Sélection de la langue

Search

Sommaire du brevet 2418123 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Demande de brevet: (11) CA 2418123
(54) Titre français: CONVERTISSEUR D'ALIMENTATION UNIVERSEL
(54) Titre anglais: UNIVERSAL POWER CONVERTER
Statut: Réputée abandonnée et au-delà du délai pour le rétablissement - en attente de la réponse à l’avis de communication rejetée
Données bibliographiques
Abrégés

Abrégé anglais


A universal power converter includes a clock input supplying a delay network
for producing a
delay at the positive and negative clock transitions and a signal input
accepting a pulse width modulated
signal, a logic circuitry to combine the delays with the signal so as to
produce a low and high limit for the
pulse duration of the signal, a shut down logic that protects the output
devices from destruction, a second
set of delay networks to produce a turn on delay for the output devices, a
switched current source to drive
the upper output device, a pair of capacitive level shifters driving a pair of
gate drive buffers usually with
substantially higher operating voltage in order to ensure the full enhancement
of the output switching
devices without degradation in speed, and a voltage sensor to sample the
current across the output device
initiating a shut down condition via a monostable multi-vibrator in the event
that safe current limit is
exceeded.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


We claim as our invention:
1. A universal power converter comprising:
(a) signal input means for supplying a rectangular waveform with varying duty
cycle to be
power amplified;
(b) a clock signal input means with fixed duty cycle rectangular waveform for
timing
reference;
(c) a first upper and lower delay means having said clock signal supplied to
their respective
inputs and each having an output;
(d) logic circuit means having a first, second, third input, wherein first
input is connected to
said upper delay, second input is connected to said lower delay, and third
input is
connected to said signal input, and an output;
(e) a shut down circuit means having a first input connected to the output of
said logic circuit
means, a second input, a high side drive output, and a low side drive output;
(f) a second upper delay means having an input connected to said high side
drive output of
said shut down circuit and an output;
(g) a switched current source means having an input connected to the output of
said high side
drive and an output;
(h) a first buffer means having an input connected to the output of said high
side drive and an
output;
(i) an upper capacitive level shifter means having an input connected to the
output of said
switched current source and an output;
(j) a second buffer means having an input connected to said upper capacitive
level shifter
and an output;
(k) an upper switching element means having a control electrode connected to
the output of
said second buffer, a supply terminal, and an output terminal;
(1) a second lower delay means having an input connected to said lower side
output of said
shut down circuit and an output;
(m) a lower capacitive level shifter means having an input terminal connected
to the output of
said second lower delay circuit and an output;
(n) a third buffer means having an input connected to the output of said lower
capacitive
level shifter and an output;
(o) a lower switching element means having a control electrode connected to
the output of
said third buffer, a supply terminal, and an output terminal;
(p) a voltage sense circuit means having a first input connected to the output
terminal of said
lower switching element, a second input, and an output;
(q) a controlled switch means having an input terminal connected to the output
of said
second lower delay and an output connected to the second input of said voltage
sense
circuit; and
(r) a monostable multi-vibrator means having an input connected to the output
terminal of
said voltage sense circuit and an output connected to said second input of
said shut down
circuit.
2. A universal power converter as in claim 1, in which said signal input is a
waveform,
essentially rectangular, with varying duty cycle.
3. A universal power converter as in claim 1, in which the positive and
negative transition of
said clock signal is delayed by said first upper delay and said first lower
delay amount.
-6-

