagent
comprises a titanium-containing compound selected from the group TiH2,
TiA13, TiB and TiC12.
-11-

20. A process according to claim 16, wherein said second reagent
comprises boron.
21. A process according to claim 16, wherein said second reagent
comprises a boron-containing compound selected from the group consisting of
A1B2, A1B12, BH3, BN, VB2, H2BO3 and Na2BO7.
22. A process according to claim 16, wherein said second reagent
comprises carbon.
23. A process according to claim 16, wherein said second reagent
comprises tetraboron carbide.
24. A process according to claim 16, wherein said third reagent is a
compound selected from the group consisting of HfB2, VB2, NbB2, TaB2, CrB2,
MoB2, MnB2, Mo2B5, W2B5, CoB, ZrC, TaC, WC and HfC.
25. A process according to claim 16, wherein step (d) is carried out
in a vibratory ball mill operated at a frequency of 8 to 25 Hz.
26. A process according to claim 25, wherein said vibratory ball mill
is operated at a frequency of about 17 Hz.
27. A process according to claim 16, wherein step (d) is carried out
in a rotary ball mill operated at a speed of 150 to 1500 r.p.m.
28. A process according to claim 27, wherein said rotary ball mill is
operated at a speed of about 1000 r.p.m.
-12-

29. A process according to claim 16, wherein step (d) is carried out
under an inert gas atmosphere.
30. A process according to claim 29, wherein said inert gas
atmosphere comprises argon or helium.
31. A process according to claim 16, wherein step (d) is carried out
under a reactive gas atmosphere.
32. A process according to claim 31, wherein said reactive gas
atmosphere comprises hydrogen, ammonia or a hydrocarbon.
33. A process according to claim 16, wherein step (d) is carried out
for a period of time of about 5 hours.
34. A process according to claim 16, wherein a sintering aid is added
during step (d).
35. A processd of preparing a grain refining agent as defined in claim
or 8, comprising subjecting TiB2 or TiC to high-energy ball milling to cause
formation of particles having an average particle size of 0.1 to 30 µm,
each
particle being formed of an agglomerate of grains with each grain comprising a
nanocrystal of TiB2 or TiC.
36. A process according to claim 35, wherein said high-energy ball
milling is carried out in a vibratory ball mill operated at a frequency of 8
to 25
Hz.
-13-

37. A process according to claim 36, wherein said vibratory ball mill
is operated at a frequency of about 17 Hz.
38. A process according to claim 35, wherein said high-energy ball
milling is carried out in a rotary ball mill operated at a speed of 150 to
1500
r.p.m.
39. A process according to claim 38, wherein said rotary ball mill is
operated at a speed of about 1000 r.p.m.
40. A process according to claim 35, wherein said high-energy ball
milling is carried out under an inert gas atmosphere.
41. A process according to claim 35, wherein said inert gas
atmosphere comprises argon or helium.
42. A process according to claim 35, wherein said high-energy ball
milling is carried out under a reactive gas atmosphere.
43. A process according to claim 42, wherein said reactive gas
atmosphere comprises hydrogen, ammonia or a hydrocarbon.
44. A process according to claim 35, wherein said high-energy ball
milling is carried out for a period of time of about 20 hours.
45. A process according to claim 35, wherein a sintering aid is added
during said high-enery bal milling.
-14-

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 02330352 2001-O1-OS
REFRACTORY HARD METALS IN POWDER FORM FOR
USE IN THE MANUFACTURE OF ELECTRODES
The present invention pertains to improvements in the field of
electrodes for metal electrolysis. More particularly, the invention relates to
a
refractory hard metals in powder form for use in the manufacture of such
electrodes.
Aluminum is produced conventionally in a Hall-Heroult
reduction cells by the electrolysis of alumina dissolved in molten cryolite
(Na3A1F6) at temperatures of up to about 950 °C. A Hall-Heroult cell
typically
has a steel shell provided with an insulating lining of refractory material,
which
in turn has a lining made of prebaked carbon blocks contacting the molten
constituents of the electrolyte. The carbon lining acts as the cathode
substrate
and the molten aluminum pool acts as the cathode. The anode is a consumable
carbon electrode, usually prebaked carbon made by coke calcination.
During electrolysis, in Hall-Heroult cells, the carbon anode is
consumed leading to the evolution of greenhouse gases such as CO and C02.
The anode has to be periodically changed and the erosion of the material
modifies the anode-cathode distance, which increases the voltage due to the
electrolyte resistance. On the cathode side, the carbon blocks are subjected
to
erosion and electrolyte penetration. A sodium intercalation in the graphitic
structure occurs, which cause swelling and deformation of the cathode carbon
blocks. The increase of voltage between the electrodes adversely affects the
energy efficiency of the process.
Extensive research has been carried out with refractory hard
metals such as TiBz, as electrode materials. TiB2 and other refractory hard
-1-

