Sélection de la langue

Search

Sommaire du brevet 2579599 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 2579599
(54) Titre français: METHODE ET SYSTEME FOURNISSANT UN CONTROLE DE PARITE A FAIBLE DENSITE ET A COURTE LONGUEUR DE BLOCS
(54) Titre anglais: METHOD AND SYSTEM FOR PROVIDING SHORT BLOCK LENGTH LOW DENSITY PARITY CHECK (LDPC) CODES
Statut: Accordé et délivré
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • H3M 13/00 (2006.01)
  • H3M 13/11 (2006.01)
  • H3M 13/13 (2006.01)
  • H3M 13/15 (2006.01)
  • H4L 1/00 (2006.01)
  • H4L 27/20 (2006.01)
  • H4L 27/36 (2006.01)
(72) Inventeurs :
  • EROZ, MUSTAFA (Etats-Unis d'Amérique)
  • SUN, FENG-WEN (Etats-Unis d'Amérique)
  • LEE, LIN-NAN (Etats-Unis d'Amérique)
(73) Titulaires :
  • DTVG LICENSING, INC.
(71) Demandeurs :
  • DTVG LICENSING, INC. (Etats-Unis d'Amérique)
(74) Agent: KIRBY EADES GALE BAKER
(74) Co-agent:
(45) Délivré: 2009-06-02
(22) Date de dépôt: 2004-09-03
(41) Mise à la disponibilité du public: 2005-03-04
Requête d'examen: 2007-03-09
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Non

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
60/500,109 (Etats-Unis d'Amérique) 2003-09-04
60/514,683 (Etats-Unis d'Amérique) 2003-10-27
60/518,199 (Etats-Unis d'Amérique) 2003-11-07

Abrégés

Abrégé français

Une approche est fournie pour générer des codes de contrôle de parité à faible densité (CPFD). Un codeur CPFD génère un code CPFD court en raccourcissant les codes mère plus longs. Le code CPFD court a un code Bose-Chaudhuri-Hocquenghem (BCH) extérieur. Selon un autre aspect, pour un code CPFD avec taux de code de 3/5 utilisant une modulation 8-PSK (modulation par déplacement de phase), un entrelaceur permet d'entrelacer des bits du code CPFD de sortie par écriture en série de données associées à du code CPFD en colonne dans un tableau et la lecture des données ligne par ligne de droite à gauche. L'approche ci-dessus a une application particulière dans les services de diffusion vidéo numériques par satellite.


Abrégé anglais

An approach is provided for generating Low Density Parity Check (LDPC) codes. An LDPC encoder generates a short LDPC code by shortening longer mother codes. The short LDPC code has an outer Bose Chaudhuri Hocquenghem (BCH) code. According to another aspect, for an LDPC code with code rate of 3/5 utilizing 8-PSK (Phase Shift Keying) modulation, an interleaver provides for interleaving bits of the output LDPC code by serially writing data associated with the LDPC code column-wise into a table and reading the data row-wise from right to left. The above approach has particular application in digital video broadcast services over satellite.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CLAIMS
WHAT IS CLAIMED IS:
1. A method for supporting transmission of a Low Density Parity Check (LDPC)
coded
signal, comprising:
receiving information bits; and
generating, based on the information bits, an Low Density Parity Check (LDPC)
code
according to one of a plurality of code rates associated with respective
tables each
specifying address of parity bit accumulators,
<IMG>
26

<IMG>
27

<IMG>
28

<IMG>
29

<IMG>

<IMG>
31

2. An encoder for supporting transmission of a Low Density Parity Check (LDPC)
coded
signal, comprising:
means for receiving information bits; and
means for generating, based on the information bits, an Low Density Parity
Check
(LDPC) code having an outer Bose Chaudhuri Hocquenghem (BCH) code for
transmission as the LDPC coded signal according to one of a plurality of code
rates
associated with respective tables each specifying address of parity bit
accumulators,
<IMG>
32

<IMG>
33

<IMG>
34

<IMG>

<IMG>
36

<IMG>
3. An encoder according to claim 2, further comprising:
means for modulating the LDPC coded signal; and
means for transmitting the modulated signal.
37

4. An encoder according to claim 3, wherein the modulated signal is
transmitted over a
satellite link in support of a broadband satellite application.
5. An encoder according to claim 3, wherein the modulation is performed
according to
a signal constellation that includes one of 8-PSK (Phase Shift Keying), 16-QAM
(Quadrature
Amplitude Modulation), QPSK (Quadrature Phase Shift Keying), 16-APSK
(Amplitude
Phase Shift Keying) and 32-APSK.
38

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 02579599 2007-03-09
METHOD AND SYSTEM FOR PROVIDING
SHORT BLOCK LENGTH LOW DENSITY PARITY CHECK (LDPC) CODES
FIELD OF THE INVENTION
[O1 ] The present invention relates to communication systems, and more
particularly to
coded systems.
BACKGROUND OF THE INVENTION
1021 Communication systems employ coding to ensure reliable communication
across
noisy communication channels. For example, in a wireless (or radio) system,
such as a
satellite network, noise sources abound, from geographic and environmental
factors. These
communication channels exhibit a fixed capacity that can be expressed in terms
of bits per
symbol at certain signal to noise ratio (SNR), defining a theoretical upper
limit (known as the
Shannon limit). As a result, coding design has aimed to achieve rates
approaching this
Shannon limit. This objective is particularly germane to bandwidth constrained
satellite
systems. One such class of codes that approach the Shannon limit is Low
Density Parity
Check (LDPC) codes.
1Ã131 Traditionally, LDPC codes have not been widely deployed because of a
number of
drawbacks. One drawback is that the LDPC encoding technique is highly complex.
Encoding an LDPC code using its generator matrix would require storing a very
large, non-
sparse matrix. Additionally, LDPC codes require large blocks to be effective;
consequently,
even though parity check matrices of LDPC codes are sparse, storing these
matrices is
problematic.
[041 From an implementation perspective, a number of challenges are
confronted. For
example, storage is an important reason why LDPC codes have not become
widespread in
practice. Length LDPC codes, thus, require greater storage space. Also, a key
challenge in
LDPC code implementation has been how to achieve the connection network
between several
processing engines (nodes) in the decoder. Further, the computational load in
the decoding
process, specifically the check node operations, poses a problem.

