Sélection de la langue

Search

Sommaire du brevet 2446562 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 2446562
(54) Titre français: FORMULATION PHARMACEUTIQUE DE PROPIONATE DE FLUTICASONE
(54) Titre anglais: PHARMACEUTICAL FORMULATION OF FLUTICASONE PROPIONATE
Statut: Périmé et au-delà du délai pour l’annulation
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • A61K 31/56 (2006.01)
  • A61K 09/12 (2006.01)
  • A61K 09/72 (2006.01)
  • A61M 15/00 (2006.01)
  • A61M 15/02 (2006.01)
  • A61P 37/00 (2006.01)
  • A61P 37/08 (2006.01)
  • B65D 83/14 (2006.01)
  • B65D 83/52 (2006.01)
(72) Inventeurs :
  • CRIPPS, ALAN LESLIE (Royaume-Uni)
  • JOHNSON, PAUL (Royaume-Uni)
(73) Titulaires :
  • GLAXO GROUP LIMITED
(71) Demandeurs :
  • GLAXO GROUP LIMITED (Royaume-Uni)
(74) Agent: NORTON ROSE FULBRIGHT CANADA LLP/S.E.N.C.R.L., S.R.L.
(74) Co-agent:
(45) Délivré: 2005-03-08
(22) Date de dépôt: 2000-09-11
(41) Mise à la disponibilité du public: 2001-03-11
Requête d'examen: 2003-11-05
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Non

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
0014451.9 (Royaume-Uni) 2000-06-13
0018654.4 (Royaume-Uni) 2000-07-28
9921396.9 (Royaume-Uni) 1999-09-11

Abrégés

Abrégé français

L'invention concerne une formulation aérosol pharmaceutique composée des éléments suivants : (i) propionate de fluticasone et (ii) un propulseur hydrofluoroalcane (HFA), caractérisée en ce que le propionate de fluticasone est complètement dissous dans la formulation. L'invention prévoit également des cartouches contenant la formulation et des utilisations de celles-ci.


Abrégé anglais

There is provided according to the invention a pharmaceutical aerosol formulation which composes: (i) fluticasone propionate and (ii) a hydrofluoroalkane (HFA) propellant, characterised in that the fluticasone propionate is completely dissolved in the formulation. The invention also provided canisters containing the formulation and uses thereof.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


32
Claims
1. A canister comprising an aluminium can closed with a metering valve and
containing a pharmaceutical aerosol formulation which comprises:
(i) fluticasone propionate at a concentration of 0.04 to 0.1 % w/v;
(ii) 1, 1, 1, 2-tetrafluoroethane (HFA 134a) as propellant; and
(iii) ethanol wherein the concentration thereof is 5 to 30% w/w, characterised
in that the fluticasone propionate is completely dissolved in the formulation.
2. A canister according to claim 1, wherein the formulation is free of
surfactant.
3. A canister according to claim 1 or claim 2, wherein the concentration of
ethanol is
to 20% w/w.
4. A canister according to claim 3 wherein the concentration of ethanol is 10
to 20%
w/w.
5. A canister according to any one of claims 1 to 4, wherein the formulation
further
comprises a low volatility component which increases the mass median
aerodynamic
diameter (MMAD) of aerosol particles on actuation of a metered-dose inhaler
containing a
canister.
6. A canister according to claim 5, wherein the low volatility component is
glycerol,
propylene glycol or polyethyleneglycol.
7. A canister according to claim 6 wherein the low volatility component is
glycerol.
8. A canister according to any one of claims 5 to 7, wherein the low
volatility
component is present in an amount of 0.5 to 3% w/w.
9. A canister according to any one of claims 1 to 8, wherein the formulation
contains
fluticasone propionate as the only medicament.
10. A canister according to any one of claims 1 to 9 wherein the metering
valve is
capable of delivering a volume of 50µl or 63µl.

33
11. A canister according to claim 10 wherein the metering valve is capable of
delivering a volume of 50µl.
12. A metered dose inhaler which comprises a canister according to any one of
claims
1 to 11 fitted into suitable channeling device.

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 02446562 2003-11-05
Pharmaceutical Formulation of Fluticasone Propionate
Background of the invention
Field of the invention
The present invention relates to a pharmaceutical formulation for use in the
administration
of medicaments by inhalation. In particular, this invention relates to a
pharmaceutical
formulation of fluticasone propionate for use in metered dose inhalers
(MDI's). The
invention also relates to methods for their preparation and to their use in
therapy.
This Application is a Divisional Application of the Canadian Patent
Application S.N.
2,317,999 filed on September 11, 2000.
1o Description of the background art
Inhalers are well known devices for administering pharmaceutically active
materials to the
respiratory tract by inhalation. Such active materials commonly delivered by
inhalation
include bronchodilators such as ~i2 agonists and anticholinergics,
corticosteroids, anti-
allergies and other materials that may be efficiently administered by
inhalation, thus
15 increasing the therapeutic index and reducing side effects of the active
material.
(6a, 11b, 16a, 17a)-6, 9-difiuoro-11-hydroxy-16-methyl-3-oxo-17-(1-oxopro~oxy)
androsta-1, 4-diene-17-carbofihioic acid, S-fluoromethyl ester was described
as an anti-
inflammatory steroid by US Patent No. 4.,335,121. This compound is also known
by the
generic name of fluticasone propionate and has since become widely known as a
highly
2o effective steroid in the treatment of inflammatory diseases, such as asthma
and chronic
obstructive pulmonary disease (COPD).
Metered dose inhalers (MDl°s} are the most common type of a wide range
of inhaler types
and utilise a liquefied propellant to expel droplets containing the
pharmaceutical product
to the respiratory tract as an aerosol. MDI formulations are generally
characterised as
2s solution formulations or suspension formulations.
The most commonly used aerosol propellants for medicaments have been Freon 11
(CC13F) in admixture with Freon 12 (CC12F2} and Freon 114 (CF2CI.CF2C1).
However
these propellants are now believed to provoke the degradation of stratospheric
ozone

PG3711-c
CA 02446562 2003-11-05
2
and their use is now being phased out to eliminate the use of all CFC
containing aerosol
propellants. There is thus a need to provide an aerosol formulation for
medicaments
which employ so calved 'ozone-friendly' propellants.
Hydrofluoroalkanes (HFAs; known also as hydrofluorocarbons or HFCs) contain no
chlorine and are considered less destructive to ozone and these are proposed
substitutes for CFCs. In particular, 1,1,1,2-tetrafluoroethane (HFA 134a) and
1,1,1,2,3,3,3-heptafluoropropane (HFA 227) have been acknowledged to be the
best
candidates for non-CFC propellants.
The efficiency of an aerosol device, such as an MDI, is a function of the dose
deposited
at the appropriate site in the lungs. Deposition is affected by several
factors, of which
one of the most important is the aerodynamic particle size. Solid particles
and/or
droplets in an aerosol formulation can be characterised by their mass median
15 aerodynamic diameter (MMAD, the diameter around.which the mass aerodynamic
diameters are distributed equally).
Particle deposition in the lung depends largely upon three physical
mechanisms:
1. impaction, a function of particle inertia;
20 2. sedimentation due to gravity; and
3. diffusion resulting from Brownian motion of fine, submicrometer
(<1 pm) particles.
The mass of the particles determines which of the three main mechanisms
predominates.
The effective aerodynamic diameter is a function of the size, shape and
density of the
particles and will affect the magnitude of forces acting on them. For example,
while
inertial and gravitational effects increase with increasing particle size and
particle
density, the displacements produced by diffusion decrease. In practice,
diffusion plays
little part in deposition from pharmaceutical aerosols. Impaction and
sedimentation can
be assessed from a measurement of the MMAD which determines the displacement
across streamlines under the influence of inertia and gravity, respectively.

