Sélection de la langue

Search

Sommaire du brevet 2678123 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 2678123
(54) Titre français: RECIPIENT A PAROI EXPANSEE DOTE D'UN ASPECT NON TRANSPARENT
(54) Titre anglais: FOAMED-WALL CONTAINER HAVING A NON-TRANSPARENT APPEARANCE
Statut: Périmé et au-delà du délai pour l’annulation
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • B29C 49/06 (2006.01)
  • B29B 11/08 (2006.01)
(72) Inventeurs :
  • SEMERSKY, FRANK E. (Etats-Unis d'Amérique)
(73) Titulaires :
  • PLASTIC TECHNOLOGIES INC.
(71) Demandeurs :
  • PLASTIC TECHNOLOGIES INC. (Etats-Unis d'Amérique)
(74) Agent: MARTINEAU IP
(74) Co-agent:
(45) Délivré: 2012-10-09
(86) Date de dépôt PCT: 2007-10-23
(87) Mise à la disponibilité du public: 2008-09-18
Requête d'examen: 2009-12-17
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Oui
(86) Numéro de la demande PCT: PCT/US2007/082226
(87) Numéro de publication internationale PCT: US2007082226
(85) Entrée nationale: 2009-08-13

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
PCT/US07/006264 (Etats-Unis d'Amérique) 2007-03-12

Abrégés

Abrégé français

L'invention concerne un récipient qui comprend un polymère expansé microcellulaire, et un gaz non réactif occlus dans les cellules de mousse microcellulaire, où le récipient a un aspect non transparent. Le processus de fabrication du récipient consiste à mouler par injection une préforme polymère comprenant un gaz non réactif occlus dans les parois de la préforme, à refroidir la préforme à une température inférieure à celle de ramollissement du polymère, à chauffer à nouveau la préforme à une température supérieure à celle de ramollissement du polymère, et à mouler par soufflage la préforme afin de préparer un récipient comprenant un polymère expansé microcellulaire ayant un gaz non réactif occlus dans les cellules de mousse microcellulaire.


Abrégé anglais

A container comprises a micro cellular foamed polymer, and a non- reactive gas contained within the micro cellular foam cells, wherein the container has a non-transparent appearance. The process for making the container comprises injection molding a polymer preform having a non-reactive gas entrapped within the walls thereof, cooling the preform to a temperature below the polymer softening temperature, reheating the preform to a temperature above the polymer softening temperature, and blow molding the preform, to prepare a container comprising a micro cellular foamed polymer having a non-reactive gas contained within the micro cellular foam cells.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CLAIMS
1. An injected and blow-molded container comprising:
.cndot. a micro cellular foamed polymer formed through an injection and blow
molding process;
and
.cndot. a non-reactive gas contained within the micro cellular foam cells,
Wherein the container
has a non-transparent appearance without the use of a colorant.
2. The container according to Claim 1, wherein the container has a white
appearance.
3. The container according to Claim 2, wherein the white color of the
container is
about CIE L*a*b* Color Scale values of: L* values in the range of about 41.5
through 46.0; a*
values in the range of about 0.10 through 0.25; and b* values in the range of
about 2.20 through
3.10.
4. The container according to Claim 2, wherein the white color of the
container is
about CIE L*a*b* Color Scale. values of L* values in the range of about 43
through 45; a*
values in the range of about 0.12 through 0.2; and b* values in the range of
about 2.3 through
2.9.
5. The container according to Claim 2, wherein the white color of the
container is
about average CIE L*a*b* Color Scale values of: an L* values of about 44; and
a* value of
about 0.14; and a b* value of about 2.6.
6. The container according to claim 1, wherein the polymer comprises one or
more
of a polyester, polypropylene, acrylonitrile acid ester, vinyl chloride,
polyolefin, polyamide, or a
derivative or copolymer thereof.
16

