Sélection de la langue

Search

Sommaire du brevet 2847938 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 2847938
(54) Titre français: ALLIAGE RENFORCE DE CERAMIQUE COMPORTANT DU TITANE ET DESTINE AUX IMPLANTS MEDICAUX
(54) Titre anglais: TITANIUM BASED CERAMIC REINFORCED ALLOY FOR USE IN MEDICAL IMPLANTS
Statut: Accordé et délivré
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • C22C 14/00 (2006.01)
  • A61L 27/06 (2006.01)
  • A61L 27/10 (2006.01)
  • B22D 7/00 (2006.01)
(72) Inventeurs :
  • FISK, ANDREW E. (Etats-Unis d'Amérique)
  • DEMCHYSHYN, ANATOLLI (Etats-Unis d'Amérique)
  • KUZMENKO, MYKOLA (Etats-Unis d'Amérique)
  • FIRSTOV, SERGEI (Etats-Unis d'Amérique)
  • KULAK, LEONID (Etats-Unis d'Amérique)
(73) Titulaires :
  • PULSE IP, LLC
(71) Demandeurs :
  • PULSE IP, LLC (Etats-Unis d'Amérique)
(74) Agent: GOWLING WLG (CANADA) LLPGOWLING WLG (CANADA) LLP
(74) Co-agent:
(45) Délivré: 2021-05-25
(22) Date de dépôt: 2014-03-31
(41) Mise à la disponibilité du public: 2015-09-30
Requête d'examen: 2018-12-28
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Non

(30) Données de priorité de la demande: S.O.

Abrégés

Abrégé français

Un lingot dalliage à base de titane renforcé de céramique à utiliser dans la production dimplants médicaux est décrit. Un lingot est formé dun alliage composé denviron 5 % à environ 35 % massique de niobium, denviron 0,5 % à environ 3,5 % massique de silicium et denviron 61,5 % à environ 94,5 % massique de titane. Lalliage comprend une phase de réseau cristallin hexagonal (a) denviron 20 % à environ 70 % volumique et une phase de réseau cristallin cubique centré (p) denviron 30 % à environ 80 % volumique. Lalliage comporte une résistance à la traction denviron 940 MPa ou plus et un module délasticité denviron 150 GPa ou moins. Un mélange uniforme en fusion de lalliage de niobium, de silicium et de titane est formé, moulé et refroidi en lingot. Le lingot peut ensuite être façonné en implant médical et recuit.


Abrégé anglais

A titanium based, ceramic reinforced alloy ingot for use in producing medical implants. An ingot is formed from an alloy having comprising from about 5 to about 35 wt. % niobium, from about 0.5 to about 3.5 wt. % silicon, and from about 61.5 to about 94.5 wt. % of titanium. The alloy has a hexagonal crystal lattice a phase of from about 20 vol % to about 70 vol %, and a cubic body centered p crystal lattice phase of from about 30 vol. % to about 80 vol. %. The ingot has an ultimate tensile strength of about 940 MPa or more, and a Young's modulus of about 150 GPa or less. A molten substantially uniform admixture of a niobium, silicon, and titanium alloy is formed, cast into a shape, and cooled into an ingot. The ingot may then be formed into a medical implant and optionally annealed.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