CA 02330352 2001-O1-OS
metals are practically insoluble in aluminum, have a low electrical resistance
and are wetted by aluminum. However, the shaping of TiB2 and similar
refractory hard metals is difficult because these materials have high melting
temperatures and are highly covalent.
It is therefore an object of the present invention to overcome the
above drawbacks, and to provide a refractory hard metal in powder form
suitable for the manufacture of electrode by thermal deposition or powder
metallurgy.
According to one aspect of the invention, there is provided a
refractory hard metal in powder form comprising particles having an average
particle size of 0.1 to 30 dm and each formed of an agglomerate of grains with
each grain comprising a nanocrystal of a refractory hard metal of the formula:
AXByXZ ~I)
wherein A is a transition metal, B is a metal selected from the group
consisting
of zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum,
manganese, tungsten and cobalt, X is boron or carbon, x ranges from 0.1 to 3,
y
ranges from 0 to 3 and z from 1 to 6.
The term "nanocrystal" as used herein refers to a crystal having a
size of 100 nanometers or less.
The expression "thermal deposition" as used herein refers to a
technique in which powder particles are injected in a torch and sprayed on a
substrate. The particles acquire a high velocity and are partially or totally
melted during the flight path. The coating is budded by the solidification of
the
droplets on the substrate surface. Examples of such techniques include plasma
spray, arc spray and high velocity oxy-fuel.
-2-

CA 02330352 2001-O1-OS
The expression "powder metallurgy" as used herein refers to a
technique in which the bulk powders are transformed into preforms of a desired
shape by compaction or shaping followed by a sintering step. Compaction refers
to techniques where pressure is applied to the powder, as, for example, cold
uniaxial pressing, cold isostatic pressing or hot isostatic pressing. Shaping
refers
to techniques executed without the application of external pressure such as
powder filling or slurry casting.
Typical examples of refractory hard metals of the formula (I)
include TiBl.s, TiB2, TiC, Tio.sZro.sBz~ Tio.9Zro.~Bz~ Tio.sHfo.sBz and
Zro.sVo.2B2~
TiB2 is preferred.
The present invention also provides, in another aspect thereof, a
process for producing a refractory hard metal in powder form as defined above.
The process of the invention comprises the steps of:
a) providing a first reagent selected from the group consisting of
transition metals and transition metal-containing compounds;
b) providing a second reagent selected from the group consisting of
boron, boron-containing compounds, carbon and carbon-containing
compounds;
c) providing an optional third reagent selected from the group
consisting of zirconium, zirconium-containing compounds, hafnium, hafnium-
containing compounds, vanadium, vanadium-containing compounds, niobium,
niobium-containing compounds, chromium, chromium-containing compounds,
molybdenum, molybdenum-containing compounds, manganese, manganese-
containing compounds, tungsten, tungsten-containing compounds, cobalt and
cobalt-containing compounds; and
-3-

