Sélection de la langue

Search

Sommaire du brevet 2827053 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Demande de brevet: (11) CA 2827053
(54) Titre français: SYSTEME DE DEGIVRAGE ECLAIR
(54) Titre anglais: FLASH DEFROST SYSTEM
Statut: Réputée abandonnée et au-delà du délai pour le rétablissement - en attente de la réponse à l’avis de communication rejetée
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • F25B 47/02 (2006.01)
(72) Inventeurs :
  • DAVIES, THOMAS WILLIAM (Royaume-Uni)
  • CAMPBELL, ROBIN (Royaume-Uni)
(73) Titulaires :
  • FRIGESCO LIMITED
(71) Demandeurs :
  • FRIGESCO LIMITED (Royaume-Uni)
(74) Agent: RICHES, MCKENZIE & HERBERT LLP
(74) Co-agent:
(45) Délivré:
(86) Date de dépôt PCT: 2012-02-10
(87) Mise à la disponibilité du public: 2012-08-16
Requête d'examen: 2017-01-23
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Oui
(86) Numéro de la demande PCT: PCT/GB2012/050293
(87) Numéro de publication internationale PCT: GB2012050293
(85) Entrée nationale: 2013-08-09

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
1102485.8 (Royaume-Uni) 2011-02-11

Abrégés

Abrégé français

L'invention porte sur un système de réfrigération à compression de vapeur qui comprend un compresseur 1 agencé pour faire recirculer un fluide frigorigène à travers un condenseur, un dispositif de détente 4 et un évaporateur 5. Pour obtenir un dégivrage rapide et thermodynamiquement efficace de l'évaporateur, du fluide frigorigène chaud arrivant du condenseur est stocké dans un récepteur de dégivrage 6 avant de passer à travers le dispositif de détente 4. Dans une phase de dégivrage, un dispositif de vannes 7-10 forme un circuit de dégivrage fermé qui relie l'évaporateur 5 au récepteur de dégivrage 6 à travers la vanne de dégivrage 10 pour permettre à un fluide chaud de passer du récepteur de dégivrage à l'évaporateur et le fluide frigorigène liquide contenu dans l'évaporateur s'écoule jusqu'au récepteur de dégivrage 6 en passant par une vanne de drain 9. Dans une phase de pré-dégivrage, le dispositif de vanne ferme l'entrée de fluide arrivant à l'évaporateur 5 et le compresseur travaille pour vider partiellement l'évaporateur avant que l'évaporateur ne soit relié au récepteur de dégivrage, de telle sorte qu'il se produit un remplissage éclair de l'évaporateur par de la vapeur chaude. Un milieu d'échange de chaleur 1 peut être inclus pour stocker de la chaleur de la sortie du condenseur et la renvoyer à l'évaporateur pendant le dégivrage. Une quantité additionnelle de chaleur peut être fournie au liquide de dégivrage pour accroître encore la vitesse du dégivrage.


Abrégé anglais

A vapour compression refrigeration system includes a compressor (1) arranged to re-circulate refrigerant through a condenser (2), an expansion device (4) and an evaporator (5). To achieve rapid thermodynamically efficient defrosting of the evaporator, hot refrigerant from the condenser is stored in a defrost receiver (6) before passing through the expansion device (4). In a defrost phase, a valve arrangement (7-10) forms a closed defrost circuit connecting the evaporator (5) to the defrost receiver (6) via defrost valve (10) to allow hot fluid to pass from the defrost receiver to the evaporator and liquid refrigerant in the evaporator flows to the defrost receiver (6) via drain valve (9). In a pre-defrost phase, the valve arrangement closes the fluid input to the evaporator (5) and the compressor operates to partially evacuate the evaporator before the evaporator is connected to the defrost receiver, so that flash flooding of the evaporator with hot vapour occurs. A phase change medium (11) may be included to store heat from the condenser output and return it to the evaporator during defrost. Additional heat may be supplied to the defrost liquid to further increase the defrost speed.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