CA 02579599 2007-03-09
1051 Therefore, there is a need for an LDPC communication system that employs
simple
encoding and decoding processes. There is also a need for using LDPC codes
efficiently to
support high data rates, without introducing greater complexity. There is also
a need to
improve performance of LDPC encoders and decoders. There is also a need to
minimize
storage requirements for implementing LDPC coding.
2

CA 02579599 2007-03-09
SUMMARY OF THE INVENTION
1061 These and other needs are addressed by the present invention, wherein an
approach for
encoding Low Density Parity Check (LDPC) codes is provided. An encoder
generates a
LDPC code having an outer Bose Chaudhuri Hocquenghem (BCH) code according to
one of
Tables 2-8 for transmission as the LDPC coded signal. Each of the Tables 2-8
specifies the
address of parity bit accumulators. Short LDPC codes are output by utilizing
LDPC mother
codes that are based on Tables 2-8. k,dp, of the BCH encoded bits are preceded
by km - kldpc
dummy zeros. The resulting km bits are systematically encoded to generate nm
bits. The first
km - k,dp, dummy zeros are then deleted to yield the shortened code. For an
LDPC code with
code rate of 3/5 utilizing 8-PSK (Phase Shift Keying) modulation, an
interleaver provides for
interleaving bits of the output LDPC code by serially writing data associated
with the LDPC
code column-wise into a table and reading the data row-wise from right to
left. The approach
advantageously provides expedient encoding as well as decoding of LDPC codes,
while
minimizing storage and processing resources.
1071 According to one aspect of an embodiment of the present invention, a
method for
supporting transmission of a Low Density Parity Check (LDPC) coded signal is
disclosed.
The method includes receiving information bits. The method also includes
generating, based
on the information bits, 16,000 Low Density Parity Check (LDPC) coded bits
according a
parity check matrix of short LDPC codes, wherein the parity check matrix
ensures that
information regarding partitioned groups of bit nodes and check nodes are
always placed
contiguously in Random Access Memory (RAM).
1081 According to another aspect of an embodiment of the present invention,
the LDPC
codes are represented by signals that are modulated according to a signal
constellation that
includes one of 8-PSK (Phase Shift Keying), 16-QAM (Quadrature Amplitude
Modulation),
QPSK (Quadrature Phase Shift Keying), 16-APSK (Amplitude Phase Shift Keying)
and 32-
APSK.
1091 According to yet another aspect of an embodiment of the present
invention, the
modulated LDPC coded signal is transmitted over a satellite link in support of
a broadband
satellite application.
3

CA 02579599 2007-03-09
11.01 Still other aspects, features, and advantages of the present invention
are readily
apparent from the following detailed description, simply by illustrating a
number of particular
embodiments and implementations, including the best mode contemplated for
carrying out
the present invention. The present invention is also capable of other and
different
embodiments, and its several details can be modified in various obvious
respects, all without
departing from the spirit and scope of the present invention. Accordingly, the
drawing and
description are to be regarded as illustrative in nature, and not as
restrictive.
4

CA 02579599 2007-03-09
BRIEF DESCRIPTION OF THE DRAWINGS
1111 The present invention is illustrated by way of example, and not by way of
limitation,
in the figures of the accompanying drawings and in which like reference
numerals refer to
similar elements and in which:
1121 FIG. 1 is a diagram of a conununications system configured to utilize Low
Density
Parity Check (LDPC) codes, according to an embodiment of the present
invention;
(131 FIGs. 2A and 2B are diagrams of exemplary LDPC encoders deployed in the
transmitter of FIG. 1;
1.141 FIGs. 2C and 2D are flowcharts of the encoding process of the LDPC
encoder of FIG.
2B for generating short frame length LDPC codes, according to an embodiment of
the present
invention;
1151 FIG. 3 is a diagram of an exemplary receiver in the system of FIG. 1;
[16] FIG. 4 is a diagram of a sparse parity check matrix, in accordance with
an
embodiment of the present invention;
(1.71 FIG. 5 is a diagram of a bipartite graph of an LDPC code of the matrix
of FIG. 4;
(18( FIG. 6 is a diagram of a sub-matrix of a sparse parity check matrix,
wherein the sub-
matrix contains parity check values restricted to the lower triangular region,
according to an
embodiment of the present invention;
1191 FIG. 7 is a graph of performance of the LDPC codes at the various code
rates and
modulation schemes supported by the transmitter of FIG. 2B;
[20] FIG. 8 is a graph of performance of the short LDPC codes at the various
code rates
supported by the transmitter of FIG. 2B; and
1211 FIG. 9 is a diagram of a computer system that can perform the LDPC
encoding
process, in accordance with embodiments of the present invention.

CA 02579599 2007-03-09
DESCRIPTION OF THE PREFERRED EMBODIMENT
1221 A system, method, and software for efficiently encoding short frame
length Low
Density Parity Check (LDPC) codes are described. In the following description,
for the
purposes of explanation, numerous specific details are set forth in order to
provide a thorough
understanding of the present invention. It is apparent, however, to one
skilled in the art that
the present invention may be practiced without these specific details or with
an equivalent
arrangement. In other instances, well-known structures and devices are shown
in block
diagram form in order to avoid unnecessarily obscuring the present invention.
[231 FIG. 1 is a diagram of a communications system configured to utilize Low
Density
Parity Check (LDPC) codes, according to an embodiment of the present
invention. A digital
communications system 100 includes a transmitter 101 that generates signal
waveforms
across a communication channel 103 to a receiver 105. In this discrete
communications
system 100, the transmitter 101 has a message source that produces a discrete
set of possible
messages; each of the possible messages has a corresponding signal waveform.
These signal
waveforms are attenuated, or otherwise altered, by communications channel 103.
To combat
the noise channel 103, LDPC codes are utilized.
1241 By way of example, the channel 103 is a satellite link serving satellite
terminals (e.g.,
Very Small Aperture Terminals (VSATs)) in support of broadband satellite
applications.
Such applications include satellite broadcasting and interactive services (and
compliant with
the Digital Video Broadcast (DVB) - S2 standard). The Digital Video
Broadcasting via
Satellite (DVB-S) standard has been widely adopted worldwide to provide, for
instance,
digital satellite television programming.
[251 The LDPC codes that are generated by the transmitter 101 enable high
speed
implementation without incurring any performance loss. These structured LDPC
codes
output from the transmitter 101 avoid assignment of a small number of check
nodes to the bit
nodes already vulnerable to channel errors by virtue of the modulation scheme
(e.g., 8-PSK).
1261 Such LDPC codes have a parallelizable decoding algorithm (unlike turbo
codes),
which advantageously involves simple operations such as addition, comparison
and table
look-up. Moreover, carefully designed LDPC codes do not exhibit any sign of
error floor.
[27] According to one embodiment of the present invention, the transmitter.101
generates,
using a relatively simple encoding technique, LDPC codes based on parity check
matrices
6