7. The contdoer according to Claim 1, wherein the polymer comprises
polyethylene
terephthalate.
8. The container according to Claim 1, wherein the non-reactive gas comprises
one
or more of carbon dioxide, nitrogen, and argon.
9. An injected and blow-molded container formed through an injection and blow
molding process, comprising:
.cndot. micro cellular foamed polymer, the polymer comprising one or more of a
polyester,
polypropylene, acrylonitrile acid ester, vinyl chloride, polyolefin,
polyamide, or a
derivative or copolymer thereof; and
.cndot. a non-reactive gas within the micro cellular foam cells comprising one
or more of carbon
dioxide, nitrogen, and argon, wherein the color of the preform is about CIE
L*a*b* Color
Scale values of: L* values in the range of about 41.5 tbrough 46.0; a* values
in the range
of about 0.10 through 0.25; and b* values in the range of about 2.20 through
3.10 without
the use of a colorant.
10. The container according to Claim 9, wherein the polymer comprises
polyethylene
terephthalate.
11. The container according to Claim 9, wherein the color of the container is
about
CIE L*a*b* Color Scale values of: L~ values in the range of about 43 through
45; a~ values in
the range of about 0.12 through 0.2; and b* values in the range of about 2.3
through 2.9.
12. A process for preparing a container, comprising the steps of:
17

injection molding a polymer preform having a non-reactive gas entrapped within
the walls thereof and having a non-transparent appearance without the use of a
colorant;
cooling the preform to a temperature below the polymer softening temperature;
reheating the preform to a temperature greater than the polymer softening
temperature; and
blow molding the preform to prepare a container consisting essentially of a
micro
cellular foamed polymer and having a non-reactive gas contained within the
micro cellular foam
cells, wherein the container has a non-transparent appearance without the use
of a colorant.
13. The process for preparing a container according to Claim 12, wherein the
polymer
comprises one or more of a polyester, polypropylene, acrylonitrile acid ester,
vinyl chloride,
polyolefin, polyamide, or a derivative or copolymer thereof.
14. The process for preparing a container according to Claim 12, wherein the
container has a white appearance with a color of the container about CIE
L*a*b* Color Scale
values of: L* values in the range of about 41.5 through 46.0; a* values in the
range of about 0.10
through 0.25; and b* values in the range of about 2.20 through 3.10.
15. A process for preparing a micro cellular preform comprising the steps of:
injection molding a micro cellular polymer preform suitable for blow molding
having micro cellular foam cells having a non-reactive gas entrapped within
the cells thereof,
and having a non-transparent appearance without the use of a colorant;
cooling the preform to a temperature below the polymer softening temperature
of
the polymer forming the preform; and
reheating the preform, to a temperature above the glass transition temperature
of
the polymer and below the temperature at which the increasing pressure of the
micro cellular gas
cells exceeds that of the ability of the polymer properties to resist and the
micro cellular cells
expand to result in a distorted preform.
18

16. A process for producing a container from a preform prepared by the process
according to Claim 15 including the step of:
blow molding the heated preform to prepare a container consisting essentially
of a
foamed polymer having a non-reactive gas container therein, wherein the
container has a non-
transparent appearance without the use of a colorant.
19

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 02678123 2009-08-13
WO 2008/112024 PCT/US2007/082226
TITLE
FOAMED-WALL CONTAINER HAVING
A NON-TRANSPARENT APPEARANCE
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application is a continuation-in-part of U.S. Patent Application
Serial No. 11/384,979 filed on March 20, 2006, and International PCT
Application
No. PCT/US07/06264 filed on March 12, 2007.
FIELD OF THE INVENTION
[0002] The present invention relates generally to a foamed-wall polymer
container having a unique appearance. More particularly, the invention is
directed to a container comprising micro cellular foam, wherein the foam micro
cells contain a non-reactive gas such as nitrogen, and the container has a non-
transparent appearance. Also contemplated as a part of the present invention
is
a method of manufacturing the foamed-wall container having a non-transparent
appearance.
BACKGROUND OF THE INVENTION
[0003] Biaxially oriented single and multi-layered bottles may be
manufactured from polymer materials such as, for example, polyethylene
terephthalate (PET) using a hot preform process, wherein a single or multi-
layered preform is heated to its desired orientation temperature and drawn and
blown into conformity with a surrounding mold cavity. The preform may be
prepared by any conventional process such as, for example, by extruding a
preform comprising single or multiple layers of polymer, or by injecting
subsequent layers of polymer over a previously injection molded preform.
Generally, multiple layers are used for beverage containers, to add diffusion
barrier properties not generally found in single layer containers.
[0004] The various layers of polymers in the prior art multi-layered
containers
are generally in intimate contact with one another, thereby facilitating the
conduct
-1-