15
CLAIMS
1. A vapour compression refrigeration system including a
compressor (1) arranged to re-circulate refrigerant through a
condenser (2), an expansion device (4) and an evaporator (5),
a defrost receiver (6: Fig.s 2 and 5; 3: Fig.s 3 and 4) with or
without an additional liquid receiver (3: Fig. 2) through which
hot refrigerant from the condenser flows before passing
through the expansion device (4), and a valve arrangement
(10/13, 9, 4) which, in a defrost phase, connects the
evaporator to the defrost receiver to allow hot refrigerant from
the defrost receiver (6/3) to pass through the evaporator (5),
characterised in that
- the valve arrangement (10/13, 9, 4) is arranged to create,
during the defrost phase, a defrost circuit through which hot
refrigerant vapour flows from the defrost receiver (6/3) to the
evaporator (5) and cool liquid refrigerant condensate returns
from the evaporator (5) to the defrost receiver (6/3) without
passing through the compressor (1); and
- the defrost receiver is associated with a heat storage medium
(11/14/17) in heat-exchange contact with the refrigerant and
from which stored heat energy is released into the refrigerant
flowing through the defrost circuit and transported to the
evaporator (5) during the defrost phase.
2. A vapour compression refrigeration system according to
Claim 1 in which the heat storage medium comprises a phase-
change medium (11/14).

16
3. A vapour compression refrigeration system according to
Claim 2 in which the phase-change medium (11) is contained
within the defrost receiver (6).
4. A vapour compression refrigeration system according to
Claim 2 in which the phase-change medium (14) is included
between the defrost receiver (3: Fig. 3) and the expansion
device (4).
5. A vapour compression refrigeration system according to
Claim 1 in which a fluid-to-fluid heat exchanger (15) is included
between the defrost receiver (3: Fig. 4) and the expansion
device (4) and a fluid heat storage medium is circulated
through the secondary of the heat exchanger to a storage
reservoir (17).
6. A vapour compression refrigeration system according to
Claim 1 in which heating means is arranged to provide
additional heat input to the hot refrigerant flowing from the
defrost receiver (6).
7. A vapour compression refrigeration system according to
Claim 1 which includes a plurality of evaporators (5) and in
which each evaporator is associated with a respective defrost
receiver (6).
8. A vapour compression refrigeration system according to
Claim 1 in which a pump (20) is arranged to return liquid
refrigerant from the evaporator (5) to the defrost receiver (6)

17
during the defrost phase.
9. A method of defrosting a vapour compression
refrigeration system including a compressor (1) arranged to re-
circulate refrigerant through a condenser (2), an expansion
device (4) and an evaporator (5), a defrost receiver (6: Fig.s 2
and 5; 3: Fig.s 3 and 4) with or without an additional liquid
receiver (3: Fig. 2) through which hot refrigerant from the
condenser flows before passing through the expansion device
(4), and a valve arrangement (10/13, 9, 4) which, in a defrost
phase, connects the evaporator to the defrost receiver to allow
hot refrigerant from the defrost receiver (6/3) to pass through
the evaporator (5),
characterised in that
- the valve arrangement (10/13, 9, 4) is arranged to create,
during the defrost phase, a defrost circuit through which hot
refrigerant vapour flows from the defrost receiver (6/3) to the
evaporator (5) and cool liquid refrigerant condensate returns
from the evaporator (5) to the defrost receiver (6/3) without
passing through the compressor (1); and
- the defrost receiver is associated with a heat storage medium
(11/14/17) in heat-exchange contact with the refrigerant and
from which stored heat energy is released into the refrigerant
flowing through the defrost circuit and transported to the
evaporator (5) during the defrost phase by the process of
refrigerant boiling in the defrost receiver (6/3) followed by
refrigerant condensation in the evaporator (5).

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 02827053 2013-08-09
WO 2012/107773
PCT/GB2012/050293
- 1 -
FLASH DEFROST SYSTEM
TECHNICAL FIELD OF THE INVENTION
This invention relates to a flash defrost system for defrosting
evaporators in vapour compression refrigeration systems. As
will be explained more fully herein, the invention is applicable
to direct expansion, flooded evaporator and liquid overfeed
refrigeration systems.
BACKGROUND
In many applications of vapour compression refrigeration
systems an evaporator is used to cool air, inter alia, in chiller
rooms, supermarket chilled display cabinets, domestic freezers
and air source heat pumps. In such applications the external
surfaces of the evaporator become covered in ice during
operation due to condensation and freezing of water vapour in
the atmosphere. Ice formation adversely affects the heat
transfer performance, and the power consumption of the
compressor rises to compensate for loss of evaporator
efficiency. All such systems are therefore designed to
periodically defrost the evaporator in order to restore
performance and minimise running costs.