CA 02330352 2001-O1-OS
d) subjecting the first, second and third reagents to high-energy ball
milling to cause solid state reaction therebetween and formation of particles
having an average particle size of 0.1 to 30 Vim, each particle being formed
of
an agglomerate of grains with each grain comprising a nanocrystal of a
refractory hard metal of formula (I) defined above.
The expression "high-energy ball milling" as used herein refers to
a ball milling process capable of forming the aforesaid particles comprising
nanocrystalline grains of the refractory hard metal of formula (I), within a
period of time of about 40 hours.
Examples of suitable transition metals which may be used as the
aforesaid first reagent include titanium, chromium, zirconium and vanadium.
Titanium is preferred. It is also possible to use a titanium-containing
compound
such as TiH2, TiAl3, TiB and TiCl2.
Examples of suitable boron-containing compounds which may be
used as the aforesaid second reagent include A1B2, A1B,2, BH3, BN, VB, H2B03
and Na2B40~. It is also possible to use tetraboron carbide (B4C) as either a
boron-containing compound or a carbon-containing compound.
Examples of suitable compounds which may be used as the
aforesaid third reagent include HfB2, VBZ, NbB2, TaB2, CrB2, MoB2, MnB2,
Mo2B5, W2B5, CoB, ZrC, TaC, WC and HfC.
According to a preferred embodiment, step (d) is carried out in a
vibratory ball mill operated at a frequency of 8 to 25 Hz, preferably about 17
Hz. It is also possible to conduct step (d) in a rotary ball mill operated at
a speed
of 150 to 1500 r.p.m., preferably about 1000 r.p.m.
-4-

CA 02330352 2001-O1-OS
According to another preferred embodiment, step (d) is carried
out under an inert gas atmosphere such as a gas atmosphere comprising argon or
helium, or under a reactive gas atmosphere such as a gas atmosphere
comprising hydrogen, ammonia or a hydrocarbon, in order to saturate dangling
bonds and thereby prevent oxidation of the refractory hard metal. An
atmosphere of argon, helium or hydrogen is preferred. It is also possible to
coat
the particles with a protective film or to admix a sacrificial element such as
Mg
or Ca with the reagents. In addition, a sintering aid such as Y203 can be
added
during step (d).
In the particular case of TiB2 or TiC wherein titanium and boron
or carbon are present in stoichiometric quantities, these two compounds can be
used as starting material. Thus, they can be directly subjected to high-energy
ball milling to cause formation of particles having an average particle size
of
0.1 to 30 Vim, each particle being formed of an agglomerate of grains with
each
grain comprising a nanocrystal of TiB2 or TiC.
The high-energy ball milling described above enables one to
obtain refractory hard metals in powder form having either non-stoichiometric
or stoichiometric compositions.
The refractory hard metals in powder form according to the
invention are suitable for use in the manufacture of electrodes by thermal
deposition or powder metallurgy. Due to the properties of refractory hard
metals, the emission of toxic and greenhouse effect gases during metal
electrolysis is lowered and the lifetime of the electrodes is increased, thus
lowering maintenance costs. A lower and constant inter-electrode distance is
also possible, thereby decreasing the electrolyte ohmic drop.
-5-

CA 02330352 2001-O1-OS
The following non-limiting examples illustrate the invention,
reference being made to the accompanying drawing in which the sole figure
shows the X-ray diffraction of the refractory hard metal in powder form
obtained in Example 1.
EXAMPLE 1.
A TiB2 powder was produced by ball milling 3.45g of titanium
and I.SSg of boron in a hardened steel crucible with a ball-to-powder mass
ratio
of 4.5:1 using a SPEX 8000 (trademark) vibratory ball mill operated at a
frequency of about 17 Hz. The operation was performed under a controlled
argon atmosphere to prevent oxidization. The crucible was closed and sealed
with a rubber O-ring. After 5 hours of high-energy ball milling, a TiB2
structure
was formed, as shown on the X-ray diffraction pattern in the accompanying
drawing. The structure of TiB2 is hexagonal with the space group P6/mmm
( 191 ). The particle size varied between 1 and 5 pm and the crystallite size,
measured by X-ray diffraction, was about 30 nm.
EXAMPLE 2.
A TiB2 powder was produced according to the same procedure as
described in Example 1 and under the same operating conditions, with the
exception that the ball milling was carried out for 20 hours instead of 5
hours.
The resulting powder was similar to that obtained in Example 1. The
crystallite
size, however, was lower (about 16 nm).
-6-