CA 02678123 2009-08-13
WO 2008/112024 PCT/US2007/082226
of thermal energy through the walls of the containers. This allows the chilled
contents of the container to quickly warm to the ambient temperature.
Accordingly, such containers are often sheathed in, for example, a foamed
polystyrene shell to impart thermal insulating properties to the container.
[0005] It would be desirable to prepare an improved plastic container which is
opaque with unique visual properties without the addition of a coloring agent.
Further, it is deemed desirable to impart thermal insulating properties to the
improved plastic container. Also, it would be desirable to prepare an improved
plastic container having a non-transparent appearance without requiring the
addition of a coloring agent which would adversely affect the recycling
characteristics of the container.
SUMMARY OF THE INVENTION
[0006] Concordant and congruous with the present invention, a foamed-wall
container having a unique appearance has surprisingly been discovered. The
container comprises a micro cellular foamed polymer, and a non-reactive gas
contained within the micro cellular foam cells, wherein the container has a
non-
transparent appearance without the addition of a coloring agent. The colors
contemplated herein include a silvery appearance and a white appearance.
[0007] Also contemplated as an embodiment of the invention is a process for
preparing a foamed-wall container having a unique appearance. The process
comprises the steps of injection molding a polymer preform having a non-
reactive
gas entrapped within the walls thereof, cooling the preform to a temperature
below the polymer softening temperature, reheating the preform to a
temperature
above the polymer softening temperature, and blow molding the preform, to
prepare a container comprising a micro cellular foamed polymer having a non-
reactive gas contained within the micro cellular foam cells, wherein the
container
has a non-transparent appearance.
[0008] The container according to the present invention is particularly useful
for packaging carbonated beverages.
_2_

CA 02678123 2009-08-13
WO 2008/112024 PCT/US2007/082226
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0009] The present invention is directed to a foamed-wall container having a
unique appearance, comprising a micro cellular foamed polymer, and a non-
reactive gas contained within the micro cellular foam cells, wherein the
container
has a silvery appearance.
[0010] Another embodiment of the present invention is directed to a process
for making a foamed-wall container having a unique appearance, comprising
injection molding a polymer preform having a non-reactive gas entrapped within
the walls thereof, cooling the preform to a temperature below the polymer
softening temperature, reheating the preform to a temperature above the
polymer
softening temperature, and blow molding the preform, to prepare a container
comprising a micro cellular foamed polymer having a non-reactive gas contained
within the micro cellular foam cells, wherein the container has a silvery
appearance.
[0011] Another embodiment of the present invention is direction to a a
foamed-wall container having a unique appearance, comprising a micro cellular
foamed polymer, and a non-reactive gas contained within the micro cellular
foam
cells, wherein the container has a white appearance.
[0012] Another embodiment of the present invention is directed to a process
for making a foamed-wall container having a unique appearance, comprising
injection molding a polymer preform having a non-reactive gas entrapped within
the walls thereof, cooling the preform to a temperature below the polymer
softening temperature, reheating the preform to a temperature above the
polymer
softening temperature, and blow molding the preform, to prepare a container
comprising a micro cellular foamed polymer having a non-reactive gas contained
within the micro cellular foam cells, wherein the container has a white
appearance.
[0013] Suitable polymers from which the container may be prepared include,
but are not necessarily limited to, polyethylene terephthalate (PET) and other
polyesters, polypropylene, acrylonitrile acid esters, vinyl chlorides,
polyolefins,
-3-

