Sélection de la langue

Search

Sommaire du brevet 2523892 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Demande de brevet: (11) CA 2523892
(54) Titre français: MECANISME TELESCOPIQUE A FERMETURE AUTOMATIQUE
(54) Titre anglais: SELF-CLOSING TELESCOPING MECHANISM
Statut: Réputée abandonnée et au-delà du délai pour le rétablissement - en attente de la réponse à l’avis de communication rejetée
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • A47B 88/467 (2017.01)
(72) Inventeurs :
  • JURJA, SAMUEL (Canada)
(73) Titulaires :
  • COMPX INTERNATIONAL INC.
(71) Demandeurs :
  • COMPX INTERNATIONAL INC. (Canada)
(74) Agent: DARYL W. SCHNURRSCHNURR, DARYL W.
(74) Co-agent:
(45) Délivré:
(86) Date de dépôt PCT: 2004-05-07
(87) Mise à la disponibilité du public: 2004-11-18
Requête d'examen: 2009-03-12
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Oui
(86) Numéro de la demande PCT: 2523892/
(87) Numéro de publication internationale PCT: CA2004000674
(85) Entrée nationale: 2005-10-27

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
60/468,258 (Etats-Unis d'Amérique) 2003-05-07

Abrégés

Abrégé français

L'invention concerne un mécanisme télescopique à fermeture automatique utilisé dans une coulisse de tiroir (6) comportant trois sections télescopiques (8, 10, 12). Un élément mobile (14) est monté coulissant au niveau de l'extrémité interne de la section externe (8). Cet élément mobile interagit avec la section interne (12). Lorsque le tiroir est ouvert, l'élément mobile (14) glisse le long de la section externe (8) vers l'extrémité externe jusqu'à une position extrême. L'élément mobile est bloqué dans cette position et est libéré de la section interne (12). Un ressort (34) pousse l'élément mobile vers l'extrémité fermée. Lorsque le tiroir est fermé, l'élément mobile (14) entre en prise avec la section interne (12) et est débloqué. Le ressort (34) tire l'élément mobile (14) et la section interne (12) et la section intermédiaire (10) jusqu'à une position de fermeture totale. L'élément mobile (14) peut être monté directement dans la section externe (8) ou dans une garniture (23) qui est montée dans la section externe (8).


Abrégé anglais


A self-closing telescoping mechanism that is used in a drawer slide (6) having
three telescoping sections (8; 10; 12). A floater (14) is slidably mounted at
the inner end of the outer section (8). The floater interacts with the inner
section (12). When the drawer is opened, the floater (14) slides along the
outer section (8) towards the outer end to a fully extended position. The
floater is locked in the fully extended position and is released from the
inner section (12). A spring (34) biases the floater toward the closed end. As
the drawer is closed, the floater (14) is engaged by the inner section (12)
and becomes unlocked. The spring (34) draws the floater (14) along with the
inner (12) section and the middle section (10) to a fully closed position. The
floater (14) can be mounted directly in the outer section (8) or in a covering
(23) that is mounted in the outer section (8).

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


-14-
I CLAIM:
1. A self-closing telescoping mechanism having an inner end and an outer
end, said mechanism having at least two sections, said at least two sections
being
a first section and a second section, said mechanism having a floater that is
slidably mounted in said first section near said inner end and is removably
attached to said second section within a predetermined range near said inner
end,
said floater being biased toward said inner end by an elastic tether extending
between said inner end and said floater, said floater being attached to said
second
section when said second section is within said predetermined range and
detached from said second section when said second section is beyond said
range.
2. A self-closing telescoping mechanism comprising at least two longitudinal
sections that are sized and mounted to telescopingly slide relative to one
another,
said mechanism having an inner end and an outer end as well as a closed
position
and an open position, said at least two longitudinal sections comprising a
first
section and a second section, said mechanism having a floater, said floater
being
slidably mounted in said first section near said inner end, said floater
having an
extended position and a retracted position, said floater being connected to an
elastic tether that biases said floater to said retracted position,
(a) commencing with said floater in said retracted position and said
mechanism in said closed position, said floater being constructed to move
with said second section to an extended position as said mechanism is
opened, the movement of said floater to said extended position being
controlled by movement of said second section, said floater having a
maximum extended position wherein said floater is automatically fixed in
a locked position in relation to said first section,