PG3711-c
CA 02446562 2003-11-05
3
Aerosol particles of equivalent MMAD and GSD (geometric standard deviation)
have
similar deposition in the lung irrespective of their composition. The GSD is a
measure of
the variability of the aerodynamic particle diameters.
For inhalation therapy there is a preference for aerosols in which the
particles for
inhalation have a diameter of about 0.5 to 5pm. Particles which are larger
than 5p.m in
diameter are primarily deposited by inertial impaction in the orthopharynx,
particles 0.5
to 5p.m in diameter, influenced mainly by gravity, are ideal for deposition in
the
conducting airways, and particles 0.5 to 3p.m in diameter are desirable for
aerosol
delivery to the lung periphery. Particles smaller than 0.5pm may be exhaled.
Respirable particles are generally considered to be those with aerodynamic
diameters
less than 5~.m. These particles, particularly those with a diameter of about
3pm, are
efficiently deposited in the lower respiratory tract by sedimentation.
It has been recently demonstrated in patients with mild and severe airflow
obstruction
that the particle size of choice for a X32 agonist or anticholinergic aerosol
should be
approximately 3p.m (Zaanen, P. et al, int. J. Pharm. (1994} 107, 211-217, int.
J. Pharm.
(1995) 114, 111-115, Thorax (1996), 51, 977-980.)
Many of the factors relevant to the MMAD of particles are relevant to droplets
and the
additional factors of rate of solvent evaporation, and surface tension are
also important.
In suspension formulations, particle size in principle is controlled during
manufacture by
the size to which the solid medicament is reduced, usually by micronisation.
However, if
the suspended drug has the slightest solubility in propellant, a process known
as
Ostwald Ripening can lead to particle size growth. Also, particles may have
tendency to
aggregate, or adhere to parts of the MDI eg. canister or valve. The effect of
Ostwald
ripening and particularly of drug deposition may be particularly severe for
potent drugs
(including fluticasone propionate} which need to be formulated in low doses.
Solution
formulations do not suffer from these disadvantages, but suffer from different
ones in
that particle or droplet size is both a function of rate of evaporation of the
propellant
from the formulation, and of the time between release of formulation from
canister and

CA 02446562 2004-03-12
4
the moment of inhalation. Thus, it may be subject to considerable variability
and
is generally hard to control.
Besides its impact on the therapeutic profile of a drug, the size of aerosol
particles has an important impact on the side effect profile of a drug. For
example, it
is well known that the orthopharynx deposition of aerosol formulations of
steroids
can result in side effects such as candidiasis of mouth and throat.
Accordingly,
throat deposition of such aerosol formulations is generally to be avoided.
Furthermore, a higher systemic exposure to the aerosol particles due to deep
lung
penetration can enhance the undesired systemic effects of certain drugs. For
example, the systemic exposure to certain steroids can produce side effects on
bone metabolism and growth.
Summary of the invention
Thus, according to the present invention we provide a pharmaceutical aerosol
formulation for use in a metered dose inhaler, comprising (i) fluticasone
propionate
and (ii) a hydrofluoroalkane (HFA) propellant; and characterised in that the
fluticasone propionate is completely dissolved in the formulation.
In accordance with one aspect of the invention there is a canister comprising
an
aluminium can closed with a metering valve and containing a pharmaceutical
aerosol
formulation which comprises:
(i) fluticasone propionate at a concentration of 0.04 to 0.1 % w/v;
(ii) 1, 1, 1, 2-tetrafluoroethane (HFA 134a) as propellant; and
(iii) ethanol wherein the concentration thereof is 5 to 30% w/w, characterised
in that the fluticasone propionate is completely dissolved in the formulation.
Brief description of the drawings
Figure 1: Effect of valve size and glycerol on FPM in fluticasone propionate
solution
aerosols in HFA134a (50p.g/actuation).
Figure 2: Effect of level of ethanol on FPM in various fluticasone
propionate/HFA134a solution aerosols with no addition of glycerol.
Figure 3: Effect of level of ethanol on FPM in various fluticasone
propionate/HFA134a solution aerosols with addition of 1 % glycerol.

CA 02446562 2004-03-12
Figure 4: Effect of glycerol on FPM in fluticasone propionate 125~g /HFA134a
solution aerosols containing 35% ethanol or 35% ethanol and 1% glycerol.
Figure 5: Effect of actuator dimensions on FPM and throat in fluticasone
propionate/HFA134a solution aerosols (50~g/actuation) containing 16% ethanol.
5 Figure 6: Effect of actuator dimensions on FPM and throat in fluticasone
propionate/HFA134a solution aerosols (50wg/actuation) containing 16% ethanol
and 1 % ethanol.
Figure 7: The effect of addition of glycerol on FPM in fluticasone propionate
50~,g/HFA134a solution aerosols containing 16% ethanol or 16% ethanol and 1%
glycerol (0.22mm diameter actuator orifice).
Figure 8: The effect of addition of glycerol on FPM in fluticasone propionate
50~g/HFA134a solution aerosols containing 16% ethanol or 16% ethanol and 1
glycerol (0.33mm diameter actuator orifice).
Figure 9: Effects of addition of glycerol and actuator dimensions on FPM in
fluticasone propionate 50pg/HFA134a solution aerosols containing 16% ethanol
or
16% ethanol and 1 % glycerol (all actuator variants).
Figure 10: Solubility of fluticasone propionate in ethanol/HFA134a.
Figure 11: Effects of addition of glycerol and actuator dimensions on FPM in
fluticasone propionate 50~g/HFA134a solution aerosols containing 10% ethanol
or
10% ethanol and 1 % glycerol.
Figure 12: Effects of addition of glycerol on MMAD in fluticasone propionate
50~g/HFA134a solution aerosols containing 10% ethanol.
Figure 13: Effects of addition of glycerol on throat deposition in fluticasone
propionate 50~g/HFA134a solution aerosols containing 10% ethanol.
Figure 14: Effects of addition of glycerol on stage 3-7 deposition in
fluticasone
propionate 50~g/HFA134a solution aerosols containing 10% ethanol.
Figure 15: Cascade impaction analysis of fluticasone propionate/HFA134a
solution
aerosols (50~g/actuation) containing ethanol, methylal or ethylacetate as
solubilising agent, with and without 1 % glycerol.

CA 02446562 2004-03-12
6
Figure 16: Cascade impaction analysis of fluticasone propionate/HFA134a
solution
aerosols (50~g/actuation) containing various low volatility components and 10%
ethanol.
Figure 17: Cascade impaction analysis of fluticasone propionate/HFA227
solution
aerosols (50~g actuation) containing 18% ethanol with and without 1 % glycerol
and
comparison with HFA134a aerosol.
Figure 18: Cascade impaction analysis of fluticasone propionate in HFA227 or
HFA134a solution aerosols (25~g actuation) containing ethanol.
Figure 19: Cascade impaction analysis of fluticasone propionate in HFA227 or
HFA134a solution aerosols (25wg actuation) containing ethanol and 1 %
glycerol.
Detailed description of the invention
The formulation according to the invention will generally contain a
solubilisation
agent to aid solubilisation of the fluticasone propionate in the formulation.
Suitable
solubilisation agents include propylene glycol and ethanol, preferably
ethanol.
Other suitable solubilisation agents include ethers (eg dimethyl ether).
Alkanes
may also be of use. A further solubilisation agent of interest is
dimethoxymethane
(methylal) which has good solvency properties. We have also found ethylacetate
to
be a solubilising agent with good solvency properties.
As a particular aspect of the present invention we provide a pharmaceutical
aerosol formulation comprising (i) fluticasone propionate, (ii) a
hydrofluoroalkane
(HFA) propellant, (iii) a low volatility component to increase the mass median
aerodynamic diameter (MMAD) of the aerosol particles on actuation of the
inhaler
and (iv) a solubilisation agent in sufficient quantity to solubilise the
fluticasone
propionate in the formulation.
The presence of the low volatility component in the solution formulation
increases the fine particle mass (FPM) as defined by the content of stages 3-5
of an
Andersen Cascade Impactor on actuation of the formulation relative to
solutions
formulations which omit this component. Solution formulations which omit the
higher volatility component generally give rise to a particle size
distribution which
have a higher content of finer particles; such distributions generally do not
match
the distribution of the existing commercialised suspension formulations which
contain CFC's and may therefore not be bio-equivalent.

CA 02446562 2004-03-12
7
Examples of HFA propellants include 1,1,1,2-tetrafluoroethane (HFA134a) and
1,1,1,2,3,3,3-heptafluoro-n-propane (HFA227) and mixtures thereof. The
preferred
propellant is 1,1,1,2-tetrafluoroethane (HFA134a). An alternative propellant
of
interest is 1,1,1,2,3,3,3-heptafluoro-n-propane (HFA227).
The preferred low volatility component is glycerol, propylene glycol or
polyethyleneglycol (eg PEG 200 or PEG 400), especially glycerol. Polyethylene
glycol is also of particular interest, especially PEG400. Preferably it is
present in an
amount of 0.5 to 3% (w/w), especially around 1 % (w/w).
The preferred solubilisation agent is ethanol.
More specifically, the present invention can be defined as a pharmaceutical
aerosol formulation which comprises:
(i) fluticasone propionate;
(ii) 1,1,1,2-tetrafluoroethane (HFA 134a);
(iii) 0.5-3% (w/w) glycerol; and
(iv) a solubilisation agent (particularly ethanol) in sufficient
quantity to solubilise the tluticasone propionate in the formulation.
We prefer the formulation to be suitable for delivering a therapeutic amount
of
fluticasone propionate in one or two actuations. Preferably, the formulation
will be
suitable for delivering 25-250p.g per actuation, especially 25~g, 50p,g, 125wg
or
250~g per actuation. However, as mentioned in the foregoing, the amount of
ethanol required to dissolve high concentrations of fluticasone propionate may
tend
to depress the vapour pressure of the propellant to an undesirable degree. The
vapour pressure should desirably remain above around 50psi. Therefore the
formulation is most suitable for delivering 25-125wg per actuation, especially
25-
50pg per actuation.
The formulation according to the invention will be used in association with a
suitable metering valve. We prefer that the formulation is actuated by a
metering
valve capable of delivering a volume of between 50p.1 and 1001, eg 50,1 or
63p.1.
100w1 is also suitable. When a 50,1 metering volume is used, the final
concentration of fluticasone propionate delivered per actuation would be 0.1 %
w/v
(which equates to 0.1g of fluticasone propionate per 100m1 of formulation) or
approx. 0.083% wlw (which equates to 0.0838 of fluticasone propionate per 1008
of