CA 02678123 2009-08-13
WO 2008/112024 PCT/US2007/082226
polyamides, and the like, as well as derivatives, blends, and copolymers
thereof.
A suitable polymer for commercial purposes is PET.
[0014] Polymer flakes are melted in a conventional plasticizing screw
extruder, to prepare a homogeneous stream of hot polymer melt at the extruder
discharge. Typically, the temperature of the polymer melt stream discharged
from the extruder ranges from about 225 degrees Centigrade to about 325
degrees Centigrade. One ordinarily skilled in the art will appreciate that the
temperature of the polymer melt stream will be determined by several factors,
including the kind of polymer flakes used, the energy supplied to the extruder
screw, etc. As an example, PET is conventionally extruded at a temperature
from about 260 degrees Centigrade to about 290 degrees Centigrade. A non-
reactive gas is injected under pressure into the extruder mixing zone, to
ultimately cause the entrapment of the gas as micro cellular voids within the
polymer material. By the term "non-reactive gas" as it is used herein is meant
a
gas that is substantially inert vis-a-vis the polymer. Preferred non-reactive
gases
comprise carbon dioxide, nitrogen, and argon, as well as mixtures of these
gases
with each other or with other gasses.
[0015] According to the present invention, the extrudate is injection molded
to
form a polymer preform having the non-reactive gas entrapped within the walls
thereof. Methods and apparatus for injection molding a polymer preform are
well-known in the art.
[0016] It is well-known that the density of amorphous PET is 1.335 grams per
cubic centimeter. It is also known that the density of PET in the melt phase
is
about 1.200 grams per cubic centimeter. Thus, if the preform injection cavity
is
filled completely with molten PET and allowed to cool, the resulting preform
would not exhibit the proper weight and would have many serious deficiencies,
such as sink marks. The prior art injection molding literature teaches that,
in
order to offset the difference in the densities of amorphous and molten PET, a
small amount of polymer material must be added to the part after the cavity
has
been filled and as the material is cooling. This is called the packing
pressure.
Thus, about ten per cent more material must be added during the packing
-4-

CA 02678123 2009-08-13
WO 2008/112024 PCT/US2007/082226
pressure phase of the injection molding cycle in order to insure that a
preform
made by injection molding is filled adequately and fully formed. The packing
pressure phase of the injection molding operation is likewise used for polymer
materials other than PET.
[0017] According to the present invention however, the polymer preform is
injection molded and simultaneously foamed using a non-reactive gas. The gas
is entrained in the material during the injection phase. Contrary to the prior
art
injection molding process, wherein additional polymer material is injected
during
the packing phase, the present invention utilizes minimal packing pressure. As
the polymer material is still in a molten state, the partial pressure of the
non-
reactive gas is sufficient to permit the release of the dissolved gas from the
polymer into the gas phase where it forms the micro cellular foam structure.
Thus, the preform made by the inventive process weighs less than, but has the
same form and geometry as, the polymer preforms produced by the conventional
injection molding operations that employ the packing process.
[0018] The micro cells may contain one or more of a variety of gases typically
used in processes for making micro cellular foam structures. In one
commercially acceptable embodiment, the non-reactive gas comprises carbon
dioxide in a concentration of at least ten percent by weight of the total
weight of
the non-reactive gas. This level of carbon dioxide concentration provides
adequate partial pressure to retard the diffusion of carbon dioxide from a
carbonated beverage within the inventive container to the exterior atmosphere.
Depending on certain injection and blow molding parameters which control the
size of the micro cells, the micro cellular foam tends to act as an effective
thermal
insulator, to retard the conduct of heat energy from the atmosphere to the
chilled
carbonated beverage within the container.
[0019] Upon completion of the injection molding step, the preform is cooled to
a temperature below the polymer softening temperature. For example, the
softening temperature for PET is approximately 70 degrees Centigrade. Thus,
the entrapped non-reactive gas is retained within the walls of the polymer
preform. This cooling step conditions the polymer and preserves its desirable
-5-