-15-
(b) said floater being automatically released from said locked position
as said mechanism closes and said second section reaches a trigger point
for said floater; said second section being constructed to automatically
disconnect from said floater when said mechanism is being opened and
said floater reaches said locked position, said second section being
constructed to automatically re-attach to said floater as said mechanism is
being closed and said floater is released from said locked position, said
tether forcing said floater to said retracted position and moving said
mechanism to said closed position when said floater is released from said
locked position.
3. A self-closing telescoping mechanism comprising at least two longitudinal
sections that are sized and mounted to telescopingly slide relative to one
another,
said mechanism having an inner end and an outer end as well as a closed
position
and an open position, said at least two longitudinal sections comprising a
first
section and a second section, said mechanism having a floater, said floater
being
slidably mounted in said first section near said inner end, said floater
having an
extended position and a retracted position, said floater being connected to an
elastic tether that biases said floater to said retracted position,
(a) commencing with said floater in said retracted position and said
mechanism in a closed position, said floater being attached to said second
section, said floater moving with said second section to an extended
position as said mechanism is opened, the movement of said floater to said
extended position being controlled by movement of said second section,
said floater having a maximum extended position wherein said floater is
automatically fixed in a locked position in relation to said first section and
is automatically released from said second section as said second section
continues to open,

-16-
(b) as said mechanism closes, said second section being constructed to
automatically re-attach to said floater and said floater being automatically
released from said locked position, said tether forcing said floater to said
retracted position when said floater is released from said first locked
position in relation to said first section, thereby pulling said second
section
and moving said mechanism to said closed position.
4. A self-closing telescoping mechanism as claimed in any one of Claims 1,
2 or 3 wherein said second section has side edges and said floater is sized
and
shaped to slide along said side edges.
5. A self-closing telescoping mechanism as claimed in any one of Claims 1,
2 or 3 wherein said first section has side edges, said side edges each having
a
covering thereon, said floater being sized and shaped to slide along said
covering.
6. A self-closing telescoping mechanism as claimed in any one of Claims 1,
2 or 3 wherein there is a third section of said at least two longitudinal
sections,
said third section being slidably located between said first section and said
second
section.
7. A self-closing telescoping mechanism as claimed in any one of Claims 1,
2 or 3 wherein said mechanism is a drawer slide and there are two drawer
slides,
said drawer slides being mounted in a housing and supporting a drawer that
moves in and out of said housing on said drawer slides.
8. A self-closing telescoping mechanism as claimed in Claim 1 wherein said
mechanism has a closed position and an open position, said floater having an
extended position and a retracted position corresponding to an extended
position
and a retracted position of said tether.
9. A self-closing telescoping mechanism as claimed in Claim 8 wherein said
floater has a maximum extended position wherein said floater is automatically

-17-
fixed in a locked position in relation to said first section, said maximum
extended
position corresponding to an outer limit of said predetermined range.
10. A self-closing telescoping mechanism as claimed in any one of Claims 1,
2 or 3 wherein said floater has a movable protrusion thereon, said first
section
containing an opening that is located to receive said protrusion, said second
section being shaped to force said protrusion into said opening when said
opening
is aligned with said protrusion, said opening corresponding to said maximum
extended position of said floater, said floater having a release thereon for
said
protrusion, said release being shaped to activate when said second section
moves
from an open position toward a closed position, said second section contacting
said floater and said release to cause said protrusion to move out of said
opening,
thereby releasing said floater.
11. A self-closing telescoping mechanism as claimed in any one of Claims 1,
2 or 3 said floater having a release thereon for said protrusion, said release
being
shaped to activate when said second section moves from an open position toward
a closed position, said second section contacting said floater and said
release to
cause said protrusion to move out of said opening, thereby releasing said
floater.
12. A self-closing telescoping mechanism as claimed in any one of Claims 2,
3 or 4, wherein said floater moves more than two and a half inches along said
first
section between said retracted position and said extended position.
13. A self-closing telescoping mechanism as claimed in any one of Claims 2,
3 or 4 wherein said floater moves more than three inches along said final
section
between said retracted position and said maximum extended position.
14. A self-closing telescoping mechanism as claimed in any one of Claims 2,
3 or 4 wherein said tether is a spring connected between said floater and an
inner
end of said first section, said spring being sized and located so that said
floater

-18-
and said mechanism are located in said closed position when said spring is
retracted.
15. A self-closing telescoping mechanism as claimed in Claim 1 wherein said
floater has a maximum extended position in which said floater is removably
locked into position relative to said first section.
16. A self-closing telescoping mechanism as claimed in Claim 15 wherein
there is a first locked position and a second locked position for said floater
in said
first section, said first locked position being closable, a length of said
predetermined range being adjustable so that said first locked position is
used
when said first locked position is open and said second locked position is
used
when said first locked position is closed.
17. A self-closing telescoping mechanism as claimed in Claim 16 wherein
said tether is removed and replaced with a different tether when said second
locked position is used in place of said first locked position.
18. A self-closing telescoping mechanism comprising at least two longitudinal
sections that are sized and mounted to telescopingly slide relative to one
another,
said mechanism having an inner end and an outer end as well as a closed
position
and an open position, said at least two longitudinal sections comprising a
first
section and a second section, said mechanism having a floater that is slidably
mounted in said first section near said inner end, said floater being slidable
relative to said first section from a closed position of said mechanism to a
maximum extended position of said floater, said floater being in a locked
position
relative to said first section in said maximum extended position, said floater
being
attached to said second section between said closed position and said locked
position, said floater being detached from said second section whenever said
second section moves beyond said maximum extended position away from said
inner end, said floater being constructed to automatically detach from said
second