4. A universal power converter as in claim 3, wherein said delayed transition
are set so as to
produce an output signal of said logic circuit such that a minimum and maximum
pulse width
is always maintained regardless of the amount of modulation at said signal
input.
5. A universal power converter as in claim 4, wherein said output signal of
said logic circuit is
fed through said shut down circuit for protection.
6. A universal power converter as in claim 5, wherein said upper drive output
of said shut down
circuit is followed by a second upper delay in order to achieve delayed turn
on of said upper
switching element.
7. A universal power converter as in claim 6, wherein said second upper delay
output is driving
said switched current source having an output signal 180 degrees out of phase
with the signal
at said control terminal of said upper switching element.
8. A universal power converter as in claim 6, in which the output of said
switched current
source is driving first buffer having substantial hysteresis.
9. A universal power converter as in claim 7, having said second buffer
connected between said
upper capacitive level shifter and the control electrode of said upper
switching element and
said second buffer is allowed to have substantially greater voltage than said
upper capacitive
level shifter without significant change in propagational delay.
10. A universal power converter as in claim 5, wherein said lower drive output
of said shut down
circuit is followed by a second lower delay in order to achieve delayed turn
on of said lower
switching element.
11. A universal power converter as in claim 10, wherein output of said second
lower delay is
feeding said lower capacitive level shifter.
12. A universal power converter as in claim 11, having said third buffer
connected between said
lower capacitive level shifter and the control electrode of said lower
switching element and
said third buffer is allowed to operate at substantially greater voltage than
said lower
capacitive level shifter without significant change in propagational delay.
13. A universal power converter as in claims 9 and 11, wherein said upper
switching and lower
switching elements are N-channel type MOSFETs having the drain of said lower
MOSFET
connected to the source of said upper MOSFET and the drain of said upper
MOSFET is
connected to a positive supply and the source of said lower MOSFET is
connected to a
negative supply.
14. A universal power converter as in claim 13, wherein the connection of the
source of said
upper MOSFET and the drain of said lower MOSFET forms a load output where a
signal is
available to a load with high current and voltage capability and its duty
cycle is limited to a
predetermined maximum and minimum value in case the duty cycle of said drive
signal
approaches 100% or 0 respectively.
15. A universal power converter as in claim 14, wherein said voltage sense
circuit input is
sensing the voltage on said load output:
(a) and said voltage sense circuit is turned off by said controlled switch if
said lower
switching element is turned off;
(b) and said voltage sense circuit shall trigger monostable multi-vibrator to
terminate the
operation until the fault condition is removed;
(c) and said voltage sense circuit will detect over current of decreasing
value as temperature
due to positive temperature co-efficient of on resistance of said lower MOSFET
and said
-7-

over current limit can be made to closely track safe current values of said
lower
MOSFET at elevated temperature.
-8-

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 02418123 2003-02-05
BACKGROUND OF THE INVENTION
1. Field ofthe Invention
The present invemion relates to power converters and more directly to those
utilizing bridge
configuration of same type of switching elements, i.e. N-channel MOSFETs, and
more specifically to
power converters having very high speed capability combined with very high
voltage and power.
2. Description of the Prior Art
In power conversion the bridge configuration is the one that can be used in an
extremely large number
of applications including those that use pulse width modulation to amplify low
frequency signals at high
e~ciency.
The applications can be divided into following major categories: AC to DC, DC
to DC, DC to
AC, and AC to AC converters.
The most common approach would be to choose a standard high side drive,
include a dead zone
processing circuit to avoid shoot through and use a series low valued resistor
between the supply and the
switching device for current sensing. It turns out that for each different
application a new design needs to
be created with additional waste of engineering time. Also, the prior art
solutions above 100V supply
voltage have so much variation in propagational delay that direct paralleling
of these solutions is not
permitted. In the case of a pulse width modulation input signal at modulation
extreme, most solutions
utilizing a bootstrap circuit will fall apart due to the finite value which
the holdup capacitor may have.
Also, chip solutions have to deal with the quadratic power loss increase as a
function of operating voltage
at a given frequency. The series current sensing resistor, especially at
higher power, becomes very
troublesome, not just as a result of the extra heat, but also the increase of
ESL of the bypassing circuit.
Due to the high dv/dt and di/dt involved in high speed, high power circuitry,
the design of the printed
circuit board becomes a major task for accomplishing a sound design.
OBJECTS AND SUMMARY OF THE INVENTION
Accordingly, an object of this invention is to provide a topology for a
universal power converter
free from the defects encountered in the prior art bridge mode power
converters. Another object of the
invention is to provide a method of constructing a power converter of the
widest possible use without
fundamental change in the topology or even in the printed circuit board
design, i.e. to enable the bridge
mode converter to be truly universal use. In accordance with the present
invention, a universal power
converter is provided having a well defined, very low propagational delay,
typically 4 times less the
conventional solutions, to enable direct paralleling of converters without the
need for the reduction of
frequency of operation, having a well defined limit in minimum and maximum
duty cycle in the event
that the input signal has a duty cycle variation of 0 to 100 %, and also
having a lossless current sensing
method that tracks switching device on resistance change versus temperature to
ensure a safe over current
protection level at all allowable temperatures without dissipating extra power
or introducing any
inductance to the circuit. Yet another advantage ofthe present invention is
that the same printed circuit
board can be used for power levels of a few hundred watts to several kilowatts
economically by simply
reselecting the devices. The universal power converter of the present
invention has myriad applications
ranging from high fidelity audio to high power miniature welders, battery
chargers, etc.
-2-