CA 02579599 2007-03-09
(which facilitate efficient memory access during decoding) to communicate with
the receiver
105. The transmitter 101 employs LDPC codes that can outperform concatenated
turbo+RS
(Reed-Solomon) codes, provided the block length is sufficiently large.
[281 FIGs. 2A and 2B are diagrams of exemplary LDPC encoders deployed in the
transmitter of FIG. 1. As seen in FIG. 2A, a transmitter 200 is equipped with
an LDPC
encoder 203 that accepts input from an information source 201 and outputs
coded stream of
higher redundancy suitable for error correction processing at the receiver
105. The
information source 201 generates k signals from a discrete alphabet, X. LDPC
codes are
specified with parity check matrices. On the other hand, encoding LDPC codes
require, in
general, specifying the generator matrices. Even though it is possible to
obtain generator
matrices from parity check matrices using Gaussian elimination, the resulting
matrix is no
longer sparse and storing a large generator matrix can be complex.
1291 The encoder 203 generates signals from alphabet Yto a modulator 205 using
a simple
encoding technique that makes use of only the parity check matrix by imposing
structure onto
the parity check matrix. Specifically, a restriction is placed on the parity
check matrix by
constraining certain portion of the matrix to be triangular. The construction
of such a parity
check matrix is described more fully below in FIG. 6. Such a restriction
results in negligible
performance loss, and therefore, constitutes an attractive trade-off.
(30J The modulator 205 maps the encoded messages from encoder 203 to signal
waveforms that are transmitted to a transmit antenna 207, which emits these
waveforms over
the communication channel 103. Accordingly, the encoded messages are modulated
and
distributed to a transmit antenna 207. The transmissions from the transmit
antenna 207
propagate to a receiver (shown in FIG. 3), as discussed below.
[311 FIG. 2B shows an LDPC encoder utilized with a Bose Chaudhuri Hocquenghem
(BCH) encoder and a cyclic redundancy check (CRC) encoder, according to one
embodiment
of the present invention. Under this scenario, the codes generated by the LDPC
encoder 203,
along with the CRC encoder 209 and the BCH encoder 211, have a concatenated
outer BCH
code and inner low density parity check (LDPC) code. Furthermore, error
detection is
achieved using cyclic redundancy check (CRC) codes. The CRC encoder 209, in an
exemplary embodiment, encodes using an 8-bit CRC code with generator
polynomial
(X5+X4+X3+X2+1)(X2+X+1)(X+1). The CRC code is output to the BCH encoder 211.
7

CA 02579599 2007-03-09
1321 The LDPC encoder 203 systematically encodes an information block of size
kIdpe
i= (ioikw_1) onto a codeword of size nldp,, c= (io,i,,===,ik,dP'-
l,Po,PI,===Pn,d"-k.-1) The
transmission of the codeword starts in the given order from io and ends with
pn,~ k,~-1
LDPC code parameters (nldpc , kldpc )are given in Table 1 below.
LDPC Code Parameters (nldp, , kldpc )
Code Rate LDPC Uncoded LDPC Coded Block
Block Length Length
kld c nld c
1/2 32400 64800
2/3 43200 64800
3/4 48600 64800
4/5 51840 64800
5/6 54000 64800
3/5 38880 64800
8/9 57600 64800
Table 1
1331 The task of the LDPC encoder 203 is to determine nldpc - kldpc parity
bits
(Po IP, I = ==I Pn,dpc -k Idpc-1) for every block of kld, information bits,
(io ikmpc-,). The
procedure is as follows. First, the parity bits are initialized;
Po = Pl = P2 =... = PnI*-kIdpc-1= 0. The first information bit, io , are
accumulated at parity bit
addresses specified in the first row of Tables 2 - 8. For example, for rate
2/3 (Table 4), the
following results:
Po = Po io
P1o491 = P10491 e io
P16043 - P16043 O to
P506 = P506 (a) lo
P12826 = P12826 O io
P8065 = P8065 (D io
P8226 = P8226 ED io
P2767 = P2767 O lo
P240 = P240 E) l0
P18673 = P18673 e IO
P9279 = P9279 O io
P10579 = PI0579 O ZO
8

CA 02579599 2007-03-09
P20928 - P2o928 io
(All additions are in GF(2)).
[34] Then, for the next 359 information bits, iõ,, m = 1,2,...,3 59 , these
bits are
accumulated at parity bit addresses {x + m mod360 x q} mod(n,dpc - k,d,,),
where x denotes
the address of the parity bit accumulator corresponding to the first bit io ,
and q is a code rate
dependent constant specified in Table 9. Continuing with the example, q = 60
for rate 2/3.
By way of example, for information bit il , the following operations are
performed:
P60 = P60 e il
P10551 - P1o551 h
P16103 P16103 if
P566 - P566 e if
P12886 P12886 if
P8125 = P8125 il
P8286 = P8286 i1
P2827 = P2827 il
P300 = P300 if
P18733 - P18733 h
P9339 = P9339 Zl
P10639 - P10639 if
P20988 - P20988 (D il
1351 For the 361st information bit Z360) the addresses of the parity bit
accumulators are
given in the second row of the Tables 2 - 8. In a similar manner the addresses
of the parity bit
accumulators for the following 359 information bits ,,, , m= 361,362,...,719
are obtained
using the formula {x + m mod 360 x q} mod(nidp, - k,dp,), where x denotes the
address of the
parity bit accumulator corresponding to the information bit i360 , i.e., the
entries in the second
row of the Tables 2 - 8. In a similar manner, for every group of 360 new
information bits, a
new row from Tables 2 - 8 are used to find the addresses of the parity bit
accumulators.
1361 Addresses of parity bit accumulators are given in Tables 2 - 8.
Address of Parity Bit Accumulators (Rate 1/2)
15 5604 5754 7705 4356 6844 8186 4014
16 5341 2456 6053 4571 5034 8521 1858
9