-19-
section at said maximum extended position as said mechanism is being opened
and to automatically attach to said second section at said maximum extended
position as said mechanism is being closed, said tether being strong enough to
move said mechanism to said closed position when external forces are removed
from said mechanism and said floater is released from said locked position.
19. A self-closing telescoping mechanism as claimed in any one of Claims 1,
2 or 3 wherein said floater has a movable protrusion thereon, said first
section
containing an opening that is located to receive said protrusion, said second
section being shaped to force said protrusion into said opening when said
opening
is aligned with said protrusion, said opening corresponding to a maximum
extended position of said floater, said floater having a release thereon said
release
being shaped to be activated by said second section as said second section
moves
from said open position towards said closed position, said second section
contacting said floater and said release to cause said protrusion to move out
of
said opening, thereby releasing said floater and simultaneously attaching to
said
floater.
20. A self-closing telescoping mechanism as claimed in any one of Claims 1,
2 or 3 wherein said tether is a spring extending between said inner end and
said
floater said spring being corrosion resistant.
21. A self-closing telescoping mechanism as claimed in Claim 1 wherein there
is a bumper in said first section at said inner end, said tether extending
between
said bumper and said floater.
22. A method of constructing a self-closing telescoping mechanism having at
least two longitudinal sections that are sized and mounted to telescopingly
slide
relative to one another, said mechanism having an inner end and an outer end
as
well as a closed position and an open position, said at least two longitudinal
sections comprising a first section and a second section, said mechanism
having a

-20-
floater, said floater being slidably mounted in said first section near said
inner
end, said floater having an extended position and a retracted position, said
method comprising opening said mechanism by manually moving said second
section from said closed position to said open position, said floater in said
second
section being sized and shaped so that said floater is attached to said second
section between said closed position and a maximum extended position,
constructing said floater so that said floater is automatically locked into
position
relative to said first section at said maximum extended position, constructing
said
floater and said second section so that said floater becomes detached from
said
second section as said floater moves beyond said predetermined range,
constructing said floater and said second section so that said floater
automatically
attaches to said second section as said second section is being closed and
said
second section contacts said floater in said maximum extended position, said
second section automatically releasing said floater from said locked position,
said
tether moving said floater to said inner end and causing said mechanism to
move
to said closed position when external forces are removed from said mechanism.
23. A method of constructing a self-closing telescoping mechanism, said
mechanism having at least two longitudinal sections that are sized and mounted
to telescopingly slide relative to one another, said mechanism having an inner
end
and an outer end as well as a closed position and an open position, said at
least
two longitudinal sections comprising a first section and a second section,
said
mechanism having a floater, said floater being slidably mounted within said
first
section near said inner end, said method comprising constructing said floater
to
slide within said first section near said inner end in a predetermined range
between said inner end and a maximum extended position wherein said floater is
locked in position relative to said first section, tethering said floater to a
retracted
position at said inner end, shaping said second section and said floater so
that said

-21-
floater is attached to said second section within said predetermined range and
detached from said second section beyond said predetermined range, said
floater
attaching and detaching automatically and causing said floater to be locked
into
said first section in a maximum extended position.

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 02523892 2005-10-27
WO 2004/098350 PCT/CA2004/000674
-1-
TELESCOPING SELF-CLOSING MECHANISM
BACKGROUND OF THE INVENTION
FIELD OF INVENTION
This invention relates to a self closing telescoping mechanism and, more
particularly, to a self closing telescoping mechanism where the mechanism
moves automatically to a closed position when a predetermined minimum
distance from closing has been reached. This invention further relates to a
method of constructing a self closing telescoping mechanism.
DESCRIPTION OF THE PRIOR ART
Self closing telescoping mechanisms, for drawer slides and the like are
known. Drawer slides are used in furniture and equipment including appliance
equipment such as bottom mount refrigerators. The bottom mount refrigerators
have a freezer located in the bottom portion of a refrigerator and the freezer
section is accessible by opening and closing a drawer. The drawer has drawer
slides on either side. The drawer opens in. a normal manner, but when the
drawer
is moved from an open position toward a closed position, the drawer
automatically closes after the drawer reaches a pre-deternvned distance from
the
fully closed position. If a freezer drawer is left open, serious problems can
result.
The freezer will operate continuously when the drawer is not fully closed and
food items stored in the freezer can melt, resulting in damage to the food
items.
Damage can also be caused to the compressor of the freezer as it runs
continuously and can overheat when the drawer is open. Previous self closing
mechanisms do not have a sufficiently long stroke, or, they fail prematurely
and
are no longer operable. For example, a self closing mechanism might only
operate if the drawer is within one inch of the fully closed position. In that
event,
a consumer can accidentally leave the drawer in an open position because the
consumer does not close the drawer far enough to activate the self closing
SUBSTITUTE SHEET (RULE 26)