Claims
1. An ingot comprising an alloy, the alloy consisting essentially of from
about 5 wt. %
to about 35 wt. % of niobium, from about 0.5 wt. % to about 3.5 wt. % of
silicon, and
from about 61.5 wt. % to about 94.5 wt. % of titanium, the alloy having no
more than 2
wt. % of nitrogen, no more than 2 wt. % of oxygen, and no more than 2 wt. % of
carbon,
the alloy having a hexagonal crystal lattice a phase of from about 20 vol. %
to about
70 vol. %, and a cubic body centered p crystal lattice phase of from about 30
vol. % to
about 80 vol. %, the ingot having an ultimate tensile strength of about 1,000
MPa or
more, and a Young's modulus of 150 GPa or less, and within the solid solution
of the
.. metals including a glassy silicon ceramic.
2. The ingot of claim 1, wherein the alloy comprises from about 5 wt. % to
about 35 wt.
% of niobium, from about 0.5 wt. % to about 3.5 wt. % of silicon, and the
balance
titanium.
3. The ingot of claim 1, wherein the alloy comprises from about 7 wt. % to
about 25 wt.
.. % of niobium, from about 1 wt. % to about 2.5 wt. % of silicon, and from
about 72.5 wt.
% to about 92 wt. % of titanium.
4. The ingot of claim 1, wherein the alloy comprises from about 10 wt. % to
about 20
wt. % of niobium, from about 1.25 wt. % to about 2 wt. % of silicon, and from
about 78
wt. % to about 88.75 wt. % of titanium.
.. 5. The ingot of claim 1, which has an ultimate tensile strength of from
about 1000 MPa
to about 1400 MPa, and a Young's modulus of from about 100 GPa to about 150
GPa.
6. The ingot of claim 1, which has an ultimate tensile strength of from about
1100 MPa
to about 1300 MPa, and a Young's modulus of from about 110 GPa to about 140
GPa.
7. The ingot of claim 1, wherein the alloy has 1 wt. % of nitrogen or less, 1
wt. % of
oxygen or less, and 1 wt. % of carbon or less.
9
Date Recue/Date Received 2020-07-14

8. The ingot of claim 1, wherein the alloy has 0.5 wt. % of nitrogen or less,
0.5 wt. % of
oxygen or less, and 0.5 wt. % of carbon or less.
9. The ingot of claim 1, wherein the alloy comprises a hexagonal crystal
lattice a phase
of from about 40 vol. % to about 70 vol. %, and a cubic body centered p
crystal lattice
phase of from about 30 vol. % to about 60 vol. %.
10. The ingot of claim 1, wherein the alloy comprises a hexagonal crystal
lattice a phase
of from about 45 vol. % to about 65 vol. %, and a cubic body centered p
crystal lattice
phase of from about 45 vol. % to about 60 vol. %.
11. A medical implant formed from the ingot of any one of claims 1 to 10.
12. The medical implant of claim 11, which is in the form of a screw, pin,
rod, bar,
spring, coil, cable, staple, clip or plate.
13. A method of forming an ingot which comprises forming a molten alloy
consisting
essentially of a substantially uniform admixture of from about 5 wt. % to
about 35 wt.
% of niobium, from about 0.5 wt. % to about 3.5 wt. % of silicon, and from
about 61.5
wt. % to about 94.5 wt. % of titanium, the alloy having no more than 2 wt. %
of nitrogen,
no more than 2 wt. % of oxygen, and no more than 2 wt. % of carbon, casting
the
molten alloy into a shape, and then cooling the shape into an ingot, the alloy
having a
hexagonal crystal lattice a phase of from about 20 vol.% to about 70 vol.%,
and a cubic
body centered p crystal lattice phase of from about 30 vol.% to about 80
vol.%, the
ingot having an ultimate tensile strength of about 940 MPa or more, and a
Young's
modulus of 150 GPa or less, and within the solid solution of the metals
including a
glassy silicon ceramic.
14. The method of claim 13 wherein the alloy comprises from about 5 wt.% to
about 35
wt.% of niobium, from about 0.5 wt.% to about 3.5 wt.% of silicon, and the
balance
being titanium.
Date Recue/Date Received 2020-07-14

15. The method of claim 13, further comprising the subsequent step of forming
the
ingot into a medical implant.
16. The method of claim 15, wherein the medical implant is in the form of a
screw, pin,
rod, bar, spring, coil, cable, staple, clip or plate.
17. The method of claim 13, further comprising the subsequent step of
annealing the
ingot.
18. The method of claim 15, further comprising the subsequent step of
annealing the
medical implant.
11
Date Recue/Date Received 2020-07-14