CA 02330352 2001-O1-OS
EXAMPLE 3.
A TiC powder was produced according to the same procedure as
described in Example 1 and under the same operating conditions, with the
exception that titanium and graphite were milled.
EXAMPLE 4.
A TiB2 powder was produced by ball milling titanium diboride
under the same operating conditions as in Example 1, with the exception that
the ball milling was carried out for 20 hours instead of 5 hours. The starting
structure was maintained, but the crystallite size decreased to 15 nm.
EXAMPLE 5.
A TiB 1.g powder was according to the same procedure as
described in Example 1 and under the same operating conditions, with the
exception that 3.6 g of titanium and 1.4 g of boron were milled.
EXAMPLE 6.
A TiB2.2 powder was according to the same procedure as
described in Example 1 and under the same operating conditions, with the
exception that 3.4 g of titanium and 1.7 g of boron were milled.
EXAMPLE 7.
A TiBo.SZro.5B2 powder was according to the same procedure as
described in Example 1 and under the same operating conditions, with the
_7_

CA 02330352 2001-O1-OS
exception that 1.9 g of titanium, 3.1 g of zirconium diboride and 0.8 g of
boron
were milled.
EXAMPLE 8.
A TiBo.9Zro,lBz powder was according to the same procedure as
described in Example 1 and under the same operating conditions, with the
exception that 2.9 g of titanium, 0.6 g of zirconium and 1.5 g of boron were
milled.
EXAMPLE 9.
A TiBo.SHfo,5B2 powder was according to the same procedure as
described in Example 1 and under the same operating conditions, with the
exception that 0.9 g of titanium, 3.3 g of hafnium and 0.8 g of boron were
milled.
EXAMPLE 10.
A Zro,gVo.2B2 powder was according to the same procedure as
described in Example 1 and under the same operating conditions, with the
exception that 3.5 g of zirconium, 0.5 g of vanadium and 1.0 g of boron were
milled.
_g_

Dessin représentatif

Désolé, le dessin représentatif concernant le document de brevet no 2330352 est introuvable.

États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : CIB expirée 2022-01-01
Inactive : CIB désactivée 2017-09-16
Inactive : CIB attribuée 2017-01-18
Inactive : CIB attribuée 2017-01-18
Inactive : CIB enlevée 2017-01-18
Inactive : CIB en 1re position 2017-01-18
Inactive : CIB attribuée 2017-01-18
Inactive : CIB attribuée 2017-01-18
Inactive : CIB expirée 2017-01-01
Inactive : CIB de MCD 2006-03-12
Inactive : CIB de MCD 2006-03-12
Inactive : CIB de MCD 2006-03-12
Le délai pour l'annulation est expiré 2006-01-05
Demande non rétablie avant l'échéance 2006-01-05
Réputée abandonnée - omission de répondre à un avis sur les taxes pour le maintien en état 2005-01-05
Inactive : Grandeur de l'entité changée 2002-11-25
Inactive : Page couverture publiée 2002-07-05
Demande publiée (accessible au public) 2002-07-05
Lettre envoyée 2001-04-18
Inactive : CCB attribuée 2001-03-26
Modification reçue - modification volontaire 2001-03-20
Inactive : Transfert individuel 2001-03-19
Inactive : CIB attribuée 2001-03-14
Inactive : CIB en 1re position 2001-03-14
Inactive : Lettre de courtoisie - Preuve 2001-02-13
Exigences de dépôt - jugé conforme 2001-02-08
Inactive : Certificat de dépôt - Sans RE (Anglais) 2001-02-08
Demande reçue - nationale ordinaire 2001-02-07

Historique d'abandonnement

Date d'abandonnement Raison Date de rétablissement
2005-01-05

Taxes périodiques

Le dernier paiement a été reçu le 2003-11-14

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
Taxe pour le dépôt - petite 2001-01-05
Enregistrement d'un document 2001-03-19
TM (demande, 2e anniv.) - générale 02 2003-01-06 2002-11-13
TM (demande, 3e anniv.) - générale 03 2004-01-05 2003-11-14
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
GROUPE MINUTIA INC.
Titulaires antérieures au dossier
MARCO BLOUIN
SABIN BOILY
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Description 2001-01-05 8 297
Abrégé 2001-01-05 1 19
Revendications 2001-01-05 6 184
Dessins 2001-01-05 1 10
Page couverture 2002-07-05 1 29
Certificat de dépôt (anglais) 2001-02-08 1 162
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 2001-04-18 1 113
Rappel de taxe de maintien due 2002-09-09 1 109
Courtoisie - Lettre d'abandon (taxe de maintien en état) 2005-03-02 1 174
Rappel - requête d'examen 2005-09-07 1 116
Correspondance 2001-02-08 1 25