CA 02446562 2004-03-12
8
formulation) for a 50~g dose, 0.25% (w/v) or approx. 0.21 % (w/w) for a 125pg
dose,
0.5% (w/v) or approx. 0.42% (w/w) for a 250~g dose and 0.05% (w/v) or approx
0.042% (w/w) for a 25~,g dose. Wherein a 63w1 metering volume is used, the
final
concentration of fluticasone propionate delivered per actuation would be
0.079%
(w/v) or approx. 0.067% (w/w) for a 50p,g dose, 0.198% (w/v) or approx. 0.167%
(w/w) for a 125pg dose, 0.397% (w/v) or approx. 0.333% (w/w) for a 250~g dose
and 0.04% (w/v) or approx. 0.033% (w/w) for a 25wg dose. When a 100w1 metering
volume is used, the final concentration of fluticasone propionate delivered
per
actuation would be 0.05% w/v (which equates to 0.058 of fluticasone propionate
per
100m1 of formulation) or approx. 0.042% w/w (which equates to 0.0428 of
fluticasone propionate per 1008 of formulation) for a 50pg dose, 0.125% (w/v)
or
approx. 0.11 % (w/w) for a 125pg dose, 0.25% (w/v) or approx. 0.21 % (w/w) for
a
250pg dose and 0.025% (w/v) or approx 0.021 % (w/w) for a 25wg dose. The
previously quoted w/w figures are approximate in that they do not compensate
in
the mismatch in density between HFA134a and ethanol, however the precise
figures may be readily determined.
The formulation is most suitable for concentrations of fluticasone propionate
in
the range 0.025 to 0.25 % (w/v), preferably 0.025 to 0.15 % (w/v), more
preferably
0.035 to 0.15 % (w/v), particularly 0.04 to 0.1 % (w/v). A concentration of
0.025 to
0.04 % (w/v) is also of particular interest. Formulations of the present
invention
containing such low concentrations of fluticasone propionate may have
particular
physical stability advantages relative to suspension formulations containing
the
same wherein particles of fluticasone propionate may be susceptible to Ostwald
ripening or to drug deposition on the canister wall or on parts of the valve
as
discussed above. Drug deposition is especially problematic in low strength
fluticasone propionate suspension formulations because the amount of drug lost
through deposition on internal surfaces of the metered dose inhaler can
represent a
significant proportion of the total available drug and therefore have a
significant
effect on dosing uniformity through the life of the product. The solution
formulations
of the present invention overcome or substantially mitigate such
disadvantages.
Use of a larger metering chamber eg 100p1 will generally be preferred.
We prefer the formulation to contain between 0.5 and 2% w/w, more preferably
between 0.8 and 1.6% w/w, particularly between 1.0 and 1.6% w/w glycerol.

CA 02446562 2004-03-12
9
Another range of particular interest is 0.5-1 % (w/w) glycerol. We especially
prefer
to use 1.3% (w/w) glycerol. We also especially prefer to use 1.0% w/w
glycerol.
Depending on the final concentration of fluticasone propionate in the
formulation,
the propellant, and the precise amount of low volatility component, the
concentration of solubilisation agent (eg ethanol) required will vary. So as
not to
suppress the vapour pressure of the propellant to an undesirable extent, the
amount of ethanol should preferably not exceed around 35%. The amount of
ethanol will more preferably be in the range 5 to 30%, particularly 5 to 20%,
more
particularly 10 to 20%. A range of 7 to 16% w/w is also particularly
preferred, more
particularly 7 to 11 % w/w.
When the concentration of fluticasone propionate is around 0.1 % w/v and the
propellant is 1,1,1,2-tetrafluoroethane, an amount of ethanol of 16-24% w/w eg
16-
18% w/w, especially around 16% w/w is particularly suitable but is more
preferably
20-22% w/w especially around 21% w/w. When the concentration of fluticasone
propionate is around 0.05% w/v and the propellant is 1,1,1,2-
tetrafluoroethane, an
amount of ethanol of 7-11 % w/w eg 7-8% w/w, especially around 7% w/w is
particularly suitable but is more preferably 9-11 % w/w especially around 10%
w/w.
When the concentration of fluticasone propionate is around 0.079% w/v and the
propellant is 1,1,1,2-tetrafluoroethane, an amount of ethanol of 15-17% wlw
especially around 16% is suitable. When the concentration of fluticasone
propionate is around 0.198% w/v and the propellant is 1,1,1,2-
tetrafluoroethane, an
amount of ethanol of 34-36% w/w eg around 35% is suitable. When the
concentration of fluticasone propionate is around 0.025% w/v and the
propellant is
1,1,1,2-tetrafluoroethane, an amount of ethanol of 7-9% w/w especially around
8%,
more preferably around 7% is suitable.
When the concentration of fluticasone propionate is around 0.025% w/v and the
propellant is 1,1,1,2,3,3,3-heptafluoro-n-propane, an amount of ethanol of 13-
15%
w/w especially around 14% is suitable. When the concentration of fluticasone
propionate is around 0.05% w/v and the propellant is 1,1,1,2,3,3,3-heptafluoro-
n-
propane, an amount of ethanol of 17-19% w/w especially around 18% is suitable.
When the concentration of fluticasone propionate is around 0.05% w/v and the
propellant is 1,1,1,2-tetrafluoroethane, an amount of ethylacetate as
solubilisation
agent of 13-16% w/w especially around 15% is suitable. When the concentration
of
fluticasone propionate is around 0.05% w/v and the propellant is 1,1,1,2-

CA 02446562 2004-03-12
tetrafluoroethane, an amount of dimethoxymethane (methylal) as solubilisation
agent of 13-16% w/w especially around 15% is suitable.
The above generally described formulations are particularly preferred in
conjunction with 1.0-1.6% w/w glycerol, particularly 1.0% w/w glycerol or 1.3%
w/w
5 glycerol.
Formulations according to the invention which are free of surfactants are
preferred. Formulations according to the invention which are free of all
excipients
besides the solubilisation agent (eg ethanol), low volatility component (such
as
glycerol) and the propellant are particularly preferred.
10 Formulations according to the invention will preferably contain fluticasone
propionate as the only medicament. However formulations which contain
medicaments in addition to fluticasone propionate such as beta adrenergic
agonists
and anti-cholinergic compounds may also be contemplated.
The pharmaceutical composition according to the present invention may be
filled
into canisters suitable for delivering pharmaceutical aerosol formulations.
Canisters
generally comprise a container capable of withstanding the vapour pressure of
the
HFA propellant, such as plastic or plastic-coated glass bottle or preferably a
metal
can, for example an aluminium can which may optionally be anodised, lacquer-
coated and/or plastic-coated, which container is closed with a metering valve.
It
may be preferred that canisters be coated with a fluorocarbon polymer as
described
in WO 96/32151, for example, a co-polymer of polyethersulphone (PES) and
polytetrafluoroethylene (PTFE). Another polymer for coating that may be
contemplated is FEP (fluorinated ethylene propylene). The metering valves are
designed to deliver a metered amount of the formulation per actuation and
incorporate a gasket to prevent leakage of propellant through the valve. The
gasket
may comprise any suitable elastomeric material such as for example low density
polyethylene, chlorobutyl, black and white butadiene-acrylonitrile rubbers,
butyl
rubber and neoprene. Thermoplastic elastomer valves as described in
W092/11190 and valves containing EPDM rubber as described in W095/02651 are
especially suitable. Suitable valves are commercially available from
manufacturers
well known in the aerosol industry, for example, from Valois, France (eg.
DF10,
DF30, DF60), Bespak plc, UK (eg. BK300, BK356, BK357) and 3M-Neotechnic Ltd,
UK (eg. SpraymiserTM). The DF31 valve of Valois, France is also suitable.

