Sélection de la langue

Search

Sommaire du brevet 2900905 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Demande de brevet: (11) CA 2900905
(54) Titre français: PROCEDE D'ECHANGE D'IONS CONTINU INTEGRE A UNE SEPARATION SUR MEMBRANE POUR RECUPERER DE L'URANIUM
(54) Titre anglais: CONTINUOUS ION EXCHANGE PROCESS INTEGRATED WITH MEMBRANE SEPARATION FOR RECOVERING URANIUM
Statut: Réputée abandonnée et au-delà du délai pour le rétablissement - en attente de la réponse à l’avis de communication rejetée
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • C22B 60/02 (2006.01)
(72) Inventeurs :
  • REZKALLAH, ARESKI (France)
  • AERTS, PETER E.M.
  • KRUEGER, ROBERT T. (Etats-Unis d'Amérique)
(73) Titulaires :
  • DOW GLOBAL TECHNOLOGIES LLC
  • ROHM AND HAAS COMPANY
(71) Demandeurs :
  • DOW GLOBAL TECHNOLOGIES LLC (Etats-Unis d'Amérique)
  • ROHM AND HAAS COMPANY (Etats-Unis d'Amérique)
(74) Agent: SMART & BIGGAR LP
(74) Co-agent:
(45) Délivré:
(86) Date de dépôt PCT: 2014-01-27
(87) Mise à la disponibilité du public: 2014-08-28
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Oui
(86) Numéro de la demande PCT: PCT/US2014/013106
(87) Numéro de publication internationale PCT: US2014013106
(85) Entrée nationale: 2015-08-11

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
61/767,286 (Etats-Unis d'Amérique) 2013-02-21

Abrégés

Abrégé français

L'invention concerne un système et un procédé d'échange d'ions continu pour récupérer de l'uranium à partir d'une solution de liqueur sursaturée, le procédé comprenant les étapes suivantes : (a) traitement de la solution de liqueur sursaturée (16) avec une membrane (28) afin de produire : i) une solution de perméat de lixiviation (30) au moins partiellement appauvrie en uranium et en carbonate et ii) une solution de concentré de lixiviation (30') ayant une concentration relativement plus élevée d'uranium et de carbonate et qui est au moins partiellement appauvrie en chlorure ; (b) passage du courant de concentré de lixiviation (30') à travers un lit d'échange d'ions pour charger l'uranium sur une résine échangeuse d'anions fortement basique et produire une solution de stérile non traitée (18) appauvrie en uranium, (c) passage d'une solution d'éluant (20) comprenant du bicarbonate sur le lit d'échange d'ions chargé pour extraire l'uranium de la résine échangeuse d'ions fortement basique et produire un éluat (22) comprenant de l'uranium et du bicarbonate, (d) précipitation de l'uranium (24) de l'éluat pour produire une solution d'éluant résiduel (26) appauvrie en uranium et (e) répétition des étapes (a) à (d).


Abrégé anglais

A continuous ion exchange system and method for recovering uranium from a pregnant liquor solution wherein the method includes the steps of: (a) treating the pregnant liquor solution (16) with a membrane (28) to produce: i) a leach permeate solution (30) at least partially depleted of uranium and carbonate and ii) a leach concentrate solution (30') having a relatively higher concentration of uranium and carbonate and which is at least partially depleted of chloride; (b) passing the leach concentrate stream (30') through an ion exchange bed to load uranium onto a strong base anion exchange resin and produce an untreated barren (18) solution depleted of uranium, (c) passing an eluant solution (20) comprising bicarbonate through the loaded ion exchange bed to strip uranium from the strong base anion exchange resin and produce an eluate (22) comprising uranium and bicarbonate, (d) precipitating uranium (24) from the eluate (22) to produce a residual eluant solution (26) depleted of uranium, and (e) repeating steps (a)-(d).