CA 02418123 2003-02-05
BRIEF DESCRIPTION OF DRAW INGS
FIG. 1 is a schematic circuit diagram showing a prior art power converter;
FIG. 2 is a schematic circuit diagram showing an example of the universal
power
converter according to the present invention; and
FIGS. 3A to 3H are waveform diagrams used for explaining the operation of the
example
of the invention shown in FIG. 2.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
In order to better understand the present invention a prior art power
converter will be described
with reference to FIG.1 which is a half bridge power converter building block.
The PWM signal is
applied to signal input terminal 1 which is also the input for input buffer 2.
The output of input buffer 2 is
then connected to upper delay network 3 and lower delay network 4. The outputs
of upper and lower
delay networks 3 and 4, respectively, are connected to inputs of high/low side
drive and shut down circuit
5. The upper drive output of high/low side drive and shut down circuit 5 is
connected to the control
electrode of the upper switching element 6. The lower drive output of high/low
side drive and shut down
circuit 5 is connected to the control electrode of lower switching element 7.
Current sensing resistor 8 is
connected between supply terminal of the lower switching element 7 and
negative DC supply 12 and the
junction is then fed to the shut down input of high/low side drive circuit 5.
Bootstrap capacitor 9 is
connected to high/low side drive and shut down circuit 5 to supply power to
the upper switching element
6 when it is turned on. The output terminal of upper switching element 6 is
connected to the positive DC
supply 10. The output terminal of upper switching element 6 and output
terminal of lower switching
element 7 are connected together to output terminal 11.
With the prior art power converter shown in FIG. 1, if the PWM signal applied
to signal input
terminal 1 exceeds 100% duty cycle, the upper switching element 6 may lose its
supply, which is usually
stored in bootstrap capacitor 9, causing severe distortion.
The dead zone protection delay networks 3 and 4 are supplying the signal for
the upper and lower
drive outputs of high/low side drive and shut down circuit 5. This results in
a propagational delay of turn
offofthe upper and lower switching elements 6 and 7, respectively, as high as
100 nanoseconds with
large variation in operating conditions and from device to device. Therefore,
paralleling of such power
converters is only possible if the dead zones are selected very high which
would impair the quality of the
low frequency signal to be reproduced.
Current sensing resistor 8 is installed in series with negative DC supply 12
introducing power loss
and inductance which is an impairment from the bypassing point of view and can
easily introduce
distortion.
An example ofthe universal power converter according to the present invention,
which is free
from the defects above, will be described with reference to FIG. 2.
In the example of the invention shown in FIG. 2, clock input terminal 11 is
connected to first
upper delay network 13 and first lower delay network 14. PWM input terminal 12
is connected to an input
of logic circuit 15. Output of logic circuit 15 is connected to an input of
shut down circuit 16. The upper
drive output of shut down circuit 16 is connected to second upper delay
network 18. The lower drive
output of shut down circuit 16 is connected to second lower delay network 19.
The output of second
upper delay network 18 is connected to switched current source 20 and output
of switched current source
-3-