CA 02523892 2005-10-27
WO 2004/098350 PCT/CA2004/000674
_2_
mechanism. Also, a self closing mechanism might initially pull the drawer
toward a fully closed position, but fail to fully close the drawer. Further,
if the
self closing mechanism fails prematurely, the drawer can be accidentally left
open because a consumer fails to close it completely and the mechanism does
not
assist the complete closing of the drawer. In addition, some self closing
mechanisms require too much force to set up the mechanism into the self
closing
position or to activate the self closing mechanism. Other self closing
mechanisms fail tore-set easily when they are activated prematurely. In either
case, this increased difficulty can result in the drawer being left open.
Previous self closing mechanisms are located within a housing within a
drawer slide, the housing limiting their stroke length and/or shortening the
distance that the drawer can be opened. The housing is fixedly mounted in the
drawer slide.
SLTIVMARY OF THE INVENTION
A self closing telescoping mechanism has an inner end and an outer end,
the mechanism having at least two sections. The at least two sections are a
first
section and a second section. The mechanism has a floater that is slidably
mounted in the first section near the inner end and is removably attached to
the
second section within a predetermined range near the inner end. The floater is
biased toward the inner end by an elastic tether extending between the inner
end
and the floater. The floater is attached to the second section when the second
section is within the predetermined range and detached from the second section
when the second section is beyond the range.
A self closing telescoping mechanism comprises at least two longitudinal
sections that are sized and mounted to telescopingly slide relative to one
another.
The mechanism has an inner and an outer end, as well as a closed position and
an open position. The at least two longitudinal sections comprise a first
section

CA 02523892 2005-10-27
WO 2004/098350 PCT/CA2004/000674
-3-
and a second section. The mechanism has a floater and the floater is slidably
mounted in the first section near the inner erid. The floater has an extended
position and a retracted position and is connected to an elastic tether that
biases
the floater to the retracted position. Commencing with the floater in the
retracted
position and the mechanism in a closed position, the floater moves
automatically
to an extended position as the mechanism is opened. The movement of the
floater is controlled by the movement of the second section. The, floater has
a
maximum extended position wherein it is automatically fixed in a locked
position
in relation to the first section. The floater is automatically released from
the
locked position as the mechanism closes and the second section reaches a
trigger
point for the floater. When the floater is released, it is forced to the
retracted
position by the tether, thereby moving the mechanism to the closed position.
Preferably, the floater is not mounted in a housing. Still more preferably,
the floater is slidably mounted directly in the first section or a covering in
the first
section.
A method of constructing a self closing telescoping mechanism has at
least two longitudinal sections that are sized and mounted to telescopingly
slide
relative to one another. The mechanism has an inner end and an outer end as
well
as a closed position andan open position. The at least two longitudinal
sections
comprise a first section and a second section. The mechanism has a floater,
the
floater being slidably mounted within the first section near the inner end.
The
method comprises constructing the' floater to slide within the first section
near the
inner end in a predetermined range between the inner end and a maximum
extended position wherein the floater is locked in position relative to the
first
section, tethering the floater to a retracted position at the inner end,
shaping the
second section and the floater so that the floater is attached to the second
section
within the predetermined range and detached from the second section beyond the

CA 02523892 2005-10-27
WO 2004/098350 PCT/CA2004/000674
-4-
predetermined range, the floater attaching and detaching automatically and
causing the floater to be locked into the first section in a maximum extended
position.
BRIEF DESCRIPTION OF THE DRAWINGS
Many of the intended advantages of the present invention would be more
readily apparent and better understood if the following description is
considered
in connection with the accompanying drawings in which:
Figure 1 is a sectional view of two drawers, each mounted on three section
self closing drawer slides;
, Figure 2 is a perspective view of a three section drawer slide in a closed
position;
Figure 3 is an enlarged partial perspective view of a drawer slide with a
narrow section removed to expose a floater;
Figure 4 is a perspective view of a drawer slide in an open position;
Figure 5 is an exploded perspective view of a floater;
Figure 6 is a view of a bottom of a floater;
Figure 5 is a partial perspective view of a floater locked in an extended
position in a drawer slide;
Figure ~ is a partial perspective view of an outer surface of a drawer slide
with the floater locked in the extended position;
Figure 9 is a partial perspective view of a drawer slide in a partially
opened position;
Figure 10 is a partial perspective view of a self closing drawer slide in a
closed position with a narrow section partially cut away;
Figure 11 is a partial perspective view of part of an underside of the
narrow section;