CA 02827053 2013-08-09
WO 2012/107773
PCT/GB2012/050293
- 2 -
Common methods of defrost include, in order of defrost speed:
discontinuation of the refrigeration process whilst electrical
heaters attached to the evaporator are used to nnelt and
release the accumulated ice; discontinuation of the refrigeration
effect but, with the compressor still running, diversion of the
hot gas output along an extra line to the evaporator for a time
sufficient to nnelt and release the ice; discontinuation of the
refrigeration effect and the use of ambient air to nnelt the ice.
To minimise temperature rises in the refrigerated products the
time of defrost needs to be short, so that electrical defrost is
most commonly used in food applications. However, electrical
defrost and hot gas defrost also incur a cost penalty in terms of
extra energy used.
WO 2009 034 300 Al discloses an ice maker which includes a
vapour compression refrigeration system having multiple
evaporators. Relatively hot refrigerant from a condenser flows
through a defrost receiver before passing through the
evaporators. Individual evaporators can be defrosted by means
of a valve system which connects the evaporator to the defrost
receiver to allow hot fluid to pass thernnosyphonically from the
defrost receiver to the evaporator and liquid refrigerant in the
evaporator to return by gravity to the defrost receiver.
However, in such a system the length of the defrost period is
relatively unimportant since the remaining evaporators will
continue to operate.
The present invention seeks to provide a new and inventive
form of defrost system which is capable of providing more rapid

CA 02827053 2013-08-09
WO 2012/107773
PCT/GB2012/050293
- 3 -
and energy-efficient defrosting of the evaporator than has
hitherto been possible.
SUMMARY OF THE INVENTION
The present invention proposes a vapour compression
refrigeration system including a compressor arranged to re-
circulate refrigerant through a condenser, an expansion device
and an evaporator, in which relatively hot refrigerant from the
condenser flows through a defrost receiver before passing
through the expansion device, and, in a defrost phase, a valve
arrangement connects the evaporator to the defrost receiver to
create a defrost circuit which allows hot fluid to pass from the
defrost receiver to the evaporator and liquid refrigerant in the
evaporator to flow to the defrost receiver,
characterised in that the refrigeration system is
constructed and operated such that, in a pre-defrost phase, the
valve arrangement closes the fluid input to the evaporator and
the compressor operates to partially evacuate the evaporator
before the evaporator is connected to the defrost receiver.
By isolating the input to the evaporator prior to commencement
of the defrost phase and allowing the compressor to remove
refrigerant from the evaporator, the commencement of the
defrost phase causes the hot refrigerant to boil and results in
immediate flash flooding of the evaporator with hot refrigerant
vapour. The invention therefore provides a means of defrosting
the evaporator which uses a minimum amount of net energy

CA 02827053 2013-08-09
WO 2012/107773
PCT/GB2012/050293
- 4 -
from the system and which also enables a significant reduction
in the defrost period. In food applications therefore, the
invention minimises excursions from the ideal storage
temperature of the product.
BRIEF DESCRIPTION OF THE DRAWINGS
The following description and the accompanying drawings
referred to therein are included by way of non-limiting example
in order to illustrate how the invention may be put into
practice. In the drawings:
Figure 1 is a diagram of a known form of vapour
compression refrigeration circuit upon which the
present invention is based;
Figure 2 is a diagram of a first such refrigeration
circuit incorporating a defrost system in accordance
with the invention;
Figure 3 is a diagram of a second such refrigeration
circuit incorporating a defrost system in accordance
with the invention;
Figure 4 is a modified form of the refrigeration circuit
shown in Fig. 3;
Figure 5 is a modified form of the refrigeration circuit