CA 02579599 2007-03-09
17 5207 8819 4926 8482 7518 8225 2585
18 4948 1285 6825 8840 3454 8255 3137
19 672 263 6959 5970 2556 1273 6091
20 712 2386 6354 4061 1062 5045 5158
21 2543 5748 4822 2348 3089 6328 5876
22 926 5701 269 3693 2438 3190 3507
23 2802 4520 3577 5324 1091 4667 4449
24 5140 2003 1263 4742 6497 1185 6202
0 4046 6934
1 2855 66
2 6694 212
33439 1158
4 3850 4422
5924 290
6 1467 4049
7 7820 2242
8 4606 3080
9 4633 7877
3884 6868
11 8935 4996
12 3028 764
13 5988 1057
14 7411 3450
Table 2
Address of Parity Bit Accumulators (Rate 3/5)
2765 5713 6426 3596 1374 4811 2182 544 3394 2840 4310 771
4951 211 2208 723 1246 2928 398 5739 265 5601 5993 2615
210 4730 5777 3096 4282 6238 4939 1119 6463 5298 6320 4016
4167 2063 4757 3157 5664 3956 6045 563 4284 2441 3412 6334
4201 2428 4474 59 1721 736 2997 428 3807 1513 4732 6195
2670 3081 5139 3736 1999 5889 4362 3806 4534 5409 6384 5809
5516 1622 2906 3285 1257 5797 3816 817 875 2311 3543 1205
4244 2184 5415 1705 5642 4886 2333 287 1848 1121 3595 6022
2142 2830 4069 5654 1295 2951 3919 1356 884 1786 396 4738
0 2161 2653
1 1380 1461
2 2502 3707
3 3971 1057
4 5985 6062
5 1733 6028
6 3786 1936
7 4292 956
8 5692 3417
9 266 4878

CA 02579599 2007-03-09
4913 3247
11 4763 3937
12 3590 2903
13 2566 4215
14 5208 4707
3940 3388
16 5109 4556
17 4908 4177
Table 3
Address of Parity Bit Accumulators (Rate 2/3)
0 2084 1613 1548 1286 1460 3196 4297 2481 3369 3451 4620 2622
1 122 1516 3448 2880 1407 1847 3799 3529 373 971 4358 3108
2 259 3399 929 2650 864 3996 3833 107 5287 164 3125 2350
3 342 3529
4 4198 2147
5 1880 4836
6 3864 4910
7 243 1542
83011 1436
9 2167 2512
10 4606 1003
11 2835 705
12 3426 2365
13 3848 2474
14 1360 1743
0 163 2536
12583 1180
2 1542 509
3 4418 1005
4 5212 5117
5 2155 2922
6 347 2696
7 226 4296
8 1560 487
9 3926 1640
10 149 2928
11 2364 563
12 635 688
13 231 1684
1411293894
Table 4
11

CA 02579599 2007-03-09
Address of Parity Bit Accumulators (Rate 3/4)
0 3576 1576 3860 1290 4199 815 2978 3428 3639 2181 1750
1 1960 2307 2697 4240 3238 3555 265 379 128 2911 3653
2 99 1389 3627 830 2448 1185 3034 2946 2598 1960 1032
3 3198 478 4207 1481 1009 2616 1924 3437 554 683 1801
4 2681 2135
3107 4027
6 2637 3373
7 3830 3449
8 4129 2060
9 4184 2742
3946 1070
11 2239 984
0 1458 3031
1 3003 1328
2 1137 1716
3 132 3725
4 1817 638
5 1774 3447
6 3632 1257
7 542 3694
8 1015 1945
9 1948 412
10 995 2238
11 4141 1907
0 2480 3079
1 3021 1088
2 713 1379
3 997 3903
4 2323 3361
5 1110 986
6 2532 142
7 1690 2405
8 1298 1881
9 615 174
10 1648 3112
11 1415 2808
Table 5
Address of Parity Bit Accumulators (Rate 4/5)
0 2319 198 789 902 1314 2806 143 2088 3525 1972
1 1285 1816 2194 1037 3293 509 3417 2294 2438 3111
12

CA 02579599 2007-03-09
2 704 1967 1228 1486 842 3400 1075 2776 3473 3327
3 1501 63 3235 2253 661 2968 1819 252 360 2174
4 3040 2231 2531 2690 1527 2605 2130 791 1786 1699
896 1565
62493 184
7 212 3210
8 727 1339
9 3428 612
0 2663 1947
1 230 2695
2 2025 2794
3 3039 283
4 862 2889
5 376 2110
6 2034 2286
7 951 2068
8 3108 3542
9 307 1421
0 2272 1197
1 1800 3280
2 331 2308
3 465 2552
4 1038 2479
5 1383 343
6 94 236
72619121
8 1497 2774
9 2116 1855
0 722 1584
1 2767 1881
22701 1610
3 3283 1732
4 168 1099
5 3074 243
6 3460 945
7 2049 1746
8 566 1427
93545 1168
Table 6
Address of Parity Bit Accumulators (Rate 5/6)
0 1752 825 2637 402 2730 1838 1945 2490 1627 2137 1202 2188
1 1501 1900 2147 1967 1757 2803 555 2020 333 2266 2577 1399
2 1675 799 422 488 945 1536 2288 999 1727 2214 1923 2152
13

CA 02579599 2007-03-09
3 2409 499 1481 908 559 716 1270 333 2508 2264 1702 2805
4 2447 1926
414 1224
6 2114 842
7 212 573
0 2383 2112
1 2286 2348
2 545 819
3 1264 143
4 1701 2258
5 964 166
61142413
7 2243 81
0 1245 1581
1 775 169
2 1696 1104
3 1914 2831
4 532 1450
591974
6 497 2228
7 2326 1579
0 2482 256
1 1117 1261
2 1257 1658
3 1478 1225
4 2511 980
5 2320 2675
6 435 1278
7 228 503
0 1885 2369
1 57 483
2 838 1050
3 1231 1990
4 1738 68
5 2392 951
6 163 645
7 2644 1704
Table 7
Address of Parity Bit Accumulators (Rate 8/9)
0 1558 712 805
1 1450 873 1337
2 1741 1129 1184
3 294 806 1566
14