CA 02446562 2004-03-12
11
Valve seals, especially the gasket seal, and also the seals around the
metering
chamber, will preferably be manufactured of a material which is inert to and
resists
extraction into the contents of the formulation, especially when the contents
include
ethanol.
Valve materials, especially the material of manufacture of the metering
chamber,
will preferably be manufactured of a material which is inert to and resists
distortion
by contents of the formulation, especially when the contents include ethanol.
Particularly suitable materials for use in manufacture of the metering chamber
include polyesters eg polybutyleneterephthalate (PBT) and acetals, especially
PBT.
Materials of manufacture of the metering chamber and/or the valve stem may
desirably be fluorinated, partially fluorinated or impregnated with fluorine
containing
substances in order to resist drug deposition.
Valves which are entirely or substantially composed of metal components (eg
Spraymiser, 3M-Neotechnic) are especially preferred for use according to the
invention.
Conventional bulk manufacturing methods and machinery well known to those
skilled in the art of pharmaceutical aerosol manufacture may be employed for
the
preparation of large scale batches for the commercial production of filled
canisters.
Thus, for example, in one bulk manufacturing method a metering valve is
crimped
onto an aluminium can to form an empty canister. The medicament is added to a
charge vessel and a mixture of ethanol, low volatility component and liquefied
propellant is pressure filled through the charge vessel into a manufacturing
vessel.
An aliquot of the formulation is then filled through the metering valve into
the
canister. Typically, in batches prepared for pharmaceutical use, each filled
canister
is check-weighed, coded with a batch number and packed into a tray for storage
before release testing.
In an alternative process, an aliquot of the liquified formulation is added to
an
open canister under conditions which are sufficiently cold that the
formulation does
not vaporise, and then a metering valve crimped onto the canister.
In an alternative process an aliquot of medicament dissolved in the
solubilising
agent and any low-volatility component is dispensed into an empty canister, a

CA 02446562 2004-03-12
12
metering valve is crimped on, and then the propellant is filled into the
canister
through the valve.
Typically, in batches prepared for pharmaceutical use, each filled canister is
check-weighed, coded with a batch number and packed into a tray for storage
before release testing.
Each filled canister is conveniently fitted into a suitable channelling device
prior
to use to form a metered dose inhaler for administration of the medicament
into the
lungs or
nasal cavity of a patient. Suitable channelling devices comprise, for example
a
valve actuator and a cylindrical or cone-like passage through which medicament
may be delivered from the filled canister via the metering valve to the nose
or
mouth of a patient eg. a mouthpiece actuator.
In a typical arrangement the valve stem is seated in a nozzle block which has
an
orifice leading to an expansion chamber. The expansion chamber has an exit
orifice which extends into the mouthpiece. Actuator (exit) orifice diameters
in the
range 0.15-0.45mm particularly 0.2-0.45mm are generally suitable eg 0.15,
0.22,
0.25, 0.30, 0.33 or 0.42mm. We have found that it is advantageous to use a
small
diameter e.g. 0.25mm or less, particularly 0.22mm since this tends to result
in a
higher FPM and lower throat deposition. 0.15mm is also particularly suitable.
The
dimensions of the orifice should not be so small that blockage of the jet
occurs.
Actuator jet lengths are typically in the range 0.30-1.7mm eg 0.30, 0.65 or
1.50mm. Smaller dimensions are preferred eg 0.65mm or 0.30mm.
Metered dose inhalers are designed to deliver a fixed unit dosage of
medicament
per actuation or 'puff', for example in the range of 25 to 250 ~g medicament
per
puff.
Administration of medicament may be indicated for the treatment of mild,
moderate or severe acute or chronic symptoms or for prophylactic treatment.
Treatment may be of asthma, chronic obstructive pulmonary disease (COPD) or
other respiratory disorder. It will be appreciated that the precise dose
administered
will depend upon the age and condition of the patient, the quantity and
frequency of
administration will ultimately be at the discretion of the attendant
physician.
Typically, administration may be one or more times, for example from 1 to 8
times
per day, giving for example 1,2,3 or 4 puffs each time. The preferred
treatment

CA 02446562 2004-03-12
13
regime is 1 or 2 puffs of 25, 50, 125 or 250pg/puff fluticasone propionate, 2
times
per day.
The filled canisters and metered dose inhalers described herein comprise
further
aspects of the present invention.
A still further aspect of the present invention comprises a method of treating
respiratory disorders such as, for example, asthma or chronic obstructive
pulmonary disease (COPD), which comprises administration by inhalation of an
effective amount of a formulation herein before described.
A further aspect of the present invention comprises the use of a formulation
herein before described in the manufacture of a medicament for the treatment
of
respiratory disorders, eg. asthma or chronic obstructive pulmonary disease
(COPD).
As mentioned above the advantages of the invention include the fact that
formulations according to the invention may be more environmentally friendly,
more
stable, less susceptible to Oswald ripening or drug deposition onto internal
surfaces
of a metered dose inhaler, have better dosing uniformity, deliver a higher
FPM, give
lower throat deposition, be more easily or economically manufactured, or may
be
otherwise beneficial relative to known formulations.
The invention is illustrated with reference to the following examples:
Example 1 and 2
Formulations may be prepared with compositions as follows:
Fluticasone propionate: 0.1 % w/v 0.05% w/v
Ethanol: 16% w/w 7%
Glycerol: 1.3% w/w 1.3%
1,1,1,2-tetrafluoroethane: to 100% to 100%
These solution formulations may be filled into an aluminium canister under
pressure and fitted with a metering valve having a 50 ~I metering chamber.
These formulations are suitable for delivering 50 ~g or 25 ~g fluticasone
propionate per actuation respectively.

CA 02446562 2004-03-12
14
Example 3
Formulations were prepared withcompositions
as follows:
Form.3a Form.3b Form.3c
Fluticasone propionate: 0.1 0.079% w/v 0.05% w/v
% w/v
Ethanol: 21 % w/w 16% w/w 10%
Glycerol: 1.0% w/w 1.0% w/w 1.0%
1,1,1,2-tetrafluoroethane: to to 100% to 100%
100%
These solution formulations aluminium canisters
were filled into (120
actuations/canister; overage actuations) pressure and fitted
of 40 under with a
metering valve (Valois DF60)
having metering chambers of
volume 50 ~I, 63 ~I and
100 wl respectively.
These formulations are suitable for delivering 50 wg fluticasone propionate
per
actuation.
Example 4
Formulations were prepared with compositions as follows:
Form.4a Form.4b Form.4c
Fluticasone propionate: 0.1 % w/v 0.079% w/v 0.05% w/v
Ethanol: 21 % w/w 16% w/w 10%
1,1,1,2-tetrafluoroethane: to 100% to 100% to 100%
These solution formulations were filled into aluminium canisters (120
actuations/canister; overage of 40 actuations) under pressure and fitted with
a
metering valve (Valois DF60) having metering chambers of volume 50 p,l, 63 ~I
and
100 wl respectively.
These formulations are suitable for delivering 50 ~g fluticasone propionate
per
actuation.
Example 5
A formulation was prepared with compositions as follows:
Fluticasone propionate: 0.198% w/v
Ethanol: 35% w/w

CA 02446562 2004-03-12
Glycerol: 1.0% w/w
1,1,1,2-tetrafluoroethane: to 100%
This solution formulation was filled into an aluminium canisters (120
actuations/canister; overage of 40 actuations) under pressure and fitted with
a
5 metering valve (Valois DF60) having metering chamber of volume 63 ~I.
This formulation is suitable for delivering 125 ~g fluticasone propionate per
actuation.
Example 6
A formulation was prepared with compositions as follows:
10 Fluticasone propionate: 0.198% w/v
Ethanol: 35% w/w
1,1,1,2-tetrafluoroethane: to 100%
This solution formulation was filled into an aluminium canisters (120
actuations/canister; overage of 40 actuations) under pressure and fitted with
a
15 metering valve (Valois DF60) having metering chamber of volume 63 ~I.
This formulation is suitable for delivering 125 wg fluticasone propionate per
actuation.
Example 7
Formulations were prepared with compositions as follows:
Form. 7a Form. 7b Form. 7c
Fluticasone propionate: 0.05% w/v 0.05% w/v 0.05% w/v
Ethanol: 10% w/w 10% w/w 10% w/w
Glycerol: 0.5% w/w 2% w/w 3% w/w
1,1,1,2-tetrafluoroethane: to 100% to 100% to 100%
These solution formulations were filled into aluminium canisters (120
actuations/canister; overage of 40 actuations) under pressure and fitted with
a
metering valve (Valois DF60) having metering chamber of volume 100 ~I.
These formulations are suitable for delivering 50 ~g fluticasone propionate
per
actuation.