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 02847938 2014-03-31
Docket No: PLS-102
TITANIUM BASED CERAMIC REINFORCED ALLOY
FOR USE IN MEDICAL IMPLANTS
BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a titanium based, ceramic reinforced alloy ingot for
use in
producing medical implants. More particularly, the invention pertains to a
ceramic reinforced alloy ingot comprising titanium, niobium and silicon. The
alloy has both an a crystal phase and a 3 crystal phase. The ingot has an
ultimate
tensile strength of about 940 MPa or more, and a Young's modulus of about 150
GPa or less.
Description of the Related Art
There is great commercial interest in the production of biocompatible,
medically
suitable implants for surgically jointing bone and implanting teeth. Medical
implants such as screws, pins, rods, bars, springs, coils, cables, staples,
clips,
plates and the like require materials with very high tensile strength and high
cyclic fatigue life while also having a modulus of elasticity low enough to be
compatible with bone. Common alloys include titanium, stainless steel and
cobalt
chrome alloys. Stainless steel and cobalt chrome alloys exhibit very high
tensile
strength, but both contain nickel and chromium which are known irritants to
the
body. In addition, these alloys have low ductility and a Young's modulus
approaching five times that of bone. This high tensile strength and Young's
modulus also makes it difficult to machine these components cost effectively
1

CA 02847938 2014-03-31
using conventional techniques. Titanium and its alloys are especially popular
choices for orthopedic bone screws and plates commonly used for spinal
fixation.
Titanium alloys for a variety of applications are known in the art and there
are
numerous literature references disclosing a wide range of elements which are
used
to provide alloys having desired characteristics, such as increased tensile
strength
and ductility. Generally, titanium and its alloys may exist in one or a
mixture of
two basic crystalline structures, namely the a phase, which is a hexagonal
close-
packed structure, and the 13 phase which is a body-centered cubic structure.
The
commercially pure grades of titanium alloys have low tensile strengths but
show
no signs of tissue irritation. These alloys are commonly used for orthopedic
plates
which are implanted externally to the bone structure and can therefore have a
larger size. Ti6A1V4 alloys are commonly used for higher strength applications
such as fixation screws or plates which must be contained in a small area. One
known medically implantable alloy is disclosed in U.S. patent 6,752,882. It
provides a biocompatible low modulus, high strength titanium-niobium alloy
containing a phase as a major phase and consisting essentially of 10-30 wt %
of
Nb and the balance titanium. U.S. patent 5,954,724 relates to titanium alloys
suitable for use for medical implants and devices having a high-strength, low-
modulus, and high hardness with improved corrosion resistance due to the
addition of hafnium and molybdenum, and which additionally allow for surface
hardening of an implant made of this alloy. U.S. patent 7,892,369 provides a
method for modifying the microstructure of titanium alloys for use in the
manufacture of orthopedic prostheses. An orthopedic prosthesis is initially
formed
from a titanium alloy and subsequently subjected to a thermal treatment
followed
by rapid quenching. The microstructure of the titanium alloy in the prosthesis
has
improved resistance to fretting fatigue. U.S. patent 7,682,473 provides an
implant
prosthesis composed of a TiAlNb alloy having a modulus near that for bone to
2

CA 02847938 2014-03-31
prevent stress shielding, and a tensile and compressive strength and fracture
toughness equal to or greater than that of bone. A key problem with other
alloys
which use aluminum and vanadium is the suspected effect of Al and V when
movement and fretting are involved. The release of Al and V into the blood
stream could cause irritation for the patient in the long term. Another issue
with
certain grades of titanium is the so called "notch effect" during cyclic
fatigue.
Prepared and polished samples of certain titanium alloys have been shown to
have
fatigue strength near the ultimate tensile strength. However, when a notch is
introduced to the sample, the fatigue strength can be lowered to 40% of the
ultimate tensile strength. Since implantable devices must be laser marked with
the
appropriate tracking information, a notch situation always exists and care
must be
taken not to exceed the notch fatigue strength.
The problems associated with designing an implantable device are specifically,
providing an alloy with high tensile strength, and a marginal Young's modulus
that contains no known irritants which can be economically machined with
conventional methods. The present invention addresses all these issues. The
invention provides an alloy of titanium, niobium and silicon. Titanium and
niobium alloys are known to form alloys with very low Young's modulus (50-
80GPa). A problem with these known alloys is that they do not have sufficient
strength for the manufacture of orthopedic devices such as bone plates and
fixation screws. This invention overcomes the limitations of conventional
alloys
by including within a solid solution of the metals, a glassy silicon ceramic
which
acts to absorb energy during crack propagation and retard dislocations during
applied stress. The atomic percent of this glassy silicon ceramic is
controlled as to
still allow for a moderately low Young's modulus and good formability. The
inventive alloy of primarily Ti with the addition of Nb and Si produces alloys
which have a complex alpha/beta structure with an amount of glassy material.
The
3