CA 02579599 2007-03-09
4 482 605 923
0 926 1578
17771374
2 608 151
31195210
4 1484 692
0 427 488
18281124
2 874 1366
3 1500 835
4 1496 502
0 1006 1701
1 1155 97
2 657 1403
3 1453 624
4 429 1495
0 809 385
1 367 151
2 1323 202
3 960 318
4 1451 1039
01098 1722
1 1015 1428
2 1261 1564
3 544 1190
4 1472 1246
0 508 630
1 421 1704
2 284 898
3 392 577
41155 556
0 631 1000
1 732 1368
2 1328 329
3 1515 506
4 1104 1172
Table 8
1371 After all of the information bits are exhausted, the final parity bits
are obtained as
follows. First, the following operations are performed, starting with i = 1
pl = pl Pl-i, i=1,2,..., nldp, - kldpc -1.
Final content of pl , i 0,1,.., nldpc - kldpc -1 is equal to the parity bit
pl.
Code Rate

CA 02579599 2007-03-09
2/3 60
5/6 30
1 /2 90
3/4 45
4/5 36
3/5 72
8/9 20
Table 9
[38] The generator polynomial of the t error correcting BCH encoder 211 is
obtained by
multiplying the first t polynomials in the following list of Table 10:
1 X) 1+x2+X3,+X5+x16
2 X) 1+X+X4+XS+x6+X8+XI6
3 X) 1+x2+X3'+'X4+X5+,X7+x8+X9+X10+x1I+x16
q X) 1+x2-f'X4'f"X6+X9+,X]1+X12+X14+X16
95(X) I+X+X2+X3+X5+X8'f X9+XIO+X11+X12+X16
96(X) 1+X2+X4+X5+X7+X8+X9+X10+X12+X13+X14+X15+X16
7 X) I+X2+X5+X6+X8+X9+X10+XI1+X13+X15+X16
98(X) I+X+X2+X5+X6-hX8-I-X9+X12+,X13+X14+X16
9 X 1+X5+X7+X9+X10+X11+X16
1o(X) 1+X+X2+X5+x7+X8+X10+X12+X13+X14+Xi6
11 X 1+X2+X3+X5+X9+X11+X12+X13+X16
912(X) 1+X+X5+X6+X7+X9+X11+X12+X16
Table 10
1391 BCH encoding of information bits m=(mkõ.h-1) mk,h-2 ,..., ml , mo ) onto
a codeword
c= (mk,õ_l,mkõ~õ_2,...,m1,m0,dnbõ_k&-h_1,dnbõ_kõ,_2,...,dl,do)is achieved as
follows. The
messa e ol omial m(x) - m xk~õ-1 + m xkb,õ-2 +... + m x+ m0 is multiplied by
b P Yn kõõ-1 k~õ-2 1 xnbth-kb,õ . Next, xnb',õ-kb'õ m(x) divided by g(x). With
d(x) = dn&_p-k&_h-1 xnb'õ-k,õ-1 +... + d x+ do as the remainder, the codeword
polynomial is set as
1
follows: c(x) = xnI-õ-k&õ m(x) + d(x).
f401 As seen in FIG. 2B, the LDPC encoder 203 outputs to a bit interleaver
213. By way
of example, 8-PSK, 16-APSK, and 32-APSK modulation formats are utilized. Data
is
serially written into the interleaver column-wise (from the top to the
bottom), and serially
read out row-wise (from the left to the right). However, in the case of code
rate 3/5 with 8-
16

CA 02579599 2007-03-09
PSK, it has been determined that reading the data out from the right to the
left, instead of left
to right, yields better performance (as illustrated in FIG. 7).
1411 The configuration of the block interleaver for each modulation format is
specified in
Table 11.
Bit Interleaver Structure
Modulation Rows Rows Columns
for ntd , =64800) (for ntd , =16200)
8-PSK 21600 5400 3
16-APSK 16200 4050 4
32-APSK 12960 3240 5
Table 11
1421 FIGs. 2C and 2D are flowcharts of the encoding process of the LDPC
encoder of FIG.
2B for generating short frame length LDPC codes, according to an embodiment of
the present
invention. In step 211, information bits are received and processed to the
chain of encoders
209, 211, and 203. Consequently, the LDPC encoder 203 generates LDPC codes
with outer
BCH codes based on the received information bits, as in step 223. The codes
also contain the
CRC code. In step 225, the coded bits are altered by the bit interleaver 213,
as described
above. Next, the LDPC codes are represented by signals that are modulated, per
step 227, for
transmission over the channel 103, which in an exemplary embodiment, is a
satellite link to
one or more satellite terminals (step 229).
1431 As discussed, kidp, bits are systematically encoded to generate n p,
bits. According to
one embodiment of the present invention, nldp, is 16200 bits, which is a short
block length.
Given the relatively short length of such codes, LDPC codes having approximate
lengths of
16200 bits or less are deemed "short" block length codes.
1441 In accordance with an embodiment of the present invention, short blocks
codes are
generated by shortening versions of slightly longer ( km , nm )"mother" codes
of block size
nm > 16200. As shown in FIG. 2D, kldp, of the BCH encoded bits are preceded by
km - kldpc
dummy zeros (per step 251). The resulting km bits are systematically encoded
to generate
nm bits, as in step 253. The first km - k,dp, dummy zeros are then deleted, as
in step 255, and
17