CA 02446562 2004-03-12
16
Example 8
Formulations were prepared with compositions as follows:
Fluticasone propionate: 0.025% w/v 0.025% w/v
Ethanol: 8% w/w 7% w/w
Glycerol: 1.0% w/w 1.0% w/w
1,1,1,2-tetrafluoroethane: to 100% to 100%
These solution formulations were filled into an aluminium canisters (120
actuations/canister; overage of 40 actuations) under pressure and fitted with
a
metering valve (Valois DF60) having metering chamber of volume 100 pl.
These formulations are suitable for delivering 25 ~g fluticasone propionate
per
actuation.
Example 9
Formulations were prepared with compositions as follows:
Formulation 9a:
Fluticasone propionate: 0.05% w/v
Dimethoxymethane: 15% w/w
1,1,1,2-tetrafluoroethane: to 100%
Formulation 9b:
Fluticasone propionate: 0.05% w/v
Ethylacetate: 15% w/w
1,1,1,2-tetrafluoroethane: to 100%
Formulation 9c:
Fluticasone propionate: 0.05% w/v
Dimethoxymethane: 15% w/w
Glycerol: 1 % w/w
1,1,1,2-tetrafluoroethane: to 100%
Formulation 9d:
Fluticasone propionate: 0.05% w/v

CA 02446562 2004-03-12
17
Ethylacetate: 15% w/w
Glycerol: 1 % w/w
1,1,1,2-tetrafluoroethane: to 100%
These solution formulations were filled into aluminium canisters (120
actuations/canister; overage of 40 actuations) under pressure and fitted with
a
metering valve (Valois DF60) having metering chamber of volume 100 ~I.
These formulations are suitable for delivering 50 ~g fluticasone propionate
per
actuation.
Example 10
Formulations were prepared with compositions as follows:
Formulation 10a:
Fluticasone propionate: 0.05% w/v
Ethanol: 10% w/w
Glycerol: 1 % w/w
1,1,1,2-tetrafluoroethane: to 100%
Formulation 10b:
Fluticasone propionate: 0.05% w/v
Ethanol: 10% w/w
PEG 200: 1 % w/w
1,1,1,2-tetrafluoroethane: to 100%
Formulation 10c:
Fluticasone propionate: 0.05% w/v
Ethanol: 10% w/w
PEG 400: 1 % w/w
1,1,1,2-tetrafluoroethane: to 100%
Formulation 10d:
Fluticasone propionate: 0.05% w/v
Ethanol: 10% w/w

CA 02446562 2004-03-12
18
Propylene glycol: 1 % w/w
1,1,1,2-tetrafluoroethane: to 100%
Formulation 10e:
Fluticasone propionate: 0.05% w/v
Ethanol: 18% w/w
1,1,1,2,3,3,3-heptafluoro-n-propane: to 100%
Formulation 10f:
Fluticasone propionate: 0.05% w/v
Ethanol: 18% w/w
Glycerol: 1 % w/w
1,1,1,2,3,3,3-heptafluoro-n-propane: to 100%
Formulation 10a:
Fluticasone propionate: 0.025% w/v
Ethanol: 14% w/w
1,1,1,2,3,3,3-heptafluoro-n-propane: to 100%
Formulation 10h:
Fluticasone propionate:0.025% w/v
Ethanol: 14% w/w
Glycerol: 1 % w/w
1,1,1,2,3,3,3-heptafluoro-n-propane:
to 100%
Formulation 10i:
Fluticasone propionate:0.025% w/v
Ethanol: 7% w/w
1,1,1,2-tetrafluoroethane:
to 100%
Formulation 10i:
Fluticasone propionate:0.025% w/v
Ethanol: 7% w/w

CA 02446562 2004-03-12
19
Glycerol: 1 % w/w
1,1,1,2-tetrafluoroethane: to 100%
These solution formulations were filled into aluminium canisters (120
actuations/canister; overage of 40 actuations) under pressure and fitted with
a
metering valve (Valois DF60) having metering chamber of volume 63 ~,I.
These formulations are suitable for delivering 31.5 ~g (10a-10e) or 15.75 ~g
(10f,10g) fluticasone propionate per actuation. However the performance of
these
formulations is a model for formulations that would deliver 50 ~g and 25 ~g
fluticasone propionate using a metering valve of 100 ~I.
Andersen Cascade Impaction Data
Formulations as described in Examples 3, 4, 5 and 6 were profiled using an
Andersen Cascade Impactor, using a 0.22mm (orifice) x 0.65mm (jet length)
actuator from Bespak (BK621 variant). Testing was performed on canisters at
"beginning of use" (BoU) and delivered drug from 10 actuations was collected
in the
instrument after 4 priming actuations were fired to waste. Results are shown
in
Tables 1-4 and Figures 1-4 and 11. For comparison, data from a Flixotide
Evohaler
(trademark) (particulate fluticasone propionate suspensed in HFA134a
(excipient
free) 50 ~g per actuation) product is also shown in some figures.
The 0.079% w/v fluticasone propionate products of Examples 3 and 4 (50 ~g per
actuation; 63 ~I metering chamber) were profiled using an Andersen Cascade
Impactor in a study to see the effect of actuator orifice diameter and length.
Three actuators were used:
0.50mm diameter orifice x 1.50mm jet length
0.33mm diameter orifice x 1.50mm jet length
0.22mm diameter orifice x 0.65mm jet length
Results are shown in Table 5 and Figures 5 to 9. For comparison, data from a
Flixotide Evohaler (trademark) (particulate fluticasone propionate suspensed
in
HFA134a (excipient free) 50 pg per actuation) product is also shown in some
figures.
The results show the best performance (as indicated by highest FPM) in
products containing a relatively low concentration of ethanol (say around 10%)
and

CA 02446562 2004-03-12
containing glycerol (say around 1 %). A small actuator orifice diameter (say
around
0.22mm) is also seen to be preferred.
The solubility of fluticasone propionate in ethanol in the presence of HFA134a
is
shown in Figure 10.
5 A study was performed on the 0.05% w/v fluticasone propionate formulations
(HFA134a/10% ethanol) of Examples 3 (Formulation 3c), 4 (Formulation 4c) and 7
(Formulations 7a, 7b and 7c) with a 0.22mm x 0.65mm actuator using an Andersen
Cascade Impactor to consider the effect of glycerol content on the following
properties: (i) MMAD, (ii) throat deposition, and (iii) stage 3-7 deposition.
The
10 results are shown in Figures 12-14. For maximum deposition in the desired
region
without excessive throat deposition the optimal glycerol concentration appears
to be
around 0.8-1.6 % w/w, particularly 1.0-1.6 % w/w.
A study was performed using an Andersen Cascade Impactor to compare the
properties of formulations containing different solubilising agents. An
actuator of
15 dimensions 0.22mm x0.65 mm was used for the study. The results of the
analysis
of the formulations of Example 9 Formulations 9a, 9b, 9c and 9d and a
comparison
with the formulations of Example 3 Formulation 3c and Example 4 Formulation 4c
are shown in Table 6 and Figure 15. The ethanol with glycerol profile clearly
appears the most attractive since it demonstrates the highest FPM content in
view
20 of the high dosing in stages 4 and 4 relative to the other profiles.
Nevertheless the
methylal profiles also looked of significant interest in view of the very low
throat
deposition. The addition of 1 % glycerol shifted the methylal profile to lower
stages
only to a small extent, perhaps in view of its greater volatility than
ethanol. A higher
percentage of glycerol would be expected to increase the magnitude of the
shift.
A study was performed using an Andersen Cascade Impactor to compare the
properties of formulations containing different low volatility components. An
actuator of dimensions 0.22mm x0.65 mm was used for the study. The results of
the analysis of the formulations of Example 10 Formulations 10a to 10d are
shown
in Table 7 and Figure 16. Particularly good profiles are shown by glycerol and
PEG400 which demonstrate relatively low throat deposition and high dosing in
stages 4 and 5.
A study was performed using an Andersen Cascade Impactor to study the
properties of 0.05% fluticasone propionate formulations containing
1,1,1,2,3,3,3-
heptafluoro-n-propane (HFA227) as propellant. An actuator of dimensions

CA 02446562 2004-03-12
21
0.22mm x0.65 mm was used for the study. The results of the analysis of the
formulations of Example 10 Formulations 10e and 10f are shown in Table 8 and
Figure 17. Comparison with the HFA134a aerosol formulation of Formulation 10a
is
shown.
A study was performed using an Andersen Cascade Impactor to study the
properties of 0.025% fluticasone propionate formulations containing 1,1,1,2-
tetrafluoroethane (HFA134a) or 1,1,1,2,3,3,3-heptafluoro-n-propane (HFA227) as
propellant. An actuator of dimensions 0.22mm x0.65 mm was used for the study.
The results of the analysis of the formulations of Example 10 Formulations 10g
to
10j are shown in Table 9 and Figures 18 and 19. The HFA134a product with
ethanol shows a particularly attractive profile eg as shown by a high total
delivered
dose and a relatively low throat deposition.
Brief description of the Tables:
Table 1: Effect of valve on FPM in fluticasone propionate HFA134a solution
aerosols (50~g/actuation).
Table 2: Effect of different levels of ethanol on FPM in fluticasone
propionate/HFA134a solution aerosols.
Table 3: Effect of different levels of ethanol on FPM in fluticasone
propionate/HFA134a solution aerosols (valve size effect ignored).
Table 4: Cascade impaction analysis of fluticasone propionate/HFA134a solution
aerosols (125ug/actuation) containing 35% ethanol or 35% ethanol and 1
glycerol.
Table 5: Cascade impaction analysis of fluticasone propionate/HFA134a solution
aerosols (50~g/actuation) containing 16% ethanol or 16% ethanol and 1%
glycerol.
Table 6: Cascade impaction analysis of fluticasone propionate/HFA134a solution
aerosols (50pg/actuation) containing various solubiling agents with and
without 1
glycerol.
Table 7: Cascade impaction analysis of fluticasone propionate/HFA134a solution
aerosols (50pg/actuation) containing various low volatility components.
Table 8: Cascade impaction analysis of fluticasone propionate solution
aerosols
(50~g/actuation) containing various propellants.