CA 02678123 2009-08-13
WO 2008/112024 PCT/US2007/082226
properties for the successful preparation of a blow molded container. This
cooling step is also useful when employing polymers such as polyesters, which
cannot be blow molded directly from an extruded parison. This cooling step may
be effected by any conventional process used in the polymer forming art such
as,
for example, by passing a stream of a cooling gas over the surfaces of the
preform, or cooling the preform while in-mold by cooling the forming mold.
[0020] The preform is thereafter reheated to a temperature above the polymer
softening temperature. This heating step may be effected by well-known means
such as, for example, by exposure of the preform to a hot gas stream, by flame
impingement, by exposure to infra-red energy, by passing the preform through a
conventional oven, or the like. PET is generally reheated to a temperature
twenty to twenty-five degrees above its softening temperature for the
subsequent
blow molding operation. If PET is reheated too far above its glass transition
temperature, or held at a temperature above its softening temperature for an
excessive period of time, the PET undesirably will begin to crystallize and
turn
white. Likewise, if the preform is heated to a temperature above which the
mechanical properties of the material are exceeded by the increasing pressure
of
the non-reactive gas in the micro cells, the micro cells undesirably will
begin to
expand thus distorting the preform.
[0021] Finally, the preform is blow molded, to prepare a container, consisting
essentially of a micro cellular foamed polymer having a non-reactive gas
contained within the micro cellular foam cells. Methods and apparatus for blow
molding a container from a polymer preform are well-known.
[0022] The blow molded foamed-wall polymer container so produced has a
silvery appearance; as though the container were made of metal. The blow
molded container is silvery in color, and may exhibit Pantone Color Formula
Guide numbers in the range of about 420 through 425, 877, 8001, 8400, and
8420. In terms of the CIE L*a*b* Color Scale, the blow molded container is
silvery in color, and may exhibit L* values in the range of about 30 through
36, a*
values in the range of about 0.10 through 0.35, and b* values in the range of
about 2.40 through 3.70. While not wishing to be bound by any particular
theory
-6-

CA 02678123 2009-08-13
WO 2008/112024 PCT/US2007/082226
regarding the reason that the ultimately produced container has a unique
silvery
appearance, it is believed that, as the preform cavity is being filled with
polymer,
bubbles of gas are formed at the flow front of the polymer due to the pressure
drop between the dissolved gas and the relatively lower pressure in the
preform
cavity. The bubbles formed at the flow front of the polymer material as it is
introduced into the preform cavity are subsequently deposited on the outside
and
inside surfaces of the preform.
[0023] According to another embodiment of the invention, polymer flakes are
melted in a conventional plasticizing screw extruder, to prepare a homogeneous
stream of hot polymer melt at the extruder discharge. Typically, the
temperature
of the polymer melt stream discharged from the extruder ranges from about 225
degrees Centigrade to about 325 degrees Centigrade. One ordinarily skilled in
the art will appreciate that the temperature of the polymer melt stream will
be
determined by several factors, including the kind of polymer flakes used, the
energy supplied to the extruder screw, etc. As an example, PET is
conventionally extruded at a temperature from about 260 degrees Centigrade to
about 290 degrees Centigrade. A non-reactive gas is injected under pressure
into the extruder mixing zone, to ultimately cause the entrapment of the gas
as
micro cellular voids within the polymer material. By the term "non-reactive
gas"
as it is used herein is meant a gas that is substantially inert vis-a-vis the
polymer.
Preferred non-reactive gases comprise carbon dioxide, nitrogen, and argon, as
well as mixtures of these gases with each other or with other gasses.
[0024] The extrudate is injection molded to form a polymer preform having the
non-reactive gas entrapped within the walls thereof. Methods and apparatus for
injection molding a polymer preform are well-known in the art.
[0025] According to the present invention, the polymer preform is injection
molded and simultaneously foamed using a non-reactive gas to utilize minimal
packing pressure. The gas is entrained in the material during the injection
phase. Contrary to the prior art injection molding process herein, wherein
additional polymer material is injected during the packing phase, the present
invention utilizes minimal packing pressure. As the polymer material is still
in a
-7-