CA 02579599 2007-03-09
the resulting nldp, =16200 bits will be transmitted (step 257). It is noted
that
km - kldpc = nm - nldPc .
1451 The parameters of short frame length codes are provided in Table 12 as
follows.
Mother k[dpc k. n. kbch BCH Effective
Code Rate Correction Rate
kõ,ln,õ (bits) kbch/16200
1/2 7200 9000 18000 7032 12 0.434
3/5 9720 9720 16200 9552 12 0.589
2/3 10800 10800 16200 10632 12 0.656
3/4 11880 12960 17280 11712 12 0.722
4/5 12600 14400 18000 12432 12 0.767
5/6 13320 14400 17280 13152 12 0.811
8/9 14400 14400 16200 14232 12 0.878
Table 12
1461 Simulations of the performance of these codes were conducted, as shown in
FIG. 8.
1471 Tables 13-15 provide other exemplary code rates, 1/3, 1/5 and 2/5 for
njdp, of 16200
bits:
Address of Parity Bit Accumulators (Rate 1/3)
416 8909 4156 3216 3112 2560 2912 6405 8593 4969 6723 6912
8978 3011 4339 9312 6396 2957 7288 5485 6031 10218 2226 3575
3383 10059 1114 10008 10147 9384 4290 434 5139 3536 1965 2291
2797 3693 7615 7077 743 1941 8716 6215 3840 5140 4582 5420
6110 8551 1515 7404 4879 4946 5383 1831 3441 9569 10472 4306
1505 5682 7778
7172 6830 6623
7281 3941 3505
10270 8669 914
3622 7563 9388
9930 5058 4554
4844 9609 2707
6883 3237 1714
4768 3878 10017
10127 3334 8267
Table 13
Address of Parity Bit Accumulators (Shortened from Rate 1/5)
18

CA 02579599 2007-03-09
6295 9626 304 7695 4839 4936 1660 144 11203 5567 6347 12557
10691 4988 3859 3734 3071 3494 7687 10313 5964 8069 8296 11090
10774 3613 5208 11177 7676 3549 8746 6583 7239 12265 2674 4292
11869 3708 5981 8718 4908 10650 6805 3334 2627 10461 9285 11120
7844 3079 10773
3385 10854 5747
1360 12010 12202
6189 4241 2343
9840 12726 4977
Table 14
Address of Parity Bit Accumulators (Rate 2/5)
5650 4143 8750 583 6720 8071 635 1767 1344 6922 738 6658
5696 1685 3207 415 7019 5023 5608 2605 857 6915 1770 8016
3992 771 2190 7258 8970 7792 1802 1866 6137 8841 886 1931
4108 3781 7577 6810 9322 8226 5396 5867 4428 8827 7766 2254
4247 888 4367 8821 9660 324 5864 4774 227 7889 6405 8963
9693 500 2520 2227 1811 9330 1928 5140 4030 4824 806 3134
1652 8171 1435
3366 6543 3745
9286 8509 4645
7397 5790 8972
6597 4422 1799
9276 4041 3 847
8683 7378 4946
5348 1993 9186
6724 9015 5646
4502 4439 8474
5107 7342 9442
1387 8910 2660
Table 15
(481 The above approach to designing LDPC codes, as provided in Tables 2-8 and
13-15,
advantageously permits storage and retrieval of relevant information regarding
partitioned
groups of bit nodes and check nodes to be always placed in contiguously memory
locations
within memory (e.g., Random Access Memory (RAM)). Further, this enables use of
a single
RAM bank, thereby minimizing size of the integrated circuit. As mentioned, the
above
LDPC codes, in an exemplary embodiment, can be used to variety of digital
video
applications, such as MPEG (Motion Pictures Expert Group) packet transmission.
19

CA 02579599 2007-03-09
(49] FIG. 3 is a diagram of an exemplary receiver in the system of FIG. 1. At
the receiving
side, a receiver 300 includes a demodulator 301 that performs demodulation of
received
signals from transmitter 200. These signals are received at a receive antenna
303 for
demodulation. After demodulation, the received signals are forwarded to a
decoder 305,
which attempts to reconstruct the original source messages by generating
messages, X; in
conjunction with a bit metric generator 307. The bit metric generator 307 may
exchange
information with the decoder 305 back and forth (iteratively) during the
decoding process.
These decoding approaches are more fully described in co-pending application,
entitled
"Method and System for Routing in Low Density Parity Check (LDPC) Decoders,"
filed July
3, 2003 (Publication No. US 2004-0153960 Al). To appreciate the advantages
offered by the
present invention, it is instructive to examine how LDPC codes are generated,
as discussed in
FIG. 4.
[50] FIG. 4 is a diagram of a sparse parity check matrix, in accordance with
an
embodiment of the present invention. LDPC codes are long, linear block codes
with sparse
parity check matrix H(n_k)xn . Typically the block length, n, ranges from
thousands to tens of
thousands of bits. For example, a parity check matrix for an LDPC code of
length n=8 and
rate %2 is shown in FIG. 4. The same code can be equivalently represented by
the bipartite
graph, per FIG. 5.
[511 FIG. 5 is a diagram of a bipartite graph of an LDPC code of the matrix of
FIG. 4.
Parity check equations imply that for each check node, the sum (over GF
(Galois Field)(2)) of
all adjacent bit nodes is equal to zero. As seen in the figure, bit nodes
occupy the left side of
the graph and are associated with one or more check nodes, according to a
predetermined
relationship. For example, corresponding to check node m, , the following
expression exists
n, + n4 + n5 + n8 = 0 with respect to the bit nodes.
1521 Returning the receiver 303, the LDPC decoder 305 is considered a message
passing
decoder, whereby the decoder 305 aims to find the values of bit nodes. To
accomplish this
task, bit nodes and check nodes iteratively communicate with each other. The
nature of this
communication is described below.
1531 From check nodes to bit nodes, each check node provides to an adjacent
bit node an
estimate ("opinion") regarding the value of that bit node based on the
information coming
from other adjacent bit nodes. For instance, in the above example if the sum
of n4 , n5 and n8