CA 02523892 2005-10-27
WO 2004/098350 PCT/CA2004/000674
-$-
Figure 12 is a top view of a further embodiment of a floater with a
different latch plate; and
Figure 13 is a partial exploded perspective view of a floater and a
covering;
DESCRIPTION OF A PREFERRED EMBODIMENT
In Figure 1, there is shown a sectional side view of a cabinet 2 having tvvo
drawers 4. Each drawer 4 is supported by a pair of drawer slides 6 (only one
of
each pair being shown) comprised of three sections 8, 10, 12. The drawer slide
6
has a first section 8, a second section 12 and a third section 10. While the
slides
as shown in Figure 1 have three sections each and that is a typical number for
a
telescoping slide, slides can operate effectively with two or more sections.
The
slides preferably have ballbearings (not shown) located between adjacent
sections
to assist in the movement of the slides relative to one another. While
ballbearings
are preferred and are conventional, they are not necessary and slides can be
designed to interface mutually without_ballbearings. For example, slides can
slide relative to one another by friction. The drawer slides 6 have a self
closing
floater 14. When the drawer is in a closed position, as is the upper drawer 4
shown in Figure l, the floater (not distinguishable in Figure 1) is at an
inner end
of each of the slides 6. When the drawer is open, as is the lower drawer 4
shown
in Figure 1, the floater 14 slides toward an outer end of each of the slides
6.
In Figures 2 to 4, there is shown a perspective view of a drawer slide 6
having an outer channel 8, a middle channel 10 and narrow inner channel 12.
The outer channel 8 corresponds to the first section and the narrow channel 12
corresponds to the second section. The middle channel 10 corresponds to the
third section and allows the drawer to open by a greater distance than a two
section slider would permit. In Figure 3, the inner channel 12 has been
removed
for ease of illustration to expose the entire floater 14. In Figure 2, the
floater 14

CA 02523892 2005-10-27
WO 2004/098350 PCT/CA2004/000674
-6-
and drawer slides 6 are in a closed position. In a closed position, the outer
channel 8 and the inner channel 12 have inner ends 16, 18 respectively that
are
substantially adjacent to one another. The middle channel 10 is located
approximately midway between the inner end 16 and an outer end 20 of the outer
channel 8. An outer end 22 of the inner channel 12 is substantially.adjacent
to
the outer end 20 of the outer channel 8 when the slide 6 is in a closed
position.
The floater 14 is mounted within the outer channel 8 and is sized and shaped
to
be slidable within the outer channel 8. A covering 23 is mounted within the
outer
channel 8 and the floater 14 is slidably mounted on the covering 23. The
floater
14 is not mounted in a housing, but is mounted directly into the covering 23
of
the outer channel 8 and is capable of sliding the entire length of the outer
channel
8, if not otherwise prevented from doing so by the other channels 10, 12 or by
a
spring 34. The covering can be removed and the floater can be sized and shaped
to be mounted directly in the outer channel 8. In the closed position of the
slide
6, the floater 14 is in a retracted position as shown in Figures 2 and 3. In
Figure
4, the floater 14 is shown in a maximum extended position in which the floater
is
in a locked position relative to the first section 8.
As best seen in Figure 3, the floater 14 has a lock 24 thereon, the lock
being sized to fit within a slot 26 in the outer channel 8. The slot 26 is
located
approximately one-third of a distance toward the outer end 20 from the inner
end
16 of the outer channel 8. The floater 14 also has a release 28 located
thereon.
The release 28 is slidable laterally to unlock the lock 24. The lock 24 is
connected to pivot into or out of the slot 26. As the floater 14 slides
towards the
outer end 22 of the outer channel 8 and the lock 24 is directly above the slot
26,
the downward force on the lock 24 will cause the lock to pivot into the slot
26.
The floater 14 has a spring 34 connected between the floater 14 and the
inner end 16 of the outer channel 8. At the inner end 16, the spring 34 is