CA 02847938 2014-03-31
resulting alloy has a higher strength then the titanium grades presently used
in
medical implants while retaining a comparable elastic modulus.
SUMMARY OF THE INVENTION
The invention provides an ingot comprising an alloy, the alloy comprising from
about 5 wt. % to about 35 wt. % of niobium, from about 0.5 wt. % to about 3.5
wt. % of silicon, and from about 61.5 wt. % to about 94.5 wt. % of titanium,
the
alloy having a hexagonal crystal lattice a phase of from about 20 vol % to
about
70 vol %, and a cubic body centered 13 crystal lattice phase of from about 30
vol.
% to about 80 vol. %, the ingot having an ultimate tensile strength of about
940
MPa or more, and a Young's modulus of about 150 GPa or less.
The invention also provides a method of forming an ingot which comprises
forming a molten alloy comprising a substantially uniform admixture of from
about 5 wt. % to about 35 wt. % of niobium, from about 0.5 wt. % to about 3.5
wt. % of silicon, and from about 61.5 wt. % to about 94.5 wt. % of titanium,
casting the molten alloy into a shape, and then cooling the shape into an
ingot, the
alloy having a hexagonal crystal lattice a phase of from about 20 vol % to
about
70 vol %, and a cubic body centered 13 crystal lattice phase of from about 30
vol.
% to about 80 vol. %, the ingot having an ultimate tensile strength of about
940
MPa or more, and a Young's modulus of about 150 GPa or less.
4

CA 02847938 2014-03-31
DESCRIPTION OF THE INVENTION
An alloy is formed by combining commercially pure quantities of titanium,
niobium
and silicon. These may be obtained in the form of bars, wires, powders,
particles, or
any other convenient form. These are then heated until each is molten and
blended
into a substantially uniform admixture. The amount of titanium may range from
about 61.5 wt. % to about 94.5 wt. %, preferably from about 72.5 wt. % to
about
92 wt. %, and more preferably from about 78 wt. % to about 88.75 wt. %.
The amount of niobium may range from about 5 wt. % to about 35 wt. %,
preferably from about 7 wt. % to about 25 wt. %, and more preferably from
about
10 wt. % to about 20 wt. %. The amount of silicon may range from about 0.5 wt.
% to about 3.5 wt. %, preferably from about 1 wt. % to about 2.5 wt. %, and
more
from about 1.25 wt. % to about 2 wt. %. Preferably the alloy has no more than
2
wt. % of nitrogen, oxygen, or carbon. More preferably the alloy has about 1
wt.
% or less of nitrogen, oxygen or carbon. Still more preferably the alloy has
about
0.5 wt. % or less of nitrogen, oxygen or carbon. In a most preferred
embodiment,
the alloy comprises only these three elements such that the alloy has from
about 5
wt. % to about 35 wt. % of niobium, from about 0.5 wt. % to about 3.5 wt. % of
silicon, and the balance being titanium, apart from incidental impurities.
A method for preparing such a high strength, low modulus, biocompatible
titanium alloy involves mechanically blending the above components, and then
heating them until melted, one or more times.
The alloys are preferably made by mechanically blending accurately weighed
portions of the pure elements and melting the blend in a furnace such as a
plasma
arc furnace or vacuum arc furnace, and remelting as necessary to achieve
uniformity, and then casting and cooling. One example of a method of melting
includes combining the components in a commercially available arc-melting
5