CA 02579599 2007-03-09
"looks like" 0 to m, , then m, would indicate to n, that the value of n, is
believed to be 0
(since n, + n4 + n5 + n8 = 0); otherwise m, indicate to n, that the value of
n, is believed to
be 1. Additionally, for soft decision decoding, a reliability measure is
added.
1541 From bit nodes to check nodes, each bit node relays to an adjacent check
node an
estimate about its own value based on the feedback coming from its other
adjacent check
nodes. In the above example n, has only two adjacent check nodes m, and m3 .
If the
feedback coming from m3 to n, indicates that the value of n, is probably 0,
then n, would
notify m, that an estimate of n,'s own value is 0. For the case in which the
bit node has more
than two adjacent check nodes, the bit node performs a majority vote (soft
decision) on the
feedback coming from its other adjacent check nodes before reporting that
decision to the
check node it communicates. The above process is repeated until all bit nodes
are considered
to be correct (i.e., all parity check equations are satisfied) or until a
predetermined maximum
number of iterations is reached, whereby a decoding failure is declared.
1551 FIG. 6 is a diagram of a sub-matrix of a sparse parity check matrix,
wherein the sub-
matrix contains parity check values restricted to the lower triangular region,
according to an
embodiment of the present invention. As described previously, the encoder 203
(of FIGs. 2A
and 2B) can employ a simple encoding technique by restricting the values of
the lower
triangular area of the parity check matrix. According to an embodiment of the
present
invention, the restriction imposed on the parity check matrix is of the form:
H(n-k)xn - [A(n-k)xk B(n-k)x(n-k) ~
where B is lower triangular.
E561 Any information block i=(io, i, ,..., ik-, ) is encoded to a codeword
c=(i0 , it ,= ==, ik-i, Po ,Pi ,===Pn-k-1) using HeT = 0, and recursively
solving for parity bits; for
example,
aooio +ao,i, +...+ao,k-,ik-, + po = 0=* Solve po
a,oio +aõi, +...+a,,k-,ik-, +b,opo +Pi = 0 =:> Solvep,
and similarly for pZ, p3, ...,pn-k-1.
1571 FIG. 7 is a graph of performance of the LDPC codes at the various code
rates and
modulation schemes supported by the transmitter of FIG. 2B. As seen, the 3/5
rate, 8-PSK
scenario rivals the performance of the LDPC codes employing QPSK.
21

CA 02579599 2007-03-09
[58] FIG. 8 shows the simulation results for short block size LDPC codes, in
accordance
with an embodiment of the present invention. Table 16 provides the estimated
performance
at Packet Error Rate (PER) of 10-7 for the short codes (nldp,= 16200).
Mode Estimated Es/No (dB)
QPSK 0.444 0.65
QPSK 3/5 2.45
QPSK 2/3 3.35
QPSK 0.733 4.35
QPSK 0.777 4.90
QPSK 0.822 5.40
PSK 8/9 6.50
Table 16
1591 FIG. 9 illustrates a computer system upon which an embodiment according
to the
present invention can be implemented. The computer system 900 includes a bus
901 or other
communication mechanism for communicating information, and a processor 903
coupled to
the bus 901 for processing information. The computer system 900 also includes
main
memory 905, such as a random access memory (RAM) or other dynamic storage
device,
coupled to the bus 901 for storing information and instructions to be executed
by the
processor 903. Main memory 905 can also be used for storing temporary
variables or other
intermediate information during execution of instructions to be executed by
the processor
903. The computer system 900 further includes a read only memory (ROM) 907 or
other
static storage device coupled to the bus 901 for storing static information
and instructions for
the processor 903. A storage device 909, such as a magnetic disk or optical
disk, is
additionally coupled to the bus 901 for storing information and instructions.
(601 The computer system 900 may be coupled via the bus 901 to a display 911,
such as a
cathode ray tube (CRT), liquid crystal display, active matrix display, or
plasma display, for
displaying information to a computer user. An input device 913, such as a
keyboard
including alphanumeric and other keys, is coupled to the bus 901 for
communicating
information and command selections to the processor 903. Another type of user
input device
is cursor control 915, such as a mouse, a trackball, or cursor direction keys
for
communicating direction information and command selections to the processor
903 and for
controlling cursor movement on the display 911.
22

CA 02579599 2007-03-09
(fil j According to one embodiment of the invention, generation of LDPC codes
is provided
by the computer system 900 in response to the processor 903 executing an
arrangement of
instructions contained in main memory 905. Such instructions can be read into
main memory
905 from another computer-readable medium, such as the storage device 909.
Execution of
the arrangement of instructions contained in main memory 905 causes the
processor 903 to
perform the process steps described herein. One or more processors in a multi-
processing
arrangement may also be employed to execute the instructions contained in main
memory
905. In alternative embodiments, hard-wired circuitry may be used in place of
or in
combination with software instructions to implement the embodiment of the
present
invention. Thus, embodiments of the present invention are not limited to any
specific
combination of hardware circuitry and software.
1621 The computer system 900 also includes a communication interface 917
coupled to bus
901. The communication interface 917 provides a two-way data communication
coupling to
a network link 919 connected to a local network 921. For example, the
communication
interface 917 may be a digital subscriber line (DSL) card or modem, an
integrated services
digital network (ISDN) card, a cable modem, or a telephone modem to provide a
data
communication connection to a corresponding type of telephone line. As another
example,
communication interface 917 may be a local area network (LAN) card (e.g. for
EthernetTM or
an Asynchronous Transfer Model (ATM) network) to provide a data communication
connection to a compatible LAN. Wireless links can also be implemented. In any
such
implementation, communication interface 917 sends and receives electrical,
electromagnetic,
or optical signals that carry digital data streams representing various types
of information.
Further, the communication interface 917 can include peripheral interface
devices, such as a
Universal Serial Bus (USB) interface, a PCMCIA (Personal Computer Memory Card
International Association) interface, etc.
163 1 The network link 919 typically provides data communication through one
or more
networks to other data devices. For example, the network link 919 may provide
a connection
through local network 921 to a host computer 923, which has connectivity to a
network 925
(e.g. a wide area network (WAN) or the global packet data communication
network now
commonly referred to as the "Internet") or to data equipment operated by
service provider.
The local network 921 and network 925 both use electrical, electromagnetic, or
optical
signals to convey information and instructions. The signals through the
various networks and
23