CA 02523892 2005-10-27
WO 2004/098350 PCT/CA2004/000674
_7_
connected to a bumper 35. When the floater 14 moves to an extended position
and when the lock 24 inserted into the slot 26, the spring 34 exerts a force
on the
floater 14 toward the inner end 16. Preferably, there are ballbearings (not
shown)
between the middle channel 10 and the inner channel 12 and also between the
middle channel 10 and the outer channel 8.
In Figure 5, there is shown an exploded view of the floater 14. The floater
14 has a body 38 with a size and shape to slidably fit within the covering 23
(not
shown in Figure 5) of the outer channel 8. The lock.24 is pivotally mounted in
an
outer end 40 of the body 38 about a pivot point 42. The outer end 40 contains
a
cylindrical opening 43. A protrusion 44 on the lock 24 is sized to fit within
the
slot 26 (not shown in Figure 5). The spring 34 fits within a cylindrical
passage
46 that extends along an imaginary longitudinal centre axis of the body 3 8.
The
lock 24 has an abutment 48 thereon. The abutment 48 corresponds to an arm 50
on the release 28. The release 28 is spring biased toward a left hand edge 52
(not
shown in Figure 5, but see Figure 7) of the outer channel 8 (not shown in
Figure
5), when viewed from the inner end 16 (not shown in Figure 5) of the outer
channel 8. The release 28 has an elongated member 53 that abuts against a
block
55. The release is said to be spring-biased because of the resiliency of the
elongated member 53, which is preferably made of a plastic material.
In Figure 3, there is shown an assembled perspective view of the body 38:
In Figure 6, there is shown an underside view of the assembled body 3 8 shown
in Figure 3. The same reference numerals are used in Figure 6 as those used in
Figure 5 to describe those components that are identical. It can be seen that
the
spring 34 has an outer end 54 that is affixed to the lock 24.
In Figure 7, there is shown a partial top view of the floater 14 in an
extended position within the outer channel 8. In Figure 8, there is shown an
underside view of the floater 14 in an extended position within the outer
channel

CA 02523892 2005-10-27
WO 2004/098350 PCT/CA2004/000674
_$_
8. In Figures 7 and 8, the lock 24 is in a locked position with the protrusion
44
located in the slot 26. It can be seen that the release 28 has moved toward
the left
hand edge 52 and that the arm 50 is aligned with the abutment 48 to prevent
the
lock 24 from pivoting out of the slot 26. The release 28 and arm 50 maintain
the
floater 14 in a locked position with the protrusion 44 located in the slot 26.
The
same reference numerals are used in Figures 7 and 8 as those used in Figures 3
and 5 for those components that are identical.
In Figure 3, it can be seen that the arm 50 is located beside the abutment
48 when the Floater is in the unlocked position. When the lock 24 pivots so
that
the protrusion 44 enters the slot 26 and locks the floater in the extended
position
in the outer channel 8, the spring bias moves the release 28 toward the left
hand
edge 52 so that the arm 50 is longitudinally aligned with the abutment 48. The
arm 50 prevents the lock 24 from pivoting counterclockwise (when viewed from
the side shown in Figure 2a) and thereby maintains the protrusion 44 within
the
slot 26. Thus, the floater 14 remains in a locked position relative to the
outer
channel 8. The same reference numerals are used in Figure 3 to describe those
components that are identical to the components of Figures 1 and 2.
In Figure 9, the floater 14 remains in a locked position, but the inner
channel 12 is moving toward a closed position. A lever 30 is pivotally mounted
at a pivot point 32 to an interior surface (not shown in Figure 9) of the
inner
channel 12. In the closed position shown in Figures 2 and 3, the lever 30 is
releasably coupled to the lock 24. Lever 30 exerts a force on the lock 24 in a
direction towards the outer channel 8. In Figures 2 and 3, the force exerted
by the
lever 30 on the lock 24 would be considered to be a downward force (ie. toward
the first section 8). At that instant, the lever 30 will become detached from
the
lock 24 and the inner channel 12 and middle channel 10 will be free to
continue
to move outward toward a fully open position. The inner channel 12 has a

CA 02523892 2005-10-27
WO 2004/098350 PCT/CA2004/000674
-9-
partially cutaway portion so that it does not obscure the portions of the
floater 14
that are located beneath the inner channel 12. The inner channel 12 has a V-
shaped projection 56 extending inward from a sidewall thereof. As the inner
channel 12 continues to move toward a closed position, it can be seen that the
projection 56 will strike the release 28, thereby forcing the release further
away
from the left hand edge 52. The inner channel 12 provides a trigger point for
releasing the floater from the locked position during the closing operation.
This
will move the arm 50 out of alignment with the abutment 48. By the time the
projection'56 unlocks the lock 24 by triggering the release 28, the lever 30
will
have moved to a position where the lever 30 is at least partially beyond the
lock
24. The tension strength of the spring 34 will cause the lock 24 to pivot so
that
the protrusion 44 (not shown in Figure 9) exits the slot 26. The spring 34
will
pull the floater 14 toward the inner end 16 of the outer channel 8 and the
lever 30
will latch onto the lock 24 to move the inner channel 12 and the middle
channel
10 to the closed position shown in Figure 1.
Figure 10 is a partial perspective enlarged view of the floater 14 in a
retracted position and the slider 6 in a closed position. In other words, as
the
drawer is closed, the inner channel 12 releases the floater from the locked
position and, almost simultaneously, the inner slide 12 becomes coupled again
to
the floater 14. The inner channel 12 is partially cut away to expose
components
that would otherwise be excluded by the channel. The force exerted by the
spring
34 causes the floater to move automatically from the extended position to the
retracted position and thereby self closes the slider 6. An inner end of the
spring
34 is affixed to the bumper 35, which is stationary and remains at the inner
end
16 of the outer channel 8. The bumper 35 stops the floater at a fully
retracted
position. As shown in Figure 10, the narrow channel 12 has a raised portion 62
on an inner side surface thereof on a side away from the left hand edge 52.
The