CA 02827053 2013-08-09
WO 2012/107773
PCT/GB2012/050293
- 5 -
shown in Fig. 2 which can be used with multiple
evaporators; and
Figure 6 shows a further modification as applied to the
refrigeration circuit of Fig.5.
DETAILED DESCRIPTION OF THE DRAWINGS
Fig. 1, shows a widely used direct expansion arrangement to
which the present invention may be applied, comprising a
closed refrigerant circuit in which a compressor 1 pressurises
vapour phase refrigerant. The hot superheated gas leaving the
compressor passes to a condenser 2 in which desuperheating
and subcooling occurs. The warm high pressure liquid
refrigerant then passes to a liquid receiver vessel 3 acting as a
refrigerant reservoir. Liquid from the reservoir supplies an
expansion device 4 where a rapid drop in pressure produces a
two phase stream of cold vapour and liquid which then enters
the bottom of evaporator 5. Evaporation of the liquid phase is
completed in the evaporator so that the required cooling effect
is achieved. Cold sub-cooled vapour from a top exit of the
evaporator 5 then returns to the inlet of the compressor 1 via
the suction line of the compressor and the cycle is repeated.
Various embodiments of the invention will now be described
which achieve rapid energy-efficient defrosting of the
evaporator in such a refrigeration system. In the following
description and drawings the reference numbers used in Fig. 1

CA 02827053 2013-08-09
WO 2012/107773
PCT/GB2012/050293
- 6 -
are applied to corresponding items within the refrigeration
system.
In the first embodiment which is shown in Fig. 2 a defrost
receiver 6 is inserted into the liquid stream between the main
liquid reservoir 3 and the expansion device 4, which may be an
expansion valve. A shut-off valve 7 is inserted into the flow
path between the receiver 3 and the defrost receiver 6, and an
isolation valve 8 is inserted between the exit of the evaporator
and the inlet of the compressor 1. A drain valve 9 is
connected in parallel with the expansion valve 4, and a defrost
valve 10 is connected between the top of the defrost receiver 6
and the exit of the evaporator 5. During normal operation the
expansion valve 4 and valves 7 and 8 are open and valves 9
and 10 are closed resulting in a refrigerant flow circuit which is
essentially the same as that shown in Fig. 1. As previously
explained however, normal operation of the circuit will result in
ice formation on the outside of the evaporator due to
condensation of atmospheric water vapour.
When defrosting of the evaporator is required the expansion
valve 4 is firstly closed to close off the fluid inlet of the
evaporator while the compressor 1 continues to run. The
suction line to the compressor continues to draw refrigerant
vapour from the evaporator 5, causing partial evacuation of the
evaporator. After a sufficient period of time, valves 7 and 8 are
closed and valve 10 is opened allowing high pressure liquid
refrigerant in the defrost receiver 6 to flash over into the
evaporator 5, which is at a very low pressure. (The compressor

CA 02827053 2013-08-09
WO 2012/107773
PCT/GB2012/050293
- 7 -
may be turned off during this phase.) Refrigerant vapour
condenses in the evaporator releasing latent heat and
transferring it at high heat transfer efficiency until the
pressures in the evaporator 5 and the defrost receiver 6
equalise, at which point drain valve 9 is opened to allow liquid
refrigerant in the evaporator to drain back into the receiver 6
under the action of gravity. When the temperature of the liquid
in the receiver 6 falls to a predetermined level indicating that
defrost is complete, valves 9 and 10 are closed and valves 4, 7
and 8 are opened and the normal operation of the refrigeration
circuit resumes.
In a further improvement of the defrost system in accordance
with the invention the heat energy extracted from the hot liquid
refrigerant and made available for defrost may be augmented
by means of a phase-change unit 11 contained within the
defrost receiver 6. A suitable phase-change medium is
encapsulated within the phase-change unit 11 so that during
normal operation the hot liquid refrigerant flows in contact with
the phase-change unit melting the phase-change material and
storing enthalpy from the liquid refrigerant stream as latent
heat. During the defrost stage the stored heat energy is
released into the refrigerant stream circulating in the closed
loop thereby accelerating the defrost process. The result of
such extraction of heat from the hot liquid refrigerant stream is
to increase the thermodynamic efficiency of the overall
refrigeration circuit through a more effective expansion
process, which largely compensates for the extra energy
needed to re-cool the evaporator after a defrost. The energy