CA 02579599 2007-03-09
the signals on network link 919 and through communication interface 917, which
communicate digital data with computer system 900, are exemplary forms of
carrier waves
bearing the information and instructions.
1641 The computer system 900 can send messages and receive data, including
program
code, through the network(s), network link 919, and communication interface
917. In the
Internet example, a server (not shown) might transmit requested code belonging
to an
application program for implementing an embodiment of the present invention
through the
network 925, local network 921 and communication interface 917. The processor
903 may
execute the transmitted code while being received and/or store the code in
storage device 99,
or other non-volatile storage for later execution. In this manner, computer
system 900 may
obtain application code in the form of a carrier wave.
[(ii I The term "computer-readable medium" as used herein refers to any medium
that
participates in providing instructions to the processor 903 for execution.
Such a medium may
take many forms, including but not limited to non-volatile media, volatile
media, and
transmission media. Non-volatile media include, for example, optical or
magnetic disks, such
as storage device 909. Volatile media include dynamic memory, such as main
memory 905.
Transmission media include coaxial cables, copper wire and fiber optics,
including the wires
that comprise bus 901. Transmission media can also take the form of acoustic,
optical, or
electromagnetic waves, such as those generated during radio frequency (RF) and
infrared (IR)
data communications. Common forms of computer-readable media include, for
example, a
floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic
medium, a CD-
ROM, CDRW, DVD, any other optical medium, punch cards, paper tape, optical
mark sheets,
any other physical medium with patterns of holes or other optically
recognizable indicia, a
RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a
carrier wave, or any other medium from which a computer can read.
(fifi] Various forms of computer-readable media may be involved in providing
instructions
to a processor for execution. For example, the instructions for carrying out
at least part of the
present invention may initially be borne on a magnetic disk of a remote
computer. In such a
scenario, the remote computer loads the instructions into main memory and
sends the
instructions over a telephone line using a modem. A modem of a local computer
system
receives the data on the telephone line and uses an infrared transmitter to
convert the data to
an infrared signal and transmit the infrared signal to a portable computing
device, such as a
24

CA 02579599 2007-03-09
personal digital assistance (PDA) and a laptop. An infrared detector on the
portable
computing device receives the information and instructions borne by the
infrared signal and
places the data on a bus. The bus conveys the data to main memory, from which
a processor
retrieves and executes the instructions. The instructions received by main
memory may
optionally be stored on storage device either before or after execution by
processor.
1671 Accordingly, the various embodiments of the present invention provide an
LDPC
encoder generates a LDPC code having an outer Bose Chaudhuri Hocquenghem (BCH)
code
according to one of Tables 2-8 for transmission as a LDPC coded signal. Each
of the Tables
2-8 specifies the address of parity bit accumulators. Short LDPC codes are
output by utilizing
LDPC mother codes that are based on Tables 2-8. k,d, of the BCH encoded bits
are preceded
by km - kidP, dummy zeros. The resulting km bits are systematically encoded to
generate
nm bits. The first km - k,dp, dummy zeros are then deleted to yield the
shortened code. For an
LDPC code with code rate of 3/5 utilizing 8-PSK (Phase Shift Keying)
modulation, an
interleaver provides for interleaving bits of the output LDPC code by serially
writing data
associated with the LDPC code colunm-wise into a table and reading the data
row-wise from
right to left. The above approach advantageously yields reduced complexity
without
sacrificing performance.
168[ While the present invention has been described in connection with a
number of
embodiments and implementations, the present invention is not so limited but
covers various
obvious modifications and equivalent arrangements, which fall within the
purview of the
appended claims.

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Représentant commun nommé 2019-10-30
Représentant commun nommé 2019-10-30
Exigences relatives à la nomination d'un agent - jugée conforme 2016-08-30
Inactive : Lettre officielle 2016-08-30
Inactive : Lettre officielle 2016-08-30
Exigences relatives à la révocation de la nomination d'un agent - jugée conforme 2016-08-30
Demande visant la révocation de la nomination d'un agent 2016-07-28
Demande visant la nomination d'un agent 2016-07-28
Accordé par délivrance 2009-06-02
Inactive : Page couverture publiée 2009-06-01
Lettre envoyée 2009-04-29
Inactive : Transfert individuel 2009-04-29
Lettre envoyée 2009-04-29
Préoctroi 2009-03-17
Inactive : Taxe finale reçue 2009-03-17
Un avis d'acceptation est envoyé 2008-09-26
Un avis d'acceptation est envoyé 2008-09-26
month 2008-09-26
Lettre envoyée 2008-09-26
Inactive : Approuvée aux fins d'acceptation (AFA) 2008-07-31
Inactive : Page couverture publiée 2007-04-30
Inactive : Lettre officielle 2007-04-19
Inactive : CIB attribuée 2007-04-16
Inactive : CIB en 1re position 2007-04-16
Inactive : CIB attribuée 2007-04-16
Inactive : CIB attribuée 2007-04-16
Inactive : CIB attribuée 2007-04-16
Inactive : CIB attribuée 2007-04-16
Inactive : CIB attribuée 2007-04-16
Inactive : CIB attribuée 2007-04-16
Exigences applicables à une demande divisionnaire - jugée conforme 2007-04-03
Lettre envoyée 2007-04-03
Demande reçue - nationale ordinaire 2007-03-28
Lettre envoyée 2007-03-28
Toutes les exigences pour l'examen - jugée conforme 2007-03-09
Demande reçue - divisionnaire 2007-03-09
Exigences pour une requête d'examen - jugée conforme 2007-03-09
Demande publiée (accessible au public) 2005-03-04

Historique d'abandonnement

Il n'y a pas d'historique d'abandonnement

Taxes périodiques

Le dernier paiement a été reçu le 2008-08-19

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
DTVG LICENSING, INC.
Titulaires antérieures au dossier
FENG-WEN SUN
LIN-NAN LEE
MUSTAFA EROZ
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document (Temporairement non-disponible). Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(yyyy-mm-dd) 
Nombre de pages   Taille de l'image (Ko) 
Description 2007-03-08 25 986
Abrégé 2007-03-08 1 18
Revendications 2007-03-08 13 289
Dessins 2007-03-08 9 157
Dessin représentatif 2007-04-25 1 4
Page couverture 2007-04-29 1 39
Page couverture 2009-05-11 1 40
Accusé de réception de la requête d'examen 2007-03-27 1 176
Avis du commissaire - Demande jugée acceptable 2008-09-25 1 163
Correspondance 2007-03-28 1 40
Correspondance 2007-04-18 1 16
Correspondance 2009-03-16 1 59
Correspondance 2016-07-27 3 104
Courtoisie - Lettre du bureau 2016-08-29 1 23
Courtoisie - Lettre du bureau 2016-08-29 1 26