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CLAIMS:
1. A method for recovering uranium from an alkaline pregnant liquor
solution comprising
uranium, carbonate and chloride, by passing the pregnant liquor solution
through a plurality of ion
exchange beds (12, 14) containing strong base anion exchange resin that cycle
through process
zones as part of a repeating uranium recovery circuit, wherein the method
comprises the steps of:
(a) treating the pregnant liquor solution (16) with a membrane (28) to
produce: i) a
leach permeate solution (30) at least partially depleted of uranium and
carbonate
and ii) a leach concentrate solution (30') having a relatively higher
concentration of
uranium and carbonate and which is at least partially depleted of chloride;
(b) passing the leach concentrate stream (30') through an ion exchange bed
to load
uranium onto the ion exchange resin and produce an untreated barren (18)
solution
depleted of uranium,
(c) passing an eluant solution (20) comprising bicarbonate through the
loaded ion
exchange bed to strip uranium from the ion exchange resin and produce an
eluate
(22) comprising uranium and bicarbonate,
(d) precipitating uranium (24) from the eluate (22) to produce a residual
eluant solution
(26) depleted of uranium, and
(e) repeating steps (a)-(d).
2. The method of claim 1 including the steps of:
(f) treating a portion of the untreated barren solution (18) of step
(b) with a membrane
(31) to produce:
i) a barren permeate solution (32) at least partially depleted of carbonate
and
ii) a barren concentrate solution (32') having a relatively higher
concentration
of carbonate, and
(g) combining the barren permeate solution (32) with at least one of
the pregnant liquor
solution (16) or the leach leach concentrate solution (30') of step (a).
3. The method of claim 1 including the steps of:
(h) treating a portion of the residual eluant solution (26) of step
(d) with a membrane
(38) to produce:
i) a residual eluate permeate solution (40) at least partially depleted of
bicarbonate and
ii) a residual eluate concentrate solution (40') having a relatively higher
concentration of bicarbonate than the residual eluate solution (26), and
(i) combining the residual eluate concentrate solution (40') with at
least one of the
pregnant liquor solution (16) or the leach concentrate solution (30') of step
(a).
6

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 02900905 2015-08-11
WO 2014/130209 PCT/US2014/013106
CONTINUOUS ION EXCHANGE PROCESS INTEGRATED
WITH MEMBRANE SEPARATION FOR RECOVERING URANIUM
FIELD
The present invention is directed toward a continuous ion exchange process for
recovering
uranium from pregnant liquor solutions.
INTRODUCTION
Continuous ion exchange (CIX) processes have been used since the 1970's to
recover
uranium from pregnant liquor solutions (PLS). A brief overview of the process
is described by:
Anton R. Hendriksz and Ronald R. McGregor, "The extraction of uranium from in-
situ leach
solutions using NIMCIX ion exchange contactor," Annual Uranium Seminar
(proceedings) 1980,
4th, pages 121-124. In general, the CIX process involves the use a uranium
recovery circuit
including of a plurality of ion exchange beds, commonly arranged in carousal,
which repetitively
cycle through individual process zones including uranium loading and elution.
Various anions (e.g.
chloride, sulfate, carbonate, bicarbonate) present in the PLS can also absorb
on resin exchange sites
during the resin loading phase of the process. The extent to which these
anions ultimately compete
with uranium anions is influenced by their relative concentration and affinity
for the resin along with
the pH and temperature of the leach solution. The recycling of barrens or
residual eluant exacerbates
this problem by effectively concentrating these competing anions to the point
where they result in a
loss of separation efficiency, e.g. lower resin capacity, more frequent resin
elution, eluant
replacement, dilution of PLS, and the like.
SUMMARY
The present invention includes a continuous ion exchange system and method for
recovering uranium from a pregnant liquor solution that integrates the use of
one or more membrane
separations to reduce the concentration of competing anions. In one
embodiment, the method
includes recovering uranium from an alkaline pregnant liquor solution
including uranium, carbonate
and chloride. The pregnant liquor solution is passed through a plurality of
ion exchange beds (12,
14) resin that cycle through process zones as part of a repeating uranium
recovery circuit. The
method includes the steps of: (a) treating the pregnant liquor solution (16)
with a membrane (28) to
produce: i) a leach permeate solution (30) at least partially depleted of
uranium and carbonate and ii)
a leach concentrate solution (30') having a relatively higher concentration of
uranium and carbonate
and which is at least partially depleted of chloride; (b) passing the leach
concentrate stream (30')
through an ion exchange bed to load uranium onto a strong base anion exchange
resin and produce
an untreated barren (18) solution depleted of uranium, (c) passing an eluant
solution (20) comprising
1