CA 02827053 2013-08-09
WO 2012/107773
PCT/GB2012/050293
- 8 -
cost of the defrost process is thereby minimised.
In a second embodiment of the invention which is shown in Fig.
3 the liquid reservoir 3 is arranged to act as a defrost receiver.
The evaporator is at a higher level than the receiver, and the
expansion device 4 is of a type which can be fully opened to
remove the restriction, for example an expansion valve driven
by a stepper motor. An isolation valve 12 in the compressor
suction line is open when the compressor is running and closed
at other times. A defrost valve 13 connects the exit of the
evaporator to the top of the receiver 3 and is shut in normal
operation. When defrost is initiated the expansion valve 4 is
fully closed for a period to allow the evaporator to empty via
the suction line. The compressor 1 is then switched off and
valve 12 is shut. The expansion valve 4 is fully opened
allowing hot liquid to drain back to the liquid receiver, and
valve 13 opens allowing vapour from the top of the receiver 3
to flash over into the partially evacuated evaporator. As the
evaporator is above the receiver and the line from the receiver
3 through the expansion valve 4 is full of liquid a flow will be
established from the evaporator through the expansion valve
back to the receiver 3. Vapour will continue to flow from the
receiver 3 through the defrost valve 13 to the evaporator 5
where it will condense, and the condensed liquid will then flow
back to the receiver 3 via the expansion valve 4.
In a variation of this embodiment a heat exchanger 14
containing a phase change medium may be added between the
receiver 3 and the expansion valve 4. This increases the

CA 02827053 2013-08-09
WO 2012/107773
PCT/GB2012/050293
- 9 -
energy storage capacity while minimising the refrigerant
charge. Alternatively, as shown in Fig. 4, a heat exchanger 15
of the fluid-to-fluid type can be used. The secondary of the
heat exchanger is connected to a pump 16 which circulates an
antifreeze fluid from a separate tank 17 in a closed circuit, thus
acting to increase the thermal storage capacity of the defrost
system.
In refrigeration installations with multiple evaporators fed from
common liquid supply and suction manifolds, such as those
used in supermarket display cabinets or cold storage facilities,
the embodiment of the invention shown in Fig. 5 may be used.
The individual evaporators 5 and associated defrost circuitry
constructed and operated as previously described in relation to
Fig. 2 are each connected to the common liquid manifold 18
and suction manifold 19. It will be noted that in this case each
evaporator 5 is associated with its own defrost receiver 6 so
that flash defrosting of the individual evaporators may again
take place as described.
In the embodiments described above the evaporator 5 should
be higher than the heat store module formed by the defrost
receiver 6 and the phase-change unit 11 (if provided) so that
liquid refrigerant can return to the receiver 6 under the action
of gravity. Fig. 6 shows how this requirement can be obviated
by adding a pump 20 in series with the valve 9 between the
liquid outlet from the evaporator 5 and the defrost receiver 6.
The pump 20 will return cold liquid refrigerant from the
evaporator 5 to the heat store 6, 11 where it can evaporate and

CA 02827053 2013-08-09
WO 2012/107773
PCT/GB2012/050293
- 10 -
return to the evaporator as vapour. It should also be noted
that with such an arrangement the valve 9 could be replaced
with a non-return valve, removing the requirement for
actuation by the refrigeration control system.
Although the specific embodiments described above are applied
to refrigeration systems of the direct expansion type which
maintain a constant superheat at the evaporator exit, the
invention can also be applied to flooded evaporator and liquid
overfeed refrigeration systems. In such systems the
evaporator is fed with liquid refrigerant and filled with boiling
refrigerant so that a mixture of liquid refrigerant and refrigerant
vapour exits from the evaporator. This requires the addition of
a low pressure accumulator in the suction line so that the liquid
can be separated from the vapour which is returned to the
compressor. Provided the return to the accumulator is above
the fluid level in the evaporator all of the liquid in the
evaporator should evaporate when the liquid feed to the
evaporator is turned off during the pre-defrost phase. The
valve arrangement may need to be modified, but the basic
principle of partial evacuation of the evaporator followed by
flash flooding with hot refrigerant from the liquid supply line
would still apply.
In each embodiment of the invention the heat energy extracted
from the hot liquid refrigerant can be augmented by means of
electrical power supplied by a resistance heater located in or
around the defrost receiver with the purpose of accelerating the
defrost process.