CA 02446562 2004-03-12
22
Table 9: Cascade impaction analysis of fluticasone propionate solution
aerosols
(25~g/actuation) containing various propellants.
Throughout the specification and the claims which follow, unless the context
requires otherwise, the word 'comprise', and variations such as 'comprises'
and
'comprising', will be understood to imply the inclusion of a stated integer or
step or
group of integers but not to the exclusion of any other integer or step or
group of
integers or steps.
Abbreviations
FPM fine particle mass
FP fluticasone propionate
m/c metering chamber
BoU beginning of use
PEG polyethyleneglycol
Form. Formulation
MMAD mass median aerodynamic diameter

CA 02446562 2003-11-05
23
O i.nCfl00~-N CO d;M N O M
N (~
00
CDM e-O ~-M CT~ ~-'O O ~ M 00
~
* ~ ~
i
O M
O
V Z tn LLtn
N <-Q~CO0000 N M CDO~un00CO M I~
? t.~M (VO O M t-C7t17~--O O ~ ~ d'1'e
y N
0
~
O O ~ O
N tI7l.Ltf7
r-r-.-tnt~~ C37M COO !~r-O e-07
d- M O O M ~ 1~.-r-O ~ ~ 07
~ d-
U
N
>.
+-~
~
o
O -.-
' N O d'n ~'~Y C0~I7'c~d'~a7CDd':lnM
t~ C5 ~ tl?COt"'7O ~--u? I'~CON " O N N N
E-- O ,
~ ,d'
cB
O
O ~ ?
,
_ cv~
N W
O O ~ O
~
M N 00M N M O O CL5OO~ Cfl('~~''~d'
O
tfia N O ~ O ~ isLt?N N ~ M 00LC9
~ ~
~ 0
O 07
_ 0
~
O d O 4.
-
~ N tt7IYl17 ~
Z
+.J M N N M N N C9tn00d;1'd-~ c''7r'
Q chtnN O O O O COCt3M N N ~ h Cf~
v
O e- ~ M N
V
Q
O
g7
W N
~ ~
CflL.~
L. s
O r.r.InM N M ~ fl0Cn~ 1~N t!7O 07O
.N
O ~ , N ~fO O O O ~ ~ ~nd- j
1
n
. ~ ~ ~ N ~
O
C _
_
~ O
2 v .~O O d O
O
U. ~ UJr-r- u~In
~
~ a~
N N
>
1 ~ L~ V ~ CO
'
Q
> +-~+-
~ U ~ _
a '~' ~ o '' y 'a + +
'
~ . u v e
a + c
' v U O r-N M d W t~t'~ v V V
fi
O v~ 7 1
~ a ~'''
~ v ~ ~ ~ ~ c a~v a~a~ ara~w ar~ -
~ u ~
-a ct ~ m > -a-~~ o ~ , a ~ ~ v ~ ~ ~
rn ~ a~ ~ ~ ~
~ ~
v ~ o o v ~-cacoc~ca cBcacvm .s-+±
0
o cv ~ ~ D H tJV11!1V1 t!N ~ t!LL~ t ~
-
1- ~- tLl1JJ -
Q

CA 02446562 2003-11-05
24
N
v ~,
0
o cfl.-000 0 0~rn ~ o~0 0 o d-c.fl
o0
v N M i..f')~- N d' ~f'_- O GvN
I~.
t~ O O CO~-
~ O
O
v
~+.W U p
"
O ~ ~.. tt7
o
~ M ~ N
vy o M COLLu-
CDo~M O r.N cD O'>M - d-O ~ t~.
M
00f~CD~ - 09N ~ M N r-O <-CO
.-
M L ~ ~y M ~ ~- O O M
N
r- O --~.
O
ca
S ~ ,-~F, M n.O
CAD
u~ _- O LLtn
cgu~O O ~ tn ~t7r.~ coO ~ M
-
N N Bfl~ O O r--LO~f'~ N O 9~O
O M
O ~O
N
N ~ 01
~ M ~ N
~ ~
M (.~LLr-
~
O y. 00N P~.tntnet M O O d-O ~ N
M
O ~ ~ O tl7a.f70 0 0 e- ~ CDOOCOO S3~t'~
O~
O M =-r- O 0~~-
M
O
cn
o
~- ~.
tai caV O M
d j C
D
~ cB
~
~
M ~ S -~
L O +~ +
N
V7
~
4
-
~ U O p ~ v v1
v1
t~. -O - y-, N Vt
U
O ~ ~ O ~vU U ~ r-N M "$ l CD~ X .M
t~ +~-~
U 't''O O O ~ ~ O U N N dJ4Jv v . 4 U N
~ N In
v i,=v ~ ev QJ-o-C3~ O ~ o W ~ ~ oaJ v ~ - co
~ a ~ O~a mu
~ - o ~ c o O ~ ~-cBcacacaca cocaca. +-+.~
o -s-~
4 Q O . a ~ (L ~ /'_ _ _ O
~- LL LLl >
F-(,(/~[/~t/7Vl V7Vlt/7LL
7

CA 02446562 2003-11-05
M N N CflN d'I'.tt5COCfld'O h h 07
* M !'~M --N CD07 N N O O O CDOp ~
.
~ r N ~--N N ~f'N
M
r
~ ~
Z u7u
..
COr COO C?07O~ Q7O7O O O Wit't~ 00
N M ~ ~--_--N ~' Wit'r-r-r-O I'~N I~
~ r Cfl O 00r-
0
t.c7M a N
M CDtL
0 d',d'00N COGDd: CDN LO~ O COCO 'd-
aJ O COt!7~--_--(~O O M r- O C3~00 tIj
~ e--r- O 00N .-
.7.~
_ ~
~
O o ~ ~
r"r-O d O
-ON ~ tL in
~ CO~ M O B'':N CD 07M ~--d;O M f~ M
L ~ ?~ OD00CO~--- 00N LI7M N ~-
O O .-ciW--
... M r - O 07M N
O
s ~ M d O
uJ~--toLL !l~
d't!5M --M ch N CO1~I'sO r 07 t!7
p p CO~--N O d- Cfld-N ~--O O O M
O M O O~'~ N
~ ~
O
o
M -~
GJ '' ~ O O ~ O
r r
c~ o v ~-to~c~O O a~rn ~.nr rncoO ~ M .-
H ~ ,'-'" N N cDO O O r- ~ ~ - cVO t~~ M
~-CO O 00
r-
O
U ~ ~
1
N
O ~ M ~
M CDLL -
CC O 6?CDO~tD~f"COr d-In00M O - r I~.O
d O O M tnO O O N ~tr-~ d=O 071'~
M -VI ~ '"~' r r O COr M
w r
N ~
01
O ~ O
~ rn N Int1 tt7
- .
6L ~ r 00N Iwt~tt~d: M O O ~-~ ~ ~ M c7
M O M !.nO O O -- tf7CDO CDO ~ ~
M v
r r- -
Q r
~ 3
i ~ 07 (l1
L,
O N
O Cz. CDM ~ O
4J .-O u. tn
O X ~. f~~ ~ COerCD1~-d'N M 00O M I~.C~
O M COO O O - 00CDO c0p ~ O ~
N O 0
r- ~-.
O ~ r
W O 'o
-
c~
O r~.e-'O ~ a O ~ X
cn ~ ~ V .sue.O O !~ .
O
UJr ~ i1 t1~
Q.
_ ~
~ N
N
v v fO~ -~ V1 V7
v ~ ~ ~ + +
a = a ~p-
cc c ~ v ~ canv~
'Z7 4J U O p ~ ~ + +
4-- ; '~~ .4-~V u! 1
V ~
, 'vU U ~ ~-N M ~t i.t~CO~ N
O ~ v ~, l~ td1
~ v ~ ~ v cva~v v a~ar v v cv
E - i i
-
..a,l cu~ ~ ts- o rnrs~v~rn~ r~tra~v v v
~ s '
0 0 ~ ~ o o ~ ~ ~ + ~ '~ ~ ;~a~- o o ~
Q n . . . + . i
u~ ..r o u.u..i> a D f-v~cnv1W o v1t/fcny --f-~