CA 02678123 2009-08-13
WO 2008/112024 PCT/US2007/082226
molten state, the partial pressure of the non-reactive gas is sufficient to
permit
the release of the dissolved gas from the polymer into the gas phase where it
forms the micro cellular foam structure. Thus, the preform made by the
inventive
process weighs less than, but has the same form and geometry as, the polymer
preforms produced by the conventional injection molding operations that employ
the packing process. It is understood that the micro cells may contain one or
more of a variety of gases typically used in processes for making micro
cellular
foam structures.
[0026] Upon completion of the injection molding step, the preform is cooled to
a temperature below the polymer softening temperature. For example, the
softening temperature for PET is approximately 70 degrees Centigrade. Thus,
the entrapped non-reactive gas is retained within the walls of the polymer
preform. This cooling step conditions the polymer and preserves its desirable
properties for the successful preparation of a blow molded container. This
cooling step is also useful when employing polymers such as polyesters, which
cannot be blow molded directly from an extruded parison. This cooling step may
be effected by any conventional process used in the polymer forming art such
as,
for example, by passing a stream of a cooling gas over the surfaces of the
preform, or cooling the preform while in-mold by cooling the forming mold.
[0027] The preform is thereafter reheated to a temperature above the polymer
softening temperature. This heating step may be effected by well-known means
such as, for example, by exposure of the preform to a hot gas stream, by flame
impingement, by exposure to infra-red energy, by passing the preform through a
conventional oven, or the like. PET is generally reheated to a temperature
twenty to twenty-five degrees above its softening temperature for the
subsequent
blow molding operation. If PET is reheated too far above its glass transition
temperature, or held at a temperature above its softening temperature for an
excessive period of time, the PET undesirably will begin to crystallize and
turn
white. Likewise, if the preform is heated to a temperature above which the
mechanical properties of the material are exceeded by the increasing pressure
of
-8-

CA 02678123 2009-08-13
WO 2008/112024 PCT/US2007/082226
the non-reactive gas in the micro cells, the micro cells undesirably will
begin to
expand thus distorting the preform.
[0028] Finally, the preform is blow molded, to prepare a container, consisting
essentially of a micro cellular foamed polymer having a non-reactive gas
contained within the micro cellular foam cells. Methods and apparatus for blow
molding a container from a polymer preform are well-known.
[0029] The blow molded foamed-wall polymer container so produced has a
silvery appearance. The appearance of the blow molded container may vary as
the non-reactive gas in the mirco cells comprises a concentration of carbon
dioxide in excess of ten percent by weight of the total weight of the non-
reactive
gas. As the amount of carbon dioxide or other non-reactive in the micro cells
increases, the appearance of the resultant blow molded container will
transition
from a silvery appearance to a white appearance. The blow molded container
with a white appearance may exhibit CIE L*a*b* Color Scale numbers in the
ranges of: L* values in the range of about 41.5 through 46.0, a* values in the
range of about 0.10 through 0.25, and b* values in the range of about 2.20
through 3.10. While not wishing to be bound by any particular theory regarding
the reason that the ultimately produced container has a unique silvery
appearance, it is believed that, as the preform cavity is being filled with
polymer,
bubbles of gas are formed at the flow front of the polymer due to the pressure
drop between the dissolved gas and the relatively lower pressure in the
preform
cavity. The bubbles formed at the flow front of the polymer material as it is
introduced into the preform cavity are subsequently deposited on the outside
and
inside surfaces of the preform.
[0030] From the forgoing description, one ordinarily skilled in the art can
easily ascertain the essential characteristics of the invention, and without
departing from its spirit and scope, can make various changes and
modifications
to adapt the invention to various uses and conditions.
-9-

Dessin représentatif

Désolé, le dessin représentatif concernant le document de brevet no 2678123 est introuvable.