CA 02418123 2003-02-05
20 is connected to input of first buffer 22. The output of first buffer 22 is
connected to input of upper
capacitive level shifter 23 and output of upper capacitive level shifter 23 is
connected to input of second
buffer 26. Output of second buffer 26 is connected to control electrode of
upper switching element 29.
Supply terminal of upper switching element 29 is connected to a power supply
terminal 28 which is
supplied with a positive DC voltage +VCC and supply terminal of lower
switching element 31 is
connected to a power supply terminal 32 which is supplied with a negative DC
voltage -VCC whose
absolute value is same as that of positive DC voltage +VCC. Output of second
lower delay network 19 is
connected to input of lower capacitive level shifter 24 and control input of
controlled switch 21.
Controlled switch 21 is connected to voltage sense circuit 25. Input of
voltage sense circuit 25 is
connected to a output terminal 30. Output of voltage sense circuit 25 is
connected to input of monostable
circuit 17 and output of monostable circuit 17 is connected to an input of
shut down circuit 16. Output of
lower capacitive level shifter 24 is connected to input of third buffer 27 and
output of third buffer 27 is
connected to control electrode of lower switching element 31. Output terminal
of lower switching element
31 and output terminal of upper switching element 29 are connected together to
output terminal 30.
The operation ofthe above-described circuit will now be explained. Clock input
signal Sl, such
as that shown in FIG. 3A, supplied to clock input terminal 11 is then input to
the first upper delay
network 13 which will be initiated at the positive going transition of the
clock input signal S1. The first
tower delay network 14 will be initiated at the negative going transition of
the clock input signal Sl at
clock input terminal 11 and will have such output as that shown in FIG. 3B.
Logic circuit 15 will
combine the two delayed clock signals such that if PWM signal input S2, such
as that shown in FIG. 3E,
which is then input to PWM input terminal 12, approaches the 100% modulation
angle or 0 modulation
angle and then a maximum and minimum pulse width, respectively, in both
directions ofthe modulation
shall be supplied at the output of logic circuit 15 as shown in FIGS. 4C and
4D respectively. Here T is
the period ofthe clock and Ot is the delay interval.
As logic circuit signal S3 is fed through the shut-down circuit 16, a disable
fimetion may be
facilitated, if monostable circuit 17 is triggered by voltage sense circuit 25
due to over current condition,
by rendering upper switching element 29 and lower switching element 31
inactive by producing zero
voltage at the c~trol electrodes of said devices. Shut down circuit 16 via
second upper delay network 18
drives a switched current source 20 that is configured such that under no
condition shall said switched
current source 20 saturate. This configuration then yields a very high speed
level translator, that has a
typical propagational delay similar to the high speed first buffer 22,
approximately 5 nanoseconds. Low
voltage logic level signal S4 at the output terminal of first buffer 22 is fed
to second buffer 26 via upper
capacitive level shifter 23. Second buffer 26 is of high current capacity such
that the propagational delay
can be maintained again at approximately 5 nanosecond while signal levels are
increased typically three
fold to drive the control electrode of upper switching element 29 with signal
such as that shown in FIG.
3F. As a final result, the delay from the output of first buffer 22 to control
electrode of upper switching
element 29 will be approximately 15 nanoseconds with a source and sink current
of 10 amperes or greater
thereby enabling very high speed drive of the high side upper switching
element 29 at rail voltages of
several hundred volts and output current of over 100 amperes (which is usually
associated with very large
control electrode to supply terminal capacitance).
The low side lower switching element 31 is driven in a similar fashion to
maintain high power
and high speed. Low voltage logic level signal S5, such as that shown in FIG.
3G, at the lower drive
output of shut down circuit 16 is fed to third buffer 27 via second lower
delay network 19 and via lower
capacitive level shifter 24. The resultant signal at the control electrode of
lower switching element 31 is
such as that shown in FIG. 3H.
-4-

CA 02418123 2003-02-05
The operation of the short circuit protection of the above mentioned circuit
will now be
explained. The voltage drop across lower switching element 31 is directly
proportional to the current
flowing through it and is being sensed by voltage sense circuit 25. if current
across lower switching
element 34 exceeds defined limit, overload condition, voltage sense circuit 25
will turn on and trigger
monostable circuit 17 which, in tum, shall initiate shut down condition via
shut down circuit 16. The shut
down condition is maintained until monostable circuit 17 times out (i.e.
several hundred milliseconds).
This process then repeats until the overload condition is removed. Switch 21
is to keep voltage sense
circuit 25 in the off state during off states of lower switching element 31.
Thus, lossless current sensing is
achieved having the additional feature of moving the current limit to a lower
value when the junction
temperature increases, further increasing the reliability of the circuit.
Also, it is of great advantage that
series sensing resistance is nat used, the use ofwhich would result in a
decrease ofthe effectiveness of
bypassing the upper and lower switching elements 29 and 31 and would decrease
the efficiency of the
circuit.
-5-