CA 02847938 2014-03-31
vacuum pressure casting system. A melting chamber is first evacuated and
purged
with an inert gas such as argon. An argon pressure of, for example 1.5 kgf/cm2
may be maintained during melting. The appropriate amounts of titanium,
niobium and silicon are prepared by electron beam skull melting with induction
stirring of the melt. The resulting mixture may optionally be re-melted
multiple
times to improve homogeneity. The molten alloy is then cast, or drawn out of
the
crucible by a water cooled rod to form a cylindrical ingot, with cooling. The
alloy
has a combination crystal lattice structure of both a and 13 phases. In
particular,
the alloy has a hexagonal crystal lattice a phase of from about 20 vol % to
about
70 vol %, and a cubic body centered 13 crystal lattice phase of from about 30
vol. % to about 80 vol. %. Preferably the alloy has a hexagonal crystal
lattice a
phase of from about 40 vol. % to about 70 vol. %, and a cubic body centered i3
crystal lattice phase of from about 30 vol. % to about 60 vol. %. More
preferably
the alloy comprises a hexagonal crystal lattice a phase of from about 45 vol.
% to
about 65 vol. %, and a cubic body centered 13 crystal lattice phase of from
about
45 vol. % to about 60 vol. %.
The resulting ingot has an ultimate tensile strength of about 940 MPa or more,
usually from about 1000 MPa to about 1400 MPa, and more usually from about
1100 MPa to about 1300 MPa. The resulting ingot has a Young's modulus of
about 150 GPa or less, usually from about 100 GPa to about 150 GPa, and more
usually from about 110 GPa to about 140 GPa.
The resulting ingot may then be formed into the desired medial implant shape,
such as those in the form of a screw, pin, rod, bar, spring, coil, cable,
staple, clip,
plate, or the like. The implant may also be form into customized shapes such
as
those conforming to hip joint stems, femoral heads, knee femoral components,
6

CA 02847938 2014-03-31
. ,
knee tibial components, intramedullary nails, inner ear vent tubes, spinal
plates,
spinal disks, pelvic plates, dental implants, cardiovascular implants,
compression
hip screws, and the like. Such forming may be done by the use of customary
machine tooling. Optionally either the cast ingot or the machined medical
implant
may be annealed for additional strength, polished or anodized by well known
methods. Annealing may be done by heating at temperatures ranging from about
500 C. to about 1200 C., preferably from about 750 C. to about 1000 C.,
for
from about 20 minutes to about 360 minutes, preferably from about 40 minutes
to
about 120 minutes. Polishing may be done by mechanical burnishing.
Anodizing may be done by electrochemically oxidizing the surface.
The following non-limiting examples serve to illustrate the invention.
EXAMPLES
Three alloys were formed and tested in both the as cast condition, and after
annealing at 950 C for 1 hour in vacuum. The alloys were prepared by electron
beam skull melting with induction stirring of the melt. The resulting material
was
drawing out of the crucible by a water cooled rod to form a cylindrical ingot.
7

CA 02847938 2014-03-31
,
Young's Yield
Alloy UTS Modulus Strength
Elongation
Test Condition Nb Si (Mpa) (GPa) (Mpa) (%)
1 As Cast 10 1.1 1012 113 940 4.6
2 As Cast 13 1.5 995 112 937 6.2
3 As Cast 21 1.25 1022 110 960 4.8
la Annealed 10 1.1 1006 81 945 4.5
2a Annealed 13 1.5 1008 83 957 3.3
3a Annealed 21 1.25 957 76 850 3.25
The sample ingots were subjected to machinability tests, polishing tests and
color
anodizing. The composition performed excellently in all cases, with the
polishing
and anodizing exceeding the characteristics of commercially available Grade 4
and Grade 23 titanium. Detailed chemical and phase analysis of the
Ti-21Nb-1.25Si material was performed. The phase analysis shows a roughly
55/45 alpha/beta structure. XPS analysis confirmed that there existed a large
number of atoms in a glassy phase with 1.6at % of the material existing as
SiC.
This SiC glassy ceramic is deposited at the grain boundaries. Given the high
fracture toughness of the carbide these interstitial components act not only
prohibit dislocation movement but also absorb energy in the case of crack
propagation. The presence of carbon in the alloy used to form the SiC is
present in
the starting raw material as a typical impurity.
While the present invention has been particularly shown and described with
reference to preferred embodiments, it will be readily appreciated by those of
ordinary skill in the art that various changes and modifications may be made
without departing from the spirit and scope of the invention. It is intended
that
the claims be interpreted to cover the disclosed embodiment, those
alternatives
which have been discussed above and all equivalents thereto.
8

Dessin représentatif

Désolé, le dessin représentatif concernant le document de brevet no 2847938 est introuvable.