États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Le délai pour l'annulation est expiré 2017-10-23
Lettre envoyée 2016-10-24
Accordé par délivrance 2012-10-09
Inactive : Page couverture publiée 2012-10-08
Préoctroi 2012-07-26
Inactive : Taxe finale reçue 2012-07-26
Un avis d'acceptation est envoyé 2012-03-27
Lettre envoyée 2012-03-27
Un avis d'acceptation est envoyé 2012-03-27
Inactive : Approuvée aux fins d'acceptation (AFA) 2012-03-21
Modification reçue - modification volontaire 2011-10-06
Modification reçue - modification volontaire 2011-09-30
Inactive : Dem. de l'examinateur par.30(2) Règles 2011-04-04
Modification reçue - modification volontaire 2010-02-12
Lettre envoyée 2010-02-04
Exigences pour une requête d'examen - jugée conforme 2009-12-17
Requête d'examen reçue 2009-12-17
Toutes les exigences pour l'examen - jugée conforme 2009-12-17
Inactive : Page couverture publiée 2009-11-06
Inactive : Lettre officielle 2009-10-14
Lettre envoyée 2009-10-14
Inactive : Notice - Entrée phase nat. - Pas de RE 2009-10-14
Inactive : CIB en 1re position 2009-10-11
Inactive : CIB attribuée 2009-10-11
Inactive : CIB attribuée 2009-10-11
Inactive : CIB enlevée 2009-10-11
Inactive : CIB enlevée 2009-10-11
Inactive : CIB enlevée 2009-10-11
Demande reçue - PCT 2009-10-07
Exigences pour l'entrée dans la phase nationale - jugée conforme 2009-08-13
Modification reçue - modification volontaire 2009-03-13
Demande publiée (accessible au public) 2008-09-18

Historique d'abandonnement

Il n'y a pas d'historique d'abandonnement

Taxes périodiques

Le dernier paiement a été reçu le 2012-07-26

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
Taxe nationale de base - générale 2009-08-13
TM (demande, 2e anniv.) - générale 02 2009-10-23 2009-08-13
Enregistrement d'un document 2009-08-13
Requête d'examen - générale 2009-12-17
TM (demande, 3e anniv.) - générale 03 2010-10-25 2010-10-07
TM (demande, 4e anniv.) - générale 04 2011-10-24 2011-10-06
Taxe finale - générale 2012-07-26
TM (demande, 5e anniv.) - générale 05 2012-10-23 2012-07-26
TM (brevet, 6e anniv.) - générale 2013-10-23 2013-09-30
TM (brevet, 7e anniv.) - générale 2014-10-23 2014-10-01
TM (brevet, 8e anniv.) - générale 2015-10-23 2015-09-30
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
PLASTIC TECHNOLOGIES INC.
Titulaires antérieures au dossier
FRANK E. SEMERSKY
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document (Temporairement non-disponible). Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.

({010=Tous les documents, 020=Au moment du dépôt, 030=Au moment de la mise à la disponibilité du public, 040=À la délivrance, 050=Examen, 060=Correspondance reçue, 070=Divers, 080=Correspondance envoyée, 090=Paiement})


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Description 2009-08-12 9 655
Revendications 2009-08-12 5 159
Abrégé 2009-08-12 1 60
Revendications 2009-08-13 4 112
Revendications 2011-09-29 4 119
Avis d'entree dans la phase nationale 2009-10-13 1 193
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 2009-10-13 1 102
Accusé de réception de la requête d'examen 2010-02-03 1 176
Avis du commissaire - Demande jugée acceptable 2012-03-26 1 163
Avis concernant la taxe de maintien 2016-12-04 1 178
PCT 2009-08-12 10 382
Correspondance 2009-10-13 1 16
Taxes 2010-10-06 1 32
Taxes 2011-10-05 1 32
Correspondance 2012-07-25 1 31
Taxes 2012-07-25 1 32