CA 02523892 2005-10-27
WO 2004/098350 PCT/CA2004/000674
- 10-
raised portion 62 serves as a backup to move the release 28 into a locked
position
as shown in Figure 9 as the drawer slide 6 is being opened. For example, if
the
spring mounting is not strong enough or fails to move the release to the
locked
position shown in Figure 9 from the unlocked position shown in Figure 10, the
raised portion 62 will force the release to move toward the left hand edge 52
once
the lock 24 has pivoted so that the protrusion 44 is located in the slot 26.
Simultaazeously, the lever 30 will become detached from the lock 24. .
In Figure 11, there is shown a partial perspective view of an underside 64
of the inner end 18 of the inner channel 12. The V-shaped projection 56, the
raised portion 62 and an underside 64 of the lever 30 are shown. The lever 30
has an extension 66 at a free end thereof. The extension 66 couples with the
lock
24 (not shown in Figure 11) when the slide 6 (not shown in Figure 11) is in a
closed position or when the slide 6 moves into an open position during the
time
when the floater moves from the retracted position to the extended position.
As
soon as the floater (not shown in Figure 11) becomes locked in the extended
position, the lever 30 separates from the lock 24.
It is possible that the floater may be moved from a locked position to an
unlocked position while the drawer of the two drawer slides supporting the
drawer remains open. In other words, the protrusion 44 might accidentally be
removed from the slot 26 before the drawer is moved toward the closing
position
and before the lever 30 re-couples with the lock 24. If the floater becomes
unlocked prematurely, the self closing mechanism will not operate while the
drawer is being closed in that particular cycle. However, when the drawer has
been fully closed, the lever 30, because it is preferably made of flexible
material
and, still more preferably, is made of plastic material, will override the
lock 24
and become reset in the closed and retracted position of the drawer slide and
floater respectively. Since the lever is pivoted about the pivot point 32, it
can

CA 02523892 2005-10-27
WO 2004/098350 PCT/CA2004/000674
-11-
move slightly sideways to move around the lock 24 and become coupled again or
reset when the floater is in the initial position shown in Figure 3. The self
closing
mechanism of the present invention resets without damage, and resets so
smoothly that the resetting procedure is not apparent to a user.
In Figure 12, there is shown a further embodiment of a release 68 for a
floater 78, which is different from the release 28. The release 28 moves into
the
locked position because of the resiliency of the elongated member 53 which
abuts
against the block 55 (see Figures 9 and 10). By comparing Figure 3 with Figure
9, it can be seen that in the unlocked position of Figure 3, the elongated
member
53 is generally parallel to the left hand edge 52. However, in the locked
position
of the release 28 shown in Figure 9, the elongated member 53 is at an angle
relative to the left hand edge 52. The resiliency in the elongated member 53
has
caused the release to move from the unlocked position of Figure 3 to the
locked
position of Figure 9 as soon as the release is free to do so. In Figure 12, a
spring
74 moves a release 68 from an unlocked position to a locked position as soon
as
the protrusion 44 (not shown in Figure 12) on the lock 24 of the floater 78
becomes locked in the slot 26 (not shown in Figure 12). The spring 74 is
mounted on a stub 76. The stub 76 is not connected to the release 68, which is
free to move relative to the stub 74. The floater 78 is sized and shaped to
slide
directly in the outer channel 8 (not shown in Figure 12) with the covering
removed. The same reference numerals are used in Figure 12 as those used in
Figure 5 for those components that axe identical.
In Figure 13, there is shown an exploded perspective view of the floater
14 and the covering 23. Preferably, the covering is made of plastic. The same
reference numerals are used as those used in Figure 5 for those components
that
are identical.