États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : Octroit téléchargé 2021-05-27
Inactive : Octroit téléchargé 2021-05-27
Inactive : Octroit téléchargé 2021-05-27
Lettre envoyée 2021-05-25
Accordé par délivrance 2021-05-25
Inactive : Page couverture publiée 2021-05-24
Préoctroi 2021-04-07
Inactive : Taxe finale reçue 2021-04-07
Un avis d'acceptation est envoyé 2020-12-07
Lettre envoyée 2020-12-07
Un avis d'acceptation est envoyé 2020-12-07
Inactive : Approuvée aux fins d'acceptation (AFA) 2020-11-13
Inactive : Q2 réussi 2020-11-13
Représentant commun nommé 2020-11-07
Inactive : COVID 19 - Délai prolongé 2020-07-16
Modification reçue - modification volontaire 2020-07-14
Inactive : COVID 19 - Délai prolongé 2020-07-02
Inactive : COVID 19 - Délai prolongé 2020-06-10
Rapport d'examen 2020-02-17
Inactive : Rapport - Aucun CQ 2020-02-14
Représentant commun nommé 2019-10-30
Représentant commun nommé 2019-10-30
Lettre envoyée 2019-01-14
Exigences pour une requête d'examen - jugée conforme 2018-12-28
Toutes les exigences pour l'examen - jugée conforme 2018-12-28
Requête d'examen reçue 2018-12-28
Lettre envoyée 2018-09-28
Inactive : Transferts multiples 2018-09-24
Requête pour le changement d'adresse ou de mode de correspondance reçue 2018-01-10
Demande publiée (accessible au public) 2015-09-30
Inactive : Page couverture publiée 2015-09-29
Inactive : CIB attribuée 2014-05-22
Inactive : CIB attribuée 2014-05-22
Inactive : CIB attribuée 2014-05-21
Inactive : CIB en 1re position 2014-05-21
Inactive : CIB attribuée 2014-05-21
Exigences de dépôt - jugé conforme 2014-04-17
Inactive : Certificat dépôt - Aucune RE (bilingue) 2014-04-17
Demande reçue - nationale ordinaire 2014-04-08
Inactive : Pré-classement 2014-03-31

Historique d'abandonnement

Il n'y a pas d'historique d'abandonnement

Taxes périodiques

Le dernier paiement a été reçu le 2021-03-31

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
Taxe pour le dépôt - générale 2014-03-31
TM (demande, 2e anniv.) - générale 02 2016-03-31 2016-03-24
TM (demande, 3e anniv.) - générale 03 2017-03-31 2017-03-07
TM (demande, 4e anniv.) - générale 04 2018-04-03 2018-03-26
Enregistrement d'un document 2018-09-24
Requête d'examen - générale 2018-12-28
TM (demande, 5e anniv.) - générale 05 2019-04-01 2019-01-15
TM (demande, 6e anniv.) - générale 06 2020-03-31 2020-01-06
TM (demande, 7e anniv.) - générale 07 2021-03-31 2021-03-31
Taxe finale - générale 2021-04-07 2021-04-07
TM (brevet, 8e anniv.) - générale 2022-03-31 2022-02-08
TM (brevet, 9e anniv.) - générale 2023-03-31 2022-12-14
TM (brevet, 10e anniv.) - générale 2024-04-02 2023-12-07
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
PULSE IP, LLC
Titulaires antérieures au dossier
ANATOLLI DEMCHYSHYN
ANDREW E. FISK
LEONID KULAK
MYKOLA KUZMENKO
SERGEI FIRSTOV
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Description 2014-03-31 8 337
Abrégé 2014-03-31 1 20
Revendications 2014-03-31 3 95
Page couverture 2015-09-08 1 33
Page couverture 2015-09-08 1 33
Revendications 2020-07-14 3 96
Page couverture 2021-04-26 1 33
Certificat de dépôt 2014-04-17 1 178
Rappel de taxe de maintien due 2015-12-01 1 112
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 2018-09-28 1 106
Rappel - requête d'examen 2019-01-02 1 127
Accusé de réception de la requête d'examen 2019-01-14 1 175
Avis du commissaire - Demande jugée acceptable 2020-12-07 1 551
Certificat électronique d'octroi 2021-05-25 1 2 527
Requête d'examen 2018-12-28 2 44
Demande de l'examinateur 2020-02-17 4 253
Modification / réponse à un rapport 2020-07-14 13 456
Paiement de taxe périodique 2021-03-31 1 26
Taxe finale 2021-04-07 4 93