CA 02900905 2015-08-11
WO 2014/130209 PCT/US2014/013106
bicarbonate through the loaded ion exchange bed to strip uranium from the
strong base anion
exchange resin and produce an eluate (22) comprising uranium and bicarbonate,
(d) precipitating
uranium (24) from the eluate (22) to produce a residual eluant solution (26)
depleted of uranium, and
(e) repeating steps (a)-(d).
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a schematic view of an embodiment of the present continuous
exchange system.
DETAILED DESCRIPTION
The invention includes a system and method for recovering uranium from a
pregnant liquor
solution, ("PLS"). The source of the PLS is not particularly limited but is
typically produced by
heap leaching, in-situ leaching, vat leaching or pressure leaching of
carbonate-containing uranium
ores. In one embodiment, the leach ores reside in a lixiviation tank from
which the PLS is drawn.
The PLS comprises an alkaline solution preferably having a pH of at least 9
and more preferably at
least 10; and further includes uranium, bicarbonate, carbonate, sulfate and
chloride anions along
with their counter cations and corresponding salts. Even though the
concentration of these anions is
dynamic, they are preferably maintained within the following ranges:
carbonate: 10-60 g/L;
bicarbonate: 1-20 g/L; chloride: 0 to 10g/L; sulfate: 0-25 g/L. While the
tetravalent uranyl
tricarbonate complex anion UO2(CO3)3 4-- predominates, a divalent ion
UO2(CO3)22- = 2H20 may
exist at low carbonate concentration. During the loading phase of the process,
the mobile exchange
ion ("X," e.g. chloride, hydroxyl, etc.) initially adsorbed on the exchange
resin (R) and the uranium
anions in solution will proceed as follows:
4RX + UO2(CO3)34 ¨> R4UO2(CO3)3 +4K
When an anion exchange resin is provided in the carbonate form, the loading
reactions proceeds as
follows:
2(R+)2C032 + UO2(CO3)34 ¨> (R+)4. UO2(CO3)34 + 2 C032
During the elution phase, an eluant solution (e.g. from 50g/L to saturated
aqueous bicarbonate
solution) is passed through the uranium loaded ion exchange bed and exchanges
eluant anions for
uranium anions.
As part of the present method, the PLS is subject to continuous ion exchange
(CIX)
including the step of passing PLS through a plurality of ion exchange beds
containing strong base
anion exchange resin. The beds pass through individual process zones as part
of a repeating uranium
recovery circuit schematically illustrated in Figure 1. More specifically, a
CIX unit is generally
shown at 10 including a plurality of ion exchange beds (12, 14) containing a
strong base anion
2