CA 02523892 2005-10-27
WO 2004/098350 PCT/CA2004/000674
_ 12_
The present invention can be used in various self closing mechanisms and
is not restricted to drawer slides. The self closing mechanism is preferably
used
as a drawer slide. While the invention has been described in detail with
respect to
one drawer slide, there will obviously be two telescoping drawer slides on
either
side of each drawer with which the invention is to be used. Some drawers might
be designed to have more than two drawer slides on each side. An advantage of
the present invention over previous inventions is that the self closing stroke
lengths can be much longer than in previous devices and are not restricted by
the
length of the housing as the floater is not located in any housing. Further,
in
previous devices, the degree to which a drawer can be opened is limited or
reduced by the size of the self closing device. In other words, the longer the
self
closing device, the smaller the distance that a particular drawer can be
opened.
With the present invention, the stroke length of the floater is determined by
the
length and strength of the spring and the location of the slot 26. The
location of
the slot 26 for a particular outer channel can be increased or decreased
simply by
changing the position of the slot 26 along the length of the outer channel
and, if
necessary, making corresponding changes to the spring. For example, an outer
channel could have two slots 26 located longitudinally apart from one another.
One of the two slots could be filled at all times with a removable plug. When
it is
desired to change the stroke length, the plug could be removed from one slot
and
placed into the other slot. If necessary, the spring could be replaced with a
spring
that is designed for the new stroke length. When used in a refrigerator or
freezer,
the spring is preferably zinc-coated for corrosion resistance. The spring can
be
coated with other corrosion resistant coatings as well or it can. be made from
corrosion resistance material (eg. stainless steel). In place of a spring,
other
elastic members or elastic tethers can be used. For example, an elongated
neoprene tether could be used in place of the spring 34. It is important to
have a

CA 02523892 2005-10-27
WO 2004/098350 PCT/CA2004/000674
-13-
long stroke length for the self closing mechanism as a consumer might still
leave
the drawer open if the stroke length is too short. The longer the stroke
length, the
more likely that a consumer will close the drawer by a sufficient distance to
activate the self closing mechanism. The self closing mechanism of the present
invention preferably has a stroke length of at least 2.5 inches and still more
preferably as a stroke length of at least 3.0 inches.

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : CIB en 1re position 2022-03-23
Inactive : CIB attribuée 2022-03-23
Inactive : CIB expirée 2017-01-01
Inactive : CIB enlevée 2016-12-31
Le délai pour l'annulation est expiré 2010-05-07
Demande non rétablie avant l'échéance 2010-05-07
Réputée abandonnée - omission de répondre à un avis sur les taxes pour le maintien en état 2009-05-07
Lettre envoyée 2009-04-27
Requête d'examen reçue 2009-03-12
Exigences pour une requête d'examen - jugée conforme 2009-03-12
Toutes les exigences pour l'examen - jugée conforme 2009-03-12
Inactive : Lettre officielle 2007-01-17
Inactive : Paiement correctif - art.78.6 Loi 2007-01-05
Lettre envoyée 2006-04-06
Inactive : CIB en 1re position 2006-03-21
Inactive : Transfert individuel 2006-03-02
Inactive : Correspondance - Formalités 2006-01-16
Inactive : Lettre de courtoisie - Preuve 2006-01-03
Inactive : Page couverture publiée 2005-12-30
Inactive : Inventeur supprimé 2005-12-28
Inactive : Notice - Entrée phase nat. - Pas de RE 2005-12-28
Demande reçue - PCT 2005-11-29
Exigences pour l'entrée dans la phase nationale - jugée conforme 2005-10-27
Exigences pour l'entrée dans la phase nationale - jugée conforme 2005-10-27
Demande publiée (accessible au public) 2004-11-18

Historique d'abandonnement

Date d'abandonnement Raison Date de rétablissement
2009-05-07

Taxes périodiques

Le dernier paiement a été reçu le 2008-04-02

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
Taxe nationale de base - générale 2006-01-16
Enregistrement d'un document 2006-03-02
TM (demande, 2e anniv.) - générale 02 2006-05-08 2006-03-10
TM (demande, 3e anniv.) - générale 03 2007-05-07 2007-05-07
TM (demande, 4e anniv.) - générale 04 2008-05-07 2008-04-02
Requête d'examen - générale 2009-03-12
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
COMPX INTERNATIONAL INC.
Titulaires antérieures au dossier
SAMUEL JURJA
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document (Temporairement non-disponible). Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(yyyy-mm-dd) 
Nombre de pages   Taille de l'image (Ko) 
Dessins 2005-10-26 12 212
Revendications 2005-10-26 8 379
Description 2005-10-26 13 644
Abrégé 2005-10-26 2 104
Dessin représentatif 2005-10-26 1 15
Page couverture 2005-12-29 1 49
Rappel de taxe de maintien due 2006-01-09 1 110
Avis d'entree dans la phase nationale 2005-12-27 1 192
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 2006-04-05 1 128
Rappel - requête d'examen 2009-01-07 1 118
Accusé de réception de la requête d'examen 2009-04-26 1 175
Courtoisie - Lettre d'abandon (taxe de maintien en état) 2009-07-01 1 172
PCT 2005-10-26 2 74
Correspondance 2005-12-27 1 26
Correspondance 2006-01-15 1 37
Taxes 2006-03-09 1 29
Correspondance 2007-01-16 1 16
Taxes 2007-05-06 1 30
Taxes 2008-04-01 1 28