CA 02446562 2003-11-05
26
I~CD00 t,!')t'W.C9M M ~'1O Ct>N COh r-
N d'~n O O N d'tn.-.- O O 1~N 00
.-cD O
O r
QJ
~fi'03 Lf700CflO O tw00 L!'Jr-N (.fl~t7
y , O d"~'iO C7cNi.nu7~--O G o0r.N n
~ _ M .-C4 M 00~-
M j Q
> v N
O 'n T
C~ ~ ~ ~ d'IwCD ~f7COctGO~ O ~ t~M O t~.GD
H' _ ~ ' ct<f-ttiO O N w-u7N ~- O N PsN ao
~
O ~ '"o 0 0~.--
a m v ~M
o ~ o cvi >
s r) ~
o ~ s ~
a m ~ v
'- N GOfn d'N tnO M (~- d'O O t~~ ~
O ~ N COCD O O O N h d-N N ~ N Cnd
Ca c-CD O d7
o
s
~
,
a
o
v
v
~
L.f7 1~a7O M ~ d'i~r- OD i'.I~O N O X
~ N ~ O M CO O O O r-c9d-- N COo~CON ~
~--
r-i'~ O 07
~ Q
O N
r- L r- _co
N
Z ~ >. o toN ~ InM if7N inN d' - M I~N ~-U
p O ~ = M 07C~ O O O N 00~ N N ~-i~.-CflU
. ~o o r..M ~ Lf7 O ~ a-r-- Gy
p '' a Q
~ o ''~ 3 '~
~
H N c
o
N C9 ~ ~ r- N O
. O 2
+r
~ Q uJ CflLL ~ X
O ~'1'
s
~ N
J tnP~ca
O G
+~
o an~n'-" o
CO V ~ a
1l7 ~ O .a ..
M j , ~ O
O ~ .v-.a-i~
O ~ ~ D 'O~ -f-vi
~ ~ O '-N M ~tu7CO1~ N V V
c ~ ~ GJ+-J i ) ~ Q
C O tZu CV4J OJaJN GJU 4J9J
U _ L
~ O ~ C31C'7~D1~ 0107L'~QJctSc0~ ~ ~ Il
'~ ~>
s ~- m ~-c8 cacocacacucaco ~ +~+ _
~ o v
+ O +~c s a-~+r.sJ+-~+~+~+~+-~ O O ~ iZ_ M
V 4J i1 CnVld N V1(d~V7tn17(n LL
~.- i V1 ! l.-LLlLQ

CA 02446562 2003-11-05
27
CO~-i7CD~ .-NO N V;M N O>M M CC
CGM .-p r ~rjpj .-O O ~ O)
~ ~
O
O
M
r 47tn
= ~
ti O
O .-r-~ tt~07C7~O)M CDO 1~.~ tt~~ CO
~ d'~ M O O M~-c7h .-e-O LOM
N ,~'d'
h O~GO~f'h ~1!~ O d;07COr--O O M
M
O ~ ~ tVO O Mcnh .-O O ~ ~ pj
N
O..N
iLO
el'M CDCDO MN InCY7O h Wit'O O M
d'COM O .-d'CDt~..-.-O ~ ~ 07O
O
N i-
O"N N
LL O
CO~tN M ~i'tnCOODO Cfltn~t~ O M
(SS d'h ~ O O ~N M c-O O M M O~Its
N N c9'M
C
Q O
d'taiM ~..~-~t~Lna7Ind-M O O 07 _
'~
~t~ ~-O O =-c~riO O O ~ m ch
M
CrO
~ M
a M
~ u
~ ~ .
h N O N M ~!'COO O CDt17InO O CO
~tN .-O O ~cwtd W-O O N ofeomi
~
GJ CC~ l()M
.
0 +'~.~O Q_M LL
...
O w m U-O v
M N N M N NCDu'7c0~ h M O O h
~ d'~ CVCJO OO (Dc0ricV Y~CL7
, ~ x
~
C>
. O ~ M G w-M N N~.c7tnN d-h d:O O r.
M ci~N O O OO tDc0M N N ao~ cfl
0 ~
fl
- O ~ N
a V ~ LLO
f'~ ~ N Q7M M N N1'wd'o~~.h-..~O O CD
~G ~ t17M p O O OO CCCOM N N M isCO
C~!
O ~ O N ~
tn
~ p LLN
LLU
00end~.-.-Ncf00tW- 'd'' LOO M O
e-
(0 ~'Yt17c-O O OO M M N cVdrC9dv~
N N etM J
N o~n ~ .-Mi.nW .nO cD~ O O ch
O
t O ~ wi'N ~"O O OO M M tVtV~ O d'~ v
/f
- N : -O
~ O ~.M
O c0 ~"Q O
M a-O .-.-c-M cDu~e- M O O N
en~n.-O O OO M M N N ~ M d-07O
d' ~ L~M N
M ~ Q.M a
LLO
u~
a ~ N d'd - - ~ '
L M ; ~ P .M ~ COO wtr 0 0 d T
l. 7
d~N .-O O OO ~-_-.-~-dvofN ~F
~
M d'M ..O
G. ~ . _N
N M ~tr-.-rM O toO d:doO O co
GJ ~tN ~r-O O OO N .-.-.-~ OjN d~V
~
y M ~ M
N - O lI~O ca
,
CZ.L!7 V
~ LLO a~
tC O V ~ N ~ ~ '-O '-'M a0~r?~ c?O O O N
m p ~ d CVr-O O OO - - O ~-d'O~N d'
N -O cC= ~ O M d'M
t
LLCDLLQ LL
V o
lOh to
a m v,n
+ +
~
o ' v
~'
-u+ +
O ~ O v ~ O - 'NMd'~ cDr. X aM.-~~
v cfl ~ ~ ~ ~ v ~ cuN v~
v
H ~ ~ O ~ O 01a?C~~~ 01C~01N-m ca
C O V
Y
~
C 1. '~ ~ tVN COt0COCOC9CO~'_ _ N N
+.~ ~,~y ~,~,,
,
O O ....
U o ~ c n a o - inv,v m~n~nv,. u u
n r-- ~n
. m - ..ur

CA 02446562 2003-11-05
28
O M h O M r C~ '~ M I~ OD tp N
cM O r- ~ d0 ~ N er O O tn N
r ,~' d' N
O O
C
U N
U L
Z ~ N
'
p o O
O M N N M N N GO 'S~ 00 '~t' h M O O
~ Lf> N ~ O ~ O CO CD t"~ N ~ ~ B~
r
O
r O
(~
O ~
0
i ~ . \
~ ~
LL. m a
'tt M (O Cfl 00 h- CO N N N O r g~. 1'
O CO ~ ~- O ~ r r W (p CO N
~ O
L: U
~ f0
U -~
\
O O \ tfy
f1 r r r
O M N tf~ sn r 00 f~ O d: O ~' d' 1
O ~ O ~ ~-- O O c- O r tp ~' M N M M
~NMN
~ O N
O ~ . O
O U
~ (~
~ _
+a i. ~ O
L m ~ r
L ~
N M O OD i~ 'ct M M tp 00 O r O O
-
N ~t7 1~ M N ~ M ~ U
CD (fl M O O r
~, (~
Lf!
(if
M ~ O >.
T' ~ U N ~
~
~ 3.~'~ U
1. X tU
.N
r r r
O O ~ u7 c0 O CD O7 a~ O oD N M ~Y
tn tn r- O O O r Cfl o~ C~7 ~!'
V M O 'O
0 '
N
.~G O * ('a
t/9 d0 r N U
~1 Q. e~- ~,
O C
O
O of_ N p
v
O ~ ~ C O
~ r
lL m ~
O ~ U
O
O. (A f+ p
O
-p to
C N ~ (n ~ >
O ~ M
O
_ a- C O r.. O r N M ~t tt> to I~ ~ ~ ~
E ~ O N U t!f N N N N G1 ~ O O '" U 11
~
O L. ? U > '> ~ v~ v~ yr rn v> ~ v~ t~ _~ ~ c
~o
LL (!)~ J !nD F- t~ U) tn fn fl) tl.D tn (n lL I- I-- lL a~
J

CA 02446562 2003-11-05
29
r r ai en ~ ao r M v
~ in M ao co
n1 a0 ~ O w- ~0' a0
c0 tV ~' O ~ M
N
O
e O
-
O
w
~ O
~
_ d
0
z
r sn N M r o in N u>
r v ~ en c~
~ O M ~ 47 ~ O O N N
~'O
-
e p O
C
~ L
T m
6 n
~ O
~
rr V;V'OPMNh-~01OP1~O
c7 t0 e- O ~- d' aD
Cf CV r- O ~ M N
7.
O
O
O
~O
~ t
0
v ~ o m o~ N U~ o~ c~ .t
r o <n o o ~n
M N tn O ~ C> CV tn t0
T' - O N N et
O
O
~ r
t z- v c
~U '
0 3.R t7.
. c
. .
u~
0
p o
lim ~~
rrMt,C)OCO~c'70P"QN~~t'O
y - M O e- O a- tn r O N
~- O ~ M N
ja. O '''~''
o
r
O
c dO
~
_
=
E lCLLJw
~a v
00 0
~ o z.-.-
M ~ 00 M f0 ~ t~ r i~
tr e- tn N OD
M N CO O O O M 'Q ~t7
.- O O (fl ~t M
N N .'
C
C1 N '' N
e0 O
iLd
O ~ ~~ 3a y
ao ~T o
~
C9 ~O f0 - tn O OI r O
N fb N O t0 ~ M
~ - -
'
1 en tn r N ~ DO tn t0
j O r ~
M ~ e
M
,_ r
pV r- M
r-T
_
> wm
~
M ~ ca
O
_ _O d
a t~ .c6
0 0
~o O
~
O N M r M (O r (p r O
V CO M '- M
N r O ~ O N) M C~7 r
s- O N N O
O a~
O rn
N
M eG , C
~1 IL ~ ~ C C
O~~ a t
t~ a1 O a ~ d
cn~ o
G ~,o \
O M o
O
~ m t0.-~-
p >
O .
.
O
C5 O
C ~ ,~ .~ O
~~
tQ O C O r- N M st tn t0
V ~N C! r II
07 ~ is m m m N 69 41
N as ~
fly _ ~of>U y> o o~ cn vs of rn U
~ o~ rn y m ~ ~
~ J J
V).~' U) D F~ tA tn V! (n
fn U7 f4 Vl IL 1- I-WL