CA 02900905 2015-08-11
WO 2014/130209 PCT/US2014/013106
exchange resin that sequentially pass through individual process zones (e.g.
A, B) as part of a
uranium recovery circuit. Each zone preferably includes at least one ion
exchange bed or column,
and in practice may include a plurality of individual beds. The method
includes the following
sequential steps:
(a) passing the PLS (16) through an ion exchange bed (zone A) to load
uranium onto
the ion exchange resin and produce an untreated barren solution (18) which is
depleted of uranium,
and (b) passing an eluant solution (20) through the uranium loaded
ion exchange bed(s)
(zone B) to strip uranium from the ion exchange resin and produce an eluate
(22). The eluate (22)
may be then treated to precipitate out uranium (24) leaving a residual eluate
solution (26) that may
be optionally reused. The method may include additional process zones as is
well known in the art,
e.g. rinsing, washing, scrubbing, etc. Processed uranium ore may be stored in
a lixiviation tank (27)
from which PLS is drawn. PLS and eluant may be maintained in tanks (16'),
(20'), respectively.
The tanks are in selective fluid communication with the ion exchange beds (12,
14). Fluid flow may
be controlled by a plurality of values and a control panel (not shown) as the
beds (12, 14) cycle
through the individual process zones (A and B). CIX equipment for performing
the subject method
is available from PuriTech (e.g. IONEXTm), Ionex Separations and Calgon Carbon
(e.g. ISEPTM)
and is also described in US 7594951. Suitable ion exchange resins include
AMBERSEPTm 400
strong base anion exchange resin available from The Dow Chemical Company. This
resin includes
a styrene-divinylbenzene copolymer (gel) matrix with functional quaternary
ammonium groups.
The resin may be initially provided in various ionic forms, e.g. sulfate,
carbonate, hydroxyl and
chloride.
In order to reduce the concentration of competing anions (e.g. chloride)
present in the PLS
(16), at least a portion of the PLS is be treated with a membrane (28) to
produce: i) a leach permeate
solution (30) at least partially depleted of uranium and carbonate and ii) a
leach concentrate solution
(30') having a relatively higher concentration of uranium and carbonate and
that is at least partially
depleted in monovalent anions (e.g. chloride) as compared with the untreated
PLS (16). The leach
permeate solution (30) may be disposed or reused. For example, the leach
permeate solution (30)
may be subject to further membrane treatment (not shown), e.g. with a reverse
osmosis membrane
(e.g. FILMTECTm XLE-440). The concentrate solution resulting from such a
reverse osmosis
treatment includes most of the remaining ionic species (e.g. chloride,
sulfate) and can be disposed;
whereas the permeate solution can be recycled and used in the lixiviation tank
(27) to replace
evaporative loss, used to make fresh bicarbonate solution added to the
lixiviation tank (27), or used
to dilute the PLS (16) or leach concentrate solution (30').
The leach concentrate solution (30') (and optional blended PLS (16)) is passed
through an
ion exchange bed (12) to load uranium onto the strong base anion resin and
produce an untreated
3

CA 02900905 2015-08-11
WO 2014/130209 PCT/US2014/013106
barren solution (18) depleted of uranium. The untreated barren solution (18)
may be disposed of,
recycled back to the lixiviation tank (27), or in a preferred embodiment,
subject to further treatment
with a membrane (31). For example, all or a portion of the untreated barren
solution (18) may be
treated with a membrane (31) to produce: i) a barren permeate solution (32) at
least partially
depleted of carbonate (and other anions optionally including sulphate and
chloride) and ii) a barren
concentrate solution (32') having a relatively higher concentration of
carbonate. The barren
permeate solution (32) may be optionally recycled to (i.e. combined with) the
PLS (16) or leach
concentrate solution (30') for use in the loading phase of the process. The
barren concentrate
solution (32') may be optionally disposed (34) or recycled, e.g. all or a
portion may be recycled to
the lixiviation tank (27). In a preferred embodiment, the barren concentrate
solution (32') is subject
to further membrane treatment (not shown), e.g. with a reverse osmosis
membrane with the resulting
permeate being used in the lixiviation tank (27) to replace evaporative loss,
used to make fresh
bicarbonate solution added to the lixiviation tank (27), or used to dilute the
PLS (16) or leach
concentrate solution (30').
The eluant solution (20) passes through the uranium loaded ion exchange bed(s)
(zone B) to
strip uranium from the ion exchange resin and produce an eluate (22). The
eluate (22) may be then
treated to precipitate out uranium (24) leaving a residual eluate solution
(26). By way of example,
the eluate may be neutralized with sulfuric acid and uranium can be
precipitated with hydrogen
peroxide. In this example, the resulting residual eluate solution (26)
includes sodium sulfate along
with carbonate/bicarbonate. This residual eluate solution (26) may then be
disposed of, recycled to
the lixiviation tank (27) or preferably subject to further membrane treatment.
For example, at least a
portion of the residual eluate solution (26) may be treated with a membrane
(38) to produce: i) a
residual eluate permeate solution (40) at least partially depleted of
bicarbonate (and uranium) and ii)
a residual eluate concentrate solution (42) having a relatively higher
concentration of bicarbonate
(and uranium) than the residual eluate solution (26). The residual eluate
concentrate solution (42)
can be recycled directly to the lixiviation tank (27) the PLS (16) or the
leach concentrate solution
(30'). The residual eluate permeate solution (40) may be disposed, or further
treated with
membranes (not shown). For example, the residual eluate permeate solution (40)
may be further
treated with a reverse osmosis membrane (e.g. FILMTECTm XLE-440 or FILMTECIm
BW30
XFR-400/34i or FILMTECTm XFRLE-400/34i available from The Dow Chemical
Company. This
treatment creates a second permeate solution that is depleted of almost all
ions (e.g. over 98%
rejection of chloride) and a second concentrate solution including most of the
ions and salts that
were present in the residual eluate permeate solution (40). This second
permeate solution can be
recycled to the lixiviation tank (27), used to prepare fresh bicarbonate
solution for addition to the
4