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Demande non rétablie avant l'échéance 2012-10-29
Inactive : Morte - Aucune rép. dem. par.30(2) Règles 2012-10-29
Réputée abandonnée - omission de répondre à un avis sur les taxes pour le maintien en état 2012-02-06
Inactive : Abandon. - Aucune rép dem par.30(2) Règles 2011-10-28
Inactive : Dem. de l'examinateur par.30(2) Règles 2011-04-28
Requête pour le changement d'adresse ou de mode de correspondance reçue 2009-02-06
Lettre envoyée 2008-11-04
Lettre envoyée 2008-11-04
Exigences de rétablissement - réputé conforme pour tous les motifs d'abandon 2008-09-29
Exigences pour une requête d'examen - jugée conforme 2008-09-29
Toutes les exigences pour l'examen - jugée conforme 2008-09-29
Requête en rétablissement reçue 2008-09-29
Inactive : Abandon.-RE+surtaxe impayées-Corr envoyée 2008-02-05
Inactive : CIB expirée 2007-01-01
Inactive : CIB enlevée 2006-12-31
Inactive : CIB de MCD 2006-03-12
Inactive : Lettre officielle 2005-02-02
Exigences pour le changement d'adresse - jugé conforme 2005-02-02
Requête pour le changement d'adresse ou de mode de correspondance reçue 2005-01-19
Demande publiée (accessible au public) 2004-08-05
Inactive : Page couverture publiée 2004-08-04
Requête pour le changement d'adresse ou de mode de correspondance reçue 2004-01-26
Requête pour le changement d'adresse ou de mode de correspondance reçue 2003-12-08
Inactive : CIB en 1re position 2003-03-20
Inactive : CIB attribuée 2003-03-20
Inactive : Lettre officielle 2003-03-11
Demande reçue - nationale ordinaire 2003-03-05
Exigences de dépôt - jugé conforme 2003-03-05
Inactive : Certificat de dépôt - Sans RE (Anglais) 2003-03-05
Déclaration du statut de petite entité jugée conforme 2003-02-05

Historique d'abandonnement

Date d'abandonnement Raison Date de rétablissement
2012-02-06
2008-09-29

Taxes périodiques

Le dernier paiement a été reçu le 2011-02-07

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
Taxe pour le dépôt - petite 2003-02-05
TM (demande, 2e anniv.) - petite 02 2005-02-07 2005-02-02
TM (demande, 3e anniv.) - petite 03 2006-02-06 2005-11-24
TM (demande, 4e anniv.) - petite 04 2007-02-05 2007-02-05
TM (demande, 5e anniv.) - petite 05 2008-02-05 2008-02-05
2008-09-29
Requête d'examen - petite 2008-09-29
TM (demande, 6e anniv.) - petite 06 2009-02-05 2009-02-03
TM (demande, 7e anniv.) - petite 07 2010-02-05 2010-02-04
TM (demande, 8e anniv.) - petite 08 2011-02-07 2011-02-07
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
IVAN MESZLENYI
STEPHEN MESZLENYI
Titulaires antérieures au dossier
S.O.
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Revendications 2003-02-05 3 141
Description 2003-02-05 4 278
Abrégé 2003-02-05 1 24
Dessins 2003-02-05 3 38
Dessin représentatif 2003-03-20 1 11
Page couverture 2004-07-09 1 43
Certificat de dépôt (anglais) 2003-03-05 1 169
Avis de rappel: Taxes de maintien 2004-11-08 1 119
Avis de rappel: Taxes de maintien 2005-11-08 1 118
Avis de rappel: Taxes de maintien 2006-11-07 1 120
Rappel - requête d'examen 2007-10-09 1 127
Avis de rappel: Taxes de maintien 2007-11-06 1 122
Courtoisie - Lettre d'abandon (requête d'examen) 2008-04-29 1 166
Accusé de réception de la requête d'examen 2008-11-04 1 190
Avis de rappel: Taxes de maintien 2008-11-06 1 130
Avis de retablissement 2008-11-04 1 173
Avis de rappel: Taxes de maintien 2009-11-09 1 120
Avis de rappel: Taxes de maintien 2010-11-08 1 129
Avis de rappel: Taxes de maintien 2011-11-08 1 121
Courtoisie - Lettre d'abandon (R30(2)) 2012-01-23 1 165
Courtoisie - Lettre d'abandon (taxe de maintien en état) 2012-04-02 1 174
Deuxième avis de rappel: taxes de maintien 2012-08-07 1 118
Avis de rappel: Taxes de maintien 2012-11-06 1 119
Correspondance 2003-03-05 1 13
Correspondance 2003-12-08 1 21
Correspondance 2005-01-26 3 84
Correspondance 2005-01-19 1 30
Taxes 2005-02-02 1 66
Taxes 2005-11-24 2 115
Taxes 2007-02-05 1 25
Taxes 2008-02-05 1 26
Correspondance 2009-02-06 1 28
Taxes 2009-02-03 1 42
Taxes 2010-02-04 3 102
Taxes 2011-02-07 1 27