CA 02446562 2003-11-05
p7 t~ r- 00 1~ M '~1' T' CO M OD (fl
N d0 r~ Q r eg' 00 00 N e" O
0
M
~.
3. ,
N
O -
O
T
4
.
-
(~
~
O
o O
z t-
T
f~ aU N M f~- ~ ~ N tD 6~- '~f rP- O CO
~Y r tn T O O M tL7 tU P O O ~ M M
Mp N N r
rT
Q
I o
=U U ~
ZQfU .'C,-,
?'
0
~ dO c~
o
O
- IJ-m (f7
C ..~ ~-
~-
CO 6. O a0 h- c0 r t~- t0 O O tn N O ~ .r
~ M r= M D e- M t?' M ~- C7 CO ~f- s- N
N ~i- ~' ~-
Q ~ C
~O
O ~ U~_7
O
N
N
.
!t7 fC.
T
~'C-.
N
L~
\
~ z \
~
~ QO M ~ 1'~ Wit' O ~T tD M r- C1t OD 1~
N M N O O fV N tV O o O to tn h
<- N wt
0
00 ~
-
O Z o c
~ m_ U
U C
N ~G .
'
o a, ~ a
~.
O
e0 ~1 N W M M C~ ~O c'O N ~ cO o0 I~
M N M O O O O ~t Wit' N ~--~ et O in .
~ N ~Y 'd'
~
'
~ O
~ T
> > O
_ 'p
~ .~ O
N ~ N ~
.
> (4
~
Q
Z U ap
n, o z ,
~-
(y Q 'd' d: C3 M N N t7; O f~ tY N r f~. CO
~ L ~ tV~'NQOfOO~NT'-'.~NM
O
N
o
?v IL ~ p
,
_ _T
' C
~
l j f~
~
C
GI ~.tv+ C
3
~! lJ..m <O O
a
~
,i,r ~ U
O
C. fn
U ~~ ~
_U_ ~_
O CN ~' fly >
' o~ c i
..-
O = ~
U ~ O T N M Wit' tF> tO t~- ~ a O
~
N N II
t4 c5 to ~ ~ N ~D N de N QD ',
-
~"~ ~rn> U ~ O t~ rte, v~ ~ rn o~ a~ oy_ ~s as g V
>
V ~ LLU7~ ~ fl ~-- U7 tn V) V7 U) (~ tn t!a u. h 1- LL
U) J

CA 02446562 2003-11-05
3i
(O e---sg tn fD ~ O
e 40 M M r- O Cp
r h tV ~ O tV M tV ~
C5 ~ r- Oi Ps
N
O
r
O
N N
.B~ Li
7 ,
N0
Zo oV
OatDUiMStcpODtn~NNMMQ)
~t e- O ~ r v- r ~ O
O M lV et'
N r-
h
NO
r O
lL O
Z~
3
N~ j.
d1O MO
o
ILm (Or
h h h. N N N N O c0
N t0 r t0 M
r (p r GO O O O f'~'>
M fV' r ~ tn M
O N
O
w
~ O
N c
N (d
L
iN r N r r r r r O ~ sg
O M M r-
-
N~ - "vt ~
O O ~ O a- (V r r ~
nj
N
d~ o
u-. c
ZV
tf7 N
N~ 3. o
lLm On ~
h a19 t6'3 N M h M ~
r O t0 r- -~ cg
ilE L r N O O O r .~. CD (p
~ O ~ O
a
as '.~ o
a
~ '' '
a ~ o
,.-
d
f3
. o>a~
~!f ~a
a ' 00 0
o
~ Z.-h
C DC '- tD M r N r h e- c
f0
~ 7
' M M N of
:
~
C ~ ~_ o ~ o .-
cV v .- ~ o ~ cP ~
d
~ N u-,_
N Z
~ ~ ~ c
t9 ~ m
N ~C _ >,s
~
N~
~rn~
a M o
N ~ lm f'-f
L D g.
'- N O O O N CO 9' A0
O r- .- h
cV N O O O ~ O e- et
M M tf9 r
~ a O
".O"
O N
_ f0 O
CJ$ i0
d1
_
O
z~ n
O MMr000~-OOOu$'c~0pl.nr
r O O O O O ~- N N ~-
O W e-
O
~ O_
ao S1.
~
~h l0N
48 L
N~ j. oO
M
~ ' I Lm pn M
B U
V !I9
:ia
w
O
4~
v- 3
X
C O r N M 'tt' tfD (D
_h
~ o
eh ~ Z U? '~
~
v~~
m
:
m
~
~ _
w J .-
L _
C3
m_
e
u~
~~_~
V Cp fpD_
l ~ E- Vj In U3 (n (n fn
(n fn t
J
L (- B- LL

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Le délai pour l'annulation est expiré 2013-09-11
Lettre envoyée 2012-09-11
Lettre envoyée 2006-01-05
Lettre envoyée 2005-09-21
Accordé par délivrance 2005-03-08
Inactive : Page couverture publiée 2005-03-07
Préoctroi 2004-12-14
Inactive : Taxe finale reçue 2004-12-14
Un avis d'acceptation est envoyé 2004-10-29
Lettre envoyée 2004-10-29
Un avis d'acceptation est envoyé 2004-10-29
Inactive : Approuvée aux fins d'acceptation (AFA) 2004-10-19
Modification reçue - modification volontaire 2004-09-22
Inactive : Dem. de l'examinateur par.30(2) Règles 2004-09-08
Modification reçue - modification volontaire 2004-08-06
Inactive : Dem. de l'examinateur par.30(2) Règles 2004-05-26
Modification reçue - modification volontaire 2004-03-12
Inactive : Lettre officielle 2004-01-22
Inactive : Dem. de l'examinateur art.29 Règles 2004-01-13
Inactive : Dem. de l'examinateur par.30(2) Règles 2004-01-13
Lettre envoyée 2004-01-05
Avancement de l'examen jugé conforme - alinéa 84(1)a) des Règles sur les brevets 2004-01-05
Inactive : Page couverture publiée 2003-12-30
Inactive : CIB attribuée 2003-12-05
Inactive : CIB attribuée 2003-12-05
Inactive : CIB attribuée 2003-11-27
Inactive : CIB attribuée 2003-11-27
Inactive : CIB attribuée 2003-11-27
Inactive : CIB attribuée 2003-11-27
Inactive : CIB attribuée 2003-11-27
Inactive : CIB attribuée 2003-11-27
Lettre envoyée 2003-11-27
Inactive : CIB attribuée 2003-11-27
Inactive : CIB en 1re position 2003-11-27
Exigences applicables à une demande divisionnaire - jugée conforme 2003-11-26
Lettre envoyée 2003-11-25
Demande reçue - nationale ordinaire 2003-11-25
Demande reçue - divisionnaire 2003-11-05
Exigences pour une requête d'examen - jugée conforme 2003-11-05
Inactive : Taxe de devanc. d'examen (OS) traitée 2003-11-05
Toutes les exigences pour l'examen - jugée conforme 2003-11-05
Demande publiée (accessible au public) 2001-03-11

Historique d'abandonnement

Il n'y a pas d'historique d'abandonnement

Taxes périodiques

Le dernier paiement a été reçu le 2004-08-06

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
GLAXO GROUP LIMITED
Titulaires antérieures au dossier
ALAN LESLIE CRIPPS
PAUL JOHNSON
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Description 2003-11-04 31 1 536
Revendications 2003-11-04 2 68
Abrégé 2003-11-04 1 13
Dessins 2003-11-04 19 480
Dessin représentatif 2003-12-29 1 22
Revendications 2004-03-11 2 40
Description 2004-03-11 31 1 314
Revendications 2004-08-05 2 41
Revendications 2004-09-21 2 40
Dessin représentatif 2005-02-02 1 24
Accusé de réception de la requête d'examen 2003-11-24 1 188
Avis du commissaire - Demande jugée acceptable 2004-10-28 1 162
Avis concernant la taxe de maintien 2012-10-22 1 171
Correspondance 2003-11-25 1 43
Correspondance 2004-01-21 1 13
Correspondance 2004-12-13 1 32
Correspondance 2005-09-20 1 13
Correspondance 2006-01-04 1 9