CA 02900905 2015-08-11
WO 2014/130209 PCT/US2014/013106
lixiviation tank (27) or for diluting the PLS (16) or leach concentrate
solution (30'). The second
concentrate solution can be disposed.
Different membranes may be used depending upon the degree of ion separation
desired.
Applicable membranes (28, 31 and 38) include nanofiltration and reverse
osmosis elements such as
FILMTECTm NF90 and NF 270, FILMTECIm XLE-440 or FILMTECTm BW30 XFR-400/34i or
FILMTECTm XFRLE-400/34i available from The Dow Chemical Company.
Many embodiments of the invention have been described and in some instances
certain
embodiments, selections, ranges, constituents, or other features have been
characterized as being
"preferred." Characterizations of "preferred" features should in no way be
interpreted as deeming
such features as being required, essential or critical to the invention.
Stated ranges include end
points. The entire subject matter of each of the aforementioned patent
documents is incorporated
herein by reference.
5

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Demande non rétablie avant l'échéance 2018-01-29
Le délai pour l'annulation est expiré 2018-01-29
Réputée abandonnée - omission de répondre à un avis sur les taxes pour le maintien en état 2017-01-27
Inactive : Page couverture publiée 2015-09-02
Requête pour le changement d'adresse ou de mode de correspondance reçue 2015-08-25
Inactive : Correspondance - PCT 2015-08-25
Inactive : CIB attribuée 2015-08-24
Inactive : CIB en 1re position 2015-08-24
Demande reçue - PCT 2015-08-24
Inactive : Notice - Entrée phase nat. - Pas de RE 2015-08-24
Exigences pour l'entrée dans la phase nationale - jugée conforme 2015-08-11
Demande publiée (accessible au public) 2014-08-28

Historique d'abandonnement

Date d'abandonnement Raison Date de rétablissement
2017-01-27

Taxes périodiques

Le dernier paiement a été reçu le 2015-12-09

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
Taxe nationale de base - générale 2015-08-11
TM (demande, 2e anniv.) - générale 02 2016-01-27 2015-12-09
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
DOW GLOBAL TECHNOLOGIES LLC
ROHM AND HAAS COMPANY
Titulaires antérieures au dossier
ARESKI REZKALLAH
PETER E.M. AERTS
ROBERT T. KRUEGER
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Abrégé 2015-08-10 1 75
Description 2015-08-10 5 259
Dessin représentatif 2015-08-10 1 12
Dessins 2015-08-10 1 13
Revendications 2015-08-10 1 47
Avis d'entree dans la phase nationale 2015-08-23 1 194
Rappel de taxe de maintien due 2015-09-28 1 110
Courtoisie - Lettre d'abandon (taxe de maintien en état) 2017-03-09 1 176
Demande d'entrée en phase nationale 2015-08-10 3 95
Rapport de recherche internationale 2015-08-10 3 75
Correspondance reliée au PCT 2015-08-24 2 81