CA 02827053 2013-08-09
WO 2012/107773
PCT/GB2012/050293
- 11 -
The timing and sequencing of the valve operation, the sizing
and positioning of the defrost receiver relative to the
evaporator, and the use of thermal capacity enhancement by
means of phase change materials, secondary fluid circuit or
electrical power can be optimised for maximum overall system
efficiency.
The type of valves which may be employed in the refrigeration
units described above include, inter alia, check valves, solenoid
valves, expansion valves and three-way valves.
The control system employed to manage the operation of the
refrigeration systems described above will initiate and
terminate the defrost process based on information supplied by
temperature and pressure sensors fitted at strategic points
around the refrigerant circuits.
Whilst the above description places emphasis on the areas
which are believed to be new and addresses specific problems
which have been identified, it is intended that the features
disclosed herein may be used in any combination which is
capable of providing a new and useful advance in the are.

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Demande non rétablie avant l'échéance 2019-02-12
Le délai pour l'annulation est expiré 2019-02-12
Inactive : Abandon. - Aucune rép dem par.30(2) Règles 2018-04-30
Réputée abandonnée - omission de répondre à un avis sur les taxes pour le maintien en état 2018-02-12
Inactive : Dem. de l'examinateur par.30(2) Règles 2017-10-31
Inactive : Rapport - CQ réussi 2017-10-27
Modification reçue - modification volontaire 2017-02-03
Lettre envoyée 2017-01-26
Toutes les exigences pour l'examen - jugée conforme 2017-01-23
Requête d'examen reçue 2017-01-23
Exigences pour une requête d'examen - jugée conforme 2017-01-23
Inactive : Page couverture publiée 2013-10-15
Demande reçue - PCT 2013-09-23
Inactive : Notice - Entrée phase nat. - Pas de RE 2013-09-23
Inactive : CIB attribuée 2013-09-23
Inactive : CIB attribuée 2013-09-23
Inactive : CIB en 1re position 2013-09-23
Exigences pour l'entrée dans la phase nationale - jugée conforme 2013-08-09
Déclaration du statut de petite entité jugée conforme 2013-08-09
Demande publiée (accessible au public) 2012-08-16

Historique d'abandonnement

Date d'abandonnement Raison Date de rétablissement
2018-02-12

Taxes périodiques

Le dernier paiement a été reçu le 2017-01-24

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
TM (demande, 2e anniv.) - petite 02 2014-02-10 2013-08-09
Taxe nationale de base - petite 2013-08-09
TM (demande, 3e anniv.) - générale 03 2015-02-10 2015-01-28
TM (demande, 4e anniv.) - générale 04 2016-02-10 2016-01-27
Requête d'examen - petite 2017-01-23
TM (demande, 5e anniv.) - générale 05 2017-02-10 2017-01-24
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
FRIGESCO LIMITED
Titulaires antérieures au dossier
ROBIN CAMPBELL
THOMAS WILLIAM DAVIES
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document (Temporairement non-disponible). Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(yyyy-mm-dd) 
Nombre de pages   Taille de l'image (Ko) 
Description 2013-08-08 11 366
Revendications 2013-08-08 3 109
Dessins 2013-08-08 4 46
Abrégé 2013-08-08 2 77
Dessin représentatif 2013-09-23 1 6
Page couverture 2013-10-14 2 49
Revendications 2017-02-02 4 160
Avis d'entree dans la phase nationale 2013-09-22 1 194
Courtoisie - Lettre d'abandon (taxe de maintien en état) 2018-03-25 1 174
Rappel - requête d'examen 2016-10-11 1 123
Accusé de réception de la requête d'examen 2017-01-25 1 176
Courtoisie - Lettre d'abandon (R30(2)) 2018-06-10 1 164
PCT 2013-08-08 16 557
Requête d'examen 2017-01-22 1 63
Modification / réponse à un rapport 2017-02-02 6 196
Demande de l'examinateur 2017-10-30 3 186